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Abstract—Execution logs capture the run-time behavior of
software systems. To assist developers in their maintenance tasks,
many studies have proposed tools to analyze execution infor-
mation from logs. However, it is as yet unknown how industry
developers analyze logs in embedded software engineering.

In order to bridge the gap, we study how developers analyze
logs by interviewing 25 software developers from ASML, which
is a leading company in developing lithography machines. In
particular, we explore the type of logs developers analyze, the
purposes for which developers analyze logs, the information
developers need from logs and their expectation on tool sup-
port. As the main contribution, we observed that the lack of
domain knowledge, lack of familiarity with code base and software
design, and presence of concurrency, raise major challenges in
log analysis for such complex and multidisciplinary systems.
Particularly, we observed that inspecting execution information at
different levels of abstraction is useful to develop comprehension
of such complex systems. However, obtaining the abstraction is
difficult with current tools. Our study has several implications.
The empirical evidence provided by our study implies the need
to support log inspection and comparison with multiple levels of
abstraction, categorize log differences, and recover links between
different types of logs.

Index Terms—Ilog analysis, embedded systems, maintenance

I. INTRODUCTION

Execution logs, produced by software systems at runtime,
capture the dynamic aspects of the software. Log analysis
tools have been proposed to aid developers in such software
engineering tasks as program comprehension [38], test genera-
tion [36], and change comprehension [5]. However, researchers
have provided empirical evidence that some log analysis tools
are not necessarily effective and applicable when dealing with
real-world problems [33].

We believe that understanding how developers analyze logs
is essential to design better log analysis tools. Li et al. [29]
studied the benefits and costs of logging from developers’ per-
spectives in the context of open source software development,
suggesting better automated logging tools. Barik et al. [6]
identified the tensions that emerge in data-driven cultures
as event data are used by a variety of roles including non-
engineering roles (e.g., a program manager) at Microsoft,
calling for tools that assist non-technical team members in
analyzing data. Different from Li et al. and Barik et al., we
focus on how developers analyze logs in embedded software
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engineering, with the aim of identifying developers’ needs
for future research on the tools that are applicable to aid
developers in performing their maintenance tasks.

In order to understand how we can improve analysis tools
for embedded software engineering, we need to understand
what information developers need from execution logs (RQ3)
and what developers expect from tools (RQ4). We believe that
if the required information could be easily provided by tools,
developers could focus their effort and time on the main-
tenance tasks, rather than on searching for the information.
However, the expectations developers have about tools also
depend on the context of use. Therefore, first of all, we need
to understand the types of logs developers use (RQ1) and the
purposes for which developers analyze logs (RQ?2).

To answer our research questions, we conducted an ex-
ploratory case study at ASML which develops lithography
systems for the semiconductor industry. We conducted a series
of semi-structured interviews with 25 software developers. We
observed that developers use four types of execution logs that
record high-level machine actions and errors, low-level execu-
tion details, throughput information as well as business-critical
data (RQI). We confirmed that logs are primarily used for
analyzing software issues [6], [29]. In addition, we observed
the use of logs, e.g., for test code development and requirement
reverse-engineering (RQ2). We identified 13 types of infor-
mation developers search for in the execution logs. We found
that the most frequently mentioned types of information are
propagation of errors across systems, timestamps associated
with log lines, data flow, interaction of software components,
and differences between multiple executions (RQ3). In addition
to the common challenges related to log quality [29], [47], we
observed that the lack of domain knowledge, lack of familiarity
with code base and software design and presence of concur-
rency raise major challenges in log analysis for such complex
and multidisciplinary systems. Particularly, developers shared
that obtaining a high-level picture of component interactions
is useful for developing global comprehension on the behavior
of such systems. Such abstraction is particularly hard to
obtain with currently used tools (e.g., text-based tools). Thus,
developers expect tools to help them handle the complexity by
adding multi-level abstractions to logs and comparing multiple
logs on different levels of abstraction (RQ4). Based on our
findings, we proposed a set of suggestions.



II. METHODOLOGY

To understand how software developers use logs in the
embedded systems industry, we conducted a case study [37].
As our research questions differ from previous work [6], [29],
we opted for an exploratory rather than a confirmatory study.

A. Context

Our study is part of an ongoing collaboration with ASML
which develops high-tech production systems for the semi-
conductor industry. The division that we work with is respon-
sible for components implementing the supervisory control
and metrology of the manufacturing process. Control and
metrology have become the backbone of many high-tech
systems (e.g., optical measurement systems and autonomous
vehicles) due to the growing complexity and the demanding
precision [25]. The software components developed by this
division form a paradigmatic subsystem [15] that coordinate
machine actions and measurements as well as calibration of
the systems based on the performed measurements. The sub-
system consists of multiple processes collaborating with each
other via inter-process communication. Moreover, the division
provides a typical context of embedded software engineering;
the (sub)system is implemented not only by software engineers
but also engineers from different disciplines (e.g., mechanical
or electrical engineering). Similar to other complex embedded
systems [3], the execution of such software systems requires
the physical layers to be present or simulated. The in-house
execution of such software systems requires either a simulator
called Devbench, or an environment called Testbench in which
physical layers are present.

B. Semi-structured Interviews

We opt for semi-structured interviews as they allow us
to discuss prepared questions and ask follow-up questions
exploring interesting topics that emerge during interviews [8].
Table I shows our interview guide. In adherence to the best
interviewing practices [8], we conducted a pilot interview with
a developer from the same division. The pilot interview took
one hour and led to the rephrasing of several questions. The
study design was approved by the ethical review board of our
university and the participating company.

