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Abstract—Modern software development practices increasingly
rely on third-party libraries due to the inherent benefits of reuse.
However, libraries may contain security vulnerabilities that can
propagate to the dependent applications. To counter this, main-
tainers of dependent projects should monitor their dependencies
and security reports to ensure that only patched releases of
the upstream applications are in use. As manual maintenance
of dependencies has shown to be ineffective, several automated
tools (aka bots) have been proposed to assist developers in rapidly
identifying and resolving vulnerable dependencies. In this work, we
focus on Dependabot, a popular bot providing security and version
updates, and study developers’ receptivity to its security updates in
engineered and actively maintained JavaScript projects. Moreover,
we carry out a fine-grained analysis of the lifecycle of every
vulnerability to manifest how they are dealt with in the presence
of Dependabot. Our findings show that the task of fixing vulnerable
dependencies is, to a large extent, delegated to Dependabot and
that developers merge the majority of security updates within
several days. On the other hand, when developers do not merge a
security update, they usually address the identified vulnerability
manually. This approach, however, often takes up to several months
which in turn could expose the projects to security issues.

Index Terms—Dependency Management, Security, Bot, Depend-
abot

1. INTRODUCTION

Modern open-source software is increasingly developed and
deployed in highly interdependent environments, relying on
reusable software packages that are distributed through online
registries, each targeting a particular programming language
(e.g., npm and Maven). Despite the benefits of reuse [[1], there is
also the risk of inheriting security vulnerabilities present in the
imported libraries [2]. Although vulnerabilities are mitigated
in package newer releases, developers are generally reluctant to
update stale and vulnerable dependencies [3]. As dependency
management is a time-consuming task, nowadays it is facilitated
through automation [4]; several software bots have been
designed to monitor releases and/or security reports to identify
stale and/or vulnerable dependencies, and in response, generate
pull requests to update them [5], [6], [7], [8], [9]. On May
2019 [10], GitHub acquired one of the most popular dependency
management bots, Dependabot-preview [3], resulting in a new
natively integrated service, Dependabot security updates [11].
When developers receive an alert, Dependabot automatically
opens a pull request, i.e., security update, to upgrade the depen-
dency to the minimum required non-vulnerable version. Being
natively integrated into GitHub and distributed free of charge,

Dependabot is among the most accessible and widely used ser-
vices that provide automated pull requests to remedy vulnerable
dependencies [12] and the security issues induced by them.

A recent study by Alfadel et al. [13] investigated the level
of adoption of security pull requests authored by Dependabot-
preview, the predecessor of GitHub’s service. They found that
most of such automated suggestions are merged within a day.
Additionally, they examined the factors that affect the rapid
merges of security pull requests generated by Dependabot-
preview, observing that the severity level of identified vul-
nerability has no significant impact. However, the findings
of Alfadel er al. might not necessarily reflect the developer
reception and usage of Dependabot security updates provided by
GitHub [14]. Indeed, there are significant differences between
the two services. First, the main functionality of Dependabot-
preview is version updates, aiming to keep dependencies up-
to-date. This implies that Dependabot-preview generates pull
requests much more frequently, thus, creating more noise.
Furthermore, in case of a vulnerable dependency, Dependabot-
preview always suggests upgrading to the most recent non-
vulnerable version, unlike Dependabot security updates that
propose the minimum required version. As a consequence, it
is a common scenario that, in case a more recent version is
available, Dependabot-preview supersedes the previous security
update with a new one. Indeed, Alfadel et al. reported that
the majority of the rejected pull requests are closed by the bot
itself. Besides, Dependabot-preview ships with the auto-merge
feature, which allows the bot to merge its own pull requests
without developer intervention.

In this study, we aim at understanding the impact of
Dependabot security updates on handling vulnerabilities. In
this regard, we first analyze the merge ratio of Dependabot
security updates for multiple disjoint groups of projects with
respect to the number of security updates they receive and
also investigate the correlation between the merge ratio and
the popularity of the projects. To examine how effective
Dependabot is to bring security vulnerabilities to the developers’
attention, unlike the qualitative approach in Alfadel ez al. [13]],
we quantitatively measure the extent to which developers fix
vulnerabilities manually in the presence of Dependabot. We
base our study on vulnerabilities rather than on security updates,
thus performing a more fine-grained analysis compared to
previous work, as security updates might contain fixes for
multiple vulnerabilities. To this end, we derive every single



vulnerability instance from the parent commit of each security
update, actualized by leveraging GitHub Advisory Records. We
then introduce a mechanism to recursively mine the commit
history of each repository to find the possible fixing commit
of each vulnerability. This enables us to track and study the
lifecycle of each vulnerability instance separately. Next, we
conduct a survival analysis of this data to investigate the degree
to which developers react to the vulnerabilities in a timely
manner and study persistent cases. Finally, we discover the
relationship between the severity of vulnerabilities and the time
it takes for the developers to react to them, which contradicts
the results provided by Alfadel et al. [13]].

In this work, we analyze 4,195 security updates associated
with 978 mature and actively maintained JavaScript projects that
are based on npm or yarn package managers. We discovered
that 57% of the bot security updates are merged. Also, bot fixes
are almost 2 times more frequent than manual fixes. While
the majority of vulnerabilities associated with ignored security
updates were fixed manually, our results reveal that manual
fixes take considerably more time. This denotes that rejecting
security updates leaves the packages vulnerable for longer
periods of time, which could lead to security issues [15]. Our
study reveals that, overall, Dependabot is entrusted with the task
of vulnerability resolution. Still, in some cases, reasons such as
suspicion of compatibility issues, limited configurations, and
automatic deployment of the bot without prior awareness deter
maintainers from entertaining the security updates.

To summarize, this paper makes the following contributions:

« By investigating the correlation between the merge ratio of
Dependabot security updates for several groups of projects
w.r.t. the number of security updates they receive and their
popularity, we provide an insight into the receptivity of
the security updates in different projects.

« We introduce a mechanism to derive every single vulner-
ability instance from the parent commit of each security
update, followed by a recursive solution for detecting their
fixes. This helps us study the lifecycle of each vulnerability
instance individually.

« We conduct a survival analysis on the vulnerabilities to
monitor their persistence in case developers decide to
ignore the security updates.

The remainder of the paper is organized as follows. The
following section presents background on dependencies in
JavaScript projects and Dependabot. Section [III| provides our
research questions. Section [[V] presents the methodology used
for data collection and analysis, and Section |V| reports the
results. Section discusses our findings and presents the
threats to validity. Finally, Section discusses related work,
and Section |VIII| concludes the paper.

