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Abstract—Static analysis tools help to detect common pro-
gramming errors but generate a large number of false positives.
Moreover, when applied to evolving software systems, around
95% of alarms generated on a version are repeated, i.e., they
have also been generated on the previous version. Version-aware
static analysis techniques (VSATs) have been proposed to suppress
the repeated alarms that are not impacted by the code changes
between the two versions. The alarms reported by VSATs after
the suppression, called delta alarms, still constitute 63% of the
tool-generated alarms.

We observe that delta alarms can be further postprocessed
using their corresponding code changes: the code changes due
to which VSATs identify them as delta alarms. However, none
of the existing VSATs or alarms postprocessing techniques
postprocesses delta alarms using the corresponding code changes.
Based on this observation, we use the code changes to classify
delta alarms into six classes that have different priorities assigned
to them. The assignment of priorities is based on the type of
code changes and their likelihood of actually impacting the delta
alarms. The ranking of alarms, obtained by prioritizing the
classes, can help suppress alarms that are ranked lower, when
resources to inspect all the tool-generated alarms are limited.

We performed an empirical evaluation using 9789 alarms
generated on 59 versions of seven open source C applications.
The evaluation results indicate that the proposed classification
and ranking of delta alarms help to identify, on average, 53% of
delta alarms as more likely to be false positives than the others.

I. INTRODUCTION

Static analysis tools have shown promise in detection of
common programming errors in software systems and also
proving absence of those defects [1]–[5]. Despite this, recent
studies [6]–[8] report that these tools are underused in practice.
The studies report that the large number of alarms generated
and the effort required to manually partition them into true
positives and false positives are two primary reasons for the
underuse. The manual inspection of alarms for the partitioning
is found to be time-consuming and error-prone [6], [9], [10].

Numerous alarms generated on a version of evolving soft-
ware system are repeated, i.e., they have also been generated
on the previous version of the system. A few of the alarms
postprocessing techniques [11] propose to reduce the number
of alarms by suppressing repeated alarms that are not impacted
by the code changes between the two versions [12]–[14] (see
Section II-B). We call these postprocessing techniques version-
aware static analysis techniques (VSATs) and the alarms
reported by them delta alarms.

Due to their limitations, VSATs still report 40-80% of
alarms generated by static analysis tools as delta alarms [12],
[13]. Our pilot study (see Section III) also indicated that
around 63% of alarms generated by static analysis tools (tool-
generated alarms) get reported as delta alarms. That is, the
number of delta alarms is still large, and the alarms need to
be processed to reduce their number and simplify their manual
inspection.

We find that, in addition to computing delta alarms, code
changes between two consecutive versions can be used further
to postprocess the alarms. However, none of the VSATs or
existing alrams postprocessing techniques postprocesses delta
alarms based on the code changes. Based on this observation,
to address the problem of large number of delta alarms, we
propose to postprocess the alarms by taking into account their
corresponding code changes: the code changes due to which
VSATs report them as delta alarms.

In our proposed technique, we classify delta alarms into
six classes depending on type of their corresponding code
changes. These six classes have different priorities assigned to
them. The assignment of priorities is motivated by our observa-
tion that different types of program statements impact alarms
differently, and therefore, changes made to those impacting
program statements will impact the alarms differently.

The prioritization of classes allows to rank alarms. Since the
alarms in the lowest priority class(es) are more likely to be
false positives, they can be suppressed. The alarms suppres-
sion may result in suppressing a true positive, however it is
unavoidable when the resources available to manually inspect
all the tool-generated alarms are not sufficient. The proposed
postprocessing of delta alarms is orthogonal to techniques that
are proposed for postprocessing of alarms [11], [15], [16]. The
proposed technique is more suitable to alarms generated by
deep static analysis tools, i.e., tools that analyse flow of data,
(e.g., Astree [17]), than to alarms that are generated by a tool
based on pattern-matching (e.g., FindBugs [18]).

We performed an empirical evaluation of the proposed
technique using 9789 alarms generated by a commercial static
analysis tool on 59 versions of seven open source C applica-
tions. The results indicate that the proposed classification and
ranking of delta alarms help to identify, on average, 53% of
delta alarms as more likely to be false positives than the others.



The key contribution of the paper is a novel technique
that ranks delta alarms by classifying them based on their
corresponding code changes.

Paper Outline: Section II briefly describes motivation to
classify and rank delta alarms. Section III presents a pilot
study that we conducted. Section IV describes the terms and
notations used in the paper. Sections V and VI respectively
describe the proposed classification and prioritization of delta
alarms. Section VII discusses our empirical evaluation. Section
VIII presents related work, and Section IX concludes.

II. MOTIVATION

In this section, we briefly describe VSATs, their limitations,
and motivation to classify and rank delta alarms. We begin by
presenting a running example used throughout the paper.

A. Running Example

Consider the C code example in Figure 1 showing two
consecutive versions V1 and V2. The code is simplified consid-
erably but it is still sufficiently rich to motivate and present the
proposed classification and ranking of delta alarms. We assume
that all program points are reachable. The code changes
between the two versions are typeset on grey background.

Analysis of V1 (resp. V2), using a static analysis tool,
for division by zero and array index out of bounds (AIOB)
verification properties will result in four (resp. six) alarms.
We use Dn and An to respectively denote an alarm generated
at line n for these two properties. Henceforth, we use the
notations V1 and V2 to denote two consecutive code versions.

B. Background: VSATs and Their Limitations

1) VSATs: The approaches used by VSATs [12]–[14],
[19]–[21] to suppress repeated alarms vary greatly. The tech-
niques that are based on syntactic location matching [19] and
coding patterns can result in a false negative. Therefore, we
call them unsound VSATs and exclude them from the subse-
quent discussion. The other VSATs [12]–[14], [21] perform
safe suppression of repeated alarms, i.e., they do not result
in a false negative. We call these techniques sound VSATs.
The safe suppression of alarms by sound VSATs is based on
assumption that the user has inspected all alarms reported on
the previous version and has taken corrective actions for the
alarms that were identified as true positives.

