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Abstract—Thresholds are essential for promoting source code
metrics as an effective instrument to control the internal quality
of software applications. However, little is known about the rela-
tion between software quality as identified by metric thresholds
and as perceived by real developers. In this paper, we report
the first results of a study designed to validate a technique
that extracts relative metric thresholds from benchmark data.
We use this technique to extract thresholds from a benchmark
of 79 Pharo/Smalltalk applications, which are validated with
five experts and 25 developers. Our preliminary results indicate
that good quality applications—as cited by experts—respect
metric thresholds. In contrast, we observed that noncompliant
applications are not largely viewed as requiring more effort to
maintain than other applications.

Index Terms—Source Code Metrics; Relative Thresholds; Soft-
ware Quality; Software Measurement; Empirical Studies.

I. INTRODUCTION

Source code metrics are common in evaluating quality

and specifically maintainability of software applications [1].

Nevertheless, metric values require careful interpretation, e.g.,

when checking good/bad software design or presence/absence

of maintainability problems. Such an interpretation is often

based on thresholds [2], [3]: methods, classes, components with

metrics values that do not exceed a given threshold are deemed

good or maintainable while those with metrics values exceeding

the threshold are deemed bad or suffering from maintainability

problems. However, software metrics are known to be right-

skewed [2], [4]. Hence, any predefined metric threshold can be

expect to be violated by some methods, classes or components

in large enough applications [5].

To address the challenge of identifying thresholds that have to

be followed by many but not all methods, classes or components

we have introduced in previous work the notion of a relative

threshold [6], [7]. Relative thresholds are represented by pairs

(p, k) such that p% of the classes in an application should have

M ≤ k, where M is a given source code metric and p is the

minimal percentage of classes in each application that should

respect the upper limit k.

However, we did not validate to what extent the notion

of relative thresholds is able to effectively distinguish

applications with maintainability problems. To tackle this

question, this paper reports early results of a study designed

to validate metric thresholds with developers. Specifically,

we extract relative thresholds for 79 Pharo applications.

Pharo is a Smalltalk-like language, with an active community

of developers and researchers. We leverage our ability to

directly access expert developers on Pharo to check whether

applications with good (or bad) maintainability respect (or no)

the thresholds we initially extracted in the study. Basically, we

investigate three research questions:

RQ #1 Do applications perceived as well-written by expert

developers respect the derived relative thresholds?

RQ #2 Do applications perceived as poorly-written by expert

developers do not respect the derived relative thresholds?

RQ #3 Do noncompliant applications require more effort to

maintain? By noncompliant we refer to applications that do

not respect the relative thresholds on multiple metrics.

Our contributions are twofold. First, we report the extraction

of relative thresholds for a Corpus composed of 79 applications

implemented in Pharo. Second, we describe a preliminary

validation study with expert developers, who are the right

experts to check whether metric thresholds are indeed able to

infer maintainability and design problems.

The remainder of this paper is organized as follows. Sec-

tion II summarizes the proposed technique to extract relative

thresholds. Section III describes the design of our empirical

study. Next, Section IV reports our preliminary findings.

Section V presents threats to validity and Sections VI and

VII discuss related and further work, respectively.

II. RELATIVE THRESHOLDS

In this section we summarize the proposed technique for

extracting relative thresholds from a Corpus, a benchmark of

software applications [6], [7]. This technique derives thresholds

represented by pairs [p, k], such that p% of the classes in an

application should have M ≤ k. Therefore, a relative threshold

tolerates (100− p)% of classes with M > k. As an example,

we can derive a relative threshold as follows: at least 75% of

the classes in an application should have NOM ≤ 29.

