Improving Model Inference in Industry by
Combining Active and Passive Learning

Nan Yang*, Kousar Aslam*, Ramon Schiffelers*T, Leonard Lensink?,
Dennis Hendriks?, Loek Cleophas*, Alexander Serebrenik*
* Eindhoven University of Technology, The Netherlands
T ASML, The Netherlands
L ESI (TNO), The Netherlands

Abstract—Inferring behavioral models (e.g., state machines)
of software systems is an important element of re-engineering
activities. Model inference techniques can be categorized as active
or passive learning, constructing models by (dynamically) inter-
acting with systems or (statically) analyzing traces, respectively.
Application of those techniques in the industry is, however,
hindered by the trade-off between learning time and completeness
achieved (active learning) or by incomplete input logs (passive
learning). We investigate the learning time/completeness achieved
trade-off of active learning with a pilot study at ASML, provider
of lithography systems for the semiconductor industry. To re-
solve the trade-off we advocate extending active learning with
execution logs and passive learning results.

We apply the extended approach to eighteen components
used in ASML TWINSCAN lithography machines. Compared
to traditional active learning, our approach significantly reduces
the active learning time. Moreover, it is capable of learning the
behavior missed by the traditional active learning approach.

Index Terms—reverse engineering, model inference, passive
learning, active learning, runtime logs, equivalence oracle

I. INTRODUCTION

Unlike the traditional software development process, Model-
Driven Software Engineering (MDSE) uses models as the main
software artifacts. MDSE promises that presence of models
will facilitate early verification of correctness and hence earlier
defect detection, reducing development cost [12].

In order to benefit from the promises of MDSE, existing
software systems have to be migrated. To tackle this problem,
model inference techniques have been proposed in the litera-
ture. These techniques infer behavior using a running system, a
so called SUL (system under learning), rather than modeling
from scratch. The inferred models (e.g. state machines) can
then be verified, simulated, transformed or used to generate
new code.

Model inference techniques can be categorized into active
and passive learning techniques. Active learning techniques
[2], [16], [26] are based on the query-response mechanism.
They iteratively interact with a running system by send-
ing inputs (queries) and observing outputs (responses), and
infer hypothesized models based on the interactions. Such
techniques guarantee to learn the complete behavior under
the assumption that the counterexamples differentiating the
hypothesized model from the system can be found via con-
formance testing. However, as discussed by Vaandrager [34],
the required number of test sequences grows exponentially

with the size of the system. Executing such a large set of test
sequences is very time-consuming. In practice, the learning
process has to be stopped at some point. In such a case, one
can never be sure whether the learned model represents the
complete behavior of the running system. Hence, application
of active learning in practice induces a trade-off between
efficiency and behavioral coverage.

Fassive learning techniques [7], [37], [42] infer models
from a set of execution logs. Since the logs correspond to
a limited number of use cases, the learning results are also
incomplete [11], [40]. Moreover, these techniques introduce
overapproximation [8], [18], [19] making it hard to learn the
complete behavior of the system.

To get a better understanding of how testing hinders active
learning to scale in real settings, we conducted an exploratory
pilot study at ASML, provider of lithography systems for the
semiconductor industry. We applied active learning to 218
components from the TWINSCAN lithography machine and
observed that when the total active learning time increases, the
learning is dominated by the testing time. This observation
confirms the theory of Vaandrager [34]. Moreover, we also
find that it is particularly hard to learn the complete behavior
of systems where earlier choices restrict the behavior much
later on. We name the early choice behavior problem as far
output distinction behavior. Indeed, active learning requires
counterexamples that distinguish the hypothesized model from
the system, to achieve completeness. For systems with the
far output distinction behavior, the counterexample is a long
sequence of inputs capable of reaching the system states
where different outputs can be observed. It requires a lot
of time for the conformance testing algorithms to explore
all possible input sequences of a certain length and find the
counterexamples. The far output distinction behavior is one
of the reasons why in our pilot study active learning could
not finish learning all the 218 components within 1 hour. By
inspecting these components we find that the missing behavior
occurs frequently during system execution. Artifacts created
during system execution, such as logs, and subsequently
passive learning results obtained from them, can thus be
expected to contain this missing behavior. Hence, additional
information derived from logs or passive learning results is
expected to speed up finding the counterexamples, improving
the efficiency of active learning.



Based on the pilot study we explore whether active and
passive learning can be combined to improve the efficiency
of learning, while guaranteeing a certain minimum behav-
ioral coverage. From the passive learning perspective, active
learning can be used to find the exceptional behavior that is
not captured by the execution logs. For active learning, the
logs and passive learning results can be used to learn the
behavior efficiently. A certain minimum behavior coverage can
be guaranteed; the observed behavior captured by the execu-
tion logs will be included in the learned result. To evaluate
whether combining active and passive learning can improve
the efficiency of active learning, we applied the combined
approach to 18 components from 218 components of our pilot
study. We observe that active learning finishes significantly
faster and results in complete behavior. In particular, the
combined approach helps to distinguish states that were hard
to distinguish with the existing setup, without exhaustively
exploring all combinations of input actions state by state.

The main contributions are the investigation of the scalabil-
ity of active learning and the causes of time-consuming testing
(the pilot study), and an improved active learning technique
that integrates execution logs and results of passive learning.