The VSAT proposed by Chimdyalwar and Kumar [13]
performs impact analysis for each repeated alarm to determine
whether the alarm is impacted by the code changes. It then
suppresses the repeated alarms that are not impacted. The
VSAT proposed by Logozzo et al. [12], called verification
modulo versions (VMV), first extracts semantic environment
conditions from V1, instruments the code in V2, and then
verifies the instrumented code. The VSAT proposed by Jana
et al. [21] uses a change-based alarm reporting approach that
reports an alarm only if the alarm point lies on a newly
introduced, potentially unsafe, execution path. We exclude
differential assertion checking-based VSAT [14] from our
discussion, because it is not applicable to alarms that are newly

Version V1

1 int x,y,z,a[50];
2 int b[10] = {...};
3
4 void foo(int p){
5 int m=2,t1;
6
7 x = lib1();
8 y = lib2();
9

10 if(nondet())
11 m = 4;
12 bar(m);
13
14
15 t1=x/y; D′

15

16 }
17
18 void bar(int i){
19 int t = y, t2;
20
21 z = lib3();
22 t2 = b[z]; A′

22

23
24 if(x > 20)
25 t = b[y]; A′

25

26
27 a[i]=5;
28
29 print(5/t); D′

29

30 }

Version V2

1 int x, y, x, a[50];
2 int b[10] = {...};
3
4 void foo(int p){
5 int m = 2, t1;
6
7 x = lib3();
8 y = lib2();
9

10 if(nondet())
11 m = x;
12 bar(m);
13 x = 100 / p; D13 //POI-added
14
15 t1=x/(y-2); D15 //POI-changed
16 }
17
18 void bar(int i){
19 int t = y, t2;
20
21 z = lib4();
22 t2 = b[z]; A22 //ddImpacted
23
24 if(x > 20)
25 t = b[y]; A25 //cdImpacted
26
27 a[i]=5; A27 //Result-changed
28
29 print(5/t); D29 //vdImpacted
30 }

Fig. 1: Examples of delta alarms (yellow rectangles) and the
classes identified for them (shown in comments).

generated, and non-scalability of the program verifiers on large
programs is a concern.

2) Limitations of VSATs: The three sound VSATs described
above have fundamentally different strengths and limitations.
Due to their different strengths and limitations, they can be
combined: an alarm is suppressed if any of them suppresses
it. However, even their combination can fail to suppress delta
alarms in commonly occurring scenarios. For example, none
of these three VSATs or their combination suppresses any of
the six alarms generated on V2 shown in Figure 1. Thus, all
those six alarms get reported as delta alarms.

Due to the conservative approaches used by sound VSATs, a
high percentage of impacted alarms are spuriously generated
(Section VI-C). For example, consider repeated alarm A25.
This alarm gets identified as impacted due to the change made
on line 7. However, this change to values assigned to x actually
does not affect determining whether A25 is a true positive: the
values of x do not restrict values taken by y at line 25 but
only control reachability of the alarm’s program point [22].

Additionally, sound VSATs report a spurious delta alarm
when the code from the two consecutive versions cannot be
mapped precisely due to semantics preserving changes like
code movement and refactoring. As a result, the number of
delta alarms reported is still large: VSATs report around 40-
80% of tool-generated alarms as delta alarms.



TABLE I: Distribution of delta alarms in the pilot study.

Application Versions selected Tool-
generated

alarms

Repeated
alarms

Suppressed
repeated
alarms

Impacted
alarms

Newly
generated

alarms

Delta
alarmsTotal

versions
First

version
Last

version
archimedes 15 0.0.8 2.0.0 6373 6030 2190 3840 343 4183
auto-apt 3 0.3.22 0.3.23 178 178 4 174 0 174
dict-gcide 2 0.48.1 0.48.2 192 187 176 11 5 16
mtr 12 0.73 0.85 803 775 403 372 28 400

Total 7546 7170 2773 4397 376 4773
Percentage of the tool-generated alarms 95.0 36.7 58.2 4.9 63.3

C. Motivation for Classification/Ranking

The existing VSATs [12], [13], [19], [20] broadly classify
delta alarms only into two classes: newly generated (the ones
which did not occur on the previous version) and impacted
(the repeated alarms that are impacted by the code changes).
Among the six delta alarms shown, D13, D15, and A27 are
newly generated, and A22, A25, and D29 are impacted.

Since the number of delta alarms is still large, their postpro-
cessing is required to reduce their number and simplify their
manual inspection. We believe that classifying delta alarms
further based on the type of their corresponding code changes
is a more natural way to classify delta alarms as it captures
the causal relationship, and expect that such a classification
can provide multiple benefits.

In general, changes made between two consecutive versions
are on different types of program statements, so are the
delta alarms reported due to these changes. E.g., the reasons
for generation of newly generated alarms D13 and A27 are
different. The line 13, on which D13 is reported, is newly
added in V2, whereas the array expression a[i] checked by
A27 also existed in V1 but was identified as safe. The change
on line 11 generates A27 for the same expression a[i] in V2.

As another example, consider impacted alarms A22 and
A25 having their corresponding changes on lines 21 and 7
respectively. The changed program statements affect the two
alarms differently: the change on line 21 directly modifies
values of the index expression in A22, whereas the change
on line 7 only affects whether the program point of A25 is
reachable. In Section V-B we classify A22 and A25 (also D13

and A27) into different classes, based on the impact of their
corresponding changes on them.

The classification of delta alarms allows to inspect the
alarms differently depending on their class and simplify their
manual inspection. For example, inspection of a newly gen-
erated alarm whose program statement is newly added will
require inspecting the code on the backward slice generated
for the alarm. However, for newly generated alarms whose
POIs are converted from safe points in V1 to alarms in V2,
inspecting only the corresponding code change(s) is sufficient.

Moreover, the classification can help us identify classes that
are more important than the others. For example, based on
impact of the corresponding code changes on A27 and D13,
we can assign higher priority to the class of A27 than the class
of D13: although A27 and D13 are newly generated alarms,

the reasons for their generation are different and A27 could be
due to the side-effect of the code changes made between the
versions. Similarly we can assign higher priority to the class
of A22 than the class of A25, and thus rank A22 before A25.

III. PILOT STUDY

As discussed earlier (Section II-B), VSATs broadly classify
delta alarms into two classes: newly generated and impacted.
The usefulness of the classification and ranking technique we
will develop is based on two assumptions: (1) the number
of delta alarms reported by VSATs is large, and (2) a large
percentage of delta alarms are impacted alarms. Indeed, if
only few (impacted) delta alarms are reported, impact of the
technique to be developed will be negligible. Hence, in this
section we perform a preliminary study to measure (a) what
percentage of alarms generated by static analysis tools (tool-
generated alarms) are repeated; (b) what percentage of tool-
generated alarms get reported as delta alarms; and (c) what
percentage of delta alarms are newly generated and impacted
alarms. The impacted alarms in the lowest priority classes, as
described next in Section VI, are candidates for suppression
by our technique.

