
Survival of Eclipse Third-party Plug-ins

John Businge, Alexander Serebrenik, Mark van den Brand
Eindhoven University of Technology

Eindhoven, The Netherlands
{j.businge,a.serebrenik,m.g.j.v.d.brand}@tue.nl

Abstract—Today numerous software systems are being de-
veloped on top of frameworks. In this study, we analyzed the
survival of 467 Eclipse third-party plug-ins altogether having
1,447 versions. We classify these plug-ins into two categories:
those that depend on only stable and supported Eclipse APIs
and those that depend on at least one of the potentially
unstable, discouraged and unsupported Eclipse non-APIs.

Comparing the two categories of plug-ins, we observed that
the plug-ins depending solely on APIs have a very high source
compatibility success rate compared to those that depend on at
least one of the non-APIs. However, we have also observed that
recently released plug-ins that depend on non-APIs also have
a very high forward source compatibility success rate. This
high source compatibility success rate is due to the dependency
structure of these plug-ins: recently released plug-ins that
depend on non-APIs predominantly depend on old Eclipse non-
APIs rather than on newly introduced ones. Finally, we showed
that the majority of plug-ins hosted on SourceForge do not
evolve beyond the first year of release.

Keywords-Eclipse; Third-party plug-ins; APIs; non-APIs;

I. INTRODUCTION

Today, many software developers build systems on top
of frameworks [1] (e.g., currently Eclipse marketplace1

reports over 1.4 millions of Eclipse solutions). This approach
has many advantages, such as reuse of the functionality
provided [2] and increasing productivity [3]. However, these
benefits are accompanied by co-evolutionary challenges that
come along with using frameworks [4]: as the framework
evolves, it makes changes to its APIs and these changes
may cause the applications that use them to fail [5]–[7].
Framework-based applications are, therefore, subject to two
dimensions of survival: 1) survival related to releasing new
versions of the application itself, and 2) survival related to
new framework releases2.

In this work we focus on a popular framework, Eclipse,
and study survival of Eclipse third-party plug-ins (ETPs).
As opposed to the previous work [11]–[15], we investigate
both dimensions of survival. For the survival related to
releasing new versions of the software system, we study the
rate at which new versions are released. Indeed, infrequent

1http://marketplace.eclipse.org
2Here and elsewhere our notion of survival is not related to a branch

of statistics known as survival analysis [8], recently applied to study of
software [9], [10]. We do consider application of the survival analysis to
Eclipse third party plug-ins as future work.

release of new versions indicates that a software system
is not being actively maintained and hence by Lehman’s
law of continuous change [16], the system is likely to
become unsatisfactory and die. For the survival related to
incompatibilities between the software system and the new
framework releases, we study source compatibility between
the ETPs and the Eclipse SDK releases. To measure source
compatibility we count the number of Eclipse SDK releases
an ETP can successfully compile with.

Understanding both dimensions of survival is essential
for the users of the ETPs and their maintainers. Users of
the ETPs need to understand whether the ETP is likely to
operate when the Eclipse SDK is updated to a new release,
and whether the ETP will produce new versions. Maintainers
of the ETPs should be clearly aware of the impact of the
changes in the SDK on their plug-in. This understanding
is complicated by the fact that while some SDK interfaces,
APIs, are stable and supported, other SDK interfaces, non-
APIs, are subject to arbitrary change or removal without
notice [17]–[19]. ETP maintainers are strongly discouraged
from adopting any of the non-APIs [18], and indeed, it has
been shown that many non-APIs are among interfaces that
are most likely to introduce a post-release failure [20]. How-
ever, despite this, in our previous study we have observed
that the use of non-APIs is not uncommon: 44.2% of the
ETPs on SourceForge have at least one version that depends
on at least one non-API [21].

Therefore, in this paper we focus on the impact of
APIs and non-APIs on survival of the ETPs. Both in our
study of the release of new versions and in our study
of source compatibility, we distinguish between ETPs that
solely depend on Eclipse APIs (ETP-APIs) and those that
depend on at least one Eclipse non-API (ETP-non-APIs).
Differences in survival of ETP-APIs and ETP-non-APIs
should be understood by users of these ETPs and taken into
account when making a decision whether to use an ETP.

The remainder of the paper is organized as follows: In
Section II we introduce Eclipse plug-ins and their interfaces
and in Section III we explain the data collection process.
Our contributions involve studies of the version release rate
(Section IV) and incompatibility with the Eclipse framework
(Section V). In Section VI we discuss the threats to validity.
In Section VII we review the related work and finally, in
Section VIII we present the conclusions and future work.

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

II. ECLIPSE PLUG-IN ARCHITECTURE

Eclipse SDK is an extensible framework comprising a
set of tools working together to support programming tasks.
Eclipse SDK is composed from Eclipse Core Plug-ins (ECP)
providing core functionality of the framework.When the user
downloads Eclipse SDK, she downloads all ECPs.

Tool builders can build on the ECPs and contribute to the
framework by wrapping their tools in pluggable components.
Eclipse Extension Plug-ins (EEP) are plug-ins built with
the main goal of extending the Eclipse platform. Like the
ECPs, fully qualified names of EEP packages start with
org.eclipse, but as opposed to the ECPs, the EEPs are not
considered to be a part of the Eclipse SDK. An example of
an EEPs is J2EE Standard Tools (JST).

Eclipse Third-Party Plug-ins (ETP) are the remaining
plug-ins. They use at least some functionality provided by
ECPs but may also use functionality provided by EEPs.
Many ETPs can be found in open-source repositories, e.g.,
SourceForge3. It is the survival of these ETPs across differ-
ent versions of Eclipse SDK that we study in this paper.

Specifically, we study how the survival of ETPs depends
on the way the ETPs use interfaces provided by ECPs, the
APIs and the non-APIs. The non-APIs are ECPs’ interfaces
intended for internal implementations within the Eclipse
framework. They are found in packages with the sub-string
internal in the fully qualified names [19]. APIs are provided
to the framework users such as developers and maintainers
of the ETPs. They are interfaces found in Eclipse packages
that do not contain the sub-string internal. A more elaborate
discussion of the notions related to Eclipse plug-in architec-
ture can be found in [21].