Outline. After discussing the background in Section II,
we present the pilot study in Section III. Then we introduce
the combined approach in Section IV and evaluate it on the
industrial case study in Section V. Finally, we discuss related
work and conclude our paper in Sections VI and VIIL.

II. BACKGROUND

Most model inference techniques learn state machines.
Several algorithms [2], [7], [16], [42] have been proposed
over the years to implement active and passive learning. Since
we focus on the conceptual weaknesses of active and passive
learning, we introduce only the generic concepts underlying
the algorithms. For a more detailed explanation of different al-
gorithms, the reader is referred to the paper by Vaandrager [34]
for active learning, and the one by Stevenson et al. [32] for
passive learning. Below we introduce the necessary concepts
and definitions that are used in the paper.

A. State machines

Definition 1 (Mealy machine): A Mealy machine is a tuple
M= (5% Q,—,5), where S is a set of states, 3 is a set of
input actions, Q is a set of output actions, -=C S XX xQ x §
is a transition relation and § € S is the initial state.

Definition 2 (Deterministic Finite Automaton): A Determin-
istic Finite Automaton is a tuple DFA = (5,3, —, F,3§),
where S is a set of states, ¥ is a set of input actions,
—C S x ¥ x S is a transition relation, ' C S is a set of
accepting states, and § € S is the initial state.

Given a set of input traces, a prefix tree acceptor PT A is a
tree-like DF A (a.k.a. trie automaton) where each input trace
in the set is represented by a path from the initial state to an
accepting state, and no state has multiple incoming transitions.

Example 1: The Mealy machine in Fig. 1 implements
functions a; and b; with return values a, and b,, respec-

tively. The PT A corresponding to the set of execution traces
{a;a00;a,b;bob;bo, a;asb;b,} is shown in Fig. 2.
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Fig. 1: A Mealy machine of a SUL
B. Completeness of learning results

Completeness requires that the learning results contain all
the behavior that is allowed by the SUL and nothing more
than that. Completeness can hence be violated by overapproxi-
mation or underapproximation. Overapproximation means that
the learned model allows behavior that is not allowed by the
SUL. Underapproximation indicates that some of the behavior
of the SUL is absent from the learned model.

Example 2: The model in Fig. 3(a) overapproximates the
SUL from Fig. 1. In fact, this model allows any sequence
of inputs. The model shown in Fig. 3(b) underapproximates
the SUL. It misses the occurrence of input sequence a;a;b;b;
which is allowed by the SUL. The model shown in Fig. 3(c)
both overapproximates and underapproximates the SUL. This
model allows input sequence a;b;b; which is not allowed by
the SUL, while it disallows a;a;b;b; present in the SUL.

C. Active learning

In 1987, Angluin proposed the L* algorithm which im-
plements a well-known active learning framework [2]. The
original L* algorithm was designed to construct DFAs and
was later adapted to learn Mealy machines, enabling learning
for reactive I/O systems [21]. The active learning framework
(Fig. 4) assumes the presence of a feacher, which consists of
the SUL and an equivalence oracle. It also assumes that the
SUL can be represented by a regular language.

When learning, the learner iteratively executes two steps.
In the first step, the learner asks membership queries (MQs)
to the SUL to obtain output sequences in response to input
sequences. For example, for the SUL represented in Fig. 1,
output sequence a,b, is the response for input sequence a;b;.
The learner then proposes a hypothesis model in the form of a
Mealy machine, based on the output sequences. In the second
step, the learner verifies the correctness of the derived hypoth-
esis model by posting the hypothesis as an equivalence query
(EQ) to the equivalence oracle; the oracle uses test queries
(TQs) to check the equivalence with respect to the SUL. A
TQ, similar to a MQ, checks whether the system’s response
to an input sequence agrees with the response expected from
the hypothesis. If there is a mismatch between the responses
to the TQ from the hypothesis and the SUL, then the input
sequence is considered as a counterexample. Based on the
counterexample, the learner refines the hypothesis with further
MQs. The learning process continues until the equivalence
oracle cannot find a counterexample anymore to distinguish
the hypothesis from the behavior of the SUL.
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Fig. 2: PTA for a set of traces t = {a;0,a;a,0;0ob;b, a;0,b;b, }
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(a) Overapproximated model

(b) Underapproximated model

(c) A model containing both overapproximation
and underapproximation

Fig. 3: Model (a) overapproximates the SUL from Fig. 1, (b) underapproximates it and (c) both overapproximates it and

underapproximates.
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Fig. 4: Active learning framework

The learning algorithm guarantees the completeness of the
learned model under the assumption that the equivalence ora-
cle always returns a counterexample, given a counterexample
exists. Peled et al. [24] proposed to use conformance testing
to approximate the equivalence oracle. The partial W-method
(Wp-method) [10] is a conformance testing technique that,
given an upper bound m on the number of states of the target
model, constructs a set of TQs to find the difference between
the hypothesis and the SUL. Hence, if such a bound m is
known for the given SUL, the equivalence oracle based on the
Wp-method guarantees to find a counterexample if one exists.

However, in practice finding m is non-trivial as it requires
a comprehensive understanding of the SUL [30]. Furthermore,
the number of TQs increases exponentially in m — n where
n is the number of states of the hypothesis [34]. Underes-
timation can cause incompleteness while overestimation can
cause scalability issues. Limited by time, in practice one
has to stop testing the hypotheses at some point, sacrificing
completeness. The last hypothesis, proposed before stopping,
can overapproximate the SUL, underapproximate it or both
overapproximate and underapproximate it for different parts
of the behavior.