We randomly chose four open source C applications from
the list of 100 applications used by Cha et al. [23], with the
constraints that (1) application size should be greater than 10
KLOC and less than 20 KLOC1, and (2) at least two versions
of the application should be available online. Table I lists
these four applications together with the number of versions
selected, and the first and last versions in our selection.

We analyzed the selected 32 versions (Table I) for AIOB
property using a commercial static analysis tool, TCS ECA
[24]. We implemented impact analysis-based VSAT [13], and
used the implementation to compute delta alarms from the
tool-generated alarms. We measured the number of tool-
generated alarms, repeated alarms, suppressed repeated alarms,
delta alarms, newly generated alarms, and impacted alarms.
The measurement results, shown in Table I, indicate that, on
average, (a) 95% of tool-generated alarms are repeated; (b)
63.3% of tool-generated alarms get reported as delta alarms
and the other (36.7%) alarms get suppressed as they are
repeated and not impacted by the code changes; and (c)
92% % (resp. 8%) of delta alarms are impacted (resp. newly

1To limit the amount of analysis and delta alarms’ computation time, we
restricted the evaluation to relatively small applications.



generated). Therefore, we expect the proposed classification
and ranking of delta alarms will be applicable to a large
number of alarms and hence beneficial to simplify the manual
inspection of alarms.

IV. TERMS AND NOTATIONS

A. Control Flow Graph

A control flow graph (CFG) [25] of a program is a directed
graph ⟨N , E⟩, where N is a set of nodes representing the pro-
gram statements (like assignments and controlling conditions);
and E is a set of edges where an edge n → n′ represents a
possible flow of program control from n ∈ N to n′ ∈ N .
Depending on whether the program control flows condition-
ally or unconditionally along an edge, the edge is classified
either as conditional or unconditional. For a conditional edge
n → n′, we use label(n → n′) to denote its label, and use
condExpr(n) to denote the conditional expression associated
with the branching node n. When a conditional edge n → n′

is from a switch statement to one of its case statements, we
assume that the label of that edge is same as the case label.
Since Figure 1 shows only one statement per line, we use nm

to denote the node of the program statement at line m. We
call the entry or exit of a node a program point.

B. Data and Control Dependencies

1) Data Dependencies: We call a node definition node (or
assignment node) if it defines a variable. A variable x at a
program point p is said to be data dependent on a definition
node dx : x = e of x, if x = e is a reaching definition [26] of
x at p. Data dependencies of a variable v are the definitions on
which v is data dependent. For an assignment node dx : x = e
of x (i.e., a data dependency of x), we use assignExpr(dx) to
denote the assignment expression x = e. We say that data
dependencies of an assignment node (statement) dx : x = e
are same as union of data dependencies of variables in e. For
an expression other than assignment, its data dependencies are
defined as the union of data dependencies of variables in it.

2) Control Dependencies: A node V is post-dominated by
a node W if every directed path from V to the exit node (not
including V ) contains W [27]. Let X and Y be nodes in a
control flow graph G. Y is control dependent on X iff (1)
there exists a directed path P from X to Y with any Z in P
(excluding X and Y ) post-dominated by Y and (2) X is not
post-dominated by Y [27]. Control dependencies of a node
n are the conditional edges on which n is control dependent.

3) Transitive Data and Control Dependencies: Let C and
D be the set of all possible conditional edges and assignment
nodes in the program respectively. An assignment node dx
is called transitive data dependency of a variable x if dx
belongs to the transitive closure of data dependencies of x.
We use α to denote a variable or expression at a program
point, or a conditional edge. Let d

d+−→ α denotes that d
is a transitive data dependency of α. We denote transitive
closure of data dependencies of α using dDep+(α), i.e.,
dDep+(α) = {d | d ∈ D, d

d+−→ α}.

A conditional edge e is called transitive control dependency
of α if e belongs to the transitive closure of control dependen-
cies of α. We write cdDep

cd−→ α to denote cdDep is a data or
control dependency of α. A definition or a conditional edge
cdDep is a transitive data and control dependency of α, shown
as cdDep

cd+−−→ α, iff cd1
cd−→ cd2

cd−→ cd3
cd−→ ... cd−→ cdk, where

cd1 = cdDep, cdk = α, cdi
cd−→ cdi+1, and k ≥ 2. We denote

transitive closure of data and control dependencies of α using
cdDep+(α), i.e., cdDep+(α) = {x | x ∈ C ∪D, x

cd+−−→ α}.
Henceforth, we use dependency of α to commonly refer to
a data or control dependency that belongs to cdDep+(α)
(or dDep+(α)). That is, a dependency is a definition or
conditional expression.

C. Program Slicing
For given a program and a set of variable(s) at a program

point of interest, program slicing [22], [28] computes a
program that contains only those statements that are likely
to influence values of the variables at that program point.
Depending on use of program slices, several backward slicing
techniques have been proposed [29], [30], such as backward
slice [28], and thin slice [31]. Backward slice (resp. thin slice)
generated for α consists of program statements that correspond
to dependencies in cdDep+(α) (resp. dDep+(α)).

D. Value Slice and Value Dependencies
Kumar et al. [22] have proposed the notion of value slice,

which is a pruned version of backward slice and an enriched
version of thin slice. A value slice generated for an expression
e, in addition to the transitive data dependencies of e, also
consists of the control dependencies that influence values
of variables in e. We call those control dependencies value
dependencies. In other words, a value slice is obtained by
eliminating from backward slice the control dependencies and
their transitive dependencies, that only decide whether the
program point of e is reachable. For example, the conditional
edge n24 → n25 is a value dependency of t present on line
29, because it controls assignment of values to t. However,
the same dependency is not a value dependency of expression
b[y] present on line 25.

We use vdDep
vd−→ α to denote vdDep is a data or

value dependency of α. A definition or a conditional edge
vdDep is a transitive data and value dependency of α iff
vd1

vd−→ vd2
vd−→ vd3

vd−→ ... vd−→ vdk, where vd1 =

vdDep, vdk = α, vdi
vd−→ vdi+1, and k ≥ 2. We write

vdDep
vd+−−→ α to denote that vdDep is a transitive data

and value dependency of α. We denote transitive closure of
data and value dependencies of α using vdDep+(α), where
vdDep+(α) = {x | x ∈ C ∪D, d

vd+−−→ α}. Thus, the depen-
dencies in vdDep+(α) correspond to the program statements
which appear in the value slice generated for α. Note that, for
any expression α, dDep+(α) ⊆ vdDep+(α) ⊆ cdDep+(α).