III. DATA COLLECTION

For our analysis, we use part of the data we collected in
our previous study [21]. In the previous study, we collected
software projects from SourceForge, one of the most popular
Open Source repositories. Search for “Eclipse AND plugin”
on SourceForge returned 1,350 hits of ETPs at the time of
data collection (February 16, 2011). Since we wanted to have
a long enough history of ETPs supported in the different
Eclipse SDK releases and a substantial amount of data to
draw sound statistical conclusions, we decided to collect
ETPs that were released on SourceForge from January 1,
2003 to December 31, 2010.

In the previous study [21], we categorized the ETPs
according to the year of the first release on SourceForge.
ETPs that did not have dependencies on ECPs (i.e., import
statements related to ECPs), were excluded since these ETPs
will obviously not be affected by new releases of Eclipse
SDK. As explained in Section II, the import statements
from ECPs and EEPs share a common prefix org.eclipse.
To ensure that only the import statements from ECPs in

3www.sourceforge.net

Released in
’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10

E V E V E V E V E V E V E V E V

E
T

P-
A

PI
s

fir
st

re
le

as
ed

in

’03 35 62 10 20 3 4 1 1 1 4 2 2 0 0 0 0
’04 33 68 4 11 4 9 2 3 2 2 0 0 0 0
’05 41 66 10 21 4 5 3 4 1 1 1 1
’06 61 111 7 13 1 1 0 0 2 3
’07 37 83 12 22 4 6 6 12
’08 38 74 7 12 2 4
’09 25 30 3 4
’10 16 28

Total 35 62 43 88 48 81 76 142 51 108 58 105 37 49 30 52

E
T

P-
no

n-
A

PI
fir

st
re

le
as

ed
in

’03 33 91 18 45 11 19 8 13 6 8 2 4 1 2 1 1
’04 35 77 8 24 4 9 4 13 4 15 1 2 2 3
’05 29 60 10 26 9 31 7 15 7 19 5 20
’06 25 61 10 32 3 19 2 11 5 15
’07 16 31 2 3 1 2 0 0
’08 22 42 7 15 1 3
’09 11 11 3 7
’10 10 11

Total 33 91 53 122 48 103 47 109 45 115 40 98 30 62 27 60

Table I: For the given first release year y1 and an additional
release year y the table shows the number of ETPs (E) first
released in y1 and also released in y, and the total number of
versions (V) for these ETPs. If y1 = y we show the number
of all ETPs released in this year and their versions.

the ETPs source code are considered, a list of all possible
import statements from ECPs was compiled.

The remaining ETPs were further categorized in [21] into
five groups based on presence of non-API dependencies. In
the current study we focus on ETP-APIs (Classification I
in [21]), i.e., ETPs such that all their versions depended
solely on APIs; and ETP-non-APIs (Classification II in [21]),
i.e., ETPs that in all their versions have at least one de-
pendency on a non-API. Remaining groups corresponding
to ETPs with versions with and without dependencies on
non-API, were not considered since the number of ETPs in
these classifications is too small for quantitative analysis: it
does not exceed 31 as opposed to 286 and 181 in ETP-API
and ETP-non-API, respectively. Qualitative analysis of these
groups is considered as future work.

Table I shows the data for ETP-APIs (upper part) and
ETP-non-APIs (lower part). In the ETP-APIs part, the cell
entry (’04,’04), typeset in italics, contains a pair (33 68)
indicating that there are a total of 33 ETPs that were first
released in the year 2004 on SourceForge altogether having
a total of 68 versions. A version of an ETP is one of the
releases on the SourceForge page of the ETP.

The pair (4 11) in the cell (’04,’05) means that there were
4 ETP-APIs first released in 2004 that had new versions in
2005 with a total of 11 versions in that year. We observe
that the trend on the evolution in the number of ETPs is
non-monotone, e.g., (’03,’05)=3, (’03,’06)=1, (’03,’07)=1,
(’03,’08)=2. This indicates that, while an ETP may have
version(s) in a given year, it does not release any version(s)

0

20

40

60

80

100

release +1 +2 +3 +4 +5 or more

%
 o

f
ET

P
s

Number of Years

ETP-APIs

ETP-non-APIs

(a) ETPs. More than 65% of ETP-non-APIs and more than 80% of ETP-
APIs did not produce a version in the year following the first release.

0

20

40

60

80

100

release +1 +2 +3 +4 +5 or more

%
 o

f
V

e
rs

io
n

s

Number of Years

ETP-APIs

ETP-non-APIs

(b) Versions. The number of versions released drops in a fashion similar to
the number of ETPs, faster for ETP-APIs than for ETP-non-APIs.

Figure 1: Percentage of ETPs that producing new versions (left) and percentage of new versions produced (right).

in the subsequent year(s) but resumes releasing later.
The total number of ETP-APIs is 286 with a total of

687 versions, corresponding to the sum of the lower pair
of values in diagonal cells. Similarly, the total number of
ETP-non-APIs is 181 having a total of 760 versions.

IV. RELEASE OF NEW ETP VERSIONS

A. Hypothesis Testing

Since non-APIs are subject to change and removal without
notice, we expect ETP-non-APIs to fail more often com-
pared to ETP-APIs when ported to new releases of Eclipse
SDK. Therefore, it is expected that ETP-non-APIs will have
more versions released to fix the incompatibilities compared
to ETP-APIs. We, thus, test the following hypotheses:

• He
0 : ETP-APIs and ETP-non-APIs represent two pop-

ulations with equal median values for the number of
ETPs releasing new versions;

• He
a: ETP-non-APIs represents a population with higher

median number of ETPs releasing new versions than
ETP-APIs;

• Hv
0 : ETP-APIs and ETP-non-APIs represent two pop-

ulations with equal median values for the number of
new versions released by ETPs;

• Hv
a : ETP-non-APIs represents a population with higher

median number of new versions released by ETPs than
ETP-APIs.