II. BACKGROUND

A dependency (also known as package or library) is a piece
of code that can be used directly in a program. To ease the
installation, upgrading, removal, and distribution of software
packages, developers rely on package managers [16]. A plethora
of studies [3[], (4], [17], [18], [190, [20], [21], [22], [23], [24],

[25] showed that dependency update suffers from considerable
time lags, sometimes even measured in the orders of years [26].
The reluctance to update dependencies can ultimately lead to
security issues [13].

Decan et al. [4] examined the propagation of security
vulnerabilities in the npm dependency network, reporting that
more than 20% of the projects directly depend on a vulnerable
package, while most of these projects have at least a single
release that relies on an affected version of a vulnerable
package. This indicates the abundance of vulnerabilities in npm
packages and the need to mitigate them. Similarly, Prana et
al. [27] show that the high survivability of a vulnerable
dependency is primarily caused by the delayed updates in
the dependent application rather than by the persistence of
vulnerabilities across the releases of the upstream package.
They also observed that the strongest correlation factor for the
number of vulnerable dependencies is the total dependency
count, which also implies the complexity of the dependency
network. This suggests the need for automation to support
developers in dependency management.

Mindful dependency management, although highly encour-
aged, is not always practiced. By surveying developers of
software projects with known vulnerable dependencies, Kula et
al. [3] report that, for developers, the effort needed to mitigate
a vulnerable dependency is of greater importance than the per-
sistence of the security issue, while 69% of them were simply
unaware of their vulnerable dependencies. This highlights that
the community could benefit from automated notifications of
security issues in projects’ dependencies, driving our interest
to study to what extent developers respond to them.

A. Dependencies in JavaScript projects

There are two core package managers available for JavaScript
software, namely npm and yarn. In this work, we consider
projects that rely on either.

Dependencies are typically declared in a dependency file asso-
ciated with the repository. Specifically, all dependent JavaScript
projects contain a manifest file, called package. json, which
specifies the set of direct dependencies, i.e., upstream packages
referenced within the source code. Aside from a manifest file,
developers are also encouraged to commit a lock file into the
source repository. This file is generated upon execution of the
installation command on a manifest file and stores the exact
dependency tree, which specifies both direct dependencies
and transitive (indirect) dependencies, along with the relevant
metadata for each node (e.g., integrity hash and the resource
path in the registry).

B. Dependabot

Dependabot is a dependency management tool provided
by GitHub, which aims to assist developers in updating
dependencies and fixing known vulnerabilities. This tool
comprises four interconnected services:

a) GitHub Advisory Database: GitHub maintains a list of
security vulnerabilities in software packages belonging to six
different ecosystems, including npm and yarn. Each advisory
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Fig. 1: Screenshot of a security update.

record includes the description of the concerned vulnerability,
the name of the package and the ecosystem it belongs to,
and affected and patched releases. Additionally, each security
advisory is assigned a severity level (i.e., low, moderate, high,
and critical).

b) Security Alerts: It is a natively integrated service
to manage vulnerable dependencies. Upon any change to
the dependency files or to the GitHub advisory database,
Dependabot scans the dependency graph, and if a vulnerable
version of a dependency is identified, raises a security alert.

c) Security Updates: GitHub announced the acquisition
of Dependabot-preview in 2019, leading to a new natively
integrated service called Dependabot security updates. When
enabled, upon receiving a security alert, Dependabot constructs
a pull request, i.e., security update, with the modification(s)
to the dependency file(s) to update each upstream package to
the minimum required non-vulnerable release (if possible). An
example of a security update is presented in Figure [} The
suggested change is displayed both in the title and body of the
pull request (Al & A2). Additionally, Dependabot provides
the changelog for each version between the current and the
suggested release (B) and a badge indicating the compatibility
score (C). The latter is calculated dynamically based on the
percentage of successful Continuous Integration (CI) runs in
other public repositories where an identical security update
has been instantiated. The information about the concerned
vulnerability is not presented in the pull request itself. Instead,
a yellow paned window is displayed to users, signaling that
the pull request concerns a security vulnerability (D). On the
leftmost side, it provides a link to the corresponding security
alert, and on the rightmost side, it displays the severity level
of the vulnerability. This information, however, is not visible
to users without the necessary access rights, i.e., external
observers.

d) Version updates: They are automatically generated
pull requests that aim at keeping dependencies up-to-date.
Both security and version updates can be enabled in a single
repository simultaneously. However, to an external observer,
the two kinds of pull requests are indistinguishable.

III. RESEARCH QUESTIONS

Dependabot, as one of the most accessible tools providing
automated security updates to fix vulnerabilities that would
otherwise cause security issues, is of great importance to
investigate. However, the extent of receptivity towards its
security updates in different types of projects and the way
vulnerabilities are dealt with in its presence is still unclear.
To address this gap, we focus on three research questions,
described below.

Our first question aims to understand the degree to which
developers take in Dependabot security updates w.r.t. the
number of security updates they receive and their popularity:
RQq: How often do developers merge Dependabot security
updates?

As suggested by previous studies [13], [28], developers
may prefer to close a security update and implement the bot
suggestions manually. Alternatively, developers may choose to
eliminate the dependency on a vulnerable package altogether.
Envisioning multiple scenarios in which a security update is
rejected, but the identified vulnerability is nonetheless removed
from the project, we ask:

RQs: How frequently do developers fix a vulnerable dependency
manually in the presence of a Dependabot security update?

Finally, to understand the efficacy of Dependabot in bringing
the vulnerabilities to the developer’s attention, we attempt to
capture the degree to which developers react to the identified
vulnerabilities in a timely manner. These concerns are captured
by the following research question:

RQj3: How long does it take to address a vulnerable dependency
identified by Dependabot?

IV. METHODOLOGY

This section presents the methodology employed for data
collection and the analysis techniques we leverage to answer
the research questions posed in this work.

A. Data Collection

To study how often developers merge security updates of
Dependabot (RQ;), we collect security updates from GitHub.
Next, we extract vulnerability instances from each security
update, and finally mine the projects commit history to
investigate the fixes of vulnerable dependencies (RQ», RQ3).

For our empirical study, we focus on JavaScript projects
for two reasons. First, the GitHub annual survey[T] suggests
that JavaScript is taking the lead as the most popular pro-
gramming language. Moreover, JavaScript projects have the
highest distribution of package dependencies compared to other
programming languages [29]], thus making them more prone
to inheriting vulnerabilities through dependencies [23]], [30].