E. Static Analysis Alarms
We call an expression that is checked by a static analysis

tool a point of interest (POI). For example, a POI for check



related to division by zero (DZ) property corresponds to a
denominator expression. Let poi(ϕ) denotes the POI of an
alarm ϕ. We use ϕp

l,V to denote an alarm of a verification
property p and generated for a POI on line l in version V .
We say that a slice generated for an alarm ϕ is same as
the slice generated for poi(ϕ). For an AIOB alarm having an
array access arr[i], including only the declaration of arr and
program statements corresponding to cdDep+(i) in the slice
generated for the alarm is sufficient. We call two alarms of
same property similar iff their POIs are same.

We assume that a static analysis tool groups the generated
alarms using state-of-the-art clustering techniques [32], [33],
and a VSAT computes delta alarms from dominant alarms
resulting after the clustering. As a result, no two delta alarms
reported for a line are similar.

F. Code Mapping

We create a mapping of the code from V1 to V2 using a
code mapping technique [34], [35]. We denote the map created
using MapV1,V2

: lines(V1) → lines(V2) ∪ {⊥} which maps
source code lines in V1 to their corresponding lines in V2 and
to ⊥ if the lines are deleted from V1. No two lines in V1 map
to same line in V2. We use this map to compute the following.

1) A line l1 in V1 is deleted iff MapV1,V2
(l1) = ⊥.

2) A line l2 is added in V2 iff there does not exist l1 in V1

such that MapV1,V2
(l1) = l2.

3) A line l1 in V1 or l2 in V2 is changed (resp. unchanged)
if MapV1,V2

(l1) = l2 and the code on l1 and l2, excluding
the white spaces, is different (resp. same).

When MapV1,V2
(l1) = l2 and l2 ̸= ⊥, we say that l1 and l2

are corresponding lines. For a changed line l1 in V1 and its
corresponding line l2 in V2, similarly to the mapping of lines
in V1 to V2, we map every token (such as identifier, operator,
grouping symbol, or data type) in line l1 to its corresponding
token in l2 or to ⊥ if the token has been deleted from l1.
Similarly to the lines mapping, the tokens mapping has one-
to-one correspondence, except when the tokens in l1 of V1 are
deleted or the tokens in l2 of V2 are added. We use Mapl1,l2

:
tokens(l1) → tokens(l2) ∪ {⊥} to denote the mapping of
tokens in l1 to their corresponding tokens in l2. Similarly to
determining if a line in V1 (resp. V2) is deleted (resp. added),
changed, or unchanged discussed above, we use the mapping
of tokens to determine whether a given token in l1 (resp. l2)
is deleted (resp. added), changed, or unchanged.

Using the mapping of lines, i.e., MapV1,V2
, and the mapping

of tokens in changed lines, we compute the following.
1) An expression e1 at line l1 in V1 is deleted if (a) l1 is

deleted from V1, or (b) l1 is changed and every token in
e1 is deleted from l1.

2) An expression e2 is added to line l2 in V2 if (a) l2 is
added to V2, or (b) l2 is changed and every token in e2
is added to l2.

3) An expression e1 at line l1 in V1 (resp. e2 at line l2 in
V2) is changed if at least one of the tokens in e1 (resp.
e2) is changed.

4) An expression e1 at line l1 in V1 is unchanged if (a) l1
is unchanged, or (b) l1 is changed but none of the tokens
in e1 is changed or deleted.

5) An expression e2 at line l2 in V2 is unchanged if (a) l2
is unchanged, or (b) l2 is changed but none of the tokens
in e2 is changed or added.

We say that an expression e1 at line l1 in V1 and an
expression e2 at line l2 in V2 are corresponding expressions,
if (1) l1 and l2 are the corresponding lines, and (2) e2 is a
changed version of e1 or is same as e1. We use the tokens-
based approach to determine if an expression that spans over
multiple lines is added, deleted, or changed, by matching
its sub-expressions appearing on different lines. To avoid
identifying semantically equivalent statements like i = i + 1
and i++ as changed, we assume that the code has been
normalized [36]. Moreover, we assume that on each line, there
exists at most one program statement or a part of it.

V. CLASSIFICATION OF ALARMS

This section describes the proposed classification of delta
alarms.

A. Classification of Newly Generated Alarms

We classify newly generated alarms into the below defined
three classes: result-changed, POI-changed, and POI-added.

Definition V.1 (Result-Changed Alarm). We call a newly
generated alarm ϕp

l2,V2
a result-changed alarm if its POI is

unchanged and no alarm of the property p was reported for
the POI’s corresponding expression in V1.

In other words, for a result-changed alarm, its POI also
exists in V1 and the tool’s analysis result for the POI is changed
from safe on V1 to an alarm on V2. For example, A27 is a
result-changed alarm.

Definition V.2 (POI-Changed Alarm). We call a newly gener-
ated alarm ϕp

l2,V2
a POI-changed alarm if its POI is changed,

and an alarm of the property p was reported for the POI’s
corresponding expression in V1.

For example, D15 is a POI-changed alarm, because its POI
y − 2 is changed from y in V1, and an alarm of the same
property (DZ) was reported for the corresponding expression
y in V1.

Definition V.3 (POI-Added Alarm). We call a newly generated
alarm ϕp

l2,V2
a POI-added alarm if its POI is added in V2, or

its POI is changed and an alarm of the property p was not
reported for the POI’s corresponding expression in V1.

For example, D13 is a POI-added alarm, because its line 13
is added in V2.

B. Classification of Impacted Alarms

In this section, we present classification of impacted alarms.
Recall that, for an expression α, (a) dDep+(α) denotes
transitive closure of data dependencies of α; (b) vdDep+(α)
denotes transitive closure of data and value dependencies of



α; and (c) cdDep+(α) denotes transitive closure of data and
control dependencies of α.

Definition V.4 (Modified Dependency). We call a dependency
d of an expression α in V1 (resp. V2) a modified dependency
if one of the following holds.

1) If d is an assignment node, assignExpr(d) is changed or
deleted (resp. added).

2) If d is a conditional edge denoted as n → n′, label(d)
is changed or condExpr(n) is changed or deleted (resp.
added).

We first define impacted alarm.

Definition V.5 (Impacted Alarm). An alarm ϕp
l2,V2

is called
an impacted alarm if

1) poi(ϕp
l2,V2

) is unchanged and a similar alarm ϕp
l1,V1

was
reported for the corresponding POI in V1; and

2) at least one of the dependencies in cdDep+(poi(ϕp
l2,V2

))
or cdDep+(poi(ϕp

l1,V1
)) is modified.

