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Abstract
Models, as the main artifact in model-driven engineering, have

been extensively used in the area of embedded systems for code

generation and verification. One of the most popular behavioral

modeling techniques is state machine. Many state machine model-

ing guidelines recommend that a state machine should have more

than one state in order to be meaningful. However, single-state

state machines (SSSMs) violating this recommendation have been

used in modeling cases reported in the literature.

We study the prevalence and role of SSSMs in the domain of em-

bedded systems, as well as the reasons why developers use them and

their perceived advantages and disadvantages. We employ the se-

quential explanatory strategy to study 1500 state machines from 26

components at ASML, a leading company in manufacturing lithog-

raphy machines from the semiconductor industry. We observe that

25 out of 26 components contain SSSMs, making up 25.3% of the

model base. To understand the reasons for this extensive usage

we conduct a series of interviews followed by a grounded theory

building. The results suggest that SSSMs are used to interface with

the existing code, to deal with tool limitations, to facilitate main-

tenance and to ease verification. Based on our results, we provide

implications to modeling tool builders. Furthermore, we formulate

two hypotheses about the effectiveness of SSSMs as well as the

impacts of SSSMs on development, maintenance and verification.

CCS Concepts
• Software and its engineering→Model-driven software en-
gineering; Design patterns; Maintaining software.
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Figure 1: A flower model (SSSM). The circle represents the single
state and the arrows going from and to the same state represent the
transitions. The incoming arrow indicates the initial state.

1 INTRODUCTION
Models play a central role in model-driven engineering (MDE) [65].

While models are typically used to facilitate team communication

and serve as implementation blueprints, in the area of embedded

systemsmodeling, models have been extensively used for such goals

as code generation, simulation, timing analysis and verification [38].

One of the most popular modeling techniques used to specify the

behavior of software are state machines.
Many guidelines have been proposed on how one should model

system behavior using state machines [3, 18, 49, 52]. One of the

recommendations commonly repeated both in books [3, 17, 18] and

online resources,
12

is that a state machine model is only meaningful

if it contains more than one state, and if each state represents

different behavior. The intuition behind this guideline is that a

model should contain non-trivial information, otherwise it merely

clutters the presentation of ideas [3]. Single-state state machines

(SSSMs)—affectionately known as “flowers” due to their graphical

representation shown in Figure 1—violate this recommendation,

yet they are known to have been used, e.g., as models of decision

making in conversational agents [34], and in the supervisory control

of discrete event systems [15]. From the growing body of software

engineering literature we know that software developers do not

always follow recommendations or best practices and often have

valid reasons not to do so [12, 46, 60].

We believe that understanding why a widespread recommenda-

tion is not followed in practice is the first step towards improvement

of modeling tools and practice. To understand the use of SSSMs

in practice, we conduct an exploratory case study at ASML, the

leading manufacturer of lithography machines. We employ the se-

quential explanatory strategy [22]. We first mine the archive for 26

components totalling 1500 models to understand the prevalence of
SSSMs (RQ1) as well as the role played by SSSMs (RQ2). Then we

report our quantitative findings to software architects and inter-

view them to understand why they opt for SSSMs (RQ3) and what
advantages and disadvantages of SSSMs they perceive (RQ4).

We observe that SSSMs make up 25.3% of the models considered.

These SSSMs are often used with other models as design patterns to

1
GYAN http://gyan.fragnel.ac.in/~surve/OOAD/SCD/SC_Guide.html

2
https://www.stickyminds.com/article/state-transition-diagrams

https://doi.org/10.1145/3379597.3387452
https://doi.org/10.1145/3379597.3387452
https://doi.org/10.1145/3379597.3387452
http://gyan.fragnel.ac.in/~surve/OOAD/SCD/SC_Guide.html
https://www.stickyminds.com/article/state-transition-diagrams


MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Nan Yang, Pieter Cuijpers, Ramon Schifferlers, Johan Lukkien, and Alexander Serebrenik

achieve developers’ goals. We identify five such design patterns that

are repeatedly used in multiple components. The used SSSMs and

design patterns provide industrial evidence on how developers deal

with existing code base and tool limitations that are the common

problems in MDE adoption [38].

Given ASML has a large portion of its code base developed with

the traditional software engineering practices, 20.3% of SSSMs are

used on boundary of “model world” to interface model-based com-

ponents with existing code-based components. Most SSSMs (64.7%)

are used to circumvent the limitations of the modeling tools used by

ASML, e.g., lack of means to specify data-dependent behavior. As a

workaround, developers have to implement the intended behavior

with hand-written code. Because of that, the majority of the SSSMs

for this purpose is also used on the boundary to interface models

with hand-written code inside the components. Apart from dealing

with the common MDE challenges, around 7.6% of SSSMs are de-

signed to ease long-termmaintenance of the models. Our interviews

also reveal that SSSMs pass verification easily, which is considered

as both an advantage and a disadvantage by developers. Based on

the analysis of the built theory we compose a set of suggestions for

tool builders and researchers.

2 PRELIMINARIES
We introduce the notion of SSSM and the relevant parts of the

tool-chain used at ASML.

2.1 Single-state State Machine
Intuitively, in its simplest form a state machine is a collection of

states and transitions between them. Some state machine modeling

languages, such as UML state machines, have additional mecha-

nisms (e.g., nested states and state variables) that can represent state
information. We exclude the nested states and state variables from

consideration as the nested states and the values of state variables

can be flattened into simple states [33, 47].

In our study, we consider a state machine as a single-state state

machine (SSSM) if the state machine has syntactically only one state.

We call any other state machine a multi-state state machine (MSSM).

For example an MSSM can have more than one state, nested states

or make use of state variables.

2.2 A State Machine Modeling Tool: ASD
Analytical Software Design (ASD) is a commercial state machine

modeling tool developed by Verum [62]. It provides users with

means of designing and verifying the behavior of state machines,

and subsequently generating code from the verified state machines.