As we do not have access to the projects’ settings, it is not
possible to determine whether a project employs both version
update and security update services. The presence of both
services in a single project may contribute to confounding

thttps://octoverse.github.com/2022/top-programming-languages. Last ac-
cessed January 18, 2023.
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TABLE I: Characteristics of the selected projects.

Metric Min. Max. Median Mean

Forks 0 33,022 33  391.88
Stars 2 180,228 63 2,121.08
Core contributors” 1 477 4 8.58
Security updates 1 67 3 4.50
Commits before col. period 101 48,807 890 2,019.81
Commits during col. period 25 15,306 346  670.80

*Camputed in line with Munaiah et al. [32]

factors in the resolution of security updates, as their pull
requests are indistinguishable. To this end, we constrain
the collection of security updates to the period between
the introduction of security updates (June 1, 2019) and the
introduction of version updates (May 31, 2020) to ensure that
only security updates are available.

Using the GitHub Search API? we identified 155,065
starred and non-forked repositories that were created before
the start of the collection period and had at least a single
update after it. We selected the projects that were actively
maintained during the entire collection period and have no
less than 100 commits at the start of the collection period [3]]
and at least a single commit at each month of the collection
period. As we are interested in projects employing the npm
and yarn package management tools, we only considered
projects including a package. json manifest file in the root
of the repository, leaving us with 3,587 projects.

Kalliamvakou et al. [31]] show that a large portion of GitHub
repositories are used for experimental, storage, or academic
purposes. As the inclusion of such repositories can introduce
noise into the analysis, we filtered those out using Reaper [32],
resulting in 3,151 engineered projects. From the set of 1,492
repositories that have at least a single security update issued by
Dependabot (out of the 3,151 engineered projects), we also filter
out 390 projects that use multiple dependency management
bots (e.g., Dependabot-preview [5]], Greenkeeper [6], Snyk-
bot [7]], and Renovate [8]) to account for confounding factors
stemming from the use of various tools, and 124 projects that
have received Dependabot security updates targeting ecosystems
other than npm and yarn (e.g., Maven, RubyGems), resulting
in 978 projects. An overview of these projects is presented
in Table [I} For each selected project, we extract all security
updates created by Dependabot within the collection period.
At this point, our dataset consists of 4,416 security updates,
of which 2,391 are in the merged state, 1,804 in the closed
state, and 221 are open. Since a decision to or not to merge
an open security update has not been made by the developers,
we use the 4,195 non-open ones in our analysis. A non-open
security update is a security update whose state is “closed” or
“merged”.

B. Detecting Vulnerabilities in Dependencies

To discover vulnerabilities, we retrieved the security advi-
sories using the GitHub GraphQL API on March 27, 2021.
Removing vulnerabilities with no known fixes leaves us with

2https://docs.github.com/en/rest/search. Last accessed January 18, 2023.

1,063 security advisory records. Given that GitHub advisory
database is constantly evolving, for each retrieved security
update, we identified whether there is at least a single associated
security advisory from the collected set. Since the information
about the vulnerabilities targeted by a security update cannot
be accessed without specific project permissions, to identify
the association of an advisory with a security update, we
extract this information based on the title of security updates,
which contains the vulnerable upstream package, its currently
installed version, and the release to which Dependabot suggests
upgrading (cf. Figure [I). We found that 28 (0.6%) records in
our dataset could not be matched to any security advisory
record and removed them from further analysis.

Our vulnerability detection algorithm takes as input (1) the
name of the concerned upstream package with known security
vulnerabilities, (2) the database of security advisories, and (3)
the dependency files of the selected repository. Based on the
provided input, the algorithm computes the set of vulnerabilities
inherited through the dependency on the specified upstream
package. The hosted repository is deemed to be affected by a
vulnerability if at least one dependency file is found to declare
a dependency on a vulnerable release of an upstream package.
However, the conditions of the latter definition are different
for the manifest and the lock files. The manifest file is said to
declare a dependency on a vulnerable release if the specified
upstream package is present as a direct runtime or development
dependency, while its most recent version that satisfies the
defined dependency constraint is affected by the concerned
vulnerability. Note that this definition extends the one adopted
in [4] by also considering development dependencies. To this
end, we determine whether the range defined by the dependency
constraint declared in the manifest file intersects with the
range of the vulnerable releases of the upstream package by
leveraging the eponymous function of the semver module used
by the npm package manager. Lastly, an additional rule applies
if the repository follows the monorepo paradigm [33], i.e.,
it contains more than one project. In this case, the direct
dependencies of the hosted sub-modules, the relative paths
to which are defined through the “workspaces” field in the
manifest file, are deemed as direct dependencies of the entire
top-level module. Concerning the lock files, there are two
scenarios. In the first case, the specified upstream package with
a known security vulnerability is declared as a direct runtime
or development dependency in the manifest file. To determine
whether the examined lock file declares a dependency on a
vulnerable release of an upstream package, solely the release
assigned to a node in the dependency graph that represents this
direct dependency is validated, whereas the nodes associated
with the transitive dependencies are ignored. To this end, we
extract the version of the upstream package locked for direct
dependency. In the second scenario, the specified upstream
package with a known security vulnerability is not declared as
a direct runtime or development dependency in the manifest
file. Then, conversely to the previous case, every node in
the dependency graph corresponding to a dependency on the
concerned upstream package is inspected. If the locked release
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of at least a single node in the dependency graph belongs to the
range of the affected versions, then the file is said to declare a
dependency on a vulnerable release of an upstream package.
For this purpose, we recursively traverse every dependency
node object in the graph, examining those defined by the name
of the concerned upstream package and collecting the releases
locked to them.

The vulnerability detection algorithm is validated through
binary classification. For this purpose, we leverage the Depend-
abot security updates. The parent commit of a security update,
i.e., the commit on which the modification is based, represents
the state of the project with a vulnerable dependency, as each
security update addresses at least a single vulnerability in the
dependencies. On the other hand, the merge commit, i.e., the
commit obtained by merging the security update, captures the
state at which this vulnerable dependency is resolved. For each
repository, we feed the algorithm the dependency file associated
with each of these two commits. For the parent commit, it is
expected to return at least a single security advisory published
before the corresponding security update was generated. On
the other hand, no security advisory should be returned for
merge commits.