D. Passive learning

Different from active learning, passive learning algorithms
learn a model based on a provided set of traces. The majority
of passive learning algorithms is based on state merging [17],
[33]. Many algorithms, such as RPNI [22], expect both positive
traces (i.e., traces accepted by the SUL) and negative traces
(i.e., traces rejected by the SUL). Below we explain the
concept of state merging with a well-known RPNI algorithm.
Many algorithms were later developed on top of it.

RPNI starts from positive traces to build up a PTA. Next the
algorithm iteratively merges pairs of states. The merge might
cause non-determinism which is then removed by merging
additional states. For example, given the PTA in Fig. 2,
RPNI might decide to merge states 3 and 7, hypothesiz-
ing a;a,(a;a,b;b,)*b;b,. Next, the validity of the merge is
checked: merges that accept negative traces are disallowed
to avoid overgeneralization. This process continues until no
further merges are possible. Upon termination, the algorithm
has learned a model that accepts all positive traces and rejects
all negative traces. The language of the PTA, representing the
exact behavior of the set of positive traces, is a subset of the
language of the model resulting from passive learning.

The passive learning algorithms guarantee to learn a com-
plete model given a complete set of traces. Notions of com-
pleteness for a trace set differ for different algorithms: e.g.,
RPNI requires that the positive trace set visits every state and
transition in the behavior of the SUL, and the negative trace
set distinguishes every pair of states in that same behavior.

In practice, execution logs consisting of traces are used as
the inputs to passive learning algorithms [20]. The execution
logs usually only cover limited use cases, and contain only
positive traces [36]. This means that the negative traces are
practically absent [20], although such traces are needed to
avoid overgeneralization as proven by Gold [11]. In the
absence of negative traces, heuristics are typically used to
prevent over-generalization [17]. These heuristics can vary,
but typically still lead to overapproximation of some parts
of a system. Together with the incompleteness of the logs,



the passive learning result presents the same drawback as
the active learning result, that is, both overapproximation and
underapproximation can exist in the learned models.

III. PILOT STUDY

To understand the scalability challenges of active learning
and the role of the testing phase, we conduct a pilot study at
ASML, provider of lithography systems for the semiconductor
industry. Our approach to be presented in Section IV is
inspired by the findings of the pilot study.

Smeenk et al. [29] applied active learning to learn an
industrial component and reported that they did not learn the
complete behavior of the component, having used more than
263 million queries over a learning period of 19 hours. Their
study evidently supports the claim that the low learning effi-
ciency reduces the scalability of active learning. However, they
did not study (1) fo what extent testing is the bottleneck in the
active learning process and (2) which distinguishing behavior
between hypothesis and SUL is time-consuming to find via
testing. Answering these two questions is a prerequisite to
developing more scalable solutions. Hence, we design a pilot
study to answer these questions.

A. Study Design

a) Study objects: To apply active learning as described
above, we need to identify the upper bound on the number of
states m. In general, this step requires profound knowledge of
the SUL and precise estimation of the upper bound. Therefore,
we opt for components that originally were developed using
traditional engineering practices and later manually migrated
to MDSE, while preserving the functionality. Since these
components are MDSE-based, we can use the number of states
from the behavior of the MDSE models (i.e., reference models)
as m. Moreover, since the components were first developed
in a traditional way, they can be expected to exhibit a level
of control-flow complexity comparable to other components
developed using a traditional software engineering approach.
Based on these criteria, we select the logistics controller of
ASML’s TWINSCAN lithography machine. This controller is
in charge of scheduling the logistical process within a wafer
scanner, making sure that each wafer is processed according
to a specified recipe. In 2012, it was manually redesigned
using an MDSE technology called Analytical Software Design
(ASD) [38]. Over the years, 28 developers have performed
more than 1,500 commits to the master branch of the version
control repository of the controller. The resulting software
consists of 218 communicating ASD components. Each com-
ponent is modelled as a Mealy machine. The number of states
in the Mealy machines varies between 1 and 18,229. The
generated code consists of more than 700 KLOC.

b) Active learning setup: We opt for the state-of-the-art
active learning algorithm TTT [16] together with the Wp-
method for testing. Active learning consists of two steps,
learning or refining of the hypotheses using MQs and testing
these hypotheses using EQs and TQs. For each component,
we separately measure the learning time and the testing time.
We run the learning process with a timeout of 1 hour. In case
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Fig. 5: Learning time and testing time in active learning

of a timeout, we consider the last hypothesis constructed by
the learner as the learned model.

¢) Model comparison: Following Aslam et al. [4] we
consider a learned model to be complete if it holds a certain
formal relation with its corresponding reference model. If a
mismatch exists between the learned model and its reference
model, we use the structure-based comparison method of
Walkinshaw et al. [41] to identify the differences. We then
analyze why the differences between the hypothesis and the
SUL are hard to find via conformance testing, and what im-
provements might be beneficial to make this process efficient.

B. Results

Among the 218 components, 112 have been learned within 1
hour. For these components, when the total learning and testing
time is small, learning is responsible for more than half of the
total time (see Fig. 5). However, as the total time increases,
the ratio drops: when the total time exceeds 1 minute, the
learning time is less than 3% of the testing time.