2.2.1 Model type and relation There are two types of components

in a system developed with ASD, namely an ASD component and a

foreign component. The ASD components depend on each other in

a Client-Server manner where a client component uses its server

components to perform certain tasks. The ASD components consist

of Interface Models (IM) and Design Models (DM) which are speci-

fied by means of state machines. The DM implements the internal

behavior of a component, specifying how it uses its server compo-

nents. The relation uses is realized by three types of events: call

event, reply event and notification event (Figure 2, left). According

to the ASD manual, an event is analogous to a method or callback

that component exposes. The declaration of a call event contains

the event name, parameters and the return type. A call event with

a "void" return type has "VoidReply" reply event, while the one

with a "valued" return type can use all user-defined reply events.

For instance, call event task([in]p1:string, [out]p2:int):void is a void

type call event with an input and an output parameter. Notifica-

tion events with output parameters are used to inform clients in

synchronous or asynchronous ways, similar to callback functions

in such programming languages as C and Python. The IM speci-

fies the external behavior of a component. It prescribes the client

components of the ASD component in which order the events can

be called and what replies they can expect, i.e., interface proto-

col. The same IM can be implemented by multiple DMs. In cases

such as component reuse, ASD components interact with foreign
components, non-model components implemented as hand-written

code. To support communication between ASD components and

foreign components, the external behavior of a foreign component

is represented by an IM. Figure 2 (right) shows an ASD-based alarm

module where ASD component Alarm uses ASD component Sensor
and a foreign component Siren. In the remainder of the paper, we

also refer to foreign components as code-based components.
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Figure 2: Model relations. Left: type of events. Right: example of an
ASD module . I*** stands for an IM.

2.2.2 Verification and code generation One of the major benefits

of using ASD is the possibility to formally verify behavior of the

models. For each component, the verification can be summarized

into two steps. First, ASD verifies whether each DM correctly uses

the interfaces of its servers. The role of IM in this check is therefore

to provide the verification tool with the order the events that should

be called. For our alarm module example, ASD checks whether DM

Alarm calls events in the order specified in IMs ISensor and ISiren.
Second, ASD verifies whether the DM of a component, together

with the interfaces of its servers correctly refines the IM of this

component under Failures-Divergence Refinement (FDR) [1]. For

our alarm module example, it verifies whether DM Alarm, together

with IMs ISensor and ISiren refines IM IAlarm correctly. Code in the

selected target language (e.g., C++) can be automatically generated

once the system is free of behavioral errors.

3 CASE STUDY DESIGN
To get a deeper understanding of the use of SSSMs in embedded

systems industry, we conducted an exploratory case study. Case

study is an empirical method aimed at investigating contemporary

phenomena in a context [51, 71].

3.1 Industrial Context
We follow the recommendation of Runeson and Höst and intention-

ally select a case of analysis to serve the study purpose [51]. We

conduct our exploratory case study at ASML. The company uses the
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commercial state machine modeling tool-chain Analytical Software

Design (ASD) developed by Verum [62], described in Section 2.2, to

develop the control software of their embedded systems, providing

a paradigmatic context to our study. The company uses ASD to

design and verify the behavior of state machines, and subsequently

generate code from the verified state machines.

We obtain all components developed with ASD in the system,

except for those that are not accessible due to international legisla-

tion or contain strategic intellectual property. These 26 components

are continuously maintained; code generated based on these mod-

els runs on the machines produced by ASML. Each component is

formed by multiple interacting IMs and DMs. In total, we obtain 924

IMs and 576 DMs, with the number of IMs per component ranging

from 2 to 349, and DMs from 0 to 284. Table 1 gives an overview

of the 26 components. For the sake of confidentiality, we refer to

these components as A, . . . , Z and cannot share the models. Note

that, other than these 26, components developed with traditional

software engineering still make a large portion of the software

system of the machines. Therefore, these 26 components have to

interact with the existing code-based components.

3.2 Methods
We employed sequential explanatory strategy which consists of a

quantitative phase and a qualitative phase [22]. Figure 3 gives a

high-level overview of our research method.

To answer RQ1, we study the prevalence of SSSMs by analysing

models of the 26 components. To answer RQ2, i.e., to understand

the role played SSSMs we combine two complementary approaches.

On the one hand, according to Wittgenstein [68], the meaning is

determined by use. Thus we exploit structural dependencies (cf. [6,

20]) to identify the implemented by and uses relations between IMs

and DMs, i.e., the use of models. On the other hand, we expect

the role of the SSSM to be reflected in its name, in the same way

the names of objects have been extensively used to uncover the

responsibilities of software objects [27, 35, 45].

In the qualitative phase, we conduct a series of interviews to

answer RQ3 and RQ4. The interviews were recorded and audio

was transcribed. To derive and refine the theory based on the ob-

tained qualitative data, we employ Straussian grounded theory

because it allows us to ask under what conditions a phenomenon

occurs [54]. We opt for an iterative process to reach the saturation.

It is important to note that in the sequential explanatory strategy

the results from the quantitative phase is used to inform the subse-

quent qualitative phase. This means the concrete study design for

RQ3 and RQ4, e.g., the interview questions, is determined by the

results of RQ1 and RQ2. For example, depending on the number

of identified SSSMs, we opt for different interview strategies; if the

number of SSSMs will be small enough then we can request the

experts to explain the reasons behind every SSSM. Otherwise we

need to prompt the discussion based on the findings we obtained

from the analysis of structural dependencies and names. We detail

the procedures of the qualitative phase in Section 6.1.

4 PREVALENCE ANALYSIS (RQ1)
We answer RQ1 by analysing the frequency of SSSMs in the 26

components in Table 1.

Executing Grounded 
Theory process

Mining repos 
(RQ1 and RQ2)

Conducting 
interviews

RQ3 and RQ4

Figure 3: Overview of our research methods

4.1 Data Analysis
We analyse 1500 ASD models corresponding to components A–Z.

We first convert each model into an Ecore model [23] using a tool

developed by ASML. The conversion process is lossless, i.e., the

Ecore models can be converted back to the original ASD models.

We then use EMF Model Analysis tool (EMMA) [42] to measure the

number of states #state and the number of state variables #sv. An
SSSM is a model with #state = 1 and #sv = 0.