B. Results and Discussion

Table II shows the numbers of ETPs and their versions
released after i years after the initial release. This number
can be determined as the sum of the number of ETPs on
the ith diagonal in Table I, assuming the main diagonal has
number zero. For instance, 53 ETPs for ETP-APIs and i = 1
are obtained as the sum of 10, 4, 10, 7, 12, 7 and 3.

release +1 +2 +3 +4 +5 or more

ETPs ETP-API 286 53 18 12 6 3
ETP-non-API 181 58 29 21 22 12

Versions ETP-API 522 103 29 20 10 3
ETP-non-API 384 152 83 52 57 32

Table II: Number of ETP-APIs, ETP-non-APIs and their
versions per year after the initial release.

Fig. 1-(a) shows a plot of the percentage of ETPs that
release new versions each year since they were first released
on SourceForge. For both ETP-APIs and ETP-non-APIs,
the number of ETPs with new versions are normalized
on the total number of ETPs that were first released on
SourceForge. Similarly, Fig. 1-(b) shows the percentage of
new versions of ETPs released each year. The number of
new versions is normalized with respect to the total number
of versions that were first released on SourceForge (sum of
the numbers of versions in the main diagonals in Table I).

We observe that both Fig. 1-(a) and Fig. 1-(b) exhibit a
clear decreasing trend. The decrease is sharpest from the
initial release year to the subsequent year. This indicates
that more than 65% of ETPs are not maintained immediately
after the first year of their release. The observation supports
the earlier findings [15], [22] that SourceForge projects have
a low chance of evolving. Study of ETPs hosted at other
repositories is considered as a future work.

Furthermore, we observe a sharper decrease in the num-
bers of ETPs releasing new versions and versions of ETP-
API than in ETP-non-API. This observation is supported
by the statistical analysis of Table II. By performing a chi-
square test we can on any reasonable threshold reject the
hypothesis of independence of the number of ETPs releasing
new versions (p-value = 2.036 × 10−7) and of the number
of versions released (p-value < 2.2× 10−16) from whether

an ETP is an ETP-API or an ETP-non-API. Moreover,
the Wilcoxon testallows us to confidently reject (on any
reasonable threshold) both He

0 (p-value = 1.094 × 10−9)
and Hv

0 (p-value < 2.2× 10−16), and, accept He
a and Hv

a .
One possible reason for lower values in ETP-APIs may be

that developers of ETP-APIs are not forced to release new
versions to keep up with changes in Eclipse SDK APIs.
As opposed to ETP-APIs, ETP-non-APIs can be expected
to fail more often when ported to new releases of Eclipse
SDK compared to ETP-APIs due to the use of unsupported
and unstable non-APIs. We therefore conjecture that ETP-
APIs have a higher forward source compatibility success rate
when ported to newer releases of Eclipse SDK compared to
ETP-non-APIs. We verify this conjecture in Section V.

V. INCOMPATIBILITIES BETWEEN ETPS AND ECLIPSE

In this section, we discuss the survival related to incom-
patibilities between the ETPs and Eclipse SDK. To measure
survival of an ETP developed on top of a given major
Eclipse SDK release we determine the number of subsequent
major Eclipse SDK releases that the ETP is compatible
with (forward compatibility). Eclipse distinguishes between
a number of compatibility notions [19], [23]. API Binary
Compatibility requires that pre-existing binaries of the ETP
link and run with new releases of the Eclipse SDK without
recompiling. API Source Compatibility requires that the
source code of the ETP needs to be recompiled to keep
working with new releases of the Eclipse SDK but no
changes have to be made in the sources. Furthermore, the
ETP may also be subject to runtime incompatibilities [7],
[24]. We consider API source compatibility and we study
compile time errors of the ETP. We plan to analyze binary
and runtime incompatibilities in our follow-up research.

A. Dependency Structure of an ETP

ETPs commonly depend on multiple software components
such as ECPs, EEPs, external libraries and another ETPs
(cf. Fig. 2). We distinguish three types of dependencies that
an ETP may have. Compulsory direct dependency links an
ETP to at least one ECP. Recall that in Section III we
have excluded from consideration ETPs that do not depend
on ECPs. Optional direct dependency is present if an ETP
depends on an external library, an EEP or even another
ETP. Finally, we talk about an optional indirect dependency
if an ETP depends on an EEP or another ETP, and these
components also depend on an API from ECP. This API is
said to be an indirect dependency of the ETP being studied.
The study of source compatibility of an ETP is challenging
because of the complex structure of the dependencies.

B. Source Compatibility Check

To study source compatibility, we need to compile ETPs
with different releases of Eclipse SDK. Initially, we were
interested in comparing the success rate of ETP-APIs and

External
Libraries

Eclipse Third-
party Plug-

ins

Eclipse
Extension
Plug-ins

Eclipse
Core Plug-

ins

Optional direct dependency

Compulsory direct dependency

Eclipse
Third-party

Plug-ins

Optional indirect dependency

Figure 2: Dependency Structure of an ETP

ETP-non-APIs when compiled with new Eclipse SDK re-
leases, i.e., Eclipse SDK releases following the Eclipse SDK
release on top of which the ETP has been built. This would
require determining on top of which Eclipse SDK release
a given ETP has been built. Unfortunately, less than 5% of
the collected ETPs explicitly stated this information either by
mentioning it in the SourceForge description or by recording
it in the meta-data section of the manifest file of the
ETP. The release year of the ETP can be used to determine
terminus ante quem4 of the Eclipse SDK release, but cannot
be seen as the exact date. Indeed, there may be a time gap
between beginning of the development process phase and
choice of the SDK, and the end of the development process
phase and publication of the ETP at SourceForge. Moreover,
we have observed that some programmers prefer to develop
plug-ins on top of earlier releases rather than on top of
the most recent one, e.g., if those earlier releases are being
perceived as being more stable.

Hence, we decided to check the source compatibility of
the ETPs with all Eclipse SDK major releases.

To check for source compatibility of a version of an
ETP with a given ECP release, we employ the methodology
described in [25]. At compile time, we augment the build
path for compiling a dependent ETP with the jar files of
all the components containing the APIs used in the ETP’s
source code. If the ETP has direct dependencies on other
components (i.e., EEP, an external library, or another ETP),
the jar files of these components are also included in the
ETP’s build path. The information about the components
required by the ETP can be found in the ETP’s manifest
file. However, information about the appropriate versions of
the components is usually missing.