Next, we take a closer look at one of the remaining 106
components. The reference model for this component is a
Mealy machine with 14 states and 144 input actions. Fig. 6
presents only the states that show the structural differences
between the last hypothesis constructed for this component and
the component itself (SUL). The reference model in Fig. 6(a)
shows that output actions ¢; and d; can only occur in the
upper path, following the input action a; (as shown in bold).
Similarly, output actions ¢y and dy can only follow the input
action ao in the lower path (also shown in bold). However, the
learner only successfully learned the path starting with input
action as, as shown in Fig. 6(b). It also tried to explore input
action a; from state 11, but failed to distinguish the paths
because no different output action was immediately observed.
As a result, output actions ce and ds can follow input action
a1 (as shown in blue). This means that the input sequence
a1b2bsbg was not explored, as otherwise the counterexample
that distinguishes state 2 from state 6 would have been found.
Searching for such a counterexample requires the equivalence
oracle to test all combinations of the input actions, to explore
the behavior from state 2 to state 5 (in green) with sequences
that consist of 3 input actions. Recall that the component
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Fig. 6: Example showing the far output distinction behavior problem in the testing part of the active learning process

is much bigger than suggested by Fig. 6, which focuses
only on the structural differences between the last hypothesis
constructed and the component itself; the component has 14
states and 144 input actions. Exploring sequences of 3 input
actions requires exploring 1443 (i.e., 2,985,984) combinations
in the worst case, while only one of them is relevant and can
refine the model. Furthermore, the equivalence oracle not only
considers behavior between states 2 and 5, but between other
pairs of states as well. Even with a timeout of 8 hours, those
two paths could not be distinguished.

We inspected other unfinished learning cases. The far output
distinction behavior appears often in the reference models.
Discussing this observation with the developers of the logistics
controller we learned that such behavior is common in the
controller due to non-stop parallel processing in TWINSCAN
systems: for maximum accuracy and productivity a TWIN-
SCAN measures one wafer while imaging another one. Hence,
the controller has to, for instance, schedule the movement
of two chucks which hold the measured and imaged wafers
respectively. This system requirement is reflected by different
control outputs given similar input sequences in the compo-
nents of the controller. However, the far output distinction
behavior is typically missing from the learned models.

C. Conclusions

This pilot study confirms that testing is the bottleneck of
active learning as previously discussed in literature [29], [34].
It also shows that most of the testing time is spent on finding
counterexamples that distinguish the states differentiated by
an output action on a (far) future state.

In the pilot study, we took the advantage of MDSE
components for which the number of states is known, and
hence the Wp-method can be suitably configured. However,
in practice users usually know little about a legacy SUL that
was developed using traditional engineering practices. The
underestimation of the upper bound m removes the guarantees
the Wp-method provides, i.e., the learned models might be
incomplete, even though we run the learning till it ends. Given
the difficulty of estimating the upper bound m and the large

amount of required testing time, obtaining a model that is far
from complete is not unusual.

Furthermore, Fig. 6 suggests that if one can find the coun-
terexample a1bobybg faster, then the model can be completely
learned in a shorter amount of time. Since ASML developers
recognize far output distinction behavior as part of their
regular system behavior, we expect that artifacts produced
during system execution, such as logs, capture this far output
distinction behavior. Hence, next we design the sequential
equivalence oracle extending the Wp-method conformance
testing to generate counterexamples based on execution logs
and passive learning results.

IV. SEQUENTIAL EQUIVALENCE ORACLE
We start by presenting the overall architecture of
our sequential equivalence oracle which has been briefly
sketched [3], and then focus on its individual components.

A. Architecture

The idea behind the sequential equivalence oracle is similar
to the idea behind hierarchical memory in computer architec-
tures, i.e., expensive operations are used only when necessary.
In computer architectures, different levels of caches are serving
as staging areas, to reduce the needs of visiting relatively slow
main memory and disk, when the CPU searches for data.

We can compare the traditional active learning approach to a
computer architecture without caches. In the traditional active
learning approach, when the learner requests a counterexample
using an EQ, the Wp-method searches for the counterexample
by asking the generated TQs to the SUL. This is an expensive
operation as shown in the pilot study. To reduce the frequency
of this expensive operation, we insert “caches”, i.e., cheaper
oracles, into the active learning process, as shown in Fig. 7.

Acting as the first “cache”, the Log-based oracle starts
searching for a counterexample when the hypothesis arrives.
It returns a counterexample if found, otherwise the hypothesis
is forwarded to a PL-based oracle. Similarly, the PL-based
oracle returns a counterexample if it finds one, otherwise the
hypothesis is forwarded to the Wp-method oracle. The role of
the Wp-method oracle is comparable to that of main memory



and disk where the data can always be fetched if it exists, at
the price of time. We do not modify the Wp-method oracle;
it works in the same way as in traditional active learning.

B. Log-based oracle

The Log-based oracle is based on the observation that logs
represent actual behavior of the system. Hence, counterexam-
ples can be found by identifying traces present in the log
that cannot be generated by the hypothesis model H. To
implement the Log-based oracle we collect execution logs
for the SUL and construct a PTA, Mpr4, from these logs.
Then, we compute the difference automaton for Mpr4 \ H.
If the resulting automaton has at least one accepting trace,
which shows the language is not empty, the Log-based oracle
generates a trace and returns it as a counterexample. Otherwise
H is forwarded to the PL-based oracle.

