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Abstract—The process of developing complex systems often
involves knowledge of engineers from multiple domains: e.g., to
develop a robot one needs to combine expertise about mechanics,
electronics, and software. Such domain-specific knowledge is of-
ten represented in a form of interdependent models, consequently
a change in a model of one domain might impact a model from
a different domain. Thus, identifying which models are affected
due to a change is an important problem, which is further
exacerbated due to heterogeneity of modeling notations used.

The aim of this PhD research project is to facilitate model
management in a multi-domain setting. In the earlier stage of this
study, we investigated the available approaches used to manage
models from different domains. We concluded that the available
approaches are tool-dependent, and do not fully support co-
evolution of the models. Additionally, previous research recom-
mends to explicitly indicate the dependency between models in or-
der to support the co-evolution of models from different domains.
Since these models are created using different modeling notations
we believe that it is not reasonable to develop a tool to parse every
notation. Furthermore, it is possible that the source code of the
model is missing, but engineers still have an image of the model.
Thus, to ensure the maintenance of multi-domain systems we
investigated the suitability of optical character recognition (OCR)
as a uniform approach. We observed that even though OCR
has shortcomings, it produces satisfactory results, and once the
identified shortcomings are addressed, OCR can become a crucial
technology to support the evolution of multi-domain systems. To
this end we envision the development of an infrastructure where
we can use OCR to identify relationships between models from
different domains, store them in a structured manner making it
easier to maintain the consistency of the entire system.

I. INTRODUCTION

Models are the primary artifacts in model-driven ap-
proaches [1]. Model-driven engineering has been used in
fields, such as software engineering [2], robotics [3], and auto-
motive [4]. Managing models that belong to the same domain
might not be a complex task due to the features provided by the
available development tools. However, managing interrelated
models of different domains is challenging [5]. A robot is an
example of a such multi-domain system. To develop it one
needs to combine models created by experts from mechanics,
electronics and software. These models might be created using
domain specific tools of each domain, and a change in one
model of one domain might impact a model from a different
domain causing inconsistency in the entire system.

This PhD research project therefore proposes to facilitate
the evolution of the models in this multi-domain setting. The
initial phase of this study consisted of a systematic literature
review [6] in order to identify the open issues, and strategies

used to manage models from different domains. As result,
we identified that making explicit the relationship between
models from different domains can support the maintenance
of the models, making it easy to identify affected models
due to a change. The following step was to investigate ways
of extracting information from different engineering models
that were created using different modeling notations. Due to
the amount and diversity of existing modeling notations, we
considered that it is not reasonable to develop a tool capable
of parsing all types of models. Even if we develop such a tool,
it would have to be updated every time that a new notation
emerges. Moreover, these models might only be available as
pictures and not as a structured format, e.g., XML. Thus, we
need a uniform approach that would be independent from the
peculiarities of the notation. This uniform approach can only
be based on elements typically present in various modeling
notations, i.e., text, boxes, and lines.

We investigated the suitability of optical character recogni-
tion (OCR) for extracting textual elements from models from
different domains [7]. We compared the accuracy of two off-
the-shelf OCR services (Google Cloud Vision and Microsoft
Cognitive Services) in extracting textual elements from a col-
lection of 43 models from different domains. Additionally, we
identified the common errors made by Google Cloud Vision
and we observed that even though OCR has some limitations,
such as not being able to detect mathematical equations, Greek
letters and misinterpreting one textual element as two separate
elements due to the text being positioned on multiple lines. It
produces satisfactory results being able to detect 70% of the
textual elements. We believe that once the main shortcomings
are addressed, OCR can become a crucial technology to
support multi-domain model management. In the ongoing
work we are improving the precision and recall addressing
the main OCR limitations. Preliminary results indicate that
we corrected up to 50% of the textual elements that were
misinterpreted due to positioning on multiple lines.

The next step is to automatically detect relationships be-
tween models from different domains. To this purpose, we are
going to use OCR, name matching, and image processing to
detect shapes, such as boxes, arrows and lines.

It is common in modeling languages to use boxes to group
elements, and lines connecting these boxes to indicate the
presence of relationships. The UML class diagram in software
engineering domain is an example of such representation.
Therefore, we are going to use image process techniques



to detect shapes presented in a variety of models and infer
possible relationships.

Our hypothesis is that elements might share the same name
even though they are in models from different domains, there-
fore, identifying relations between them is useful to support
the modeling process. We are going to use name matching
on the textual elements extracted using OCR to evaluate this
hypothesis. We found promising results in our preliminary
experiments to confirm this hypothesis. Our second hypothesis
is that detecting boxes and lines/arrows presented on the
models can be used to provide additional relationships to the
ones found using the name matching.

To conclude the project, we envision the development of an
infrastructure that combines all the previous elements into one
single tool that can also store the relationships in a structured
manner making it easier to maintain the consistency of an
entire system. The development of this infrastructure is in an
advanced stage and we plan to evaluate it by means of an
observational study with a multidisciplinary team that builds
autonomous robots designed to play football.