A promising approach to automatic identification of the
component versions is software bertillionage [26]. To per-
form the identification bertillionage requires the jar used in
compiling the ETP and corpus of all versions of the jar.
Unfortunately the ETPs we collected were not bundled with
the Eclipse SDK jar files used to compile the ETP, rendering

4(Lat.) the latest possible date of an event or an object.

Input: ETP p, release year y

1) Initialization:
a) Select the latest version of p in a given release

year y.
b) For every other component add its latest ver-

sion released in y to the build path of p.
c) Add the SDK released in y to the build path

of p.
2) Compile the current version of p with respect to

the current version of the SDK (including current
versions of the other components)

a) If compilation was successful, go to Step 4;
b) Identify the source of compilation errors:

i) Errors due to a direct dependency on an
other component: replace in the build path
the versions of the components involved
by the preceding ones.

ii) Errors due to a direct dependency on the
SDK: replace the SDK by the one released
in the preceding year.

iii) Go to Step 2.
3) If there is another version of p released in y,

a) take the preceding version of p, go to Step 2.
b) otherwise, exclude p from consideration.

4) For Eclipse SDK release r (1.0 to 3.7) repeat
a) Compile p.
b) If compilation was successful, report

“success(p,r)”.
c) Identify the source of compilation errors:

i) Direct dependency on the SDK: report
“failure(p,r)”.

ii) Indirect dependency only:
A) and there is another version of p re-

leased in y, take the preceding version
of p, go to Step 2.

B) otherwise, exclude p from considera-
tion.

Figure 3: Manual version identification: tracing errors to
their source (Steps 2b and 4c) is a manual process.

bertillionage inapplicable. Thus, version identification is
essentially a manual process.

Version identification would require a prohibitive effort if
all versions of an ETP have been considered: indeed, each
version of the ETP might require a completely different set
of versions of the components. Thus, we focus only on one
version of the ETP in each release year. Given the ETP p and
a release year y, the manual version identification process
follows the steps presented in Fig. 3.

After initialization, we identify appropriate versions of the

other components (Step 2). If no such versions of the other
components exist we consider the previous version of p, and
if there is none, we exclude p from consideration. Once
the appropriate versions of the other components have been
identified, we check for source compatibility of the current
version of p with each of the Eclipse SDK releases (Step 4).
We stress that when checking the compatibility with another
Eclipse SDK release, the versions of other components
are kept unchanged in the build path. The rationale for
this decision is twofold: 1) we are only interested in the
relationship between ETP and ECP interfaces and 2) since
the identification of the errors is done manually, only errors
related to incompatibilities between the ETP under study and
the ECP interfaces will appear in the Eclipse console.

We illustrate the version identification process with an
example of an ETP, googlipse 0.5.4. In addition to the
ECP dependencies, googlipse depends on two EEPs, J2EE
Standard Tools (JST) and Web Standard Tools (WST). Since
googlipse 0.5.4 was released in 2007, the versions of the
jar files added to the build path of googlipse are Eclipse
SDK 3.3, WST R-2.0 and JST R-2.0, all released in 2007.
When the project is built, 29 errors are reported in the
Eclipse console. When we trace the errors in the source
code of googlipse, we find that the errors result from an
unresolved class dependency from an ECP. This indicates
that googlipse 0.5.4 is incompatible with the Eclipse SDK
3.3. The jar files from Eclipse SDK 3.3 are removed and
replaced by the jar files of Eclipse SDK 3.2. The SDK
replacement removes all errors from the Eclipse console.
The same procedure would have been followed if any of
EEP dependencies had caused errors. Hence, the compatible
versions of the jar files required by googlipse 0.5.4 are found
in WST R-2.0 and JST R-2.0. These versions of the jar files
are used to determine source code compatibility of googlipse
0.5.4 with different SDK releases.

In addition to swapping the components an ETP depends
on, we also had to select the appropriate Java JDK that is
compatible with the ETP. Since the ETPs’ development dates
back as far as the year 2003, the Java JDKs that were used
on the different ETPs range from 1.3 to 1.6.

We call an ETP source compatible with a given Eclipse
SDK release if no compilation errors are reported, and
source incompatible if at least one error related to the
compulsory dependencies is reported.

C. Results

Table III and Fig. 4 present the results of the source
compatibility experiments. The numbers of ETP-APIs and
ETP-non-APIs considered in the experiments are those in
the Total rows in the upper and lower part of Table I. For
example, consider the data from Table III for ETP-APIs
released in 2003. 32 ETP-APIs are source compatible (SC)
at least once with all the components they depend on, 4 of
the 32 are source compatible with Eclipse SDK 1.0, 19 of

0

20

40

60

80

100

2004 (Eclipse SDK 3.0) 2006 (Eclipse SDK 3.2)

P
e

rc
e

n
ta

ge
 o

f
ET

P
-A

P
Is

ETP-APIs and ECP release dates

Compilation Success Rate of ETP-APIs over Eclipse SDK releases

1.0

2.0

2.1

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

(a) ETP-APIs

0

20

40

60

80

100

2004 (Eclipse SDK 3.0) 2006 (Eclipse SDK 3.2)

P
e

rc
e

n
ta

ge
 o

f
ET

P
-n

o
n

-A
P

Is

ETP-non-APIs and ECP release dates

Compilation Success Rate of ETP-non--APIs over Eclipse SDK releases

1.0

2.0

2.1

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

(b) ETP-non-APIs

Figure 4: Backward and forward source compatibility success rate of the ETPs released in 2004 and 2006 with all the
releases of Eclipse SDK considered.