A relative threshold [p, k] is derived using two functions,

called ComplianceRate and ComplianceRatePenalty. The func-

tion ComplianceRate[p, k] returns the percentage of applica-

tions in the Corpus that follow the relative threshold defined

by the pair [p, k]. However, this function on its own is not
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sufficient to optimize p and k. Hence, we introduce the notion

of penalties to find the values of p and k. We penalize a

ComplianceRate function in two situations. The first penalty

fosters the selection of thresholds followed by at least 90%

of the applications in the Corpus. The goal is to derive

thresholds that reflect real design rules, which are widely

common in the Corpus. Furthermore, ComplianceRate[p, k]
receives a second penalty whenever k is greater than metric

values that are perceived as being very high. Finally, the

ComplianceRatePenalty function is the sum of penalty
1
[p, k]

and penalty
2
[k]. A derived relative threshold is the one with the

lowest ComplianceRatePenalty[p, k]. A detailed description of

our technique is out of the scope of this paper and is available

elsewhere [6], [7].

III. STUDY DESIGN

In this section we present the Corpus and the considered

source code metrics (Section III-A). Next, we describe the

methodology and participants of our study (Section III-B).

A. Corpus and Metrics

In order to validate our notion of relative thresholds with

software developers, we use a Corpus of 79 Pharo applications1.

We initially select 39 applications found in the Pharo standard

distribution. From these 39 applications, 18 may be considered

as legacy, although they are intensively in use, covered by

unit tests, and have received numerous contributions by the

community. In addition, we select 40 applications from the

Pharo forge2. These additional applications are selected based

on their size, popularity, activity, and relevance for the Pharo

ecosystem. Most of these applications are part of specialized

distributions of Pharo (namely Moose and Seaside), confirming

their relevance and maturity. For this study, tests classes

were removed because they usually have a structure radically

different from production code.

In this study, we make a first attempt to validate relative

metric hresholds for the following four source code metrics

computed by the Moose software analysis platform3: (a)

Number of Attributes (NOA)—Moose computes this metric

by counting all attributes in the class; (b) Number of Methods

(NOM)—Moose computes this metric by counting all methods

in the class, including constructors, getters, and setters; (c)

Number of Provider Classes (FAN-OUT)—Moose computes

this metric by considering all types of class dependencies

(method calls, etc.); and (d) Weighted Method Count (WMC)—

Moose computes this metric as the sum of the cyclomatic

complexity of each method in a class.

B. Methodology and Participants

Recall that our goal is to validate the notion of relative

thresholds with Pharo practitioners. To achieve this goal, we

initially conducted a survey involving five Pharo experts (i.e.,

1A detailed description is available at http://aserg.labsoft.dcc.ufmg.br/
pharo-dataset

2http://smalltalkhub.com, verified on 06/15/2015.
3http://www.moosetechnology.org/, verified on 06/15/2015

people deeply committed to the Pharo development and success)

and 25 Pharo maintainers (i.e., people in charge of incorporating

application improvements and producing new releases).

Specifically, to answer RQ #1 and RQ #2, we asked five

experts in Pharo, which are members of the Pharo board, to

provide examples of applications that are “well-written” and

“not well-written”. The choice of these terms is based on the

outcome of a pilot study, which indicated that “well-written”

and “not well-written” are largely understood by practitioners

as opposed to terms such as “maintainability”, that practitioners

had difficulty on interpreting.

To answer RQ #3, we focus on applications that do not

respect the derived relative thresholds for at least two metrics4.

We call such applications noncompliant and we interviewed the

top maintainers of each one. A top maintainer is a developer that

has written most of the methods found in the last release of the

application. Specifically, we identified the five top maintainers

in each noncompliant application by ranking authors of each

application according to the number of contributed methods

(i.e., defined or modified methods). We asked these maintainers

the following question: Compared to other applications you

work with, the application in question requires (a) more effort

to maintain; (b) comparable effort to maintain; (c) less effort

to maintain.

IV. FINDINGS

In this section, we first present the relative thresholds for

the source code metrics considered in this paper, derived using

the Pharo Corpus (Section IV-A). Next, we describe the results

of our research questions (Sections IV-B to IV-D).

A. Relative Thresholds for the Pharo Corpus

Table I presents the relative thresholds derived by our

technique. For each metric, the table shows the values of

p and k that define a relative threshold. It also shows the

number of applications that do not respect these thresholds.