4.2 Results
Table 1 shows the prevalence of SSSMs in the 26 components. 25

out of 26 components contain SSSMs, making up 25.3% of the 1500

state machines. Component B is the largest component among the

26 components we consider. In component B 31% of IMs are SSSMs

while only 4% of DMs. This tendency for using SSSMs mainly for

IMs can also be observed in smaller components. In 13 out of 26

components more than 50% of IMs are modeled as an SSSM. On the

contrary, only 26 SSSM-DMs are present, and they are present in 11

out of 26 components. Furthermore, although SSSMs are generally

popular among IMs, different components show different degrees

of usage; SSSMs make up more than 70% of IMs in components E, I,

Q, V and W while less than 10% in components A, R and T.

RQ1 summary:Developers tend to use SSSMsmainly formod-

eling IMs. The use of SSSMs differs between the components:

component B has the largest portion of SSSM-IMs.

5 WHAT ROLE PLAY THE SSSMS (RQ2)
Since SSSM-IMs are the lion’s share of SSSMs, when answering

RQ2, RQ3 and RQ4 we focus exclusively on SSSM-IMs. We start

with data collection of structural relations between models and the

names of models, followed by an analysis of results.

5.1 Data Analysis
To study what roles the SSSM-IMs play, we split IMs into three

mutually exclusive locations, namely:

(1) disconnected (disc): IMs that are neither implemented nor

used by a DM.

(2) boundary (bd): IMs that are used by at least one DM but

not implemented by any DMs, or IMs that are implemented

by at least one DM but not used by any DMs. They are on

the boundary of “model world” independent from whether

code is present on the other side of the boundary.

(3) non-boundary (nb): IMs that are implemented by at least

one DM and used by at least one DM.

We use EMMA [42] to extract structural relations implemented
by and uses from models, and classify IMs based on these three

locations.

To get complementary insights, we analyse names of models.

We follow commonly used preprocessing steps (cf. [56]) includ-

ing tokenization based on common naming conventions such as
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Table 1: Overview, prevalence of SSSM and freqency of the identified terms for the selected state machine based projects. “-” indicates that

the percentage cannot be computed as the component does not include DMs.

Component ID A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Overview

#IMs 19 349 22 98 15 6 22 10 10 12 29 12 29 43 3 12 16 3 41 15 49 11 2 77 3 16

#DMs 9 284 10 72 6 3 9 4 3 6 11 4 11 9 0 6 6 2 17 13 31 3 1 46 1 9

Total 28 633 32 170 21 9 31 14 13 18 40 16 40 52 3 18 22 5 58 28 80 14 3 123 4 25

Prevalence of SSSM

#SSSM-IMs 1 109 9 42 14 3 10 6 8 6 17 8 14 27 2 5 13 0 15 1 18 8 2 11 2 3

%SSSM-IMs 5 31 41 43 93 50 45 60 80 50 59 67 48 63 67 42 81 0 37 7 37 73 100 14 67 19
#SSSM-DMs 0 11 0 4 0 0 0 0 0 1 1 2 2 1 0 1 1 0 1 0 1 0 0 0 0 0

%SSSM-DMs 0 4 0 6 0 0 0 0 0 17 9 50 18 11 - 17 17 0 6 0 3 0 0 0 0 0
Frequency of the identified terms

#Exclusive 1 50 8 24 20 4 12 7 14 2 16 11 21 27 3 7 21 0 9 3 16 8 4 11 3 2

#Exclusive&Frequent 0 0 0 3 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

#Shared 0 73 3 22 2 1 2 4 4 9 8 3 6 19 0 4 3 0 12 1 13 5 0 9 1 3

#Shared&OR>1 0 45 2 14 0 0 1 0 0 5 3 1 3 5 0 1 0 0 3 1 7 1 0 8 0 3

#Shared&OR>1&Frequent 0 14 0 3 0 0 1 0 0 0 3 0 0 4 0 0 0 0 1 0 2 1 0 2 0 0

Table 2: Number of SSSM and MSSM per location

SSSM-IM MSSM-IM Total

disc 3 0 3

bd 266 195 461

nb 85 375 460

Total 354 570 924

under_scores, camelCase and PascalCase [55], stemming [67] and

removal of stop words and digits using the NLTK package [58]. We

also observe that the names often contain abbreviations with the

sequence of capitals, e.g., IOStream. Hence, prior to tokenization

we manually collect a set of abbreviations from the names, com-

pute how frequently they are used per model and remove them

from the names. As a result, for each component we obtain two

document-term matrices with models acting as documents. The

matrices describe the frequency of terms (including the abbrevi-

ations) that occur in a collection of the names of SSSM-IMs and

MSSM-IMs, respectively.

We conjecture that the terms appearing in the SSSM-IM set while

not in the MSSM-IM set (Exclusive), and the terms that appear in

both sets (Shared) with high frequency in the SSSM-IM set might

suggest the role of SSSM-IMs. Therefore, for each component we

further obtain the sets of Exclusive and Shared terms. To identify

the “most important” shared terms we compute the odds ratio of

each term, i.e., ratio of the share of SSSM-IMs containing term t
and the share of MSSM-IMs containing term t.

5.2 Results
Table 2 is a contingency table showing how many SSSM-IMs and

MSSM-IMs fall into each location group. We observe that overall bd-
models are more likely to be SSSM, while nb-models are more likely

to be MSSM. However, such an overall assessment might obscure

differences between the components, in particular since component

B is much larger than the remaining components. Hence, per com-

ponent we apply statistical techniques to determine whether for an

IM being an SSSM depends on the location group it belongs to. Since

101 102
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Figure 4: p-values of the Fisher’s exact test vs. number of IMs: the
null hypothesis is more likely to be rejected for components with
more IMs and the odds ratio for each rejected case is larger than one.

only component B has disconnected models, we exclude disc from
the statistical analysis. For each component, we construct a 2 × 2

contingency table recording the number of SSSM-IMs and MSSM-

IMs for each location. To analyse the contingency tables we opt for

Fisher’s exact test [25] rather than a more common χ2 test: indeed,
many components have few IMs and the normal approximation

used by χ2 requires at least five models in each group, i.e., at least
20 IMs per component. The null hypothesis of Fisher’s exact test is

that the type of IM (SSSM vs. MSSM) is independent of its location

(bd vs. nb). Figure 4 shows the p-values obtained: for 9 out of 26
components the p-value is smaller than the customary threshold of

0.05 and the odds ratio (i.e., the ratio of the share of SSSM-IMs from

boundary and the share of MSSM-IMs from boundary) is larger

than one. This means that we can reject the null hypothesis for

these 9 components, i.e., the type of IM depends on whether it is

on the boundary of the “model world”. We also observe that the

components where the null hypothesis can be rejected tend to have

more IMs than those where the null hypothesis cannot be rejected.