C. PL-based oracle

Most passive learning algorithms ensure the inclusion of the
input logs in their learned models. Hence, the execution logs
are accepted both by the result of a passive learning algorithm
and by the hypothesis H, that is, they are accepted by the
intersection of the DFA representing the result of passive
learning and H. The behavior represented by this intersection
is more likely to belong to the SUL than behavior represented
solely by the result of passive learning (but not H) or solely
by H (but not the result of passive learning).

The PL-based oracle is based on the conjecture that passive
learning generalizes the logs, potentially overapproximating
the behavior, and that the behavior learned solely by passive
learning (but not H) might contain valid generalization that
belongs to the SUL.

As opposed to the Log-based oracle, the PL-based oracle is
based on a conjecture. This is why in addition to computing
the difference automaton for the hypothesis DFA and the DFA
representing the passive learning result, and generating a trace
from that difference, we need to check whether the generated
trace is a valid counterexample or not. The oracle posts the
generated trace as a TQ to the SUL. If the trace is accepted,
it is valid and should be included in the behavioral model, so
the trace is sent to the learner as counterexample to refine the
learning. If the trace is rejected, it is excluded from the passive
learning result as invalid generalization. This process continues
until a counterexample is found or all generated traces are
examined. The hypothesis is then forwarded to the Wp-method
oracle if no counterexample can be found anymore.

D. Implementation

The sequential equivalence oracle is developed on top of
LearnLib [25], an open-source framework providing the im-
plementation of several active learning and testing algorithms.

As our target model is a Mealy machine, we use the
learning algorithms provided by LearnLib for learning Mealy
machines. We choose Mealy machines to represent behavioral
models because Mealy machines are a good representation
for reactive systems as they fit seamlessly with function calls
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Fig. 7: Active learning with sequential equivalence oracle

and return values. When implementing the Log-based and
PL-based oracles, we first convert hypotheses represented as
Mealy machines to DFAs, and only then compute difference
automata. The worst case complexity of the conversion and
subsequent DFA operations is O(n?), where n is the number of
states of the Mealy machine. Since LearnLib does not include
means of computing the difference between two automata,
we compute the intersection of one of the automata with
the complement of the other. The resulting automaton is then
minimized using a standard Hopcroft minimization [14].

In both the Log-based and the PL-based oracles, traces are
generated from the difference automata by applying a breadth-
first search until an accepting state is reached.

V. EVALUATION OF PROPOSED APPROACH
In this section, we present the case study for the evalua-
tion of our approach. We report our study according to the
guideline proposed by Runeson et al. [27].

A. Research questions

The goal of this case study is to evaluate whether, and to
what extent, our approach can improve the efficiency of active
learning in an industrial setting. We refine our goal further to
the following research questions:

RQ1: To what extent does our approach reduce the time
for learning a SUL? Although our approach was inspired by
particular observations about far output distinction behavior,
we expect our approach can reduce the time for learning any
SUL, given the behavior of the SUL is deterministic and not
influenced by data parameters.

RQ2: How do the Log-based oracle and the PL-based ora-
cle individually contribute to reducing the testing time together
with the Wp-method? We conjecture that both the Log-based
oracle and the PL-based oracle contribute to the improvement.
However, it is possible that one outperforms another, or one of
them does not contribute significantly. Answering this question
can help us to improve the architecture of the equivalence
oracle, as well as assist in making the trade-off between
efficiency and computational complexity for the approach.

RQ3: Does combining different oracle components help?
We combine Log-based and PL-based oracles with the Wp-
method oracle as we conjecture that these two oracles con-
tribute different behavior to the learning. However, it is possi-
ble that using only one of them with the Wp-method can al-
ready achieve the same or relatively comparable performance.



TABLE I: Features of 18 MDSE-based industrial components

#states #inputs | #states #inputs | #states #inputs

A 14 144 G 47 103 | M 80 98
B 9 18| H 27 152| N 11 52
C 6 64| 1 37 1151 O 9 123
D 9 62| J 30 102| P 14 13
E 14 9| K 17 102 Q 14 159
F 2 3| L 17 102| R 37 102

B. Case study selection

We selected cases from the 218 ASD components studied
in our pilot study. As they are MDSE-based components, we
know the size of the behavior of the components, and can
correctly configure the Wp-method oracle. Furthermore, we
can evaluate the industrial applicability of our approach.

We applied the following criteria to select the components:

1. Logs should be available. Our approach needs logs for the
Log-based and PL-based oracles. Unavailability of logs makes
the approach inapplicable. At ASML, software execution is
logged during both normal machine production and software
testing, if logging is enabled for the component.

2. The behavior of the selected components must be deter-
ministic and not influenced by data parameters.

Limited by the availability of logs, we obtain 18 components
(from 218) as study objects. We name the components A to R;
A is the component discussed in the pilot study. Table I shows
the number of states and input actions of these components.

C. Experiment setup

1) Equivalence oracle setup: We conduct experiments with
different equivalence oracle settings. We have four equivalence
oracle settings in total. The equivalence oracle setting with
the Wp-method alone is the control group. For the experiment
groups, we have three additional equivalence oracle settings:
the sequential equivalence oracles consisting of 1) Log-based,
PL-based and Wp-method oracles (EO1), 2) Log-based and
Wp-method oracles (EO2), 3) PL-based and Wp-method ora-
cles (EO3). For each group we measure the testing time and
the total active learning time. We configure a timeout of 1
hour for all experiments.