1) Interview participants: The selected division has seven
software development groups. Each group is responsible for
the development of multiple components. We contacted the
group leads from these seven groups to recruit software devel-
opers. We encouraged the group leads to take into account the
diversity of developers’ education background, development
role and gender. Our invitation was accepted by 25 software
developers (see. Table II). In the beginning of the interviews,
to establish mutual trust we stressed that the interviewees’
identity will not be disclosed and their answers will not be
shared with their supervisors.

2) Data collection and analysis: We collected data by
recording the audio and making the transcripts. We coded the
transcripts [8] using the ATLAS.ti data analysis software. Our
coding process consists of three steps. First, we performed

TABLE I: Interview guide

Background

1. What is your job title?

2. What kind of systems is your group responsible for? what is your role
and responsibility within the group?

Type of logs (RQ1)

3. Do you use any execution logs that capture the run-time behavior of
software?

4. How are these logs commonly called in your team?

5. How do you obtain these execution logs?

Purpose of log analysis (RQ2)

6. For what purposes do you use them?

7. How often do you analyze logs for your purposes?

Information needs (RQ3)

8. What information is in log X (i.e., the log the developer has mentioned)?
9. What information in log X helps you for your work?

10. How does the information in log X help you?

11. Can you describe the procedure of a task in which log X is used?
Tool support (RQ4)

12. What tools do you use for analyzing execution logs?

13. How do you use these tools?

14. What are the most challenging steps in your log analysis practices?
15. How do you cope with these challenges?

16. What kind of tools would you like to have for helping you analyze
logs?

17. How would you like to use these tools?

Ending

18. Having discussed some topics about log analysis, would you like to
add some thoughts?

19. What is your year’s of experience as a software developer?

20. What is your education background?

open coding. We constantly compared and refined codes that
emerge from this process. Similar codes were then grouped
into categories. Second, we conducted axial coding to make
connections between codes or categories. Finally, these codes
and categories were grouped into the topics derived from our
research questions. According to Strauss and Corbin [41],
theoretical saturation is reached when no new insights emerge.
Hence, instead of having a strict sequential order of data
collection and analysis, we interleaved these steps. The codes
and categories emerged as the data is analyzed and helped
us to examine whether theoretical saturation was reached. We
consider that the saturation is reached when no new codes are
found. With these 25 participants, we reached the saturation
as we did not observe new codes in the last four interviews.
3) Member checking: Coding is an interpretative process
and as such there is always a risk of misinterpretation [21]. In
order to reduce this risk, we performed member checking [9],
i.e., request interviewees’ feedback to improve the accuracy of
the derived theory. We emailed each participant two artifacts,
the transcript of the interview to remind the participant what
has been discussed in the interview, and the codes derived
from the transcript together with the description of the codes.
We encouraged participants to correct us if they disagree with
our interpretation, and add new ideas if they would like to do
so. We received 20 replies of the participants, of which two
required minor changes to the description of the code and two
added additional thoughts which did not result in new codes.

III. TYPE OF LOGS (RQ1)

The types of execution logs are summarized in Table III.



TABLE II: Demographics of interviewees

Group ID 1 2 3 4 5 6 7

Participant ID 1 2 3 4] 5 6 7 8 9 10 11| 12 13 14 15| 16 17| 18 19 20 21| 22 23 24 25
Years of experience 7 10 7 6| 11 5 30 24| 15 5 5| 13 15 25 25| 45 95|35 2105 20| 3 13 9 25
Current role’ D D A Al D D A T| A D A T D P D DA&P| D D A A&P| D D D D
Gender” M M M M| W M M M M M M M M M M M MM M M M M M M W
Education background® |GCS GCS GCS GCS |GCS GCS UOth GOth [UCS GCS GCS [UOth GCS UCS UCS |[UOth GCS |GCS UCS GCS GOth [GCS GCS GOth GCS

1. D: developer, A: architect, T: tester, P: product owner 2. M: man, W: woman, none of the participants identified as non-binary.
3. GCS: graduate degree in computer science, UCS: undergraduate degree in computer science, GOth: graduate degree in other science
subjects (e.g., electrical engineering, physics and mechanical engineering), UOth: undergraduate degree in other science subjects.

TABLE III: Four types of logs (RQ1)

Type Information Enabled Presence of
by default physical layers
Event log Machine event & v Not necessar
(EL) error message y
Function trace  Order of functions & X Not necess
(FT) values of parameters ary
Throughput trace Duration of software & v Necessa
(TT) hardware actions y
F;]g;tlonal data Business-critical data v Not necessary

Event logs contain regular events created when a machine
action such as initialization has been executed as well as
error messages of the systems. Developers obtain event logs
either from field productions or from in-house test executions.
Interviewees use “event log” and “error log” interchangeably.

Function trace contains the details of the program execu-
tion. The start and the end of a function call inside components
as well as the values of parameters are logged. Compared to
event logs function trace shows more details of the execu-
tion:-“In the event log you have a higher level view of the
system, whereas with component tracing you have a finer level
[view] of the system” (P18). Due to performance concerns,
function tracing is not enabled by default. Developers can
enable it before executing in-house tests. It can be time-
consuming to obtain function traces because developers need
to set up the simulation environment for test executions and
wait for their completion: “so you have to set up Devbench
plans and they have to run the test, and sync your code.
It’s already quite some work...sometimes the tests take hours
to complete” (P21). To obtain function traces from field
productions, developers need to negotiate with customers: “in
order to see this I need tracing from these processes and then
you look into if we can at the customer site turn on traces for
such a process” (P9). Interviewees use ‘“tracing”, “function
trace” or “component tracing” interchangeably.

