
Udapt

Edapt Extensions for Industrial Application

Josh G.M. Mengerink⇤ Alexander Serebrenik⇤ Mark van den Brand⇤ Ramon R.H.
Schiffelers⇤,†

⇤Eindhoven University of Technology, the Netherlands and †ASML, the Netherlands
{j.g.m.mengerink, aserebrenik, m.g.j.v.d.brand}@tue.nl, ramon.schi✏ers@asml.com

Abstract

Domain specific languages (DSLs) allow modeling systems
in terms of domain concepts. We discuss the shortcomings of
existing DSL evolution approaches when applied in industry
and propose extensions addressing these shortcomings.

Categories and Subject Descriptors D.2.7 [Software En-

gineering]: Distribution, Maintenance, and Enhancement;
I.6.5 [Simulation and modeling]: Model Development

Keywords Model Driven Engineering, Models, Evolution

1. Introduction

DSLs are often designed using meta-models, which evolve
over time (Favre 2005) (e.g., due to new demands from
the domain). Evolution of the meta-models can trigger co-

evolution of models conforming to these meta-models (Cic-
chetti et al. 2009). In industry, the models can number in the
thousands (Mengerink et al. 2016), making manual model
co-evolution infeasible.

Based on earlier comparative studies (Rose et al. 2009;
Herrmannsdörfer and Wachsmuth 2014), we have performed
an internal evaluation of various automated model migration
tools at ASML (ASM). We found that existing tools are no
longer available, or not mature enough. Of the two mature
tools remaining, Flock (Rose et al. 2010) was experienced
as having a high learning curve. Edapt, however, met all the
requirements for the ASML case (Mengerink et al. 2016;
Vissers et al. 2016), and has been previously applied in a
number of industrial case studies (Herrmannsdörfer et al.
2009, 2008). We have thus selected Edapt as the primary
candidate tool for meta-model/model co-evolution.

m
ig

ra
tio

n
ed

ito
r

m
et

am
od

el
 e

di
to

r

op
er

at
io

n
br

ow
se

r

hi
st

or
y

m
od

el

Figure 1. Edapt, taken from (Herrmannsdörfer 2011)

2. Edapt

Edapt, previously known as COPE (Herrmannsdörfer 2011),
encodes patterns of meta-model evolution and model co-
evolution into operators. Users can apply the operators to
specify evolution and co-evolution. The specification is then
embedded in a modeling workbench by means of a migrator.

Experience at ASML has revealed several deficiencies in
the usability of Edapt. We require Edapt to allow as much
reuse of (co-)evolution knowledge as possible (Req.1), not
to disrupt the developer’s workflow (Req.2), deal with the
large meta-models and large amounts of models (Req.3)
and provide fast feedback on the effect of a (co-)evolution
specification on the models (Muşlu et al. 2015) (Req.4).

Firstly, Edapt supports the creation of custom operators,
when no reusable operator is available. However, these cus-
tom operators can only be applied once, and are not transfer-
able to other users (Req.1). The only way of adding reusable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ITSLE’16, October 31, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4646-7/16/10...$15.00

http://dx.doi.org/10.1145/2998407.2998409

21

Figure 2. Udapt.

operators to Edapt, is by modifying its source code and re-
compiling it, which interrupts the development flow (Req.2).

Secondly, the graphical representation of the meta-model
being evolved does not scale with the meta-model as the de-
fault tree editor (the meta-model editor in Figure 1) becomes
hard to use for large meta-models (Req.3).

Thirdly, when co-evolving models every model has to be
individually opened in Edapt. In an industrial context, where
models number in the thousands, this is infeasible (Req.3).

Lastly, when specifying meta-model evolution, it is un-
clear what the effect operators have on the models due to
lack of feedback on the model level (Req.4).

3. Udapt

Udapt is an extension of Edapt, improving its usability.
Firstly, we have simplified the process of creating reusable

operators. In Udapt, custom operators can be defined in the
same way as in Edapt. However, in Udapt, custom operator
are reflectively compiled (Figure 2: 2,4) and can be used in
the specification of the migrator. These operators are stored
as file, and can be shared among developers (Req.1, Req.2).

Secondly, to solve the scalability issues of the meta-
model editor, we have integrated a Sirius (Viyović et al.
2014) meta-model editor into Edapt (Figure 2:1). This al-
lows the user to edit their meta-models in a more intuitive
way, which scales better with large meta-models (Req. 3).

Thirdly, we have implemented a mass-migrator that al-
lows users to migrate multiple models, reducing overhead
for developing intermediate versions of DSLs (Req. 3).

Lastly, users are now able to add sample models as “pre-
view” (Figure 2:5). When the migrator is modified, these
“preview” models are automatically migrated. Subsequently,
both the original and co-evolved models are rendered to give
insight into the effect the migrator has on models (Req. 4).

4. Future Work & Conclusion

As future work, we would like to conduct industrial user
studies to evaluate Udapt.

Acknowledgments

The authors thank Theo Baart, Rick Bouten, Dennis Brons,
Stefan Habets, Thijs Ledeboer, Wout de Ruiter, Bart van der
Vecht, Bart Verberne, and Leroy Visser, who implemented
Udapt as part of their undergraduate capstone project.

References

ASML. http://www.asml.com/. Accessed: 2015-04-07.
A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Managing depen-

dent changes in coupled evolution. In ICMT, volume 5563 of
LNCS, pages 35–51. Springer, 2009.

J.-M. Favre. Languages evolve too! changing the software time
scale. In Principles of Software Evolution, pages 33–42, 2005.

M. Herrmannsdörfer. COPE - A workbench for the coupled evolu-
tion of metamodels and models. In SLE, volume 6563 of LNCS,
pages 286–295. Springer, 2011.

M. Herrmannsdörfer and G. Wachsmuth. Coupled evolution of
software metamodels and models. In Evolving Software Systems,
pages 33–63. Springer, 2014.

M. Herrmannsdörfer, S. Benz, and E. Juergens. Automatability
of coupled evolution of metamodels and models in practice. In
MoDELS, pages 645–659. Springer, 2008.

M. Herrmannsdörfer, D. Ratiu, and G. Wachsmuth. Language
evolution in practice: The history of GMF. volume 5969 of
LNCS, pages 3–22. Springer, 2009.

J. G. M. Mengerink, A. Serebrenik, R. R. H. Schiffelers, and
M. G. J. van den Brand. A complete operator library for DSL
evolution specification. In ICSME, 2016.

K. Muşlu, Y. Brun, M. D. Ernst, and D. Notkin. Reducing feedback
delay of software development tools via continuous analysis.
TSE, 41(8):745–763, 2015.

L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. C. Polack. An
analysis of approaches to model migration. In MoDSE-MCCM

Workshop, pages 6–15, 2009.
L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. Polack. Model

migration with Epsilon Flock. In ICMT, volume 6142 of LNCS,
pages 184–198. Springer, 2010.

Y. Vissers, J. G. M. Mengerink, R. R. H. Schiffelers, A. Serebrenik,
and M. Reniers. Maintenance of specification models in industry
using Edapt. In FDL, 2016.

V. Viyović, M. Maksimović, and B. Perisić. Sirius: A rapid devel-
opment of dsm graphical editor. In International Conference on

Intelligent Engineering Systems, pages 233–238, 2014.

22