Next, we identify the terms frequently used in names of the IMs.

In total, we obtain 472 terms from the names of IMs for components

A–Z. Table 1 gives an overview of the number of Exclusive terms,

the number of Exclusive terms with more than five occurrences

(Exclusive&Frequent), the number of Shared terms, and the number

of Shared terms with an odds ratio larger than one (Shared&OR>1),
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as well as the number of Shared terms with frequencies higher than

five and an odds ratio larger than one ( Shared&OR>1&Frequent).
We observe that some terms are exclusively used in SSSM-IMs.

However, only components D, K, N and S contain exclusive terms

with more than five occurrences as shown in Table 1. The three

such terms in component D are “data”, “foreign” and “barrier”. Com-

ponents K, N and S have one such term: “access”. Based on this

observation we conjecture that developers might think SSSMs par-

ticularly suit a certain functionality related to “data”, “foreign”, “bar-

rier” and “access”. We do not further investigate the low-frequency

Exclusive terms because we expect them to be less likely to disclose

the common roles SSSMs play.

Out of the 26 components, 22 have terms shared in SSSM-IMs

and MSSM-IMs. 15 components have shared terms with an odds

ratio larger than one, i.e., the models containing the term in their

names are more likely to be SSSMs. As shown in Table 1, such

terms are frequent in nine components. For component B Figure 5

shows frequently occurring shared terms with an odds ratio greater

than one. We anonymize the domain-specific terms and refer to

them as t1,...,t5 for confidentiality reasons. Term “foreign” belongs

to group Shared&OR>1&Frequent in component B but to group

Exclusive&Frequent in component D. This suggests that the roles

reflected by the same term might be implemented differently in dif-

ferent projects. Moreover, it seems that domain-specific terms are

very important as they are topping the odds-ratio list. In other eight

components that have a non-empty group Shared&OR>1&Frequent,
there are in total nine domain-specific terms identified as t6,...,t14

and five non-domain-specific terms “error”, “servic”, “seqenc”, “mea-

sur” and “data". Table 3 summarize the terms from groups Exclu-
sive&Frequent and Shared&OR>1&Frequent and the corresponding

occurrences in the names of the SSSM-IMs from the 26 components.

These are the terms repeatably used in the names of SSSM-IMs.

RQ2 summary: For larger components developers use SSSMs

particularly often on their boundary. Furthermore, developers

repeatedly prefer terms such as “data” in the names of the

SSSM-IMs.

We conjecture that terms in Table 3 encode the reasons why

developers use SSSM-IMs and use these terms to prompt discussion

in the follow-up interviews.

6 INTERVIEW (RQ3 AND RQ4)

6.1 Procedure
Following the sequential explanatory research strategy, we refine

the concrete steps for the qualitative phase based on the outcomes

of the quantitative phase.

Iterative processWe start the process by considering the largest

component (component B) as we expect it to produce the richest

theory. We conduct semi-structured interviews with architects of

the component under consideration, perform open coding of the

interview transcripts to derive categories of SSSM-IMs, perform

member check to mitigate the threat of misinterpretation [11], and

label the SSSM-IMs in all components using the categories derived.

If at this stage all SSSM-IMs have been labeled, saturation has been

reached and the process terminates. Otherwise, we select a not

yet considered component with the largest number of unlabeled

SSSM-IMs and iterate. Figure 6 summarises the process we follow.

Member 
check

Interview (starting 
with component B) 

Open coding and 
axial coding 

Label SSSM-models

Figure 6: Steps in the qualitative phase

Interview design: The interview questions stem from the quan-

titative findings. First of all, reflecting on the findings for RQ2 we

ask why do developers use SSSMs more often on the boundary of the
“model world” than in other parts? To discuss the goals of using dis-

connected, boundary and non-boundary SSSM-IMs, we provide a

list of SSSM-IMs for each location and ask: what goals do you intend
to achieve with an SSSM-IM in disconnected/boundary/non-boundary
parts? Next, for each term identified either as Exclusive&Frequent or
as Shared&OR>1&Frequent, we provide a list of SSSM-IMs contain-

ing the term and ask two questions: what responsibilities does the
term imply? and why do you use SSSMs to implement these responsi-
bilities? To obtain as rich information as possible, we send a list of

SSSM-IMs to our interviewees before the interviews, allowing them

to refamiliarise themselves with the models. We do not disclose

the interview questions prior to the interview. To answer RQ4, we
ask developers about advantages of using single-state state machines
and the disadvantages. We have the interviews in a meeting room

with a whiteboard. Interviewees can draw on the whiteboard for

explanation. We take photos of the whiteboard after interviews.

Coding procedures: After initial interviews, we conduct open
coding on the interview transcripts, identifying the goals that devel-

opers attempt to achieve, the solutions they employ and the location

of the used SSSM-IMs (boundary/non-boundary/disconnected). For

example, when we ask questions about term “foreign”, we obtain

the following answer: “We want to create formal models that is why
we use ASD. The problem here is the outside world is not formal. So
it can behave as expected or unexpected, we don’t know ... If people
follow the rules, all boundaries need to be armored. The important
aspect is that the calls from foreign side must be accepted by every
state. As foreign IM, you cannot restrict anything because you don’t
know the behavior of foreign (components)”. Based on this answer

we identify the developers’ goal as protecting formal models from

informal and unknown foreign behavior, the solution they employ

should not restrict the order of events from foreign side, and the

location of the SSSM-IM is boundary.