The algorithm reports no false negatives. That is, for every
security update in our collection, the algorithm manages to flag
the presence of a vulnerable dependency in the repository’s
state associated with the parent commit. Nevertheless, when it
comes to the merged security updates, we find 133 cases of false
positives. In other words, for these 133 security updates, the
algorithm suggests that the modification of Dependabot does
not eliminate the vulnerability. After a careful examination
of these cases, we found out they were due to a bug in
Dependabot rather than to an issue in our algorithm. In this
scenario, Dependabot accidentally ignores every range of the
vulnerable releases but one and modifies the yarn.lock file
accordingly. Therefore, at least one dependency resolution block
remains pointing to a vulnerable release after the modification
of the bot [34]]. To verify the bug conjecture, we replicated the
aforementioned conditions in a GitHub repository with both the
Dependabot security alerts and security updates enabled. We
find that after merging the automated security update generated
by Dependabot, the associated security alert persists.

C. Fixing Cases Discovery

To trace the cases where a vulnerable dependency was fixed,
we applied the vulnerability detection algorithm presented in
the previous section to the parent commits of each security
update and generated a separate entry for every reported security
advisory. Accordingly, each entry is identified by the following
four properties: (1) the slug, i.e., the name of the repository
owner, (2) the associated security advisory, which also includes
the name of the affected upstream package, (3) the concerned
(sub-)modules containing the dependency files that declare
a vulnerable dependency, and (4) the parent commit of the
associated security update. The latter property allows us to
capture the earliest state in the repositories history at which
Dependabot has identified the vulnerability.

Candidate commit

O Non-vulnerable commit
O Vulnerable commit
Dependabot commit

(a) Simple scenario

(b) Complex scenario

Fig. 2: Candidate and fixing commits scenarios.

In total, we identified 5,089 vulnerabilities. However, Depend-
abot creates a new security update in case a more recent version
of the upstream is required. Therefore, some of the collected
events do not capture the earliest stage at which Dependabot has
identified the vulnerability but the state at which the security
update targeting this vulnerability was re-instantiated. To ac-
count for this, we link the superseded and superseding security
updates and drop such events, leaving us with 4,978 entries.

Finally, to collect the fixing cases, for each identified security
vulnerability, we trace the fixing commit. We define a fixing
commit as the earliest modification to the dependency files
that resolves the specified vulnerability in the dependencies
and eventually reaches the default branch of the repository.
To discover the fixing commit, we designed an algorithm that
recursively visits the descendants of each security update’s par-
ent commit and identifies whether the concerned vulnerability
is eliminated or not. Since the repository history commonly
comprises more than a single branch, the algorithm may return
multiple candidate fixing commits. The reason is that once
the original modification carrying the fix located at a certain
development branch reaches another branch through, e.g., a
merge, then for the latter branch, the earliest node with the
resolved vulnerable dependency is this merge commit. There-
fore, due to traversing each development branch independently,
the algorithm may return more than one commit. However,
it is also possible that none of the candidates is the fixing
commit. We regard such a scenario as complex, on the contrary
to simple, where one of the candidates is the fixing commit.

Figs. [2a] and [2b] present excerpts of the repository history.
Each node represents a commit, and the directed edges capture
the parent-child relationships between them. In Fig. the
parent commit of the security update generated by Dependabot
is B1, while the candidate commits are B4 and C2. In this simple
scenario, the fixing commit C2 is a descendant of B1. Whereas
in the complex scenario shown in Fig. the fixing commit
A3 does not belong to the list of candidates, as the commit B2,
i.e., the parent of the commit instantiated by Dependabot, is
not its ancestor. The reason is that the branch A, used as the
origin for the fix, was forked before B2 was created.

The existence of the complex scenario explains the reason
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for no complete automation for the discovery of the fixing
commit. Avoiding them requires traversing the network graph
backward, which is expected to increase the number of nodes
to be visited by orders of magnitude. To this end, we opted for
a semi-automated solution where, given the list of the candidate

commits, a human rater determined the fixing commit manually.

In the complex scenario, however, the earliest candidate commit
is a result of a merge, and as such, a rater is required to manually
investigate the ancestors of this candidate to, ultimately, identify
the fixing commit. To assess the extent of accidental errors or
the potential bias due to our manual assignment, we recruited
another independent rater. The second rater was presented with
a total of 50 events identifying a security vulnerability with a
list of the candidate fixing commits for each event. Half of the
events pertain to a complex scenario, while the other does not,
which was not revealed to the rater. We found no discrepancy
between the fixing commits reported by the original and the
second rater, increasing our confidence in the accuracy of
collected fixing cases.

D. Data Analysis

This section presents the techniques employed to address
our research questions.

1) Addressing RQ;: To identify how frequently developers
merge the security updates created by Dependabot, we
computed the merge ratio defined as the proportion of
the non-open security updates that were merged. However,
different projects may adhere to different practices and, thus,
respond to security updates in a non-uniform manner. To
this end, we also performed a more fine-grained analysis by
assessing this metric on a per-project basis.

If a project received a very small number of security updates
(e.g., 1 or 2), it is extremely likely that the merge ratio
is either 0% or 100%. If this is a predominant case, the
distribution of merge ratios will be mostly determined by these
projects, heavily skewing it to both extremes. Fig. [3] plots the
distribution of the number of security updates for the project
in our collection along with the coefficients of skewness and
kurtosis [35]], whose acceptable values for normality lie between
-1 and 1 and between -2 and 2, respectively. We can observe
that the distribution suffers from a very high positive skew. To
this end, we followed a quantile classification approach [36]]
to define four disjoint groups of projects with respect to the
number of security updates they receive, namely Very low,

TABLE II: Project classification based on the number of
security updates.

Number of security updates

Group

Constraint Interpretation
Very low [lower quartile, median) [1, 3)
Low [median, upper quartile) [3,5)
High [upper quartile, upper tail) [5, 11)
Very high [upper tail, maximum] [11, 67]

Low, High, and Very high. Table [lI| reports the cut-off points
based on which the classification is performed.

Given that popular projects are more likely to adopt test
automation practices [37], they might have fewer concerns about
possible breaking changes caused by merging a pull request.
In this regard, we compute Spearman’s rank correlation test
to inspect whether the merge ratio of pull requests and the
popularity of the projects (represented as the number of stars
and forks) are correlated.

2) Addressing RQ,: To assess how often developers fix a
vulnerability in dependencies manually despite the presence
of a Dependabot security update, we measured the percentage
of the vulnerabilities in the obtained collection that were (1)
fixed by Dependabot, (2) fixed by a developer, or (3) have not
yet been addressed. We determine the latter group through the
absence of the fixing commit, whereas distinguishing between
the first and the second groups is more complex. We regard
a vulnerable dependency as fixed by Dependabot if and only
if the fixing commit is authored by the bot. Otherwise, we
attribute the fix to the developers.