Note that, in case (2), presence of a modified depen-
dency is also checked in cdDep+(poi(ϕp

l1,V1
)), because

checking the presence of a modified dependency only in
cdDep+(poi(ϕp

l2,V2
)) does not capture modifications to de-

pendencies through deletion of program statements in V1.
For each impacted alarm ϕp

l2,V2
, there exists a unique similar

alarm ϕp
l1,V1

corresponding to it where l1 and l2 are the
corresponding lines. We call these two alarms, ϕp

l2,V2
and

ϕp
l1,V1

, corresponding alarms.
We classify delta alarms into three classes, namely data-

dependency impacted alarms (ddImpacted), value-dependency
impacted alarms (vdImpacted), and control-dependency im-
pacted alarms (cdImpacted). These classes are defined below.

Definition V.6 (Data-Dependency Impacted Alarm). Let ϕp
l2,V2

be an impacted alarm with ϕp
l1,V1

as its corresponding
alarm. We call ϕp

l2,V2
a data-dependency impacted alarm if

at least one of the dependencies in dDep+(poi(ϕp
l2,V2

)) or
dDep+(poi(ϕp

l1,V1
)) is modified.

For example, A22 is a data-dependency impacted alarm
(ddImpacted), because the data dependency of the index
expression z in V2, present at line 21, is modified.

Note that, for a ddImpacted alarm, the thin slices generated
for it and its corresponding alarm are different.

Definition V.7 (Value-Dependency Impacted Alarm). Let
ϕp
l2,V2

be an impacted alarm with ϕp
l1,V1

as its corresponding
alarm. We call ϕp

l2,V2
a value-dependency impacted alarm if

at least one of the following holds.
1) ∃ d ∈ vdDep+(poi(ϕp

l2,V2
)) such that d is a modified

dependency and d /∈ dDep+(poi(ϕp
l2,V2

)).
2) ∃ d′ ∈ vdDep+(poi(ϕp

l1,V1
)) such that d′ is a modified

dependency and d′ /∈ dDep+(poi(ϕp
l1,V1

)).

In other words, we call an impacted alarm ϕp
l2,V2

a value-dependency impacted alarm (vdImpacted)
if and only if at least one of the dependencies

in vdDep+(poi(ϕp
l2,V2

)) \ dDep+(poi(ϕp
l2,V2

)) or
vdDep+(poi(ϕp

l1,V1
)) \ dDep+(poi(ϕp

l1,V1
)) is modified.

For example, D29 is a vdImpacted alarm, because the
dependency x = lib3() of the denominator expression
t, present at line 7 in V2, is modified and belongs
to vdDep+(poi(D29)) \ dDep+(poi(D29)) but not to
dDep+(poi(D29)).

Note that, for a vdImpacted alarm, the thin slices generated
for it and its corresponding alarm are same, but the value slices
generated for the two alarms are different.

Definition V.8 (Control-Dependency Impacted Alarm). Let
ϕp
l2,V2

be an impacted alarm, with ϕp
l1,V1

as its corresponding
alarm. We call ϕp

l2,V2
a control-dependency impacted alarm if

at least one of the following holds.

1) ∃ d ∈ cdDep+(poi(ϕp
l2,V2

)) such that d is a modified
dependency and d /∈ vdDep+(poi(ϕp

l2,V2
)).

2) ∃ d ∈ cdDep+(poi(ϕp
l1,V1

)) such that d is a modified
dependency and d /∈ vdDep+(poi(ϕp

l1,V1
)).

In other words, we call an impacted alarm ϕp
l2,V2

a control-dependency impacted alarm (cdImpacted)
if and only if at least one of the dependencies
in cdDep+(poi(ϕp

l2,V2
)) \ vdDep+(poi(ϕp

l2,V2
)) or

cdDep+(poi(ϕp
l1,V1

)) \ vdDep+(poi(ϕp
l1,V1

)) is modified.
For example, A25 is a cdImpacted alarm, because the
transitive data and control dependency x = lib3() of the
index expression y in V2, present at line 7, is modified and
belongs to cdDep+(poi(A25)) \ vdDep+(poi(A25)) but not
to vdDep+(poi(A25)).

Note that, for a cdImpacted alarm, the value slices generated
for it and its corresponding alarm are same, but the backward
slices generated for the two alarms are different.

VI. RANKING OF DELTA ALARMS

In this section, we describe ranking of delta alarms obtained
by prioritizing the six classes discussed in the previous section.
We make the following observations for newly generated and
impacted alarms.

a) Newly Generated Alarms: VSATs suppress repeated
alarms that are not impacted by the changes between V1 and
V2. If a newly generated alarm is suppressed, the alarm will
remain suppressed on the subsequent versions, unless a code
change in some next version impacts the alarm. If a newly
generated alarm is an error, the error can persist in several
next versions. Therefore, it is important to inspect each newly
generated alarm when it is generated for the first time.

b) Impacted Alarms: The changes made between V1 and
V2 generally correspond to fixing of bugs, addition of features,
and refactoring. Failure to detect refactoring can result in
generation of false impacted alarms, called spuriously im-
pacted alarms (Section VI-C). Moreover, determining whether
a code change (made to fix a bug or add a feature) impacts
a POI is undecidable in general [37]. Hence the VSATs use
conservative impact analysis that is based on data and control
dependencies. As a consequence, expressions often get falsely



identified as impacted [38], which in turn increases the number
of spuriously impacted alarms.

Based on the observations above, we prioritize newly gen-
erated alarms over impacted alarms.

A. Prioritization of Newly Generated Alarms

For a result-changed alarm, its corresponding POI in V1 was
reported as safe. However the same POI is an alarm in V2.
The change in the analysis result is more likely to be due to
the side-effect of code changes and thus we believe that such
alarms are to be inspected on a higher priority as compared
to the alarms in the other two classes. Thus, the priorities
assigned to the three classes are Result-changed alarms >
POI-added alarms = POI-changed alarms.

B. Influencing Dependencies of Alarms

This section describes the notion of (non)-influencing de-
pendencies of alarms, that we introduce and use to prior-
itize the three classes of impacted alarms. Recall that the
dependencies in cdDep+(α) correspond to the definitions and
controlling conditions in backward slice generated for α, and
vice versa. Thus, we refer to program statements on backward
slice and dependencies in cdDep+(α) interchangeably.