Since the production throughput is a key business driver of
the machines, throughput trace logs the sequence of function
calls at component interface: “for every component interface,
you can specify throughput tag, on entry of a function or an
exit of the function, both on the client and on the server side,
so you see the start and end points of real function calls
”(P7). The throughput trace logs the duration and sequence
of software and hardware actions, showing the speed of
execution. Obtaining throughput traces is not trivial because
in order to accurately capture the duration of software and

TABLE IV: The purposes of log analysis and the used logs for
those purposes. * indicates the purposes that were not identified in
the previous work. “#I” indicates the number of interviewees who
mention the purpose during interviews.

Purposes Used logs #I

Software comprehension

Familiarising with existing software FT 4
Reverse-engineering software requirements™ FT 1
Test development
Developing test scenarios and code* FT,EL 2
Verification and improvement
Verifying executed behavior vs expected behavior All 15
Performance verification and improvement TT, FT
Verifying timing (throughput) performance™ 3
Identifying opportunities of throughput improvement™ 5
Log-quality qualification All

Identifying log pollution™ 1

Verifying correctness of the logged information™ 3
Test documentation™ FT 2
Issue analysis
Classifying the type of issues* All 3
Identifying responsibilities EL 2
Localizing problems All 12
Identifying root cause All
Identifying root cause of field issues 16
Identifying root cause of test issues 11
Identifying root cause of flaky (test) executions™ 2
Confirming reproduced field issues™ EL, FD, FT 8
Analyzing occurrence and prevalence of issues EL 2
Supporting customers EL,FD 3

hardware actions the software needs to run on the Testbench:
“You need these Testbenches, which are kind of real machines.
For getting access to them you need to arrange it. And you're
competing with other people that want to do the same thing.
There’s only one person who can use the machine at a given
moment in time” (P16).

Functional data logs the business-critical data that repre-
sents the functional aspects of the systems: “it contains details
like what is the average heat of wafer” (P8). It can be obtained
from field productions and test executions.

RQ1 summary: Developers use different types of execution
logs that record high-level machine actions, low-level exe-
cution details, throughput information as well as bushiness-
critical data. Developers need to go through a non-trivial pro-
cess to obtain the logs because the execution of software for
such systems requires hardware to be available or simulated.

IV. PURPOSE OF LOG ANALYSIS (RQ2)
A. Purposes

Table IV shows the purposes for which developers analyze
execution logs. We identified 18 purposes and classified them



into four categories. Our findings are complementary to the
prior studies [6], [29], [46]. Consistent with the prior studies,
we found that developers primarily use logs for the purposes of
analyzing issues. We also identified purposes (e.g., developing
test scenario & code, reverse-engineering requirements for
legacy software and identifying root cause of flaky executions)
not previously discussed in the literature.

1) Software comprehension: P3, P9, P14 and P22 use
execution logs to complement the source code when famil-
iarizing with the software: “One of the most important things
that you need to understand [is] what the software does, you
do that partially based on tracing” (P9). Execution logs also
complement the documentation: “The software is not very
well documented. We have to do reverse engineering to get
requirements...I can choose to run the current software and
enable tracing, and from that tracing, it shows me all the
interaction between different components” (P3).

2) Test development: When developing test cases, devel-
opers adopt an incremental approach using logs: “We analyze
the trace...Normally we will start with a very basic scenario
of tests. We checked some of the sequence of the essential
parts...we continue to extend the test scenario, probably with
some pause or stop in the middle and resume it or inject some
errors to see if the errors can be handled correctly” (P9).

3) Verification and improvement: Execution logs help
developers to verify and optimize different aspects of the
software. In addition to running tests against requirements,
developers extensively inspect logs to verify whether the
software behaves as expected: “I need to develop some new
functionality and we can add some tracing code to the pro-
duction code then we can look into the tracing whether the
behaviors are expected” (P13). In particular, logs help verify
that the undesired events do not occur: “We have a list of events
that we say those are not allowed to occur during a regular
test, that’s where we use the event logs” (P12). In order to
achieve high throughput performance, execution logs are also
used to verify if actions are finished within time budget and
identify if any optimizations can be done: “Often we get the
request to reduce the overall timing, so to do that, you need
to know the time it takes and where to and how to reduce
that” (P7). Moreover, as part of quality control, developers
also check the quality of logs: “we check whether there is too
much logging going on, you know, log pollution” (P19).

4) Issue analysis: Execution logs play an important role in
analyzing issues. The issues could be anything that threatens
the quality of production, identified by the customers or by
in-house test executions. When an issue is reported, as the
very first step, developers need to classify it in one of the
predefined classes such as functional issues, software issues,
or infrastructure issues. By analyzing logs, developers also
get a rough idea of whether the issue analyzed is caused
by their components or not, and which group or person has
the expertise to fix the issue. Furthermore, log analysis helps
developers identify the root cause of the issue. Particularly,
analyzing the logs provided by customers is essential for
identifying the root cause of the field issues, a prerequisite

for reproducing the issues on the in-house machines. Based
on logs, developers can further confirm if issues are correctly
reproduced. Sometimes, to understand a certain issue better,
developers analyze the occurrence rate and the prevalence of
the issues: “when you get some issues with error log, we can
connect to our clients and you can see how many number of
times this happened at all the customers...to see if it’s really
generic or something specific happens at a customer at that
point” (P22). For issues found by testing, developers analyze
logs to identify why a software change does not pass tests
and why the execution outcomes of tests against the same
code appear not deterministic [32].