The solution is augmented by details with photos we took from

the whiteboard. We refer to the detailed solution as design pattern.
Each design pattern can be 1) an SSSM-IM, 2) a combination of an

SSSM-IM and the DM(s) that implement it, or 3) a set of SSSM-

IMs and other models. The open coding process results in a set of
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Table 3: Terms that belong to groups Exclusive&Frequent and Shared&OR>1&Frequent and the number of SSSM-IMs that contains the term

Term collector store resync event swap foreign input stream constructor barrier data error servic access sequenc measur t1,...,t14

#SSSM-IMs 16 9 12 23 9 26 8 9 8 10 34 17 8 22 8 10 141

categories that consist of goals, locations and design patterns. For
instance, category armoring the boundaries of models emerges from

the previous example. Next we perform axial coding to group these

categories based on the core reason behind, i.e., why developers

would like to achieve the goal? For instance, the core reason behind

category armoring the boundaries of models is that models have to

work with the existing code base. In addition, we also identify the

advantages and disadvantages from our interviewees’ answers.

Member check: The first author conducts the coding tasks. In
order to ensure that the categories are correctly identified, we per-

form member check [11] with our interviewees. The member check

is a validation activity that requests informant feedback to improve

the accuracy of the derived the theory. This resulting adjustment

on categories is represented by the dashed line in Figure 6.

Label SSSM-IMs: The first author reviews each SSSM-IM and

labels it based on the derived categories. For instance, we can de-

termine whether a model is an instance of category armoring the
boundaries of models by checking if it is on boundary and imple-

ments the design pattern we identified for this category.

6.2 Reasons of Using SSSM-IMs (RQ3)

We reach saturation with three face-to-face interviews and two

interviews through emails. Table 4 provides an overview of our

results. We identify four core reasons why developers use SSSM-

IMs: 1) usingmodels together with existing code base, 2) dealing with
tool limitations, 3) facilitatingmaintenance and 4) easing verification.
For each core reason, developers have at least one goal to achieve

with SSSM-IMs. 353 out of 354 SSSM-IMs can be explained by the

core reasons and goals listed in Table 4. Before discussing Table 4

we briefly review the model that cannot be explained by it. It is a

disconnected SSSM-IM that should have been removed once it was

no longer used (“dead code”). In the remainder of this section we

discuss the reasons, goals and design patterns shown in Table 4.

6.2.1 Using models together with existing code base As mentioned,

a large portion of software base was developed with the traditional

software engineering methods. Hence, the model-based compo-

nents need to interact with the existing code-based components.

The behavior of the models is formally verified and can only in-

teract with each other according to the protocol specified in the

IMs. By nature, when communicating with foreign components,

model-based components operate under the assumption that for-

eign components behave as specified. However, due to the lack

of formal specification, the behavior of code-based components is

not formally verified and often unknown. This means that develop-

ers need a mechanism to “protect” models from non-verified and

unexpected behavior of code-based components.

To achieve the goal, developers come up design pattern D1 shown

in Figure 7. The core idea of this pattern is to create a layer which

accepts any order of calls from the code side at first and then only

forwards the allowed order of the calls to the model side. By imple-

menting this idea, both code-based components and model-based

components are not aware of the presence of each other.

Next we discuss how the elements in the pattern work together.

Developers would like to protect Core which is a group of models

from the non-verified of code-based components Foreign Client and
Foreign Server. IMs IForeign are SSSM-models which allow any order

of input events while DMsArmor forward the allowed calls specified
in IMs IProtocol which describes the order of events expected by

Core. In order to trace the unexpected behavior from Foreign Client
and Foreign Server, DMs Armor also record protocol deviations with
Logger so that it is easier to distinguish failures caused by protocol

violations from failures caused by functional errors.

6.2.2 Dealing with tool limitations ASD suite has several limita-

tions preventing developers from specifying the intended behavior

of models. As workarounds, developers have to manually imple-

ment the behavior with general-purpose programming languages.

This also results in the use of code between models inside a model-

based component and raises the need of interfacing with the code.

DataEncapsulation: One of the limitations of ASD suite, is the

lack of a way to specify data-dependent behavior: one can declare

parameters for the events in models to pass data transparently from

one model to the other but the control decision cannot be made

based on a parameter value
3
. The pass-by data eventually ends up

in code where the data-dependent behavior can be programmed.

To work around this limitation, developers store and manage data

in hand-written code known as data stores inside the model-based

components. The developers’ goal is to have a mechanism allowing

the models to read and write each piece of data. Design pattern D2

in Figure 7 is used to achieve the goal.

In the system under study, each piece of data in a data store is

associated with an ID. For the sake of example, assume that a con-

trol decision has to be made based on the comparison of two data

values associated with ID d1 persistently stored in DataStore1 and
DataStore2 respectively. Because models can only pass data trans-

parently, there is a need to implement hand-written code known as

Algorithm which offers call events triggering the comparison task,

and returns reply events that inform about the result. To obtain

the control decision based on the comparison, DM DataFunction is

used to fetches the data corresponding to d1 from DataStore1 and
DataStore2. Then it passes the fetched data to Algorithm to obtain

the result. Based on the received reply, DataFunction synchronously
returns a reply to the client models that ask for a decision. For com-

plex applications, DataFunction needs to intensively interact with

data stores and Algorithm in order to derive results. To reduce the

coupling between data-aware code and data-independent models,

IM im4 is an SSSM which only specifies the call events and the

possible replies so that the underlying data-related interactions

between code and DataFunction are hidden from the models that

3
This limitation is intentional in order to avoid the state space explosion problem.
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Figure 7: Identified design patterns D1,...,D5

Table 4: Why developers use SSSM-IMs identified from the 26 components: the core reason, goal, location, design pattern and the number of

instances (SSSM-IMs).We refer the design patterns that involve a set of models to D1,...,D5 as shown in Figure 7. For the sake of generalizability,

we do not explain the design pattern that is used to achieve goal EaseRefactoring because it is specific to the semantics of the modeling

language provided by ASD suite.

Core reason Goal Location Design pattern #instances
Existing code base ModelArmor: protecting verified behavior fromnon-

verified behavior

boundary D1 77

Tool

limitations

Unable to specify data-

dependent behavior

DataEncapulation: encapsulating data-dependent
behavior into functions

boundary and

non-boundary

D2 183

Unable to select a subset of

notification events

EventCollector: specifying individual interest for

multiple clients

boundary D3 30

Lack of common libraries LibraryReuse: reusing libraries available in general-

purpose programming languages

boundary An SSSM-IM 31

Unable to specify global lit-

eral values

GlobalLiteralValue: specifying global literal values non-boundary Combination 2

Maintenance

CallMapping: reducing coupling between clients

and servers

non-boundary D4 16

FeatureSelection: isolating product-specific features
from common features

non-boundary D5 9

EaseRefactoring: easing event renaming non-boundary - 2

Documentation: documenting events for communi-

cation within teams

disconnected An SSSM-IM 2

Verification EaseVerfication: avoiding a large state space non-boundary An SSSM-IM 1

only expect a decision. Similar to IM im4, IM im3 only specifies the

signatures of independent functions implemented with code.