In general, a program statement corresponding to a de-
pendency of an alarm is said to impact the alarm if the
statement affects reachability of the alarm’s program point or
determining whether the alarm is a false positive. That is, for
an alarm ϕ, sound VSATs conservatively consider all depen-
dencies in cdDep+(poi(ϕ)) as impacting poi(ϕ). As discussed
in Section II-B2, not all dependencies in cdDep+(poi(ϕ))
affect determining whether ϕ is a false positive, i.e., some
controlling conditions do not restrict values of variables in ϕ
but only control reachability of the program point where ϕ
is reported. Thus, to differentiate the impacting dependencies
that only control reachability of alarms’ program points, from
the other impacting dependencies that affect values of the
variables in the alarms, we introduce the notion of non-
influencing dependencies of alarms.

Definition VI.1 (Influencing dependency of an alarm). Let ϕ
be an alarm reported on a program P, and d be a dependency
of poi(ϕ) (i.e., d ∈ cdDep+(poi(ϕ))). Depending on whether
d is a definition, we distinguish the following two cases:

1) If dx := x = e is a definition, let P’ be a program
obtained from P by replacing the RHS of the assignment
expression (e) with a non-deterministic choice function.
We say that the dependency d is an influencing depen-
dency of ϕ only if ϕ is a false positive in P but an
error in P’. Otherwise, we say that d is a non-influencing
dependency of ϕ.

2) If d := n → n′ is a conditional edge, let P’ be a
program obtained from P by replacing the condition of
the branching node n with a non-deterministic choice
function. We say that the dependency d is an influencing
dependency of ϕ only if ϕ is a false positive in P but an

error in P’. Otherwise, we say that d is a non-influencing
dependency of ϕ. □

For example, assuming the three impacted alarms in V2

are false positives, n24 → n25 ∈ cdDep+(poi(D29)) is an
influencing dependency of D29, whereas the same dependency
is a non-influencing dependency of A25. The definition on line
7 (resp. 21) is an influencing dependency of A27 (resp. A22).

Note that, if d is a non-influencing dependency of an alarm
ϕ, all the dependencies in cdDep+(poi(ϕ)) that impact ϕ only
through d are also non-influencing dependencies of ϕ. E.g.,
the definition on line 7 impacts A25 only through a non-
influencing dependency n24 → n25 of A25. Thus, it also is
a non-influencing dependency of A25.

C. Spuriously Impacted Alarms

Recall that VSATs suppress non-impacting repeated alarms
assuming that the user has inspected all alarms reported on
the previous version and fixed identified errors (Section II-B).
An impacted alarm needs to be manually inspected because
its corresponding changes can result the same POI (for which
a false positive was reported on V1 into an error on V2. We
observe that such a conversion is possible only if the modified
dependencies are influencing dependencies of the alarm. In
the other case, i.e., when the modified dependencies are non-
influencing dependencies, the impacted alarm is spurious.
Identifying such spuriously impacted alarms helps to reduce
the number of delta alarms reported to the user and hence the
manual inspection effort.

Note that, the problem of computing spuriously impacted
alarms involves computing (non)-influencing dependencies of
alarms. This problem is undecidable in general, because the
computation also requires determining whether the alarm is
a false positive. Therefore, as discussed in the next section,
we use an approximate method to identify (non)-influencing
dependencies of alarms and use them to prioritize the three
classes of impacted alarms.

D. Prioritization of Impacted Alarms

In this section, we rank the three classes of impacted alarms.
We make the following observations from the prior work on
program slicing [22], [31].

Observation 1: The backward, value, and thin slices gener-
ated for an expression are such that backward slice subsumes2

value slice, and value slice subsumes thin slice. Moreover, the
size of value slice (resp. thin slice), in terms of the nodes on
that slice, is on average about 50% (resp. 25%) of the size of
backward slice [22], [31].

Observation 2: In their evaluation of value slice used in
automated elimination of false positives, Kumar et al. [22]
found the following.

(2.1) If thin slice is used instead of backward slice, 29% of
alarms do not get eliminated as false positives.

2Slice X subsumes slice Y iff every definition and conditional edge in Y
is also present in X.



(2.2) If value slice is used instead of backward slice, only 2%
of alarms do not get eliminated as false positives.

Based on observation (2.1) we can say that, for 29%
(resp. 71%) of alarms, the dependencies in their vdDep+ \
dDep+ are actually influencing (resp. non-influencing). In
other words, for an impacted alarm ϕ, if a dependency in
vdDep+(poi(ϕ))\dDep+(poi(ϕ)) is modified, ϕ is more likely
to be a spuriously impacted alarm, as compared to an impacted
alarm ϕ′ resulting due to modification to a dependency in
dDep+(poi(ϕ′)). Recall that an impacted alarm ϕ, with ϕ′

as its corresponding alarm, is a vdImpacted alarm iff at least
one of the dependencies in vdDep+(poi(ϕ)) \dDep+(poi(ϕ))
or vdDep+(poi(ϕ′))\dDep+(poi(ϕ′)) is modified (Definition
V.7). Thus, we can conclude that vdImpacted alarms are more
likely to be spurious than ddImpacted alarms.

Based on observation (2.2) we can say that, only for 2%
(resp. 98%) of alarms, the dependencies in their cdDep+ \
vdDep+ are actually influencing (resp. non-influencing). In
other words, for an impacted alarm ϕ, if a dependency in
cdDep+(poi(ϕ)) \ vdDep+(poi(ϕ)) is modified, ϕ is more
likely to be a spuriously impacted alarm, as compared to a
vdImpacted alarm. Recall that an impacted alarm ϕ, with ϕ′

as its corresponding alarm, is a cdImpacted alarm iff at least
one of the dependencies in cdDep+(poi(ϕ))\vdDep+(poi(ϕ))
or cdDep+(poi(ϕ′))\vdDep+(poi(ϕ′)) is modified (Definition
V.8). Therefore, we can conclude that cdImpacted alarms are
more likely to be spurious than vdImpacted alarms.

Based on the observations above, we propose the following
prioritization for the three classes of impacted alarms. ddIm-
pacted > vdImpacted > cdImpacted. Thus, the prioritization
of the six classes of delta alarms is as following: Result-
changed > POI-added = POI-changed > ddImpacted >
vdImpacted > cdImpacted.

Indeed, the proposed ranking scheme is useful only if the
number of alarms in the highly prioritized classes should be
smaller and the number of alarms in the lower prioritized
classes should be larger. Therefore, in Section VII, we empiri-
cally evaluate distribution of delta alarms in those six classes,
and measure percentage of cdImpacted alarms.

E. Grouping of Impacted Alarms

For each class of impacted alarms, we group its alarms
based on their modified dependencies, i.e., the corresponding
code changes. With such grouping, alarms in a group can be
inspected together, because they are generated due to the same
reason(s). We expect the grouping will help to reduce the
manual inspection effort. Evaluating the reduction in manual
inspection effort due to the classification and grouping of delta
alarms is out of scope of this paper.