B. Observations

The four types of logs serve different purposes. Event logs
show high-level events that help developers map the high-
level behavior to components. Function traces provides the
low-level execution details of components. Function data are
particularly used for issue analysis and throughput traces for
performance-related purposes. A closer look at Table IV
reveals that execution logs are primarily used to analyze
issues: indeed, logs are usually the only artifact providing the
information about field issues. Applying traditional debugging
approaches to obtain low-level execution information (e.g.,
variable values) can be infeasible; setting up debuggers for
the software executed in the simulation environment requires
additional expertise and effort (P24). Moreover, debuggers can
interfere with timing behaviour and synchronisation between
multiple processes: “What might happen is that you have some
timeout, so some processes hanging waiting for the process
you are debugging. If he doesn’t answer in a short time,
it stops. Basically it throws an error” (P24). This requires
developers log and analyze execution details in function traces
to debug such software systems.

We observed differences between software developers. P6,
P10 and P20 consider function traces as the last resort when
analyzing issues: “In tracing you can see all the steps within
that component and it can be a lot of data there...if you
really cannot see what is wrong then you enable that tracing.
But that’s really last resort” (P6). P20 indicated that the use
of execution logs also depends on the type of component,
e.g., analyzing components responsible for algorithms requires
different logging than to control components: “[the component
developed by] my current team is all about calculations, which
is not really about control sequence or timing. It just about
the numbers. It’s completely different domain. For example we
need that much better [functional] data logging” . Furthermore,
the usage of execution logs can be changed with the shift of
their roles, e.g., to a product owner: “I’m more responsible for
making sure that the team is executing their work correctly. 1
myself will not look at logs anymore” (P21).

RQ2 summary: Developers rely on logs to obtain low-level
execution information for issue analysis that cannot be easily
obtained using traditional debugging approaches. Our findings
complement the literature and provide empirical evidences for
some additional purposes (e.g., test development).




V. INFORMATION NEEDS (RQ3)

We grouped information needs into five categories as shown
in Table V. We observed that developers tend to have common
information needs; five types of information are mentioned by
more than 10 developers (> 40% interviewees).

1) Context of issues: As discussed in the previous section,
developers use logs for issue analysis. Many of these issue
analysis activities (e.g., identifying responsibilities) require
developers to get the context of the issues: “To be able to
create this picture, and later you try to somehow understand
based on this picture what went wrong with this run” (P22).

First of all, developers inspect event logs and functional
data to know the settings (e.g., user inputs) of the software.
Second, developers need to understand how the error propa-
gates through the system based on event logs: this requires
knowledge of the system architecture and the error handling
mechanism. The systems that our interviewees work with are
based on the Client-Server architecture [34]. ASML imple-
ments an error linking mechanism, that is, when an exception
occurs in the server component, the server component must
notify the client components. Since the same component can
play the role of a server towards a group of components, and
the role of a client towards other components, it is common
that an error propagates from one component to a set of other
components that have direct or indirect dependencies on it.
Developers inspect logs for records of error propagation to
identify the components that might contain the root cause,
inferring for which components they need to further inspect
low-level details.

To further understand behavior of a component when errors
occur, developers need the timestamp associated with the error
messages which serves as a linker between high-level infor-
mation from event logs and low-level details from function
traces: “we can search the timestamp in the software trace to
find, let’s say, around that moment what had happened” (P13).

2) Data flow and executed sequence: Inspecting the low-
level details shown in function traces, developers identify the
parts of code that have been executed given a particular setting:
“So machine to us sometimes is a black box, like you have so
many configurations and so many possible inputs, and that
changes the output or execution. So to really understand what
is being executed under the current configuration [we looked
into function traces]” (P1). The order of function execution
and the flow of data are important for developers to verify
software behavior against their expectations: “You check two
things. If the sequence of the function call is as you expected,
given a certain case...and second you check if the generated
output which is input for other function, so data moving from
one function to function, is as you expected’ (P22).

3) Software state and interaction: To understand the
software system, developers analyze the interactions between
software components based on the function traces. P3, P6,
P14, P15 and P22 consolidate the interaction information by
means of sequence diagrams.

Developers also analyze how the state of software changes
based on function traces. The division adopts model-driven

engineering (MDE) to design the components that are respon-
sible for controlling machine actions and production processes.
Developers design these components using state machines and
generate code automatically from these state machines. Each
control component consists of multiple state machines that
interact with each other. Interactions are realized as function
calls and recorded in function traces. Working with such
components, developers inspect the interactions between state
machines that change the states of the software, and compare
them with function traces: “it might go to the wrong path in
the state diagram. For example, when it should go back to
initialize state, but it’s going to the different state and then
going to initialize state...so I can look at that trace to see
what is the sequence and then look at the model to see if they
are matched or there’s something wrong” (P14).