II. RELATED WORK

A. Explicit Dependency Modeling

Sirin et al. [8] use DSM (Design Structure Matrix) and
DMM (Design Multiple Matrix) to identify and map the
dependencies between models. The drawback about DSM and
DMM is that, it is not possible to describe the semantics of
the relationships. Qamar et al. [9] investigated the dependen-
cies between models and how to model these dependencies.
Törngren et al [10] extended that work and proposed an
approach to integrate different viewpoints using Dependency
Modeling Language (DML) and Dependency Modeler [9].

Dávid et al. [11], [12], [13] propose a modelling language
that is capable of modelling the process and the properties
of the system. This language allows engineers to describe
relationships between properties and the level of precision.
Feldmann et al. [14], [15] propose specify and manage inter-
model inconsistency. In order to maintain consistency during
model evolution, they create links between the dependent
entities and define rules to enable the consistency checking.

Daniel et al. [16] propose a model persistence framework
(NeoEMF), as a set of Eclipse plugins, capable of storing mod-
els focusing on model transformation. Didonet Del Fabro et. al.
[17] propose weaving model as a mapping between elements
of two (meta)models. In order to perform this mapping, they
created an Eclipse plug-in called Atlas Model Weaver (AMW)
making their approach tool dependent.

B. Optical Character Recognition (OCR)

To the best of our knowledge, there are no studies on the
use of off-the-shelf OCR services in the extraction of text on
models from different domains.

Recently, researchers evaluate the accuracy of six OCR
engines (Google Drive OCR, ABBYY FineReader, GOCR,
Tesseract, OCRAD, and Cuneiform) in extracting code (Java,
Python, C#) from screencasts and code images [18]. They

conclude that although Google Drive OCR and ABBYY
FineReader are slower than the others, they are more accurate.

Dataturks [19] presents a comparison between three OCR
services (Amazon AWS, Google Cloud Vision, and Microsoft
Cognitive). They measured the precision and recall in recog-
nizing text from a random sample of 500 images of business
names or movie names. They conclude that Google Cloud
Vision outperformed the others.

Reis [20] compare Google Cloud Vision and Microsoft
Cognitive Services in recognizing text from the photos of the
pages of the Bible. Mello and Dueire Lins [21], and Vijayarani
and Sakila [22] published additional comparison studies.

OCR has been used in extract text on domain specific
modeling languages, for instance Img2UML [23], [24]. This
tool extracts UML Class Diagrams from images. Additionally,
there are studies that have used OCR as part of a tool classify-
ing images as UML diagrams: targeting class diagrams [25],
[26], sequence diagrams [27] and component diagrams [26].

III. PAST RESEARCH

A. Systematic Literature Review

We conducted a systematic literature review to investigate
the industrial practices and academic approaches to ensuring
consistency in cross-domain model management [6] (an ex-
tended version of this paper is currently under review).

a) Methodology: In this systematic literature review,
we followed strict guidelines proposed by Kitchenham and
Charters [28], we used Google Scholar as the search en-
gine [29], [30], [31], [32]. We create search strings to query
Google Scholar, based on PICO [33]. Due to the similarity
of the queries, some papers were retrieved multiple times. We
automatically excluded these duplicates prior to the manual
inspection. In summary, we obtained 3222 hits, with 515 of
them unique. We obtained 168 papers when the selection
criteria was applied, and we conclude the process with 88
papers. To avoid bias in the selection of the papers, we
computed Cohen’s κ [34] to measure the agreement between
the raters and discussed the disagreements.

b) We have obtained the following results:
RQ) How do model life cycle management tools support

consistency checking? We observed that approximately 31%
of the tools we found can check the consistency on models
from different domains, approximately 24% on the models of
the same domain, and approximately 45% do not provide any
consistency checking.

RQ) Which strategies have been used to keep the
consistency between models of different domains? We
organized the identified strategies into categories that include
the use of a extensible catalogue of inconsistency patterns,
constraints management, modeling dependencies explicitly,
ontologies, and standard data exchange. However, we observed
that these strategies are tool-dependent, and do not fully
support co-evolution of the models. For example, they often
fail to notify affected models due to a change, to maintain the
history of changes and to distinguish between different types
of relationships.



B. Suitability of OCR to Support Model Management

To ensure consistency Qamar et al. [9] recommend explicit
modeling of the relationships between models. A number
of technologies can be used to model these relationships
explicitly [10], [9], [14], [15]. However, little is known about
approaches to automatically identify the relationships between
models from different domains. The main challenge is the
heterogeneity of modeling notations: we believe that it would
not be feasible to develop a tool to parse all the existing
notations. Moreover, even if such a tool was developed, it
would have to be updated every time a modeling notation
evolves or a new notation emerges. Thus, we need a uniform
approach based on elements present in all those models, i.e.,
text, boxes, and lines. Moreover, some tools might not be able
to export the models into a intermediate structured format,
such as XMI. Another possibility is the model only being
available as an image, either because the source code of the
model is missing, or because the engineer only have the model
as a physical paper document.