2) Logs and passive learning results: Log-based and PL-
based oracles require logs and passive learning results as
inputs, respectively. The used logs are collected from the
execution of unit and integration tests, containing the inter-
actions (i.e., input and output actions) between components
and their system environment. Some post-processing, such
as parsing and renaming, is conducted for fitting the passive
learning tools. The passive learning results are obtained using
the Alergia algorithm (with a configured bound of 10) [23]
provided by FlexFringe [39].

3) Hardware setup: We executed all our experiments on
a HP 7420 workstation, a desktop PC with an Intel Xeon
E5-1620 v2, a quad core CPU consisting of cores running at
3.70 Ghz with hyperthreading, 32 gigabytes of memory, and
running the Microsoft Windows 7 SP1 x64 operating system.

D. Statistical analysis

a) RQI: To answer RQI given an oracle o (EO1, EO2,
EO3) we formulate the following hypotheses:

H§, : There is no statistically significant difference between
the total learning time with the Wp-method alone and with the
equivalence oracle o.

H_ : The total learning time with the Wp-method alone is
greater than with equivalence oracle o.

We formulate the alternative hypothesis as a directional
alternative since testing the correctness of the hypothesis
constructed by the learner is known to be the most expensive
step in the active learning process. We expect our approach to
reduce the testing time of the active learning process.

b) RQ2: We formulate the following hypotheses:

H§,: There is no statistically significant difference between
the total learning time with EO2 and with EO3.

H_Z,: The total learning time with EO3 is less than with
EO2.

The rationale behind this alternative hypothesis is that it is
possible that EO3 outperforms EO2 as the passive learning
results include the behavior shown in the log and potentially
some other valid generalized behavior, which might further
reduce the required testing time.

c) RQ3: Given an oracle o (EO2, EO3), the following
hypotheses are formulated:

HE,: There is no statistically significant difference between
the total learning time with EOI and with o.

H_.: The total learning time with EOI is less than with o.

This alternative hypothesis is a directional alternative since
we expect that EO1, which is the combination of EO2 and
EO3, results in shorter total learning times than when each
one of the oracles is used separately.

d) Analysis technique: To test the hypotheses we perform
pairwise tests (RQ1: Wp-method vs. EOl, Wp-method vs.
EO2, Wp-method vs. EO3; RQ2: EO3 vs. EO2; RQ3: EOI1
vs. EO2, EOl vs. EO3). Next we adjust the p-values [5] to
control the false discovery rate. Since answering RQI, RQ2
and RQ3 involves comparing the same values, we adjust the
six p-values together. Finally, if the difference is observed to
be statistically significant, we report the effect sizes.

E. Results

Table II presents the results of learning components A to
R with different equivalence oracle settings. Using the Wp-
method oracle alone, 12 out of 18 components were fully
learned within 1 hour. The learning for components A, G,
K, L, M and R remained unfinished. In contrast, by applying
EO1, EO2 or EO3, all components are fully learned within 1
hour. In particular, we completely learned component A, which
exhibits far output distinction behavior, within 13 mins. This
seems to be a promising result. Next, we further analyze the
data to answer our research questions.

1) RQI: To what extent does our approach reduce the time
for learning a SUL? Fig. 8 shows the total learning times
for different oracles. While it clearly suggests that overall
the Wp-method oracle is by far the slowest, this does not



TABLE II: Experiment results (testing times and total learning times) for 18 industrial components using Wp-method oracle,
Sequential equivalence oracle, Log-based oracle and PL-based oracle.

Component Wp-method Seq. equiv. oracle (EO1)  Log-based oracle (EO2)  PL-based oracle (EO3)
Testing [s] Total [s]  Testing [s] Total [s]  Testing [s] Total [s]  Testing [s] Total [s]

A timeout timeout 778.990 788.202 816.013 826.804 765.306 772.956
B 2.786 3.295 1.804 3.125 2.098 3.537 1.530 4.780
C 8.676 9.328 1.230 1.820 1.120 1.704 0.814 1.407
D 5.813 6.671 4.615 5.326 4.286 4.965 4.570 5.268
E 245.650 249.421 97.083 100.448 90.290 93.340 897.460 931.330
F 0.040 0.106 0.134 0.186 0.122 0.173 0.097 0.146
G timeout timeout 971.513 1007.606 1007.947 1038.270 984.008  1006.132
H 1789.083  1808.736 26.357 52.127 23.578 43.365 27.089 50.341
1 2768.578  2783.944 719.338 735.648 718.815 733.797 718.674 734.401
J 221.367 229.185 6.779 16.552 6.319 15.823 7.009 16.728
K timeout timeout 3.450 7.951 3.089 7.504 4.095 8.336
L timeout timeout 4.231 9.781 3.772 8.957 3.834 8.593
M timeout timeout 54.812 92.438 45.388 83.794 44.147 79.708
N 190.460 192.575 6.565 9.685 5.782 8.456 3.554 6.414
(6] 319.283 322.333 131.301 134.582 130.041 132.940 111.614 115.060
P 27.433 29.687 8.098 10.603 9.407 11.167 61.263 90.950
Q 2030.369  2039.024 1800.076 1811.001 1774.798 1787.820 1784.561  1792.723
R timeout timeout 16.528 35.635 14.817 35.234 18.456 34.503
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Fig. 8: Violin plots of the total learning times with different
oracles

necessarily mean that for each individual component, the Wp-
method oracle is slower than the other oracles. To answer this
question we performed pairwise tests. Since the distribution
of the learning times is skewed (cf. Fig. 8) we opt for the
pairwise Wilcoxon rank sum tests, and for Cliff’s delta as the
effect size measure. We interpret the Cliff’s delta according to
the guidelines of Cohen [9].