VII. EMPIRICAL EVALUATION

In this section, we evaluate distribution of delta alarms into
the proposed six classes and measure percentage of alarms
that can be suppressed using the proposed ranking scheme.

A. Experimental Setup

1) Implementation: As a baseline, we implemented impact
analysis-based VSAT [13] (Section II-B) using analysis frame-
work of a commercial static analysis tool, TCS ECA [24]. This
tool is the same as the tool used in the pilot study (Section
III). We preferred impacted analysis-based VSAT over VMV
[12] due to the following two reasons. First, inferring useful
correctness conditions—sufficient or necessary conditions—
as required by VMV is challenging [39]. Second, similarly to
impact analysis-based VSAT, our classification technique also
requires generating program dependence graphs to compute
the three transitive closures of the dependencies (Section IV).
Furthermore, the classification technique can be seen as an
extension of the impact analysis-based VSAT.

We implemented the classification of delta alarms using
the same analysis framework, where we enhanced the frame-
work to create program dependence graphs corresponding to
backward, thin, and value slices, and to access dependencies
in those graphs. We used diff to create a mapping of the
code from two consecutive versions, required to implement
the VSAT and the classification technique.

2) Selection of Applications and Alarms: Evaluation of the
technique presented in this paper requires analysis of multiple
versions of an application. We selected the four open source
applications and their versions we used in the pilot study
(Section III). Additionally, we randomly chose three more
open source C applications from the list of 100 applications
used by Cha et al. [23], with the same constraints used to
select the applications in the pilot study: application size
should be greater than 10 KLOC and lesser than 20 KLOC (to
limit the amount of analysis time), and at least two versions
of the application should be available online. We restricted
the number of applications to seven and the number of total
versions selected to 59, because (1) compiling each version
with appropriate macros for the analysis is a manual and time-
consuming activity3, (2) and analyzing the code, computing
delta alarms and classifying them takes a considerable amount
of time. Table II lists these applications, their total number of
versions selected, and the first and last versions selected.

In total, we analyzed 59 versions using TCS ECA for AIOB
verification property, and then computed delta alarms from
tool-generated alarms. We selected AIOB as the only property
in our evaluation, because (1) AIOB is one of the commonly
used verification properties in evaluations of static analysis
tools and techniques, and (2) the number of alarms generated
for other properties on the selected applications were too less
(e.g., division by zero) or too many (e.g., arithmetic overflow-
underflow). For each application, Table II summarizes the
number of tool-generated alarms, delta alarms, newly gener-
ated alarms, and impacted alarms. The summarized number
of alarms is on the selected versions except the first version,
i.e., the number of delta alarms generated on V2 (compared
to V1) + the number of alarms generated on V3 (compared to

3Compiling and getting those 59 versions ready for static analysis took
around 1.5 months’ effort of an experienced developer.



TABLE II: Experimental results showing the alarms in each of the classes of delta alarms.

Application Versions selected Total
alarms

Delta
alarms

Newly generated alarms Impacted alarms

Total
versions

First
version

Last
version

Result-
changed

POI-
added

POI-
changed Total

Data
depen-
dency

impacted

Value-
depen-
dency

impacted

Control-
dependency

impacted
(% of delta alarms)

Total

archimedes 15 0.0.8 2.0.0 6373 4183 0 328 15 343 215 578 3047 (72.84%) 3840
auto-apt 3 0.3.22 0.3.23 178 174 0 0 0 0 0 84 90 (51.72%) 174
dict-gcide 2 0.48.1 0.48.2 192 16 0 5 0 5 0 7 4 (25.00 %) 11
mtr 12 0.73 0.85 803 400 0 28 0 28 12 200 160 (40.00%) 372
gzip 9 1.3.9 1.9 1514 1446 0 223 1 224 59 1118 45 (03.11%) 1222
rhash 15 1.2.4 1.3.7 245 207 0 17 0 17 13 64 113 (54.59%) 190
smp-utils 3 0.96 0.98 484 484 0 255 0 255 0 2 227 (46.09%) 229

Grand Total 9789 6910 0 856 16 872 299 2053 3686 (53.34%) 6038

V2) and so on. The alarms generated on the first version are
not a part of this table, because analysis of this version is not
version-aware.

B. Results Discussion

1) Distribution of Delta Alarms: We applied the classifi-
cation technique to delta alarms generated on the selected
versions. Table II presents the number of alarms in each of
the six classes. Inspecting the table, we make the following
observations. 1) Around 70% of tool-generated alarms get
reported as delta alarms; the remaining alarms are suppressed
by the impact analysis-based VSAT. 2) The impacted alarms
dominate the newly generated alarms: around 87% delta
alarms are impacted while the remaining 13% are newly gener-
ated. 3) Majority (98%) of the newly generated alarms belong
to POI-added class, whereas five out of the seven applications
had no POI-changed alarms at all. 4) Among impacted alarms,
only 5% are ddImpacted, while 34% and 61% respectively are
vdImpacted and cdImpacted. This indicates that cdImpacted
alarms dominate the other alarms in their number.

2) Ranking of Delta Alarms: Recall that, in the proposed
ranking scheme of delta alarms, result-changed alarms are
assigned the highest priority (Section VI-A). The evaluation
results (Table II) indicate that no newly generated alarm is a
result-changed alarm. A possible reason to this could be that,
these applications being well tested, no such (AIOB) error
existed in these applications.

Since cdImpacted alarms are most likely to be spuriously
impacted alarms (Section VI-0b), they can be suppressed if
required. Thus, overall, the proposed ranking allows to identify
around 53% of delta alarms as more likely to be false positives
than the others. Note that percentage of the suppressible alarms
vary greatly as per the applications, from 3% (gzip) to 73%
(archimedes). The median reduction that can be achieved
by suppressing cdImpacted alarms is 48.9%. Overall, the
percentages of delta alarms belonging to each of those six
classes are: 0% (resutls-changed), 12.4% (POI-added), 0.2%
(poi-changed), 4.3% (ddImpacted), 29.7% (ddImpacted), and
53.3% (cdImpacted). This indicates the distribution of delta
alarms into those six classes is as it is expected for the ranking
scheme to be useful (Section VI-D).