SDK releases
SC SIC1.0 2.0 2.1 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7

’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11

E
T

P-
A

PI
s

re
le

as
ed

in

’03 4 19 31 27 27 27 27 27 27 27 27 32 3
’04 2 6 12 39 39 39 38 38 38 38 38 40 3
’05 0 1 2 34 41 41 41 41 41 41 41 41 7
’06 0 1 2 29 58 67 67 67 67 67 67 67 9
’07 0 0 1 13 22 41 46 46 46 46 46 47 4
’08 1 1 2 10 16 34 50 55 55 55 55 55 3
’09 0 0 0 3 5 12 30 34 35 35 35 35 2
’10 0 0 0 2 6 11 22 27 28 28 28 28 2

E
T

P-
no

n-
A

PI
s

re
le

as
ed

in

’03 2 9 27 15 8 7 6 6 6 6 6 28 5
’04 1 4 10 43 28 21 21 20 19 19 19 44 9
’05 1 1 2 21 44 23 22 22 22 22 21 45 3
’06 0 0 1 7 27 40 25 21 19 18 18 43 4
’07 0 0 1 6 16 28 32 24 21 20 20 38 7
’08 0 0 0 1 7 19 27 33 30 30 28 36 4
’09 0 0 0 0 1 7 19 23 25 23 23 25 5
’10 0 0 0 1 5 7 10 18 21 19 19 23 1

Table III: The number of ETP-APIs (above) and ETP-non-
APIs (below), source compatible with the Eclipse SDK
releases. The diagonal cells (shaded gray) show the number
of ETPs that are source compatible with the Eclipse SDK
released in the same year as the ETPs. The upper and
lower triangles correspond to forward and backward source
compatibility, respectively.

the 32 are source compatible with Eclipse SDK 2.0 and 31
of 32 are source compatible with Eclipse SDK 2.1.

For each ETP release year, the bars in Fig. 4 correspond-
ing to the Eclipse SDK releases (shown in the legend of
the graphs) show the percentage of source compatible ETPs
with respect to the total number of source compatible ETPs
(column SC in Table III). For the sake of illustration we
choose two ETP release dates, 2004 and 2006; bar charts

corresponding to other release years have similar shapes.
Starting with the Eclipse SDK release corresponding to

the release year of the ETPs (starred bar), for each year, we
notice that most ETP-APIs are forward source compatible
but not backward source compatible. In contrast, ETP-non-
APIs are neither forward source compatible, nor backward
source compatible with the Eclipse SDK.

D. Discussion

1) ETP-APIs: According to the Provisional API guide-
lines [17], ETPs that follow the guidelines are not sup-
posed to fail in the subsequent Eclipse SDK releases. In
addition, the Version Numbering Document [27], describing
the guidelines of how to evolve Eclipse SDK versions in
the subsequent releases states that Eclipse SDK version
numbers are composed of two integers named major.minor:
the major segment indicates breaking change in the API, the
minor segment indicates non-breaking change in the API
(“externally visible” changes). A breaking change violates
both the ETP’s binary and source compatibility (cf. Section
V). For our study this means that ETP-APIs should not fail
in the subsequent Eclipse SDK releases that do not involve
breaking changes. To check whether this guideline is indeed
being adhered to we take a closer look at Table III.

By inspecting Table III, we observe that four ETP-APIs
released in 2003 failed from Eclipse release-3.0 to release-
3.7 (i.e., there were 31 source compatible ETPs in cell
(’03,21) and 27 source compatible ETPs in cell (’10,3.7)).
This observation does not contradict the guideline. Indeed,
Eclipse SDK 2.1 was released in 2003, i.e., the ETPs
released in 2003 were based on an Eclipse SDK release
not later than 2.1. According to the version numbering,
there were breaking changes between Eclipse SDK 2.1 and
Eclipse SDK 3.0. Hence following the guideline some ETP-

APIs might have become source incompatible, and this
indeed happened for four ETP-APIs.

One ETP-API, OracleExplorer, released in 2004 failed
from Eclipse SDK 3.3 throughout to 3.7. From Eclipse SDK
3.2 to Eclipse SDK 3.3, the Eclipse version numbering does
not indicate breaking changes and, therefore, the failure
of OracleExplorer indicates a guideline violation. Since
Eclipse SDK 3.3, org.eclipse.ui.part.MultiPageEditorP-
art, extended by one of the OracleExplorer classes, con-
tains a final method setActiveEditor(IEditorPart targetEd-
itor). This method has the same signature as setActiveEdi-
tor(IEditorPart editorPart), one of the methods of Oracle-
Explorer itself. Therefore a conflict is introduced as a final
method cannot be overridden.

2) ETP-non-APIs: In Table III, looking at the source
compatibility success rate of the ETP-non-APIs, we observe
that the forward source compatibility improves every year
for ETPs released in 2007 to 2010. On further investigation
of the possible cause of this phenomenon, we discovered
that the majority of non-APIs used by these ETPs were
introduced in the early Eclipse SDK releases. For example,
we found out that the 19 ETPs classified in release year 2010
altogether used a total of 127 non-APIs of which 28% were
introduced in Eclipse SDK release-1.0, 30% in Eclipse SDK
2.0 and none of the newly introduced non-APIs in Eclipse
SDK 3.5 and 3.6 was used by any of the ETPs. This could
mean that older non-APIs are relatively stable, and this is
why the ETPs that use them do not fail. This conjecture has
been formally studied in a follow-up paper [28].

3) ETP-APIs vs ETP-non-APIs: Comparing Figs. 4-(a)
and 4-(b) it becomes apparent that ETP-APIs have a very
high source compatibility success rate compared to the ETP-
non-APIs. This can be expected, since ETP-non-APIs use
unstable non-APIs and hence are more likely to be affected
by changes in Eclipse. For backward source compatibility
we look at the source compatibility success rates from the
Eclipse SDK released in the same year as the ETPs back to
Eclipse SDK 1.0. We observe that for both ETP-APIs and
ETP-non-APIs, the percentage of source compatible ETPs
rapidly decreases. We also observe that the decrease rate
is much sharper for ETP-non-APIs compared to ETP-APIs.
For forward source compatibility we look at the source
compatibility success rates from the Eclipse SDK released
in the same year as the ETP up to the most recent Eclipse
SDK release considered (3.7). ETP-non-APIs have a very
high failure rate compared to ETP-APIs.