4) Timing performance: Developers analyze throughput
traces to understand and improve timing performance: “Gap is
the time between software actions. We can see that there is a
gap somewhere in the sequence [in the throughput trace] and
then you need to understand where the gap comes from...gaps
can be the result of a function calling another function in
another task. If the other task is busy doing something else
function execution is blocked” (P7).

5) Differences between executions: Developers need the
information about the differences between the logs generated
from multiple executions in order to, e.g., identify regression,
and understand software change. This is especially the case
for flaky tests [32]: “So especially if an error seems to be
not consistently appearing, like that caused by some kind of
instability, then I want to know which change set most likely
introduced it and then it makes sense to run also older versions
of the code to see if it never occurred earlier or not” (P19).

Moreover, the differences between executions can also help
identify when machines start deviating from the expected be-
havior. In machines produced by ASML wafers move through
the production line in batches. The production machines
repeatedly perform the same sequence of actions in order to
process all elements in the same way. These repeated actions
are controlled by sequences of function calls and eventually
captured in the function trace. Sometimes, the issue in the
machines result in inconsistent actions for these elements. To
identify where and when the inconsistency occurs, developers
need to identify the differences between the sequences of
function calls associated with different elements.

RQ3 summary: Five types of information from logs are
mentioned by more than 10 developers. Inspecting the propa-
gation of errors is essential to localize the problem. With the
timestamp information, developers can establish the relations
between different types of log. The information about data
flow and the interaction of software components is useful
to comprehend the complex systems. Particularly, developers
need the differences between executions for identifying the
cause of flaky tests or the deviation from expected behavior.




TABLE V: Information needs from execution logs. “#I” the number
of interviewees who mention the information need during interviews.

Information needs and sources #1
Context of issues (EL and FT)
What are the settings of the machines? 3
How does the error propagate? 10

At which time point does the error occur? What the machine is | 12
doing when the error is raised?

Data flow and executed sequence (FT)
In which order are functions being executed? 6
What is being executed under current configuration? 4
What are the values of variables and how do they flow from | 10

one function/module to another?

State and interaction (FT)
How do software components interact with each other? 10
How does the function sequence change the state of software?

Timing performance (TT and FT)

Is there any time gaps between actions? 2
Is the software action finished within the time budget? 3

Difference between executions (EL, FT and FD)
What additional errors does the change introduce?
How do the control sequences from different executions differ? | 12
How do the functional data from different executions differ? 7

VI. TOOL SUPPORT FOR LOG ANALYSIS (RQ4)

In this section we discuss the tools developers use, the
challenges they are facing when analyzing logs, and the tools
they would like to have for log analysis.

A. Tools used

The interviewed developers are very similar in their choice
of tools to analyzing logs. All developers stated that text edi-
tors are commonly used. The developers also adopt traditional
approaches such as Linux grep or their own scripts: “if 1
want to do a bit more smarter analysis other than grep and I
can do it in Python.” (P14). Although filtering and searching
are commonly used to extract information from the log data,
there is no joint effort on making a generic tool: “Now you
find a lot of scripts that are used by X by Y by ZXY who
don’t know each other, but they create the script at a different
time” (P21). When comparing logs generated from different
executions, developers either manually inspect the two logs
which “takes a lot of time and it’s not really productive”
(P23) or use text difference analyzers (e.g., KDiff3, beyond
compare and Linux diff): “Sometimes I use beyond comparison
for comparing logs. It compares data line by line” (P2).

B. Challenges in log analysis

Table VI summarizes the challenges identified.

1) Log availability and quality: In order to enable log
analysis, developers first need to collect logs. As mentioned
in Section III, due to the needs of physical or simulated
environment for software executions, log collection can be a
time-consuming process. Particularly, when it comes to log
collection from the field, logs are sometimes unavailable due
to the performance concerns: “If you turn on tracing then it
slows down the system so heavily that you impact production.
It’s not something you can do at a customer [site] very easily”
(P9); or confidentiality: “customers are very vulnerable to
expose that to us because they don’t want that data to become

visible to other customers” (P8). The quality of logs is also
known to influence the developers’ ability to perform the
analysis efficiently [16], [28], [47]. Indeed, we have the same
observations in our context. According to the interviewees,
there is no standard way of tracing functions: “For each
software component they [(i.e., developers)] have their own
preference for the format of the tracing. You should be able
to read that trace first. Otherwise, it’s really not easy” (P12).
Where to log and what to log is determined by developers who
wrote the code and their peers who analyze the logs might find
logging to be excessive (P8) or scant (P9).

Moreover, working with logs generated from metrology
software components comes with a particular challenge. The
function calls in such components have numerous parameters
recording measurement and modeling data, and subsequently
requiring developers to format functions and parameters in
logs :“we have functions with a lot of parameters, and of-
ten they’re big structures and big arrays and everything is
converted into text in trace... Sometimes I really spend time
formatting data in a way that I can understand it” (P24).

Given that logs are in size of gigabytes, and not accom-
panied by any kind of summary, developers spend a lot of
effort and time navigating through them: “right now all the
error messages they are combined or mixed in one file...if the
event log can be structured in a better way, then it could
improve the efficiency for us to analyze” (P13). Another
quality related challenge mentioned by developers is that errors
raised by servers are not always linked to their clients due to
implementation bugs of error logging and linking:“Often what
we experience right now is that the error links are broken.
And I think this misleads the developer quite a lot ” (P1).

2) Complexity: Many challenges are related to complexity
of the system: presence of multiple interacting components,
multidisciplinary context and concurrency.