We can observe that the upper limit k of the derived relative

thresholds are valid for a large number of classes (parameter

p), but not for all classes in an application. In fact, the value

of p ranges from 75% to 80%. The number of applications

that do not respect the relative thresholds range from six

(FAN-OUT) to 14 (WMC), i.e., from 7.6% to 17.7% of the

applications in the Corpus.

TABLE I: Relative Thresholds for Pharo

Metrics p k
# of applications that do not
respect the relative thresholds

NOA 75 5 9
NOM 75 29 11
FAN-OUT 80 9 6
WMC 75 46 14

4We did not consider a single metric to avoid the “One-track metric” anti-
pattern, which occurs when a single metric is used to measure software
quality [8].
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Table II presents nine applications considered as noncompli-

ant, i.e., applications that do not respect the relative thresholds

for two or more metrics, as described in Section III-B.

TABLE II: Noncompliant applications

Noncompliant
Metrics

NOA NOM FAN-OUT WMC

Collections X X

ComandShell X X X

Files X X

Graphics X X X X

Kernel X X

Manifest X X X

Morphic X X

Shout X X X X

Tools X X X X

B. RQ 1: Do applications perceived as well-written by the

expert developers respect the derived relative thresholds?

To answer this question, we asked five Pharo experts to

indicate well-written Pharo applications. Table III presents

these applications, including a brief description, and the

experts that elected the application. Among the seven

applications named by the experts, Roassal and Zinc belong

to the Corpus. We claim that this overlap does not affect

validity of our analysis. In fact, benchmark-based techniques

to derive thresholds depend on a balanced corpus, including

both well and poorly-written applications. In other words,

the overlapping shows that our Corpus includes well-written

applications, but as expected the Pharo ecosystem also has

other well-written applications.

TABLE III: Well-written applications

Systems Description Voted by Corpus

PetitParser Parser framework Expert #1
PharoLauncher Platform to manage Pharo images Expert #2
Pillar Markup language and tools Expert #2
Roassal Visualization engine Expert #3 X

Seaside Web framework Expert #4
SystemLogger Log framework Expert #5
Zinc HTTP framework Expert #5 X

For each application, we evaluate their percentage of classes

respecting the k-value of the proposed relative threshold. The

results are summarized in Table IV. For instance, the relative

threshold for NOA is (75, 5) and the table shows that 100%

of the classes of PetitParser have five attributes or less.

As can be observed in Table IV, the well-written applications

respect the proposed relative thresholds for all metrics with

the notable exception of FAN-OUT. The only applications that

respect the relative threshold for FAN-OUT are SystemLogger

and Zinc. To explain this fact, we investigated the distribution

of the FAN-OUT values in the Corpus and in the well-written

applications reported by the Pharo experts. Figure 1 shows

the quantile functions for the FAN-OUT values, i.e., the

x-axis represents the quantiles and the y-axis represents

the upper metric values for the classes in the quantile. The

applications that do not respect the relative thresholds for

FAN-OUT, i.e., PetitParser, PharoLauncher, Pillar, Roassal,

and Seaside, are represented by dashed lines, while the

remaining applications (Corpus and well-written applications

that respect the thresholds) are represented by solid lines.

We can observe that the applications that do not respect

the proposed thresholds have very different distribution of

FAN-OUT values than applications in our Corpus.
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Fig. 1: FAN-OUT quantiles—dashed lines represent PetitParser,

PharoLauncher, Pillar, Roassal, and Seaside, which are appli-

cations perceived as well-written but that do not respect the

relative threshold for FAN-OUT

Furthermore, we took a closer look at the way Moose

computes FAN-OUT. When determining this metric, Moose

considers all types of class dependencies introduced,

e.g., by means of inheritance, method calls, static accesses,

etc. Therefore, one way for a class to have a high FAN-OUT is

to be a client of an extensive inheritance hierarchy with many

instances of overridden methods. A preliminary inspection

in the source code shows that this is exactly the case of

PetitParser, PharoLauncher, Pillar, Roassal, and Seaside.