When it comes to data access, a write operation for data associ-

ated with a specific ID is required to be performed before a read

operation for the corresponding data. Naturally, developers would

like to specify the required order in IMs im1 and im2 so that the

interaction protocol between DataFunction and these IMs is ex-

plicitly defined, and subsequently verified before code generation.

However, since data-dependent behavior is not supported by ASD,

im1 and im2 are SSSMs which only specify the signatures of call

events and replies for the intended data operations. The interaction

protocol, in this case, is implicitly encoded in code for these data

stores, requiring test efforts to examine correctness.

EventCollector: Another tool limitation that influences how

developers design software is that client models cannot select a

subset of notification events to receive from their server models.

This means that the client models have to receive all notification
events from their server models even though some of notification

events are out of their interest. Tomodel a casewheremultiple client

models are interested in different subsets of notification events from

the same server model, design pattern D3 in Figure 7 is used. Instead

of interfacing with the server model directly, clients interface with

a hand-written EventCollector which works as a router forwarding

each notification event to the corresponding client according to the

events that developers specify with SSSM-IMs e1,e2 and e3. Because
each DM can only implement one IM developers have to inject the

hand-written router between models.

LibraryReuse: ASD suite provides reusable libraries, such as

a timer, implemented by models that can be used across different

applications. However, the available libraries are limited compared

to their counterparts available for general-purpose programming

languages. For instance, one of missing libraries is timestamp li-

brary. As a workaround, developers use hand-written code to wrap

the timestamp-related operations (e.g., converting timestamp for-

mat) into functions with output parameters (e.g., for obtaining
converted timestamp). The SSSM-IMs specify the signatures of the

hand-written functions so that the generated code from the models

can seamlessly reuse these libraries.

GlobalLiteralValue: Since ASD suite does not providemeans of

specifying global constants as most programming languages have,



MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Nan Yang, Pieter Cuijpers, Ramon Schifferlers, Johan Lukkien, and Alexander Serebrenik

developers have to use the actual literal values wherever they need

them. For example, assume that we would like to use a global con-

stant Size to store the value of the buffer size set to 100. To avoid the
errors that could be introduced by hard-coding this value, develop-

ers implement SSSM-IMs and SSSM-DMs to store the value which

can be obtained by calling corresponding events. Developers spec-

ify an SSSM-IM that offers call event getBufferSize([out]p:int):void.
In the corresponding SSSM-DM, the call is augmented with the

corresponding output integer,i.e., getBufferSize(100). In this case,

by calling event getBufferSize(n), other models that need the value

can obtain variable n that holds integer 100.

6.2.3 Facilitating maintenance In four cases SSSM-IMs are used to

facilitate maintenance.

CallMapping: Client models often need to call a sequence of

events on different server models. To reduce the coupling between

the client model and its server models, developers implement a

mapper which consists of an SSSM-IM and an SSSM-DM between

the client and its servers (see D4 in Figure 7). The SSSM-IM only

specifies the signature of a void call event that can be triggered by

the client model. The mapping of the call event triggered by the

client model to a sequence of intended call events on other server

models is specified in the corresponding SSSM-DM.

FeatureSelection As the system under study is specified using

principle from software product line engineering, developers sepa-

rate features shared by all products from product-specific features

to be configured at runtime [13]. D5 in Figure 7 shows a design

pattern supporting this separation. For the sake of an example, as-

sume a system needs to construct different sequences of actions for

the same task based on the runtime configuration of the product

type. For each product, the sequence construction is triggered by

the same call event Construct. To hide the product-specific details

from the common models, IFeatureFwd specifies the signature of

Construct which is implemented by FeatureVar1 and FeatureVar2.
Common, as the common feature shared by all products, needs to

call Construct to trigger the sequence construction on the correct

variant based on the runtime configuration. However, involving

Common in this feature selection breaks the separation of concerns,

i.e., Common has to be aware of that different products exist. To

avoid this, FeatureSwitch is implemented. At runtime FeatureSwitch
reads the product type from a data store and forwards Construct to
the appropriate product-specific implementation (i.e., FeatureVar1
or FeatureVar2). Since IFeature has to hide the feature selection

and product-specific details from Common, it is identical to IFea-
tureFwd acting as an interface offering Construct. When Common
calls Construct, the feature selection is performed, followed by the

sequence construction based on the selection. Common is, hence,

not aware of any product-specific information. Developers expect

that by using this pattern the coupling between common parts

and product-specific parts can be reduced and the variants can be

extended without modifying the common parts.

EaseRefactoring Developers also consider the ease of refactor-

ing. Assume a model repeatedly triggers a task implemented by

a sequence of e1,..., e8. Hard-coding this sequence at several invo-
cation sites is error-prone. Moreover, any change to the sequence

such as renaming an event, has to be performed at all invocation

sites. Hence, developers use a solution akin to procedure abstrac-

tion to specify a sequence of events only once and reuse it wherever

needed. Since the concrete solution is specific to the semantics of

ASD, we do not disclose further details.

Documentation: IMs are sometimes used to document the sig-

natures of functions. In such cases, developers use disconnected

SSSMs to communicate the design.

6.2.4 Easing verification The efficiency of verification is another

concern in modeling. Prior to the verification step typically car-

ried out by a model checker, the tool-chains need to convert state

machine specifications into a model checker formalism which rep-

resents the state space of the models. Behavioral correctness of

models with a large state space takes a lot of time to verify. Hence,

the verification step slows down the design and maintenance of the

models. In our case study, we found a situation where an SSSM-IM

is used to avoid verification on a large state space.