Thus, we investigated the suitability of OCR to be this
uniform approach independent from the peculiarities of the
notation [7]. Following are the research questions used to
guide this study:

RQ) How accurate are off-the-shelf OCR services for
extracting text from graphical models? To answer this
research question, we applied Google Cloud Vision and
Microsoft Cognitive Services to a collection of 43 models
from different domains. These models were selected from
two UML open repositories [35], [36], three control system
engineering papers [37], [38], [39], and the example catalog
of MatLab Simulink1. We observed that Google Cloud Vision
outperformed Microsoft Cognitive Services being able of
correctly recognize 854 out of 1,232 textual elements, while
Microsoft Cognitive Services correctly recognized 388 ele-
ments. In terms of precision and recall, Google Cloud Vision
outperformed Microsoft Cognitive Services in the majority of
the models.

RQ) What are the common errors made by OCR
services on models from different domains? We focused
on the common errors from Google Cloud Vision due to
performance presented in the previous RQ. We identified 17
common errors and we grouped them into four categories:
non-alphanumeric characters, mathematical formulas, spacing,
and character confusion. The most common errors are related
to spacing (text written on multiple lines, and an empty space
between letters), and character confusion (wrong/missing char-
acters). It is also important to stress that Google Cloud Vision
failed in detecting textual elements positioned on multiple
lines, Greek letters, subscripts, and equations. Due to space
limitations text can be positioned on multiple lines, making
OCR to misinterpret as one textual element but as two separate
element. We named this error as “multi-line text”. The fixing
of this error was the starting point for the ongoing research
detailed in the next section.

1https://www.mathworks.com/products/simulink.html

IV. ONGOING RESEARCH

This section summarizes our ongoing work, where we aim
to (i) improve the precision and recall of the OCR focusing
on the main OCR limitations, (ii) detect shapes such as boxes,
lines and arrows to be used to group the textual elements
and support the identification of relationships between models
from different domains, and (iii) develop a tool in which
we can identify and store relationships between models from
different domains.

Precision and Recall As described in the previous section,
we observed that Google Cloud Vision failed to detect textual
elements that are positioned in multiple lines. To fix this
problem we use a set of heuristics that take into consideration
such parameters as the alignment, the distance between the
words, and the size of the words and letters. Preliminary results
indicate that applying these heuristics can fix up to 50% of the
textual elements that were misinterpreted due to the text being
positioned on multiple lines.

Shape Detection It is common for engineers to use shapes,
such as boxes to group elements, and lines connecting these
boxes to indicate the presence of relationships between them.
The UML class diagram in software engineering domain is an
example of such representation. Hence, we are using a set of
image processing techniques provided by OpenCV2 to auto-
matically detect shapes presented in the models. We believe
that the shape detection can support in the identification of
relationships between models from different domains.

Our first hypothesis is that elements might share the same
name even though they are in models from different do-
mains, consequently establishing some relation between them.
Therefore, we are going to use name matching on the textual
elements extracted using OCR to evaluate this hypothesis. We
found promising results in our preliminary experiments. Our
second hypothesis is that shapes, such as boxes and arrows
presented on the models can be used to provide additional
relationships to the ones found using the name matching. For
this research we aim at identify the relationships between
models from different domains. The identification of the type
of these relationships is out of the scope.

Tooling To conclude the project, we envision the develop-
ment of an infrastructure that combines OCR, name matching,
and shape detection previously described into one single tool.
With this tool, it will be possible to identify and store the
relationships between models from different domains in a
structured manner, making it easier to maintain the consistency
of the entire system. The development of this infrastructure is
in advanced stage and we plan to evaluate it in an observational
study with a multidisciplinary team that builds autonomous
robots designed to play football.

V. CONCLUSION

The main goal of this research is to support the (co-
)evolution of models from different domains. So far, we
conducted a systematic literature review to identify open issues

2https://opencv.org



related to consistency management in multi-domain modeling.
The outcome of this literature review served as a basis to
the follow-up study where we investigated the suitability of
OCR for extracting information from models. Currently, we
are improving the accuracy of OCR, and we are using image
processing techniques to detect shapes, such as boxes and
lines presented on models. Thus, we believe that using the
text extracted by OCR, shapes, and name matching, we can
infer possible relationships between the models.
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[4] S. Mustafiz, J. Denil, L. Lúcio, and H. Vangheluwe, “The ftg+ pm
framework for multi-paradigm modelling: An automotive case study,”
in Proceedings of the 6th International Workshop on Multi-Paradigm
Modeling, 2012, pp. 13–18.

[5] R. Hebig, H. Giese, F. Stallmann, and A. Seibel, “On the complex nature
of mde evolution,” in MODELS, ser. LNCS. Springer, 2013, vol. 8107,
pp. 436–453.

[6] W. Torres, M. G. J. van den Brand, and A. Serebrenik, “Model man-
agement tools for models of different domains: A systematic literature
review,” in SysCon, 2019.

[7] ——, “Suitability of optical character recognition (ocr) for multi-domain
model management,” in International Conference on Systems Modelling
and Management. Springer, 2020.

[8] G. Sirin, B. Yannou, E. Coatanéa, and E. Landel, “Analyze of the
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