Indeed, P15 has indicated that “You have tracing from
multiple software components. They all talk to each other
and that makes it so difficult to understand what was the
context of the software before it got there”. For the components
that are responsible for process control and implemented
using interacting state machines (cf. Section V-3), analyzing
logs requires tracking the change of states in multiple state
machines: “we have 200 different models. Then you need to
check, ok, this model was in this state and then it calls that
model which calls another model and then at some point
you're looking at 10 different models and different states, and
it’s so difficult to understand all the different states.” (P15).

The multidisciplinary character of the software requires
developers to analyze the logs capturing the behavior of com-
ponents from different technical domains: “sometime maybe
the analysis takes days...for example, especially if it is related
to other functional clusters [i.e., other functional domains]...I
could say that it is the most time-consuming part” (P5).

The machines developed by this company have high com-
petence in processing multiple elements concurrently. This
high-level machine requirement is realised by the underlying
concurrent software: “all those process elements they end up in



different lists, and then the lists are emptied by different sub-
processes...and they all do their things separately and they
synchronize on certain moments. So that makes it difficult,
and that is represented and logged in the same trace file
in the sequence” (P14). The function trace records function
calls from different concurrent executions sequentially, i.e.,
developers should disentangle interleaved executions.

Complexity does not only hinder comprehension but also
introduce irrelevant differences between logs. Such differences
can be introduced by uninitialized variables since the values
of these variables “will appear on the trace statement is a
random, it’s garbage. And if you put this in a tool like beyond
compare, it will take it as a difference, but in reality, it’s
not” (P17). Similarly, irrelevant differences can be introduced
by concurrency: “Some events are not necessarily happening
in the same order in different executions” (P11). Excluding
irrelevant differences requires domain knowledge: “So if you
understand what should be the sequences, then you can
basically see, ok, in this case the sequence was flipped but
functionally it’s the same” (P15), effort and time: “more and
more preprocessing until you remove the most of them...It costs
time. And it can even lead you to wrong conclusions” (P17).

3) Expertise: The systems are not only complex but also
multidisciplinary. Working with logs generated from such
systems requires domain knowledge (e.g., how machines ex-
pose wafers to the light): “We can dive into the trace files
etc. It is not enough. You have to know what is actually
going on here with those traces and what is the component
doing” (P11). The analysis is particularly challenging for
newcomers: “Let’s say if you have really huge experience in
software, but without any ASML knowledge, I would say it
is useless...I remember the first year it was really hard for
me somehow to understand what’s really happening” (P22).
Different from newcomers who get lost in the large amount of
information in logs, experienced developers such as P14 tend
to take a top-down approach: P14 first inspects the interactions
between the components that control and coordinate machine
actions, and other components. This allows P14 to comprehend
how machines were functioning and what functionalities each
component have, and to conjecture which parts of machines
exhibit faulty behavior. Only then P14 examines execution
details for relevant components.

Eight developers stress importance of not only discussion
with senior software developers but also collaboration with
functional developers from other engineering disciplines “peer
working at minimum two, it really helps a lot. Especially when
one with nice software skills and the other one with nice
functional skills ” (P22).

The lack of familiarity with the code base and software
design also hinder log understanding: “you often see a trace
of code you never worked on. That’s what consumes most
of the time” (P7). For example, in order to understand the
interactions between software components based on function
traces, developers should be familiar with the communication
mechanisms between components: “some of the interactions
are based on subscriptions. So you subscribe to event and once

TABLE VI: Challenges in log analysis.“#I” indicates the number of
interviewees who mention the challenge during interviews.

Challenges #1
Log availability and quality
Absence of logs 8
Non-standard logging 5
Incompleteness of trace 8
Presence of noise 18
Unreadable tracing format for functions with a lot of parameters 2
Missing categorization and overview 3
Broken error linking 4
Complexity
Involvement of components from different groups and domains 6
Involvement of many state machines 2
Presence of concurrency 8
Presence of irrelevant differences between logs 5
Expertise
Lack of domain knowledge 10
Unfamiliar with code base and software design 9

that event happened there’s a callback. In software tracing you
just see there’s a handler of the event. If you are not familiar
with the structure of the software, you couldn’t link that trace
[line] with the other component [that gives callback]” (P15).

C. Expected tools

1) Creating multi-level abstraction: Developers would like
to have a tool that can help them inspect different levels
of details from logs: “On certain levels you can open and
close those functions to see what’s internally there so that
you can maintain a high level overview and details where
you need them, instead of only having all the details now, but
that’s what’s happening now, you got whole bunch of data
and it’s all detail” (P14). To provide a “bird’s-eye view”,
the tool can visualize high-level function calls with sequence
diagrams, state machines or Gantt charts: “Usually I end up
with drawing the sequence diagrams myself to understand it,
but if you could drag and drop traces into a tool and then
get a sequence diagram, that would also be nice” (P9). The
tool should allow developers to select the level of details they
would like to inspect: “I tend to do that by hand...The problem
is that if you generate it, you get everything, not interesting
stuff...And then I do it by hand, I just leave that out and only
put the interesting sequences in there” (P17). For example,
as discussed in Section V-3, when dealing with state machine
based components, developers inspect the function calls that
change the state of state machines. The tool should support
developers performing this task by visualising the sequence
diagrams only for these important interactions.