We observe that for all pairs of oracles H§, can be rejected
in favour of HY, (p ~ 7.6x107°,1.9x1075,1.6x10~2 for EO1,
EO2, EO3, respectively). Furthermore, the effect of replacing
the Wp-oracle with EO1 or EO3 is medium (§ ~ 0.47,0.46,
respectively) and with EO2 it is large (6 ~ 0.48).

2) RQ2: How do the Log-based oracle and the PL-based
oracle individually contribute to the time reduction? We find
that Hg, cannot be rejected (p ~ 0.62).

3) RQ3: Does combining different oracle components help?
The p-values are 0.96 and 0.93 for EO2 and EO3 respectively.
Therefore, H5’3 cannot be rejected.

F. Discussion

Our results show that the sequential equivalence oracle and
its simplified versions, the Log-based and PL-based oracles,
significantly improve the performance of active learning, while
we could not observe a significant difference in performance
of the Log-based and PL-based oracles. The conclusion one
would like to derive is that integrating log data (either in
the form of a log, or in the form of a model inferred from
the log using passive learning techniques) in active learning
is beneficial. However, it is not yet clear whether enhancing
active learning with passive learning is always beneficial or
not.

Next we perform a closer inspection of the performance of
the different oracles on individual components. To this end we
show a bar chart (Fig. 9) of the ratios of the total learning time
with other oracles with respect to the total learning time with
the Wp-method alone. For the cases where learning was not
finished within 1 hour with the Wp-method, we use 1 hour
as the total learning time. As expected EO1, EO2 and EO3
perform better than the Wp-method oracle alone, for most of
the cases. Particularly, the total learning time for relatively
large components H, K and L were significantly reduced.
This suggests that our approach can potentially address the
challenges of learning large systems. However, some excep-
tions exist. For example, for component F', the Wp-method
oracle alone results in the shortest total learning time. This
is because component F' has only two states and three input
actions (as shown in Table I). In such cases, the computation
required in the Log-based and PL-based oracles costs more
time than sending very few TQs with the Wp-method oracle.
Moreover, for components B, E' and P, EO3 costs more time
than the Wp-method oracle. This likely indicates the presence
of a significant amount of invalid generalization in the passive
learning result; therefore, extra time was spent on validating
the generated traces even though no counterexample was
eventually found. Based on the observations, we can expect



Total learning time ratio

J K L M

(0] P Q R

Fig. 9: Ratios of the total learning time with 1) EO1 (black), 2) EO2 (dark grey) and 3) EO3 (light grey) with respect to the
total learning time with the Wp-method alone (shown with dashed lines)

that the performance of the PL-based oracle is influenced by
the used algorithms and heuristics that generalize the logs in
different ways. The quality of the logs also influences the
performance of both the Log-based and PL-based oracles.

G. Threats to validity

a) Limitation: The main limitation of our evaluation is
that we applied our approach to 18 components for which
logs are available. The unavailability of logs for a larger set of
components hindered us to evaluate our approach with a better
distribution in the size of components and a wider diversity of
component behavior. However, as the preliminary evaluation,
the promising results motivate us to evaluate our approach on
a larger set of software components in the future.

b) Construct validity: This validity examines whether
what we measured can quantify the efficiency of active learn-
ing. We measured the total learning time as it intuitively
measures the efficiency. However, the efficiency can possibly
be quantified by such metrics as the number of MQs and TQs,
since time might not be the only costly resource.

c) Internal validity: In order to control the variables of
our experiments, we only change the equivalence oracles in
each experiment, and keep the remaining settings the same.
In this study we do not consider the types of execution logs
(e.g., test and production logs), the features of traces (e.g.,
long or short traces) in logs and the heuristics of passive
learning algorithms as variables, although they can greatly
influence the performance of the Log-based and PL-based
oracles. Moreover, we only run the experiments once, although
the time spent in different runs might slightly differ.

d) External validity: This validity questions whether our
conclusions are valid in a more general context. We find two
threats to this validity. First, as stated, the limited number of
case study objects is the main limitation of our work. We

expect that the Log-based oracle can help for other systems
as well because it finds counterexamples without costing any
test query. Second, our case study objects are a group of
components used to perform control logic of systems. A
further study is required to evaluate our approach on different
types of system from different companies.

VI. RELATED WORK

The idea of combining different techniques to solve the-
oretical and practical model learning problems is not new.
Some hybrid learning techniques aim at enabling learning on a
larger set of systems. Walkinshaw et al. [42] introduced a way
to combine data mining techniques with a passive learning
algorithm to learn the behavior that is influenced by data
parameters. For the same purpose, Howar et al. [15] opened
the black-box of the SUL by applying symbolic and static
analysis techniques to iteratively refine the active learning
result. Different from these approaches, our work combines
techniques to improve the efficiency while guaranteeing a
certain minimum behavioral coverage for deterministic and
non-parameterized systems.