E. Quantifying the Survival of ETPs

While Section V-D informally discussed differences in
the forward source compatibility success rate between ETP-
APIs and ETP-non-APIs, in this section we augment the
preceding discussion with a formal statistical study. Recall
that at the beginning of Section V we stated a general
definition of survival of an ETP developed on top of a given

Compilation Response
Failure (1) Survival (2) Total

ETP-non-APIs 672 678 1,350
49.8% 50.2% 100.0%

ETP-APIs 52 1,512 1,564
3.3% 96.7% 100.0%

Total 724 2,190 2,914
24.8% 75.2% 100.0%

Table IV: ETPs forward-source-compatibility contingency
table based on the total compilation responses

major Eclipse SDK release as the number of subsequent
major Eclipse SDK releases that it can successfully compile
with (forward source compatibility).

Because we lack the information about the specific Eclipse
SDK releases that were used when developing the ETPs,
in this section we redefine survival of an ETP. Since the
release year of the ETP can be used to determine terminus
ante quem of the Eclipse SDK release, we define survival
of an ETP as the number of major Eclipse SDK releases
that the ETP can successfully compile with, starting with
the Eclipse SDK release in the year after the release of
the ETP (i.e., the count of Eclipse SDK releases after the
release corresponding to the cell in the shaded diagonal in
Table III). Failure of an ETP is the opposite of survival, i.e.,
the number of major Eclipse SDK releases that an ETP fails
to compile with, starting with the Eclipse SDK release in the
year after the release of the ETP. In the data-set all ETPs
that were source compatible with one Eclipse SDK release
and failed in the next Eclipse SDK release also failed with
all the Eclipse SDK releases released later.

Table IV is the contingency table of survivals and fail-
ures for ETP-APIs and ETP-non-APIs based on Table III.
Observe that although the number of ETPs that failed are not
shown in Table III it can easily be computed. For example,
of the ETP-non-APIs released in 2003 in Table III, a total
of 28 ETPs were source compatible. With respect to Eclipse
SDK 3.0 we have a survival of 15 ETPs in cell (’03,3.0).
The failure with respect to Eclipse SDK 3.0 is of 13 ETPs
(difference between the total, 28, and the survival, 15).

We compare the overall survival between ETP-APIs and
ETP-non-APIs. First, we test the independency of whether
an ETP is source compatible of it being an ETP-API
or an ETP-non-API. Second, we test the impact of non-
APIs in ETPs on the forward compatibility success rate.
All statistical calculations have been carried using popular
statistical software R [29].

Independence. We test the following hypotheses:
• Hi

0: The compatibility success rate is independent on
whether an ETP is an ETP-API or ETP-non-API;

• Hi
a: The compatibility success is dependent on whether

an ETP is an ETP-API or ETP-non-API.
For the independency test, the results of both the chi-square
test and Fisher’s exact testlead to the p-value < 2.2×10−16.
Hence, we can guarantee statistical significance on any

reasonable threshold, confidently reject Hi
0 and claim that

the compatibility success is dependent on whether an ETP
is an ETP-API or ETP-non-API.

Impact. Based on the Eclipse guideline [19] we expect
ETP-APIs have higher forward compatibility success rate:

• Hc
0 : ETP-APIs and ETP-non-APIs represent two popu-

lations with equal median values for forward compati-
bility success;

• Hc
a: ETP-APIs represents a population with higher

forward compatibility success median value than ETP-
non-APIs.

To test the hypotheses, we imposed an ordinal scale on
compatibility failure (1) and success (2) as suggested in [30],
and performed the Wilcoxon test. The test statistic equals
1546104 and the p-value < 2.2× 10−16. As above, we can
guarantee statistical significance on any reasonable thresh-
old, confidently reject Hc

0 and claim that ETP-APIs have
higher forward compatibility success than ETP-non-APIs.

VI. THREATS TO VALIDITY

As any other empirical study, our analysis may have
been affected by validity threats. We categorize the possible
threats into construct, internal and external validity.

Construct validity seeks agreement between a theoretical
concept and a specific measuring device or procedure. In
our analysis, construct validity may be threatened by oper-
ationalizing the construct “survival” into our measurement
instruments, i.e., release counts and compilation errors. We
opt for an “external” operationalization of survival, as it is
perceived by the users of the plug-in as opposed to “internal”
operationalization of survival as perceived by the plug-in
developers (e.g. the level of activity in code development or
mailing lists [22]). Internal operationalizations focus on the
process leading to (non-)survival of a plug-in, while external
operationalizations focus on the result, i.e., (non-)survival
itself. Furthermore, construct validity may be threatened by
the grouping of the ETPs into ETP-APIs and ETP-non-
APIs. During the grouping, we relied on the Eclipse naming
convention [18] rather than the API guidelines [19]. Noise
in our study might have been introduced if software systems
deviate from the convention but stick to the guideline. When
checking for source compatibility we have considered only
one version of an ETP per year and as such our notion of
compatibility success might have been too restrictive. Fur-
thermore, for the decrease in the release of new versions of
ETPs, it is possible that developers migrated to repositories
that have become more popular, e.g., github.

Internal validity is related to validity of the conclu-
sion within the experimental context of the ETP collection
considered above. We have paid special attention to the
appropriate use of statistical machinery, e.g. in Section V-E.

External validity is the validity of generalizations based on
this study. Our results may not be generalizable beyond the
specific collection of ETPs since we only considered ETPs

from SourceForge, and, therefore, necessarily only open-
source ETPs. To ensure that our results can be generalized
one has to replicate the study above with respect to ETPs
from other open-source repositories as well as commercial
ETPs. Going beyond Eclipse we realize that the same study
needs to be carried out on a different plug-in framework.

VII. RELATED WORK

This work complements our previous work on Eclipse
API usage [21] and evolution [31]. In [31] we investigated
the constrained evolution of 21 carefully selected ETPs on
Lehman’s software evolution laws. Specifically, we investi-
gated the evolution of ETPs’ dependencies on ECPs in the
new releases of the ETPs without distinguishing between
ETP-APIs and ETP-non-APIs. In [21] we investigated the
Eclipse API usage by 512 ETPs, and proposed the distinction
between ETP-APIs and ETP-non-APIs. The current study is
one of the follow-up studies proposed in [21]. In a follow-up
paper [28] we formally verified the conjecture of the relation
between the age of the non-APIs used and compilation
success of an ETP, and building on the insights of the current
work we have developed statistical models for predicting
compatibility of ETPs in new releases of Eclipse.