The intention of the developers was to create an interface such

that the number of triggers on event a should be larger than the

number of triggers on event b. The corresponding state space con-

tains all possible combinations such that a is triggered exactly one

more time than b, two more times, etc. During the verification

step, the model checker has to visit every single state in the state

space. To ease the verification step, developers simplify the model

to an SSSM with events a and b, dropping the requirement that the

number of triggers on event a should be larger than the number of

triggers on event b: “Scalability is a good reason to not verify this
explicitly, as it does not matter if the max difference between #a -
#b is 1, 2, 9 or 100. Abstracting from the exact difference makes the
verification scalable, at the cost of less guaranteed correctness.”
RQ3 summary: Developers use SSSMs for four reasons: 20.3%

of SSSMs are used to interface models with the existing code
base; 64.7% of SSSMs—for dealing with tool limitations such as

incapability of specifying data-dependent behavior. Around

7.6% of SSSMs are designed for the purpose of easing long-term

maintenance. The last concern pertains to verification efficiency.

To achieve their goals, developers often use SSSMs together

with other models as design patterns.

6.3 (Dis)advantages of SSSM-IMs (RQ4)
When it comes to the advantages and disadvantages of using SSSM-

IMs, the interviewees share the same opinion. The main perceived

advantage of SSSMs is the ease of verification: “The main advan-
tage is that a flower model is stateless, it imposes no restrictions so
verification passes easily and perhaps more importantly: it is eas-
ier to implement a Foreign component faithfully”. Moreover, since

SSSM-IMs impose no restrictions on the order of events, changes to

the calling order on the client side also easily pass the verification,

reducing the maintenance effort. However, the ease of verification

also means that the model “will likely always pass verification” hid-
ing potential bugs and compromising potential verification benefits.

Taking both the advantage and the disadvantage of SSSM-IMs into

account interviewees recommend caution when using SSSM-IMs:

“people (developers) need to have a very good reason for it because it
does not check anything”. Furthermore, according to the observa-

tions of the interviewed architects, it usually takes a lot of time for
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developers to learn how to design models in a way that development,
maintenance and verification can be facilitated.

RQ4 summary: The property of SSSMs—passing verification

easily—is perceived as an advantage for easier development

and maintenance but also a disadvantage that might hide bugs.

7 DISCUSSION AND IMPLICATION
We start by relating our findings to literature (Section 7.1), followed

by a series of actionable implications for the tool builders (Sec-

tion 7.2) as well as the researchers (Section 7.3). Finally, we position

our work in a broader software engineering context (Section 7.4).

7.1 Discussion
We found that developers introduce armoring to interface model-

based components with code-based components. This concurs with

one of challenges that has been reported to hinder MDE adoption

in companies [32, 40, 43, 53]: using MDE together with the existing

code base. We provide a concrete industrial example illustrating the

challenges while interfacing state-machine-based models with the

existing code base and showing how developers deal with them.

Moreover, a large share of SSSM-IMs are used to interface with

the hand-written code whose behavior cannot be modelled with

ASD because of the tool limitation. This observation reflects another

frequently discussed concern about MDE: the trade-off between

general-purpose modeling languages and domain-specific ones [61].

Domain-specific languages, on the one hand, often offer a higher

degree of specialisation for a certain modeling domain or purpose.

One the other hand, they might be less flexible and expressive [19].

Apart from dealing with tool limitations, developers invest effort

in easing long-term maintenance. They use SSSM-related design

patterns to realize such software design principles as low coupling

(e.g., CallMapping) and separation of concerns (e.g., FeatureSelec-
tion). Furthermore, future refactoring is facilitated with SSSMs

implementing the idea of “packaging up sub-steps". We also found

two cases where SSSM-IMs are used as documentation for team

communication, which is the traditional use case of models [14].

When it comes to the merit and demerit of SSSMs, our intervie-

wees juxtapose the ease of modeling activity and the verification

adequacy. As discussed by Chaudron et al. [14], developers who

work with traditional UML modeling, i.e., use models merely for

analysis, understanding and communication, have to make a trade-

off between effort in modeling and the risk of problems caused

by imperfections (e.g., incompleteness, redundancy and inconsis-

tencies) in downstream development. For instance, when a model

serves as a blueprint of the protocol between two components, the

under-specified parts in the model might be implemented incon-

sistently due to different interpretations by different developers,

later incurring repair costs. However, investing a lot of effort in

continuously refining such blueprints is not always possible [36].

Our results imply a similar trade-off in the context of using models

for verification. Under-specifying the behavior of models might

hide defects from the verification tools. However, spending too

much effort in creating a more precise model with a restricted order

of events slows down development process. Moreover, developers

might need to spend more effort in performing changes on such

models because passing verification becomes non-trivial.

Design patterns summarised in Table 1 suggest that developers

tend to build reusable designs that can benefit later projects. This ob-

servation is consistent with earlier findings on MDE adoption [30]

and software engineering practice in general [5].

7.2 Implications for Tool Builders

The ease of use and the maturity of tools are identified as the crucial

factors for the adoption of MDE [14, 24, 30, 31, 38, 43, 44, 48, 64, 65].

Our work calls for improving modeling tools, and in particular

improving the support of integration of models and code-based

components. The need to integrate models with the existing code

base [31, 38, 64] and to integrate models from different domains [57,

59] has been often mentioned. However, not many studies propose

how this integration can be facilitated by improving modeling tools.

To provide suggestions to MDE tool builders about integration,

Greifenberg et al. survey eight design patterns proposed for in-

tegrating generated and hand-written object-oriented code [28].

One of the discussed design patterns is the GoF design pattern

Delegation [26] which allows generated code (delegator) to invoke

methods of the hand-written code (delegate) declared in an explicit

interface (delegate interface). The ModelArmor design pattern we

identified (Figure 7) implements a similar idea; DM Armor takes the
role of delegator invoking methods of code-based components spec-

ified in IM IForeign. However, as opposed toDelegation,ModelArmor
takes into account the different properties of models and code (i.e.,
verified behavior vs. non-verified and unpredictable behavior), en-

suring that models are protected from the unexpected behavior of

the code. Our work implies that while selecting design patterns for

integration, tool builders should consider different properties of

generated and handwritten code. Furthermore, tool builders can

(partially) automate the implementation of the integration patterns,

reducing the manual development effort.

