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Abstract

Domain specific languages (DSLs) allow modeling systems
in terms of domain concepts. We discuss the shortcomings of
existing DSL evolution approaches when applied in industry
and propose extensions addressing these shortcomings.

Categories and Subject Descriptors D.2.7 [Software En-

gineering]: Distribution, Maintenance, and Enhancement;
I.6.5 [Simulation and modeling]: Model Development

Keywords Model Driven Engineering, Models, Evolution

1. Introduction

DSLs are often designed using meta-models, which evolve
over time (Favre 2005) (e.g., due to new demands from
the domain). Evolution of the meta-models can trigger co-

evolution of models conforming to these meta-models (Cic-
chetti et al. 2009). In industry, the models can number in the
thousands (Mengerink et al. 2016), making manual model
co-evolution infeasible.

Based on earlier comparative studies (Rose et al. 2009;
Herrmannsdörfer and Wachsmuth 2014), we have performed
an internal evaluation of various automated model migration
tools at ASML (ASM). We found that existing tools are no
longer available, or not mature enough. Of the two mature
tools remaining, Flock (Rose et al. 2010) was experienced
as having a high learning curve. Edapt, however, met all the
requirements for the ASML case (Mengerink et al. 2016;
Vissers et al. 2016), and has been previously applied in a
number of industrial case studies (Herrmannsdörfer et al.
2009, 2008). We have thus selected Edapt as the primary
candidate tool for meta-model/model co-evolution.
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Figure 1. Edapt, taken from (Herrmannsdörfer 2011)

2. Edapt

Edapt, previously known as COPE (Herrmannsdörfer 2011),
encodes patterns of meta-model evolution and model co-
evolution into operators. Users can apply the operators to
specify evolution and co-evolution. The specification is then
embedded in a modeling workbench by means of a migrator.

Experience at ASML has revealed several deficiencies in
the usability of Edapt. We require Edapt to allow as much
reuse of (co-)evolution knowledge as possible (Req.1), not
to disrupt the developer’s workflow (Req.2), deal with the
large meta-models and large amounts of models (Req.3)
and provide fast feedback on the effect of a (co-)evolution
specification on the models (Muşlu et al. 2015) (Req.4).

Firstly, Edapt supports the creation of custom operators,
when no reusable operator is available. However, these cus-
tom operators can only be applied once, and are not transfer-
able to other users (Req.1). The only way of adding reusable
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Figure 2. Udapt.

operators to Edapt, is by modifying its source code and re-
compiling it, which interrupts the development flow (Req.2).

Secondly, the graphical representation of the meta-model
being evolved does not scale with the meta-model as the de-
fault tree editor (the meta-model editor in Figure 1) becomes
hard to use for large meta-models (Req.3).

Thirdly, when co-evolving models every model has to be
individually opened in Edapt. In an industrial context, where
models number in the thousands, this is infeasible (Req.3).

Lastly, when specifying meta-model evolution, it is un-
clear what the effect operators have on the models due to
lack of feedback on the model level (Req.4).

3. Udapt

Udapt is an extension of Edapt, improving its usability.
Firstly, we have simplified the process of creating reusable

operators. In Udapt, custom operators can be defined in the
same way as in Edapt. However, in Udapt, custom operator
are reflectively compiled (Figure 2: 2,4) and can be used in
the specification of the migrator. These operators are stored
as file, and can be shared among developers (Req.1, Req.2).

Secondly, to solve the scalability issues of the meta-
model editor, we have integrated a Sirius (Viyović et al.
2014) meta-model editor into Edapt (Figure 2:1). This al-
lows the user to edit their meta-models in a more intuitive
way, which scales better with large meta-models (Req. 3).

Thirdly, we have implemented a mass-migrator that al-
lows users to migrate multiple models, reducing overhead
for developing intermediate versions of DSLs (Req. 3).

Lastly, users are now able to add sample models as “pre-
view” (Figure 2:5). When the migrator is modified, these
“preview” models are automatically migrated. Subsequently,
both the original and co-evolved models are rendered to give
insight into the effect the migrator has on models (Req. 4).

4. Future Work & Conclusion

As future work, we would like to conduct industrial user
studies to evaluate Udapt.
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