Besides our own related work, the current study is related
to two categories of existing studies: survival due to release
of new versions of applications and effect of API changes
on survivability of framework-based applications.

A. Survival due to release of new versions of applications

Rainer and Gale [22] studied Sourceforge.net and con-
cluded that the majority of the projects hosted there should
be considered as failures, which, according to them, is the
absence of activity in code development, mailing lists and
bug reporting. Weiss [32] defined success of a project in
correlation with its popularity on the web. English and
Schweik [33] classifies project into success categories ac-
cording to the number of its releases and the time be-
tween these releases. Majority of projects hosted at Source-
Forge have been observed to be abandoned or in an early
stage [32], [33]. As opposed to [22], [32], [33], we studied
projects from a specific domain, Eclipse plug-ins. Similarly
to [32], [33] we observe that majority of projects get
abandoned on the early stages and refine this observation by
relating abandonment to presence or absence of non-APIs.

In [15] authors examined large repositories of open
source projects: Sourceforge.net, KDE, GNOME, Rubyforge
and Savannah. They have observed that repositories like
SourceForge, Savannah and Rubyforge with more “relaxed”
preconditions in hosting a project, contain projects with low
activity. The authors showed that when a project enters a
more “controlled” repository, like the KDE or GNOME, it
has better chances to become successful, with success de-
fined as growth in size and attention gained from developers.

B. Effect of API changes on survivability of framework-
based applications

Dig and Johnson [24] state that to better understand the
requirements for API migration tools of evolving frame-
works, one needs to understand API changes. To that end,
the authors studied API changes in new versions of one pro-
prietary and three open-source frameworks and one library.
In all the studied systems, the authors discovered that over
80% of the API-breaking changes are structural, behavior-
preserving transformations (refactorings). The implications
of the authors’ findings confirm that refactoring plays an
important role in the evolution of components. Migration
tools should focus on support to integrate into applications
those refactorings performed in the framework. In compari-
son to our study, we investigate the impact of API changes
in the framework on applications that depend on them.

Other studies related to our work are based on tool
support that guides application developers in adapting to API
changes in the evolving framework. Nguyen et al. [5] present
a tool, LIBSYNC, that guides developers in adapting API
usage code by learning complex API usage adaptation pat-
terns from other clients that already migrated to a new library
version as well as from the API usages within the library’s
test code. The tool can identify changes to API declarations
by comparing two library versions, can extract associated
API usage skeletons before and after library migration, and
can compare the extracted API usage skeletons to recover
API usage adaptation patterns. Dagenais and Robillard [6]
present a tool, SEMDIFF, that suggests adaptations to client
programs by analyzing how a framework adapts to its own
changes. Using a case study of Eclipse JDT framework
and three client programs, SEMDIFF recommends relevant
adaptive changes and detects non-trivial changes. Wu et
al. [7] present AURA that combines call dependency and
text similarity analyzes to identify change rules for one-
replaced-by-many and many-replaced-by-one methods in a
framework. Unlike this line of research, we currently inves-
tigate the effects of API changes on survival of framework-
based applications. Developing a tool based on the current
findings is considered as future work.

VIII. CONCLUSION AND FUTURE WORK

In this study, we investigated two notions of survival
of Eclipse third-party plug-ins (ETPs): survival related to
release of new versions and survival related to source
compatibility of the plug-ins with Eclipse SDK releases.
While understanding both dimensions of survival is essential
both for the users of the ETPs and for their maintainers, it
is complicated by the fact that while some SDK interfaces,
APIs, are stable and supported, other SDK interfaces, non-
APIs, are subject to arbitrary change or removal without
notice. Therefore, for both notions of survival, we compared
the trend followed by ETPs that depend on only stable and
supported Eclipse APIs (ETP-APIs) and that followed by

ETPs that depend on at least one of the unstable, discouraged
and unsupported Eclipse non-APIs (ETP-non-APIs).

For the survival related to release of new versions, we
observed that the majority of ETPs do not survive beyond
the first year of release. We also observed that the rate at
which new versions are released for ETP-non-APIs is higher
than that of ETP-APIs. For the survival related to source
compatibility of the ETPs we made a number of observa-
tions: First, we observed that ETP-APIs almost never fail in
the subsequent Eclipse SDK releases unless these releases
involve API-breaking changes. Second, we observed that
recently released ETP-non-APIs depend more on old non-
APIs and less on newly introduced non-APIs. These ETP-
non-APIs have a very high forward source compatibility
success rate. Third, we observed that ETP-APIs have a high
source compatibility compared to ETP-non-APIs. Moreover,
ETP-APIs have a relatively strong tendency to be forward
source compatible compared to ETP-non-APIs.

Our results show that developers who commit their ETPs
on SourceForge are not committed to updating their plug-
ins. Next, we confirm that as stated by Eclipse, APIs are
stable over subsequent Eclipse releases that do not involve
API-breaking changes. We further confirm that non-APIs are
indeed unstable. ETP developers should avoid the use of
non-APIs as much as possible.

In our previous study [21] we discovered that a large
number of developers use non-APIs and in the current
study we observed that non-APIs influence survival of ETPs.
Hence, it is equally important for the framework developers
to document both the non-API changes and the API changes.

The results presented so far are interesting and have
given us a number of directions for the follow-up work:
First, we plan to carry out a survey so as to get first hand
information from ETP developers on the factors that impact
survival of the ETPs. Second, we plan to build a refactoring
tool that will aid developers who use non-APIs. We also
intend to complement the current analysis of ETP-APIs and
ETP-non-APIs by a qualitative analysis of a smaller group
ETPs identified in [21], i.e., plug-ins that introduced and/or
eliminated dependency on a non-API during their evolution.
One might further refine our distinction between APIs and
non-APIs based on usage of specific ECP interfaces. To
express the degree of dependence of an ETP on an interface
one can apply econometric inequality indices [34], [35] or
the Squale model [36]. Finally, we plan to replicate the work
using ETPs from other repositories such as github.