To maintain consistency with RQy, we also computed the
percentages for the four groups of projects separately: (1) per-
centage of vulnerabilities that were addressed vs. not addressed,
and (2) out of all fixes, the share that was contributed by a bot
vs. implemented by a human. In the event of an observable
discrepancy in the results for the different groups, we validate
whether this difference is statistically significant by computing
the contingency table with the absolute values and applying
Pearson’s x? test [38]. We reject the null hypothesis H,
which assumes no relationship between the number of security
updates received by a project and the expected response to
a vulnerability if p < 0.05 (the traditional 5% significance
level). In line with best practices [39], we also report the effect
size, i.e., the magnitude of this relationship, when Pearson’s
x? test suggests the rejection of the null hypothesis. Despite
the plethora of approaches for computing the effect size [39],
for a contingency table whose size is not upper-bounded by
2 x 2, it is recommended in [40], [41] to use Cramér’s V
[42], denoted by ¢y. This metric varies between 0 and 1,
with the former corresponding to a lack of association. We
follow the interpretation of ¢y proposed by Cohen [43]], which
suggests that for a 4 x 2 contingency table, the association
between two variables is rrivial if ¢y < 0.10, small if
0.10 < ¢y < 0.30, medium if 0.30 < ¢y < 0.50, and large if
¢y > 0.50. However, the rejection of the null hypothesis over
an entire contingency table and a non-negligible effect size




neither imply that the difference in populations is statistically
significant between each group nor indicate between which
groups specifically it is. As such, we complete the analysis
by performing (;") = 6 pairwise comparisons, i.e., Pearson’s
x? tests. To compensate for an increased risk of a type I
error when making multiple statistical tests, we control the
false discovery rate by adjusting the p values following the
Benjamini-Hochberg correction procedure [44]].

3) Addressing RQ3;: By answering the third research
question, we aim to capture the degree to which developers
react to the vulnerabilities identified by Dependabot in a
timely manner. We operationalize the time required to resolve
a vulnerable dependency as the difference between the time the
vulnerability was reported by Dependabot through a security
update and the time the fixing commit was made.

In line with previous studies [4]], [23], [45], [46], [47],
we rely on survival analysis [48] to assess the time-to-event
distribution. Using the Kaplan-Meier estimator [49], a non-
parametric statistic, we fit a survival analysis model to estimate
the survival rate of vulnerabilities in dependencies, i.e., the
expected time until an actionable reaction to a vulnerability,
over time. Accordingly, the survival function represents the
probability that a vulnerability survives after a certain time
point.

We also performed the analysis with respect to the severity
levels of vulnerabilities. This allows verifying whether there is
a relationship between the risks due to a vulnerability and the
time it takes for the developers to react to it, that is, whether
the developers take into account the severity of vulnerabilities
in prioritization. To verify the significance of any observable
difference between each pair of the severity levels, we carry
out (3) = 6 pairwise comparisons using the log-rank test [50],
the de-facto testing procedure for comparing time-to-event
distributions. The null hypothesis H, assumes that there is no
difference in the survival distributions of the two groups. Given
the absence of a meta-test that considers all four survival curves
at once we control the family-wise error rate, i.e., probability of
making at least one type I error, and following the Bonferonni
approach [S1], test each individual hypothesis at a significance
level of 0.83% (= a/T where o = 5% is the desired overall
significance level and 7" = 6 is the number of comparisons).

Finally, we measured and compared the vulnerability res-
olution times between the bot and manual fixes. Since a
vulnerability that has not been addressed by the end of the
observable period can neither be attributed to a bot nor to a
human, for this analysis, we have no censored observations.
Therefore, performing survival analysis is redundant, and we
assess the distributions of the bot and human fixes through
violin- and box- plots. To statistically verify the difference, we
utilize the one-sided non-parametric Mann-Whitney U test [52]
at a standard 5% significance level. The choice of the one-
sided alternative is motivated by the intuition that vulnerability
fixes attributed to Dependabot take less time than the manually
implemented ones.

TABLE III: Distribution of merge ratios for the four project
groups.

Group Min  25%  Median 75% Max  Avg Std

Very low 0% 0% 50%  100%  100%  49%  47%

Low 0% 0% 75%  100%  100%  59%  43%

High 0% 0% 80%  100%  100%  57%  42%

Very high 0%  26% 78% 94%  100%  61%  38%

Total 0% 0% 67%  100%  100%  54%  44%
V. REesuLTs

A. RQI: How often do developers merge Dependabot security
updates?

To answer RQ1, we computed the merge ratio for non-open
Dependabot security updates (cf. Section [V-DI])). The results
show that, of the 4,195 non-open Dependabot security updates
in our dataset, 57% were merged.

Table shows the distribution of merge ratios for the
projects considered in our study. We can observe that projects
merged, on average, 54% of their non-open security updates
(7th column in Table and that the median project merged
67% of its non-open security updates (4th column in Table [ITI).
Moreover, the mean merge ratio for the projects in all
categories except Very Low, is 75% or higher. However, we
cannot make strong claims on the trend in specific project
groups since the average values are not very dispersed (ranging
between 49% and 61%) and the standard deviation is quite
large (ranging between 38% and 47%).

To verify if there are differences between the distributions of
the merge ratios between project groups, we performed multiple
Mann-Whitney U tests to validate the null hypothesis that “the
samples in category X come from the same population as the
ones of category Y”, where X and Y are populated with the
four project groups (Very low, Low, High, Very high). Note
that due to multiple comparisons over the same data, we used
Bonferroni’s correction [53]] and report over the corrected p-
values. The results show that the null hypotheses (one for each
distinct pair of project groups) cannot be rejected (adjusted
p > 0.15), meaning there are no significant differences
between repositories of the different project groups w.r.t. their
willingness to merge Dependabot security updates. Also, we
compute Spearman’s rank correlation test for merge ratio and
popularity metrics. The correlation with stars and with forks is
weak (both p = 0.16), suggesting an insignificant correlation
between the merge ratio and project popularity.

B. RQ2: How frequently do developers fix a vulnerable
dependency manually in the presence of a Dependabot security
update?

To answer this question, we measure the percentage of
vulnerabilities in the obtained collection that were (1) fixed by
Dependabot, (2) fixed by a developer, or (3) have not yet been
addressed.