Smetsers et al. [30] combined conformance testing with
mutation-based fuzzing methods, to enhance the equivalence
oracle in active learning. This work uses a fuzzer to mu-
tate the program tests, monitors the code coverage of the
generated tests, and uses the mutated tests as a source of
counterexamples. The authors experimentally showed that the
hybrid approach can discover states that were not learned by
using conformance testing alone. However, making use of the
full potential of this approach requires the source code to be
available; a 2.5 times efficiency degradation was observed
when the source code was not available. Differently, our
approach still treats the SUL as a black-box and therefore can
be applied independently from the availability of the source
code and programming language in which it was written.



To improve the quality of the models resulting from active
learning, Smetsers et al. [31] used a metric to measure the
distance between hypotheses and the behavior of the SUL. The
proposed approach promises that the measured distance does
not increase, i.e., the behavioral coverage does not decrease
over time. This means that when users stop the learning, the
current hypothesis is the best model the active learner has ever
constructed, in terms of behavioral coverage. Our approach
makes a different promise about the behavioral coverage, i.e.,
the learned models at least cover the execution logs.

Previous work has also shown that combining different
techniques can reduce the need for testing in active learning.
Howar et al. [15] adopt partial order reduction to reduce the
number of required sequences in testing. This work relies on
static analysis to determine mutually independent functions
(input actions), and only a single order is constructed for
these functions. Instead of using white-box techniques such
as partial order reduction, our approach reduces the need for
testing by searching counterexamples from the execution logs
and the generalization of passive learning results. As stated,
finding counterexamples faster is the key to reducing the num-
ber of tests. Smeenk et al. [29] used manually crafted coun-
terexamples to reduce the testing time. However, constructing
counterexamples manually requires domain knowledge which
is not necessarily available. We use logs and passive learning
results instead, and do not rely on domain knowledge.

Several approaches use logs to refine learning. Smetsers et
al. [35] claimed their approach ensures that learned models
cover the behavior of the logs, yet it is not clear how logs
were integrated into the learning framework. Their work also
suffers from limited evaluation and the use of artificial logs.
Differently, we explicitly integrated the logs as an equivalence
oracle and evaluated our approach on a larger scale in an
industrial setting. Bertolino et al. [6] proposed to build up
a framework for updating the hypothesis while a networked
systems are evolving. This framework integrates a continu-
ously running monitor that collects system traces at runtime,
examines the mismatch between the hypothesis and the target
system, and then refines the learning. However, this continu-
ously running mechanism can be very expensive in terms of
time, memory resources and infrastructure cost, thus making
it less applicable. Our approach integrates pre-collected logs
into the learning process. In addition, our approach enables
combining logs from different sources (e.g., test execution
and production), which can potentially enrich the behavioral
coverage, as different logs might represent the execution of
completely different use cases of the systems.

VII. CONCLUSION AND FUTURE WORK

In this paper, we started by evaluating the performance of
a state-of-the-art active learning setup on a collection of 218
MDSE-based components provided by ASML. We observed
that the active learning converged for 112 components in one
hour or less. For these components we have observed that as
the total learning time increases, active learning becomes dom-
inated by the testing phase. Active learning did not converge

for 106 models. By inspecting one of these components, we
observed that the lack of convergence can be attributed to the
presence of far output distinction behaviour in the SUL. As
far output distinction behaviour is part of the regular system
behavior we expect to observe it in the execution logs.

To improve the efficiency of active learning we have pro-
posed the sequential equivalence oracle integrating informa-
tion from the execution logs and passive learning results.
The sequential equivalence oracle has been evaluated on 18
industrial components. The results show that our approach can
significantly reduce the total active learning time. Evaluation
of the individual oracles suggests that using the Log-based
oracle with the Wp-method might be sufficient to achieve
good efficiency. However, considering other variables, such
as the completeness of the logs and the level of generalization
introduced by different passive learning algorithms, we suggest
to conduct a more comprehensive case study that takes all
these factors into account.

An additional advantage of the sequential equivalence oracle
is the ease with which additional components based on behav-
ioral evidence can be integrated, further reducing the need for
testing. For example, as sub-oracles one can integrate manually
crafted models (cf. Smeenk et al. [29]) or use multiple models
learned by different passive learning algorithms. Furthermore,
similarly to what we did to answer RQ2, users can analyze
which sub-oracles contribute more to refining active learning,
and adapt the sequential equivalence oracle to their context.

We consider several directions as future work. First, we plan
to perform a more comprehensive study with the sequential
equivalence oracle on a richer set of components (i.e., more
components from different types of systems). This will allow
us to investigate more variables and provide users a guideline
to adapt our techniques in their own context. For example,
it would be valuable to study what features of traces can
complement the Wp-method better, which passive learning
algorithms work best for our PL-based oracle, and in which
scenario one oracle set-up performs better than others. Second,
while in this study we apply the techniques to MDSE-based
software, we plan to replicate our work on legacy software.
Moreover, the current approach is limited to the class of
systems where values of data parameters do not influence the
behavior. Learning data-dependent behavior is still a challenge
for model inference techniques in terms of scalability [28]. It
might require us to open the black-box of the SUL (cf. Howar
et al. [15]) and integrate static analysis techniques. Finally,
one can integrate the distance-metric approach of Smetsers et
al. [31], [35] with the use of logs advocated in the current
work by employing recently proposed log-log and log-model
comparison techniques of Gupta et al. [13] or Amar et al. [1].
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