ACKNOWLEDGMENT

We are thankful to dr. J.J.M. (Koo) Rijpkema for guiding
us on the statistical analysis, and to ir. Bogdan Vasilescu for
his comments on the preliminary versions of this paper.

REFERENCES

[1] T. Tourwé, T. Mens, Automated support for framework-based
software evolution, in: ICSM, 2003, pp. 148–157.

[2] S. Moser, O. Nierstrasz, The effect of object-oriented frame-
works on developer productivity, Computer 29 (9) (1996) 45–
51.

[3] D. Konstantopoulos, J. Marien, M. Pinkerton, E. Braude, Best
principles in the design of shared software, in: COMPSAC,
2009, pp. 287 –292.

[4] J. Bosch, P. Molin, M. Mattsson, P. Bengtsson, Object-
oriented framework-based software development: problems
and experiences, ACM Computing Surveys 32.

[5] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen,
M. Kim, T. N. Nguyen, A graph-based approach to API usage
adaptation, in: OOPSLA, 2010, pp. 302–321.

[6] B. Dagenais, M. P. Robillard, Recommending adaptive
changes for framework evolution, ACM Trans. Softw. Eng.
Methodol. 20 (2011) 19:1–19:35.

[7] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, M. Kim, AURA: A
hybrid approach to identify framework evolution, in: ICSE,
2010, pp. 325–334.

[8] R. C. Elandt-Johnson, N. L. Johnson, Survival models and
data analysis, Wiley, 1999.

[9] I. Samoladas, L. Angelis, I. Stamelos, Survival analysis on
the duration of open source projects, Inf. Softw. Technol. 52
(2010) 902–922.

[10] G. M. K. Selim, L. Barbour, W. Shang, B. Adams, A. E.
Hassan, Y. Zou, Studying the impact of clones on software
defects, in: WCRE, 2010, pp. 13–21.

[11] K. Crowston, H. Annabi, Information systems success in free
and open source software development: Theory and measures,
in: Software Process: Improvement and Practice, 2006, pp.
123–148.

[12] K. Crowston, H. Annabi, J. Howison, Defining open source
software project success, in: ICIS, 2003, pp. 327–340.

[13] C. Subramaniam, R. Sen, M. L. Nelson, Determinants of open
source software project success: A longitudinal study, Decis.
Support Syst. 46 (2009) 576–585.

[14] C. M. Schweik, R. C. English, M. Kitsing, S. Haire, Brooks’
versus Linus’ law: an empirical test of open source projects,
in: ICDGR, 2008, pp. 423–424.

[15] K. Beecher, A. Capiluppi, C. Boldyreff, Identifying exoge-
nous drivers and evolutionary stages in FLOSS projects, J.
Syst. Softw. 82 (2009) 739–750.

[16] M. M. Lehman, J. F. Ramil, Rules and tools for software
evolution planning and management, Ann. Softw. Eng. 11
(2001) 15–44.

[17] J. Arthorne, M. Milinkovich, J. McAffer, Provisional
API guidelines, http://wiki.eclipse.org/Provisional API
Guidelines, consulted January, 2011.

[18] J. des Rivières, Evolving Java-based APIs, http://wiki.eclipse.
org/Evolving Java-based APIs, consulted January, 2011.

[19] J. des Rivières, How to use the Eclipse API, http:
//www.eclipse.org/articles/article.php?file=Article-API-Use/
index.html, consulted January, 2011.

[20] A. Schröter, T. Zimmermann, A. Zeller, Predicting component
failures at design time, in: ISESE, ACM, 2006, pp. 18–27.

[21] J. Businge, A. Serebrenik, M. G. J. van den Brand, Eclipse
API usage: the good and the bad, in: SQM, CEUR WS, 2012,
pp. 55–63.

[22] A. Rainer, S. Gale, Evaluating the quality and quantity of
data on open source software projects, in: ICOSS, 2005, pp.
11–15.

[23] M. Dmitriev, Language-specific make technology for the Java
programming language, in: OOPSLA, 2002, pp. 373–385.

[24] D. Dig, R. Johnson, How do APIs evolve? A story of
refactoring, J. Softw. Maint. Evol. 18 (2006) 83–107.

[25] A. Bolour, Notes on the Eclipse plug-in architecture,
http://www.eclipse.org/articles/Article-Plug-in-architecture/
plugin architecture.html, consulted January, 2011.

[26] J. Davies, D. M. German, M. W. Godfrey, A. Hindle, Software
bertillonage: finding the provenance of an entity, in: MSR’11,
2011, pp. 183–192.

[27] J. Arthorne, T. Eicher, M. Keller, D. Williams, Version num-
bering, http://wiki.eclipse.org/Version Numbering, consulted
October, 2011 (2009).

[28] J. Businge, A. Serebrenik, M. G. J. van den Brand, Compati-
bility prediction of Eclipse third-party plug-ins in new Eclipse
releases, in: SCAM, IEEE, 2012, accepted.

[29] R Development Core Team, R: A Language and Environment
for Statistical Computing, Vienna, Austria (2010).

[30] A. Agresti, Categorical Data Analysis, Wiley, 2002.

[31] J. Businge, A. Serebrenik, M. G. J. van den Brand, An
empirical study of the evolution of Eclipse third-party plug-
ins, in: EVOL-IWPSE’10, ACM, 2010, pp. 63–72.

[32] D. Weiss, Measuring success of open source projects using
web search engines, in: ICOSS, 2005, pp. 93–99.

[33] C. M. Schweik, Identifying success and abandonment
of FLOSS commons: A classification of Sourceforge.net
projects, Upgrade: The Euro. J. Infor. Prof. 2.

[34] A. Serebrenik, M. G. J. van den Brand, Theil index for
aggregation of software metrics values, in: ICSM, 2010, pp.
1–9.

[35] B. Vasilescu, A. Serebrenik, M. G. J. van den Brand, You
can’t control the unfamiliar: A study on the relations between
aggregation techniques for software metrics, in: ICSM, 2011,
pp. 313–322.

[36] K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu,
S. Ducasse, Software quality metrics aggregation in industry,
Journal of Software: Evolution and Process.