The 4,195 security updates correspond to 4,978 security
vulnerabilities. Our results show that 53.48% (2,662 out
of 4,978) of the examined vulnerabilities are mitigated by



TABLE IV: Percentages of vulnerabilities addressed by hu-

man/bot and non-resolved per project group.

TABLE V: Computed p-values for the pairwise comparisons
between the project groups. Significance: ****” < 0.001, **** <
0.01, ’** < 0.05. Blue cells highlight the cases when p < 0.05.

Group Response to vul. Fixed by
Fixed Not fixed Bot Human
Very low 76.35% 23.65% 52.83% 47.17%
Low 90.77% 9.23% 61.36% 38.64%
High 86.04% 13.96% 64.11% 35.89%
Very high 84.07% 15.93% 71.11% 28.89%
Total 84.62% 15.38% 63.85% 36.15%

ery Low OW 18 ery nig.

Very I L High Very high
Very low 6.41e-15""  3.99e-09""  1.57e-05"" g
Low 1.70e-03" T 7.66e-04""  7.43e-06"" S
High 3.95e-06""" 2.08e-01 \ 1.04e-01 &
-
Very high| 432e-14""  124e-05""  185e-04"™" —T— -
fixed by bot vs. fixed by human E\

merging Dependabot security updates, 30.27% (1,507 out
of 4,978) of the vulnerabilities are resolved manually, and
the remaining 16.25% (809 out of 4,978) have not been
fixed. Taking into account the percentage of unresolved
vulnerabilities, bot fixes are 1.8 times more frequent than
manual fixes. Besides, there is a possibility that manual fixes
are also inspired by Dependabot, albeit we could not measure
those cases. This implies that, overall, the task of vulnerability
resolution is to a great extent delegated to Dependabot.

Table reports the percentage of vulnerabilities that
have and have not been fixed (meta-column Response to
vulnerabilities) per project group. We can observe a noticeable
difference between these percentages. Pearson’s 2 test confirms
that this difference is significant (p = 1.19e-15) with a non-
trivial (small) effect size ¢y, = 0.12. The lowest percentage of
resolved vulnerabilities belongs to the group of projects with
a very low number of security updates received. On the other
hand, the highest ratio of the resolved vulnerabilities belongs to
the group of projects with the low number of security updates
— a 14% difference in comparison to the first group. Moreover,
as the number of security updates increases, the proportion of
unaddressed security vulnerabilities raises as well. A possible
explanation is that developers get overwhelmed by notifications
about vulnerable dependencies. To support this conjecture, we
compared the percentages of the security fixes made by the
bot and humans (meta-column Fixed by in Table [[V). We
observe that the delegation of the security fixes to Dependabot
increases with the increase of security updates (p = 9.89e — 14
and ¢y = 0.12, i.e., the difference is significant with a small
effect size). This can be due to a more extensive experience with
the bot, as highlighted in [13]]. The greater extent of delegation
of vulnerability resolution to the bot can be explained by (1)
the complexity of the project and the relationship between its
dependencies that obstructs the ability to address a vulnerability
manually, without re-computing the dependency tree, (2) the
effort and time needed to address the vulnerabilities, given
their high number, or (3) both.

However, as evidenced by the results of the post hoc pairwise
comparisons reported in Table[V] the truth likely lies in between,
i.e., both the experience with the bot and the project complexity
play a role. We find that in each case but two, the difference is
significant (overall significance level o = 5%). The first case is
the trivial difference in the vulnerability response between the
high and very high groups, despite a significant discrepancy
in the delegation of the security fixes. This suggests that the
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Fig. 4: Survival curve for the event “vulnerability identified by
Dependabot is addressed”.

majority of projects that belong to the second group compensate
for the increased complexity (or the number of vulnerabilities)
by delegating the (added) security workload to the bot. Hence, a
considerable increase in the proportion of security fixes made by
the bot without an improvement in the extent of the vulnerability
resolution, i.e., no increase in the proportion of addressed
vulnerabilities. The second case is the trivial difference in
the delegation of the security fixes between the low and high
groups, despite a significant discrepancy in the vulnerability
response. This suggests that the projects associated with the
latter group could not compensate for the added complexity
by distributing the vulnerability resolution to Dependabot due
to a lack of experience or trust in the bot.

C. RQ3: How long does it take to address a vulnerable
dependency identified by Dependabot?

Figure {4 shows the survival curve of the vulnerable depen-
dencies identified by Dependabot. First, we observe that the
likelihood of a vulnerability remaining unaddressed within the
first day is less than 70%. In other words, it is expected that
almost a third of the vulnerable dependencies are addressed
within 24 hours since the reception of the security update.
Moreover, the results show that the majority of the vulnerable
dependencies are addressed within the first two weeks. As
such, we conclude that developers predominantly respond to the
suggestion of Dependabot promptly. Nevertheless, a vulnerable
dependency reported by the bot remains unaddressed for over a
year with a probability of 18%, implying that almost one over
five vulnerabilities affect the users of the dependent projects
for at least an entire year since the advisory was published.

The analysis of the relation between the survivability and
severity of a vulnerability reveals that the level of severity
is negatively correlated with the survival probability when
comparing critical and high severity vulnerabilities to moderate
and low, contrary to the study conducted by Alfadel ez al. [[13].
In fact, there is a clear difference between the first two
classes of vulnerabilities - given an identical time span, a
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Fig. 5: Survival curves for the event “vulnerability identified
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Fig. 6: Violin plots for the distributions of the bot and manual
fixing times.

critical severity vulnerability is always less likely to remain
unaddressed. The dominance is even more emphasized when
compared to low and moderate severity vulnerabilities - a
critical severity vulnerability reported by Dependabot has,
on average, 15-20% more chances to receive an actionable
response, given the same period of time. When it comes to an
entire year since the notification, a low severity vulnerability
is 2.3 times more likely to persist than a critical one and 1.7
times more than a high one. The evaluation of the pairwise
log-rank tests confirms the significant difference between each
severity level, excluding the comparison of low and moderate
severity vulnerabilities. This suggests that developers consider
the severity of vulnerabilities when prioritizing a dependency
update. As expected, comparing the bot fixes and the ones
implemented manually, we find that the first takes significantly
less time than the latter (0.01% significance level). As can be
observed from the distributions of the fixing times in Fig. [f] the
difference between the two classes of vulnerability resolutions
is vast. Roughly 50% of the security updates are merged within
a day and another 25% within eleven days. On the other hand,
it is only less than 25% (precisely, 18%) of the manual fixes
are implemented within a day, whereas half of them take at
least 1.5 months. This suggests that either a security fix is
executed rapidly with the bot or requires far more time to be
addressed by developers manually.