Summary of findings: We observe that applications perceived

as well-written by the interviewed experts follow the proposed

relative thresholds for NOA, NOM, and WMC. However, this

does not happen for FAN-OUT, as SystemLogger and Zinc

are the only applications that respect the relative threshold

for this metric. The reason for “too many high FAN-OUT”

values being present in five well-written applications seems

to be the presence of extensive inheritance hierarchies with

many instances of overridden methods. This finding stresses the

importance of considering multiple metrics when determining

whether an application might be problematic from the point of

view of its internal quality.

C. RQ 2: Do applications perceived as poorly-written by the

expert developers do not respect the derived relative thresholds?

To answer this second research question, we asked the five

experts to indicate poorly-written applications. This question

turned out to be much more difficult, since only two experts

answered it. Table V presents these applications, including a

brief description, and the experts that suggested the application.

This difficulty to identify poorly-written applications might

be explained by the respondents being rather optimistic than

pessimistic, or by them not being comfortable with admitting

that some applications are not well-written.
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TABLE IV: Percentage of classes in the well-written applications that respect the upper limit k of a relative threshold (underlined

values show the cases when the thresholds are not respected).

Metric p k
% of classes in the well-written applications with M ≤ k

PetitParser PharoLauncher Pillar Roassal Seaside SystemLogger Zinc

NOA 75% 5 100% 97% 97% 91% 97% 100% 91%
NOM 75% 29 97% 97% 94% 90% 96% 92% 82%
FAN-OUT 80% 9 41% 74% 62% 24% 41% 100% 81%
WMC 75% 46 97% 99% 95% 93% 96% 92% 82%

TABLE V: Poorly-written applications

Systems Description Voted by Corpus

Metacello Versioning system Expert #4 X

Morphic Graphical interface framework Experts #2 and #4 X

For Metacello and Morphic, Table VI shows the percentage

of classes respecting the k-value of the proposed thresholds.

TABLE VI: Percentage of classes in the poorly-written applica-

tions that respect the upper limit k of a threshold (underlined

values show the cases when the thresholds are not respected).

Metrics p k
% of classes with M ≤ k
Metacello Morphic

NOA 75% 5 93% 77%
NOM 75% 29 82% 74%
FAN-OUT 80% 9 86% 83%
WMC 75% 46 79% 71%

On the one hand, we found that Morphic is a noncompliant

application, i.e., it does not respect the proposed relative

thresholds for two metrics: NOM and WMC. For example,

Expert #2 made the following comments about Morphic:

“Morphic is an old system and there is no test and sparse

documentation”.

On the other hand, Metacello respects the relative thresholds

for all metrics. This system supports a complex domain-specific

language to express intricate relations between different

versions of Pharo packages (e.g., this language allows a

developer to define that package X depends on version v1 and

v2 of package Y , only on a platform P ). It also takes care

of determining cyclic dependencies and identifying proper

versions required in presence of multiple dependencies. One

Pharo expert argued that the complexity of the versioning

domain makes Metacello very hard to understand, and there

is an on-going effort to replace the system. Therefore, we

claim that the perception of Metacello as poorly written is

more likely to be caused by the inherent complexity of the

versioning domain rather than by a problematic design.

Summary of findings: Violation of two relative thresholds in

Morphic agrees with its design being perceived as problematic.

However, this is not the case of Metacello. Probably, Metacello

was cited as poorly-written due to the complexity of its domain.

D. RQ 3: Do the noncompliant applications require more

effort to maintain?

Before answering this third RQ, we analyze the importance

of the Top-5 maintainers in the noncompliant applications.

Figure 2(a) presents the number of maintainers of each

noncompliant. We can observe that this number ranges

from three (ComandShell) to 169 (Kernel). Six out of nine

noncompliant applications have more than 50 maintainers,

which reinforces the relevance of these applications in the

Pharo Ecosystem. Figure 2(b) shows the percentage of

contributions by the considered top maintainers. Recall that

we ranked the maintainers according to the percentage of

their contributions in each noncompliant application. We can

observe that the top-5 maintainers contributions range from

37% (Kernel) to 100% (ComandShell). In five out of nine

applications the contributions of these maintainers exceed 60%

of the total of the contributions.
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Fig. 2: Top-5 maintainers analysis in noncompliant applications

To answer RQ #3, we sent out a survey to the 25 maintainers

represented in Figure 2(b) and we obtained 11 answers (44%).