Taking a closer look at the results we observed that, the
changes made between two consecutive versions varied greatly
across the applications as well as their versions. During our
analysis we also found that, quite often a single change to
a control dependency was a reason to report many repeated
alarms as impacted. For example, between 0.1.1 and 0.1.2
versions of archimedes application, the code on lines 125 to
130 in readinputfile.h is changed as shown below: the line
shown with [++] is newly added in version 0.1.2.

else if(strcmp(s,"INSB")==0) type=INSB;
[++] else if(strcmp(s,"ALSB")==0) type=ALSB;}

else {
printf("\%s : unknown specified material!\n",

progname);
exit(0);

}

Due to the above code change, 389 repeated alarms get
reported as impacted, and 365 and 24 of them respectively
are cdImpacted and vdImpacted. Since all those cdImpacted
alarms are not dependent on the modified type variable, the
newly added dependency (controlling condition) is a non-
influencing dependency of those alarms. Thus, the alarms
can be safely suppressed. We observed several such cases on
archimedes and smp-utils applications. This indicated useful-
ness of the proposed technique to identify and suppress a large
number of spuriously impacted alarms and reduce the required
manual inspection effort.

To validate (non)-influencing dependencies computed for
alarms in vdImpacted and cdImpacted classes, we randomly
selected 50 alarms from each class and manually inspected
all their dependencies. We found that, for all those se-
lected alarms, the dependencies that were identified as non-
influencing were indeed non-influencing. That is, all those
alarms were reported as impacted due to the conservative
impact analysis. Suppressing such impacted alarms will not
result in a false negative.

Indeed, evaluating the proposed ranking scheme requires to
compute percentage of false positives/true positives for alarms
in each of the classes. During our closer look of the analysis
results, we found that the selected versions, being well tested
applications, are not suitable to compute the percentages.
We made attempts to obtain a set of delta alarms that are



labelled as true positives and false positives, and could find
none. Since creating such a labelled data is effort-intensive
task and can introduce bias, as a future work we plan to
conduct a controlled study in this direction. Note that, the
identification of cdImpacted alarms as suppressible is based
on the confirmed findings from the evaluations of the three
types of code slices.

3) Grouping of Alarms: We found that often the number
of groups of impacted alarms in the three classes are very
few as compared to the total number of grouped alarms. For
example, there are 415 cdImpacted alarms generated on 2.0.0
version of archimedes, and they are grouped into 20 groups.
As another example, the 365 cdImpacted (and 24 vdImpacted)
identified due to the code change example discussed above
in Section VII-B2) are grouped together. As a consequence,
those 365 cdImpacted can be manually inspected or suppressed
together. We expect that the proposed classification, grouping,
and ranking will help to reduce the inspection effort.

4) Threats to Validity: The effectiveness of the proposed
ranking scheme needs to be evaluated based on the percentages
of true positives in each of those six classes. However, due to
the unavailability of the dataset, we argued the effectiveness
of the ranking scheme based on the observations made from
the prior work on program slicing. Performing a controlled
experiment can change the findings. Threats to internal validity
concern the extent to which the observations are correctly
derived from the experimental data. In our evaluation, threats
to internal validity concern selection of alarms, applications,
VSAT, and implementation to compute the three types program
slices. We used 59 versions of seven applications, however
restricted number of verification properties and VSATs is a
main concern. Threats to external validity concern the extent
to which the evaluation results generalize beyond the sample
used (the alarms and techniques selected in the evaluation) to
the entire population. Since our evaluation is using restricted
alarms (single property and fewer applications), the findings
made may not generalize to entire population and is a threat
to the validity.

VIII. RELATED WORK

In this paper, we proposed a technique for classification
and ranking of delta alarms. Thus, we compare it with alarms
postprocessing techniques which employ similar approaches,
namely pruning/classification, and ranking [16].

a) Pruning/Classification of Alarms: The techniques in
this category classify alarms mainly into two classes, action-
able and non-actionable [15], [16]. The non-actionable alarms
being more likely to be false positives, they are not reported
to the user. The techniques vary based on the methods they
employ to achieve the classification, and a majority of the
techniques are based on machine learning [40], [41]. The
version-aware static analysis techniques (VSATs) [12]–[14],
[19], [20] also belong to this category as they suppress a subset
of the alarms generated, calling them as non-impacting or not
important. As discussed in Section II-B, unlike VSATs, our

technique uses the code changes, due to which the delta alarms
are generated, to postprocess those alarms further.

Although our ranking and pruning technique is designed
to postprocess delta alarms independently of the techniques
generating them, it can also be applied on its own: the input to
the technique can be the tool-generated alarms instead of delta
alarms. To the best of our knowledge the other classification
techniques do not use the code changes between the versions
and relate them with the generated alarms.

b) Ranking of Alarms: The existing techniques to rank
alarms employ different approaches such as statistical analysis,
history of the bugs and alarms fixing, and even feedback from
the user [11], [16]. Among them, the techniques that are based
on history of fixing of alarms [42], [43] and bugs [44] prior-
itize alarms by analyzing software change history. Thus, our
technique is similar to them. However, the underlying method
to prioritize alarms is different: these techniques analyze the
change history to mine commonly/quickly fixed alarms and
bugs, while our technique is based on the causal relationship
and thus is orthogonal to them. Heo et al. [45] have proposed
a technique to rank alarms generated on evolving code. As the
alarms in the proposed six classes can be still large in number,
they can be further ranked using the other ranking techniques.

Furthermore, our introduced notion of non-influencing de-
pendencies of alarms is similar to non-impacting controlling
conditions proposed by Muske et al. [46]. However, our notion
is applicable to definitions (assignment statements) too.

As discussed above, our proposed classification and ranking
technique is orthogonal to the existing classification and rank-
ing techniques [11], [16]. Thus, they can be combined with
the existing techniques to obtain more benefits as compared
to the benefits obtained by applying them individually.

IX. CONCLUSION AND FUTURE WORK

In this paper, based on our observation that the existing
version-aware static analysis techniques do not use code
changes to further postprocess delta alarms, we proposed a
technique for classification and ranking of delta alarms. The
technique classifies delta alarms into six classes based on the
type of changes due to which they are identified as delta
alarms. It then ranks the alarms by assigning different priorities
to the six classes. The assignment of priorities is based on
observations made from the prior work on program slicing.

Our evaluation results indicate that (a) 53% of delta alarms
are cdImpacted alarms, (b) these alarms get reported as im-
pacted alarms due to changes made to the program statements
that only control reachability of their program points. There-
fore, the proposed technique identifies 53% of delta alarms as
more likely to be false positives than the others.

We plan to evaluate the reduction in effort achieved due
to the proposed classification, ranking, and grouping of delta
alarms. Towards this we will perform a controlled study by
involving multiple participants who are (experienced) users of
static analysis tools. Moreover, we plan to conduct evaluation
by using alarms generated for other verification properties and
a few more additional applications.
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