VI. DiscussioN

Comparing the merge ratio of security pull requests generated
by Dependabot to Dependabot-preview (65.42%), as reported
in [[13]], we observe a drop of 9% in receptivity. We conjecture
this difference is mainly due to the auto-merge functionality
of Dependabot-preview. Also, the Dependabot being activated
automatically by GitHub, given that the repository meets certain
prerequisites, might explain the hesitance to merge pull requests
since developers did not enable the bot themselves.

To investigate possible trends throughout our observation
period, such as the changes in the merge ratio of security
updates or the resolution time of vulnerabilities in different
spells, we split our dataset into three parts (P1, P2, P3), each
corresponding to a period of 4 months. Concerning the merged
pull requests of RQy, our analysis in the three time periods
showed that projects across all four categories have a larger
merge ratio in P1. However, since most projects receive a very
small number of security updates, we cannot infer anything
about within-project adoption across the observation period. If
we repeat the analysis by considering only projects that received
security updates throughout the entire observation period, we
find that the average merge ratio per category is quite similar
in all periods. Also, we ran the RQj3 survival analysis on the
vulnerabilities created in each period. The results show a trend
throughout the periods: vulnerabilities in the earliest period
(P1) tend to be resolved faster compared to the following two
periods (P2, P3). For instance, after 60 days, about 75% of
vulnerabilities were resolved in P1, while 50% and 60% were
resolved in P2 and P3, respectively. Hence, vulnerabilities were
fixed faster at the beginning of our observation period.

In an effort to identify the reasons developers decide not to
address a vulnerability, implement it manually, or solely reject
the proposition of Dependabot, we recruit two different raters
to examine related textual artifacts, including the git commit
messages submitted with the fixing commit (if present), the
comments left for the associated security update generated by
Dependabot, and the other communication texts. We identified
22 unique reasons, i.e., labels, out of 213 samples analyzed
by the first rater, which can be clustered into six groups.
Also, the second rater performs a separate round of labeling
independently to counteract the subjectivity. To assess the
agreement between the two raters, we compute Cohen’s x,
the de facto standard statistic, and observe x = 0.963. This,
following the interpretation proposed by Viera and Garrett [54]],
is equivalent to perfect agreement.

We find that in 31.92% (68) of the cases the decision
to not merge a Dependabot security update and address the
vulnerability manually stems from the project management
peculiarities, such as external management of the project (50),
i.e., the repository acts as a mirror for the project, whereas the
development and management are mediated through another
third-party platform (e.g., Gerrit Code Review). Another cause
that belongs to this group of challenges is that a security
update gets closed automatically (11) by another bot. In
line with previous studies [35], [S6], [S7], we find that in
27.70% (59) of cases, compatibility challenges are one of the
biggest developer concerns. dependency usage, i.e., unused
dependencies accounts for the 18.31% (39) of the reasoned
cases. As expected, some of the bot limitations may also impact
the decision to not accept its contributions - 10.33% (22), such
as the limited configuration settings provided by Dependabot,
which is one of the recurrent issues in bot adoption, following
the study of Wessel er al. [58]. We also find the developers
expressing bot dissatisfaction in 9.39% (20) of the cases,
especially complaining about the automatic deployment of



the bot and noise generation, which is the most recurrent and
central problem of interacting with software bots [S9]], [60],
[58]. Finally, there are 2.35% (5) miscellaneous cases.

A. Implications to Practitioners

The observed distribution of merge rates implies that if
project maintainers merge at least one security update, it is
likely that they will continue accepting all (or the vast majority
of) the future Dependabot suggestions. Also, our qualitative
analysis shows roughly 9% of dissatisfaction in explicitly
motivated rejections. Moreover, the survival analysis conducted
in this work proves that manual resolution of vulnerabilities
might take a long time, leaving the projects susceptible to
security issues. Despite popular projects having more tests
available [37], our results signify that there is no significant
correlation between projects’ popularity and the level of security
update adoption. This result highlights that developers should
be vigilant on security even if their project is popular and
possibly has a larger community. Taking everything into
account, we encourage developers to try out Dependabot on a
trial basis as evidence suggests its benefits in managing security
vulnerabilities are considerable.

B. Implications to Dependabot Maintainers

As suggested by our qualitative analysis, some maintainers
can get confused and refuse to merge a pull request of an
unknown bot that starts interacting with the repository without
warning. To address this, we recommend GitHub always deploy
Dependabot with an introductory message that explains the
purpose of the bot.

Limited configuration is a common issue in bot adoption [58]],
and Dependabot is no exception. One setting that could allow
for better tailoring towards user needs is to limit the number
of open security updates, as we observe that developers can
get overwhelmed by them. Alternatively, Dependabot could
allow project maintainers to prioritize the reception of security
updates based on the vulnerability severity level. This could be
interesting for maintainers, as we observe a strong correlation
between the survivability of a vulnerability and the severity
level assigned to it. Moreover, we recommend enhancing the
analysis performed by Dependabot by scanning the source
files to identify whether the package identified as vulnerable
is imported, i.e., used in the code, or not, as it reduces the
number of false alarms.

C. Implications to Researchers

We observe that developers merge a security update generated
by Dependabot in 57% of the cases. This statistic does not
align with the results reported in previous works such as
the one of Wyrich et al. [61], who report that only 37.38%
of the bot pull requests in their collection ended up being
merged. The difference in the results could be due to the
extensive project filtering performed in our work. However, we
are more inclined to consider the tool selection as the main
factor contributing to the observed discrepancy; Wyrich et
al. do not distinguish between the bots issuing pull requests

and analyze them as a whole. This is further confirmed when
comparing our results to the ones reported by Mirhosseini et
al. [62] in their work on the usage of Greenkeeper, which is
a bot that provides automated pull requests upgrading stale
dependencies. The authors focused on starred and non-forked
JavaScript projects with at least 20 commits and found that only
32% of pull requests generated by Greenkeeper were actually
merged, which is 1.8 times less than the percentage we observe
in this work. Despite that Greenkeeper and Dependabot are
designed to update the dependencies and leverage an almost
identical developer interaction mechanism, i.e., pull requests,
their different goals play a role in their receptivity. As such,
when analyzing the bot usage among developers, we suggest
separating them based on the goals and tasks these bots are
designed to fulfill.