Based on these answers we calculate the following score

expressing the Effort to Maintain (EM) an application S:

EM = M − L

where M is the number of maintainers that answered that S is

more difficult to maintain and L is the number of maintainers

that answered that it requires less effort to maintain. Figure 3

shows the EM values for the nine noncompliant applications.

Four applications require more effort to maintain (EM > 0).

To illustrate this fact, we reproduce comments made by a

Graphics developer:

“Graphics is a sum of patches over patches without a clear

direction on design, with tons of duplicates and several design

errors/conflicts. So is a pain to introduce any change there.”

Three applications have a maintenance effort that is
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comparable to other applications our respondents work

with (EM = 0). We also observe that EM < 0 for

two applications. We hypothesize two reasons for these

noncompliant applications require less maintenance effort: (a)

the metrics used to classify an application as noncompliant do

not cover the whole spectrum of properties and requirements

the maintainers considered when ranking applications in terms

of internal quality; (b) maintainers are usually more wary

when judging an application as presenting low quality, as we

have learned when investigating the second research question.
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Fig. 3: Effort to Maintain (EM)

Summary of findings: We found that four out of nine noncompli-

ant applications are harder to maintain. Therefore, noncompliant

applications are not largely viewed as requiring more effort to

maintain than other applications.

V. THREATS TO VALIDITY

In this section, we discuss possible threats to validity.

First, our study participants might not be representative of

the whole population of Pharo developers and, in more

general terms, of general software developers. Anyway, we

interviewed expert developers, with large experience, and who

are responsible for the central architectural decisions in their

applications. Second, our Corpus and metric selections may

not be representative enough to evaluate the quality of Pharo

applications. However, we at least strive to include well-known

and large Pharo applications in the Corpus. Moreover, the

metrics used in the paper cover important dimensions of an

application implementation (size, coupling, and complexity).

VI. RELATED WORK

In this section, we briefly work which explore how develop-

ers rate different software quality attributes like readability [9],

complexity [10], and coupling [11]. Buse and Weimer ex-

plored the concept of code readability and investigate its

relation to software quality [9]. They found that readability

metrics strongly correlate with measures of software quality.

Katzmarski and Koschke investigated whether metrics agree

with complexity as perceived by developers [10]. The authors

concluded that data-flow metrics seem to better conform to

developers’ opinions than control-flow metrics. Bavota et

al. investigated how coupling metrics align with developers’

perception of coupling [11]. They concluded that coupling

is not a trivial quality attribute. However, to the best of our

knowledge, the study presented in this paper is the first validate

metric thresholds technique with developers.

In this paper, we validated a technique for deriving relative

thresholds. However, there are other techniques for extracting

metric thresholds, using for example, machine learning [12]

and benchmarks [2], [3].

VII. CONCLUSIONS AND FUTURE WORK

This paper reported the first results of an empirical study

aimed at validating relative metric thresholds with developers.

The study was conducted on 79 Pharo applications and using

four source code metrics. The results indicate that well-

designed applications mentioned by expert respect the relative

thresholds. In contrast, we observed that developers usually

have difficulties to indicate poorly-designed applications. We

also found that four out of nine noncompliant applications are

harder to maintain. Therefore, noncompliant applications are

not largely viewed as requiring more effort to maintain than

other applications. We plan to extend our work as follows:

• By conducting in-depth interviews with at least some

of the Pharo experts and maintainers considered in the

study. These interviews will help to strength our findings

(e.g., to confirm that frameworks are usually noncompliant

applications in terms of FAN-OUT), and also to clarify

why some noncompliant applications are not perceived as

being more difficult to maintain.

• We intend to run a second survey with the maintainers of

the noncompliant applications, asking them to provide a

direct rating about the maintainability of these applications,

without any comparison with other applications they

usually work with.

• By considering data from other sources, like mailing lists

and bug tracking systems. These sources can help us to

better asses the quality of the applications.
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