Developers would like automatic log comparison tools to
provide differences at different levels of details: “I think
presenting all those [comparison] results in a single graphical
user interface will be polluting...Maybe we could have maybe
multiple options or multiple levels based on what you want
to check” (P18). Furthermore, developers envision tools sup-
porting identification of the cause(s) of log differences such
as concurrency, refactoring or uninitialised variables.

2) Providing generic and unified facilities: Instead of mul-
tiple scripts with (partially) duplicated functionality, develop-



ers envision a tool supporting formulation of different queries
to different types of logs: “Such kind of facility would help
engineer to start talk to data instead of spending time on
parsing”(P22), as well as inspection of the relations between
different logs generated from the same execution: “if we can
show different logs in one GUI or one window, then it is easier
for us...Currently we just manually go through these logs
and find the relationships between logs” (P2). For analyzing
errors based on logs, developers expect a knowledge base that
stores error patterns identified from historical logs so that the
knowledge about errors can be shared across groups.

The tools envisioned should be unified with test and log
generation facilities (i.e., Devbench and Testbench) to reduce
switching between tools: “I need to connect to Devbench, fire
up my test, then look at each of those files individually, write
them to my local files, open the tools like the text editor and
then go through each one of them. So basically, if you can unify
all of these things at one places, which becomes seamless to
go between them, then it becomes super awesome” (P1).

RQ4 summary: Developers mainly use textual-based tools
to analyze logs. In addition to log quality concerns, concur-
rency and irrelevant differences between logs bring additional
challenges in log analysis. Developers need a tool that creates
multi-level abstraction of executions, allows them to compare
logs at different levels of abstraction and provides generic
facilities that can be shared among developers.

VII. DISCUSSION AND IMPLICATIONS

Our study of log analysis in embedded software engineering
not only provides empirical evidence consistent with general
software engineering studies but also highlights the insights
obtained exclusively from our problem context. We start by
relating our findings to literature (Section VII-A), and then
discuss implications of our work (Section VII-B).

A. Discussion

1) Software concurrency: Logs are heavily used by devel-
opers because of the difficulties of using a traditional debug-
ging approach for concurrent programs. This observation con-
curs with the theory of probe effects—traditional debuggers
are ill-suited for concurrent systems because the injection of
breakpoints (i.e., delays) may change the system behavior [17].
We also observed that interleaving of concurrent executions
incurs challenges not only in program comprehension [2] but
also in log comprehension (cf. Section VI-B2).

2) Expertise and information needs: As discussed in
Section VI-B3, lack of familiarity with the existing code
can hinder understanding logs. This concurs with a recent
study of confusion in code reviews [12]. We learned that
domain knowledge is essential, especially for multidisciplinary
systems: interpreting information from logs might require
expertise from multiple engineering disciplines while commu-
nicating with engineers of different disciplines is the com-
monly used method to obtain the expertise. This observation
is consistent with the earlier findings [19].

We observed that experienced developers tend to adopt a
top-down approach when inspecting logs. This concurs with
the study on the relevance of application domain knowledge
in program comprehension—developers who are familiar with
the application domain use a top-down approach to conserve
efforts, developing a global hypothesis about the overall pro-
gram based on high-level information, and then verify their
hypotheses with more program details [39]. The top-down
method is known to be effective for system comprehension
which requires developers understand the structure of the
system [27]. This is in line with our observation on developers’
information needs—to understand the behavior of large scale
software systems based on logs, developers need both structure
information such as interactions between modules, and low
level execution details (cf. Section V).

Our work is also related to the study of information needs
by Shang et al. [40], that have studied log-related information
needs of the users (i.e., operators and administrators). We have
taken a complementary perspective and focused on informa-
tion needs of developers. As opposed to users, developers,
responsible for maintaining the code base, not only need the
diagnostic information (e.g., the context of error messages) but
also execution details (e.g., interactions between components).

3) Logging quality and practice: Among the challenges
identified in Table VI, seven are related to log availability
and quality. Availability and quality of logs have attracted
significant attention from the research community that studied
such questions as where to log [16], [28], what to log [47], how
to log [10] and how to use logs [20]; and such challenges as
absence of logs [29], non-standard logging [35], and presence
of noise and incomplete logging [29].

Extending this body of work we discovered several issues
that hinder log analysis and have not yet been discussed in
the scientific literature. If the log does not contain desired
information, merely recollecting the log is non-trivial for man-
ufacturing systems as this would require hardware components
or simulation. Furthermore, the metrology software, where
functions are usually augmented with complex data structures,
needs better logging format of function traces. We also found
that the company uses an error linking mechanism to log
the propagation of errors across components. The presence of
implementation bugs that break the error link shown in logs
increases the difficulties of issue analysis with logs, which
requires a customized detector to prevent such bugs.

B. Implications

Above we discussed the information needs (Section V),
challenges (Section VI-B) and expectations (Section VI-C)
of log analysis tools. Consistent with the previous study at
Microsoft [6], we found that developers use text editors for
their log analysis activities. Given that many log analysis tools
have been proposed over years, the observation implies a gap
between research prototypes and industrial practice. Below
we extend the discussion with the implications of how the
existing research work can help developers and what further
improvements tool builders and researchers can consider.