Apart from interfacing with existing code-based components,

we have observed that developers have to use code to implement

what cannot be expressed by models (Section 6.2.2). For example.

due to the lack of reusable common libraries, developers imple-

ment in code the behavior that requires such libraries. To address

this challenge the tool builders can work on two directions. First,

one can consider enriching common functionalities often used in

different applications with built-in models to reduce the needs of in-

terfacing with libraries provided by general-purpose programming

languages. Second, given rich reusable libraries in general-purpose

programming languages, tools should provide a way to easily reuse

these libraries, similar to the wrapping mechanism that allows, e.g.,
Python programs to communicate with C/C++ [9].

Finally, we have observed that developers attempt to implement

global constants with SSSMs (Section 6.2.2). This practice indicates

the need to support concepts shared by multiple models. However,

implementing such concepts is hindered by a well-known verifica-

tion challenge: state explosion problem [8, 16]. Such modeling tools

as Uppaal [10] support the use of global variables (e.g., bounded in-

tegers and arrays) that can influence the control flow in the models.

However, such tools have larger risk of facing state explosion when

dealing with real-life applications [21]. This implies that a trade-off

between supporting global variables and the risk of state explosion

has to be resolved by tool designers. A possible resolution would
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be adopting hybrid solutions [21, 69] that translate models from

one tool to another, to meet wider verification needs.

7.3 Implications for Researchers
As befitting an exploratory case study [51], we propose two hy-

potheses about the use of SSSMs in modeling practice. These hy-

potheses should be verified in a follow-up study.

H1: The design patterns in Section 6.2 help developers to achieve
the corresponding goals. We have seen that SSSMs are extensively

used for various reasons and goals. The studies on the effectiveness

of GOF design patterns in OOP languages [26] have shown that

design patterns do not always achieve the claimed advantages [4,

72]. Moreover, passing verification easily with SSSMs might be a

potential risk. This suggests a need to investigate effectiveness of

these SSSM-related design patterns in order to confidently apply

them.

H2.1: SSSMs shorten the development time and ease modification
tasks of their client models, compared to MSSMs. H2.2: The models
that use or implement SSSM-IMs have more post-release defects com-
pared to the models that work with MSSM-IMs. These two hypotheses
are derived from our interviewees’ perception (RQ4, Section 6.3).

It is, however, unknown how SSSMs actually impact development,

maintenance and verification activities. Investigating the impacts

of SSSMs, the type of model that minimizes modeling effort, is a

starting point toward better understanding of a trade-off between

the effort spent on designing a model that maximizes the advantage

of verification and the extra cost caused by downstream problems

due to inadequate verification. We expect that the investigation

of this trade-off can broaden the ongoing discussion of modeling

trade-offs that is currently focusing on UML modeling [14, 50].

Beyond the specific hypotheses, given the caused permissive

verification is perceived as a risk by our interviewees we suggest

proposing possible alternatives to SSSM-IMs by investigating the

order in which events are actually being called during system op-

eration. One can consider analysing the execution traces of the

generated code with pattern mining techniques widely studied in

the field of model learning [7, 66, 70], specification mining [37, 39]

and process mining [2, 29, 63].

7.4 Related Work
Similarly to the growing literature on how and why software devel-

opers (do not) follow recommendations or best practices [12, 46, 60],

we observe that developers are often forced to deviate from them,

e.g., when the desired functionality is solely available in discour-

aged Eclipse interfaces [12] or when SSSMs are the only way to

implement data-dependent behavior in ASD. Compared to the stud-

ies of models in industrial practice [38, 41, 43, 65], we provide both

quantitative and qualitative analysis of a specific phenomenon in

state machine modeling, which results in a set of actionable impli-

cations for the tool builders and researchers.

8 THREATS TO VALIDITY
As any empirical study, ours is also subject to several threats of

validity.

Threats to construct validity examine the relation between the

theory and observation. Since there is no clear definition of single-

state state machines in literature and guidelines, we operationalize

the intuitive notion of an SSSM and provide our own definition. To

ensure that our definition corresponds to the developers’ perception

of SSSMs, we explained our definition of SSSMs to the interviewees

and made sure that they understood it. While it is possible that

some MSSMs can be reduced to SSSMs according to some formal

notions of equivalence (e.g., trace equivalence), developers tend

not to think about those MSSMs when talking about SSSMs. This

is why we exclude this case from consideration and treat MSSMs

equivalent to SSSMs as MSSMs.

Threats to internal validity concern factors that might have

influenced the results. In our study, we derive our interview ques-

tions and strategy from our quantitative findings, which reduces

the risk of asking meaningless questions that potentially bias our

interviewees. Moreover, to avoid misinterpretation on developers’

ideas, we performed member checks with our interviewees on the

categories emerged from the Grounded Theory process. To assure

the completeness of the reasons of using SSSMs, we conduct several

iterations of interviews till all SSSMs from these 26 components

can be explained by the collected reasons.

Threats to external validity concern the generalizability of our

conclusions beyond the studied context. We studied 26 model-based

components. We are aware that we limited our study to components

from a single company developed with the same modeling tool. We

believe the conclusions and observations derived from this context

are complementary to the existing literature which mainly have

broad surveys on the challenges of MDE adoption, by providing

concrete industrial evidences. To increase the generalizability, one

of the future directions could be replicating our study in other

companies or using the models developed with other tools.

9 CONCLUSIONS
We investigated the use of single-state state machines in industrial

practice. We employed a sequential explanatory strategy which

consists of an analysis of 1500 state machines from 26 components

of an embedded system and a series of interviews followed by a

grounded theory building. SSSMs make up 25.3% of the model base

and are used to interface with the existing code base, deal with tool

limitations, facilitate maintenance and ease verification.

Based on our results, we provided a set of implications to tool

builders and researchers. Modeling tools should provide a (semi-)

automatic way to interfacemodel-based software with existing code

base developed with the traditional software engineering. Moreover,

modeling tools should reduce the needs of injecting code between

models by providing sufficient built-in libraries. Furthermore, we

formulated two hypotheses about the effectiveness of SSSM-related

design patterns as well as the impacts of SSSMs on development,

maintenance and verification.
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