Other dependency management bots, such as Snyk [7]]
and Renovate [§]], have been proposed to assist developers
in managing vulnerable dependencies. While these bots also
have limitations, some of their characteristics and features
are complementary to Dependabot. For instance, Dependabot
security updates have a compatibility score that lets developers
know whether updating a dependency could cause breaking
changes. This might lead to a higher merge ratio for its security
updates. Snyk, on the other hand, provides a priority score
feature that can assist developers in filtering and prioritizing
the discovered issues according to their level of importance,
risk, frequency, and ease of fixing. Using multiple bots in a
repository for similar purposes, however, might lead to more
noise. As we discuss in our paper, noise is one of the causes of
vulnerabilities not being addressed. Using complementary tools
might increase the noise and ultimately delay the resolution of
vulnerabilities. Nonetheless, further study is needed to discover
the efficacy of employing multiple bots in software repositories.

D. Threats to Validity

Construct validity. A threat to construct validity concerns our
definition of a security fix made by Dependabot. We employ a
high-precision strategy and only consider a fix to be contributed
by the bot if Dependabot is the author of the fixing commit.
Although developers can replicate the update generated by the
bot or use a proxy to implement the suggested changes, such
cases cannot be identified with high confidence.

Internal validity. The main internal threat pertains to the quality
of the obtained collection of projects. The presence of aban-
doned projects or immutable forks could have downgraded the
overall merge ratio or significantly affected survival curves for
vulnerabilities. To address this threat, we applied an extensive
filtering procedure and removed projects having less than one
commit each month of the collection period. Also, we only con-
sidered engineered projects selected using the Reaper tool. De-
spite that this tool may not be perfectly accurate, given the other
criteria we impose on the projects, we are confident the presence
of personal repositories in the considered sample is minimal.

External validity. This work only focuses on JavaScript projects
and the npm and yarn ecosystems. Therefore, our findings



might not apply to other types of projects and ecosystems
due to the different policies, practices, and culture in each
ecosystem [23]], [56]]. This is supported by the findings of
Zerouali et al. [63], who found that vulnerabilities in npm are
fixed sooner compared to RubyGems, which is a much small
ecosystem compared to npm. Moreover, our analysis is strictly
limited to Dependabot, whose interaction traits and core logic
can be different from the ones of other bots. Further studies are
needed to verify our findings for other ecosystems and bots.

VII. RELATED WORK

Previous studies on bots, as one of the most dominant
assistant tools in software development, focus on identifying
the challenges in interaction [58], [59]], [60], [64], the impact
of their usage on the development artifacts and software
quality [62], [65], [66l], and quantitatively measuring the
extent of their adoption and developer receptivity towards their
assistance [13], [61], [67], [68]].

Wyrich et al. [61] found that pull requests from humans are
accepted and merged almost twice as often as bot pull requests
(72.53% vs. 37.38%), suggesting that such tools are not lever-
aged to their full potential. However, this analysis is not scoped
to a particular bot nor to the properties of the projects that use
them. On the contrary, our work focuses on GitHub Dependabot
and mature and well-maintained JavaScript projects, aiming to
mitigate the potential impact of confounding variables.

Mirhosseini et al. [62] investigated the impact of Green-
keeper, a bot that generates pull requests to upgrade out-of-
date dependencies of JavaScript projects. Their results show
that, on average, projects that employ the bot upgrade their
dependencies 1.6 times more often than projects that do not use
the bot, suggesting a significant utility of such a tool. Although
the authors report that 32% of automated pull requests in their
dataset were merged, it remains unknown whether the develop-
ers disregarded the updates or performed them manually. The
survey of Pashchenko et al. [28]] suggests that bots can be only
used to identify issues within dependencies, while the update
itself is performed by developers. Also, He et al. [69] reports
that Dependabot is effective in reducing technical lag, and
developers are highly receptive to its pull requests. In our work,
we take a step forward and not only analyze the developers’
receptivity to bot suggestions but also determine quantitatively
how frequently they resolve the problem manually despite an au-
tomated pull request and study the persistence of vulnerabilities.

Alfadel et al. [13] is the most relevant to our work. The
authors investigated developers’ receptivity to the security pull
requests generated by Dependabot-preview. The results show
that the majority of such pull requests are merged, often
within a day, and the severity level of the vulnerabilities
has no significant impact on their resolution time. Moreover,
their results suggest that the risk of breaking changes has no
significant influence on the merging of pull requests, contrary to
other studies [4], [S5], [56], [70], [71]]. The main functionality
of Dependabot-preview, studied in [13], is version updates.
The bot supersedes a security update with a new one when
a more recent release of the vulnerable package is available.

Most importantly, Dependabot-preview provides an auto-merge,
which means the findings do not necessarily reflect developers’
reception of security pull requests since many merges and
rejections are performed automatically. Examining Dependabot,
on the other hand, allows us to account for these confounding
factors as Dependabot always suggests the minimum required
non-vulnerable version. Moreover, unlike all related works, we
focus our analysis on the vulnerabilities rather than on the pull
requests to more accurately estimate the time developers take
to resolve vulnerabilities.

VIII. CoNcLUSION

In this work, we conducted an empirical study on the
usage of Dependabot and its effectiveness on maintaining the
dependencies secure in JavaScript projects hosted on GitHub. In
particular, we analyzed 4,195 security updates associated with
978 engineered and actively maintained JavaScript projects. We
studied developers’ receptivity towards Dependabot security
updates, the practice of fixing the vulnerability manually in
the presence of an automated pull request, and assessed how
proactive developers are in solving the vulnerable dependencies
alerted by Dependabot.

The results show that more than half of the bot suggestions
are merged. Moreover, when developers do not accept a security
update, they often address the associated vulnerability manually.
By levering a survival analysis, we found that developers are
often proactive in addressing vulnerable dependencies identified
by Dependabot and prioritize fixes based on the severity level
of vulnerabilities. However, when developers implement the
fixes manually, the fixes could take more than a month.

We call for the continuation of our work by further analyzing
the impact of Dependabot on keeping the project dependencies
secure. In the case of manual fixes, for example, it remains
unclear to what extent those fixes were inspired by Dependabot
security updates. Also, for studying the relation between the
Dependabot merge ratio and concern of breaking changes, other
than popularity metrics, one could investigate factors such as
the availability of tests or CI/CD pipelines. Another possible
research avenue is to inspect the actual usage of vulnerable
APIs in the repository’s code, as a security update or relying
on a vulnerable dependency might not necessarily imply that
the project is vulnerable. Examining these cases can assist
Dependabot in creating fewer security updates and reducing
the noise level.

IX. DATA AVAILABILITY

To comply with Open Science policies, all the scripts and
data used to produce the results of this work are publicly
accessible
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