1) Multi-level abstraction of executions to support log
inspection and log comparison: Many tools aim at ab-
stracting away details from execution logs by deriving state
machines [24], [30], [43], sets of temporal properties [26], and
execution patterns [45]. This kind of trace abstraction tools
often rely on heuristics to create abstraction, which can result
in overgeneralization or undergeneralization [44]. Moreover,
these tools provide only one level of abstraction, not meeting
the expectations of the interviewees (cf. Section VI-C1). Sev-
eral studies addressed this limitation [7], [13], [22] by allowing
developers inspect information at different levels of details.
However, these tools do not guide developers in information
navigation, e.g., one needs to manually identify the relevant
component interactions when analyzing issues with tools that
generate sequence diagrams [7], [22]. Tool builders may take
the context of use into account, incorporating information from
other sources (e.g., bug reports) to guide developers navigate
through information at different abstractions for their tasks.

Several tools can compare behavioral models extracted from
logs generated from multiple executions [1], [5], [18]. How-
ever, these tools may not meet our developers’ expectations
because these tools require non-trivial configuration, e.g., the
length of the minimal “interesting” sequence that differentiates
two logs. Researchers may consider to improve the underlying
techniques with intuitive user configurations.

2) Categorizing log differences to support evolution tasks:
To support developers in understanding differences between
the logs, researchers and tool builders can consider identifying
and categorizing the differences according to such causes as
concurrency, refactoring or functional changes. Categorizing
the differences can help developers perform evolution tasks:
e.g., when identifying a root cause of regression based on
logs, developers can ignore the differences belonging to the
categories of concurrency and refactoring because these dif-
ferences are not expected to influence the final outcome.

To identify log differences related to concurrency tool
builders can leverage previous work on log analysis for
automatic detection of concurrency bugs [11], [31]. To rec-
ognize the differences caused by code modifications such as
refactoring and functional modifications, tool builders may
consider to leverage the existing tools from the field of code
differencing [14] and refactoring detection [42]. The obtained
information can be incorporated into log comparison to help
developers recognize the useful log differences for their tasks.

3) Linking different types of logs to obtain a com-
plementary picture of executions: Such complex systems
generate different types of logs that capture different aspects
of executions (cf. Section III), requiring developers to recover
the links between them (cf. Section V-1 and VI-C2). To help
developers obtain a complementary picture of an execution,
the tool builders can consider recovering the links between
different types of logs, e.g., using the timing information.
Such tools would allow developers to inspect what functions
and software actions are executed, and what critical functional
data are produced when a specific high-level event occurs.
In addition, we suggest tool builders to leverage semantic

information (i.e., the textual elements in logs) to recover the
links. Establishing links between software artifacts using the
concept of semantic coupling (i.e., the semantic similarity
between entities) has been demonstrated for many maintenance
tasks such as traceability [4] and change impact analysis [23].

VIII. THREATS TO VALIDITY

As any empirical study, ours is subject to threats to validity.

Threats to internal validity concern factors that might have
influenced the results. First, developers might misunderstand
our interview questions. We mitigated this risk by piloting the
interview with a developer from the division, and rewording
the questions as necessary. Second, our interviewees might
hesitate to discuss the difficulties in their current practice or the
issues in the tools they use, as they were aware that the result
will be published. We reduced their concern by explaining data
privacy rights and guaranteeing the full anonymity. Third, the
coding we applied to the interview transcripts is an interpretive
procedure. Moreover, the coding tasks were single handedly
performed by the first author. This decision was made because
of the technical knowledge such as the state machine modeling
language used by developers, required to interpret the infor-
mation shared by our interviewees. To limit the researcher bias
we performed member checking. Developers were encouraged
to correct our interpretations and add additional thoughts.
We have obtained 20 replies out of 25 interviewees, and the
revisions requested by the interviewees were minor, suggesting
high degree of validity of our interpretation.

Threats to external validity concern the generalizability of
our conclusions beyond the studied context. We opted for
convenience sampling selecting the company that we have
the on-going collaboration with. We expect that this company
provides a representative context because the products of
this company have been considered as a typical example of
complex embedded systems in many studies [19]. In this study,
we explored log analysis practices for control and metrology
software which is a typical module in complex embedded
systems. To select interviewees from the division that is re-
sponsible for the module, we opted for purposive sampling by
encouraging each group lead from this division to recommend
developers with different education backgrounds, genders, and
roles. However, there is a risk that group leads might prioritize
other factors (i.e., developers’ availability) over diversity. To
ensure saturation, we conducted interviews and coding tasks
in an interleaved manner. We made a detailed report on the
study context to support the transfer of results to other similar
contexts. However, we acknowledge that the external validity
of this interview study at a single company is inevitably
limited. We consider our interviews as an exploratory study for
which we reported observations rather than facts, e.g., we do
not claim that all embedded developers use text-based tools for
log analysis based on our observations from a single company.
To obtain conclusive evidence and build theories, confirmatory
studies at multiple companies are required.



IX. CONCLUSION

We explored how developers use logs in embedded software
engineering by interviewing 25 developers from ASML. We
identified four types of logs developers use, 18 purposes for
which developers use logs and 13 types of information devel-
opers search in logs. The most prevalent types of information
are propagation of errors across systems, timestamp associated
with log lines, data flow, interaction of software modules, and
differences between multiple executions. We observed that the
lack of domain knowledge, lack of familiarity with code base
and software design and presence of concurrency raise major
challenges in log analysis. Particularly, we found that inspect-
ing execution information at different levels of abstraction is
useful to develop global comprehension. However, obtaining
the abstraction is difficult with currently used tools. Our study
has several implications. Log analysis tools could be improved
by supporting multi-level abstraction for log inspection and
comparison, categorizing log differences and recovering links
between different types of logs.
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