Model Management Tools for Models of Different
Domains: A Systematic Literature Review

Weslley Torres, Mark van den Brand, Alexander Serebrenik
Eindhoven University of Technology
Eindhoven, The Netherlands
{w.silva.torres, m.g.j.v.d.brand, a.serebrenik } @tue.nl

Abstract—Objective: The goal of this study is to present an
overview of industrial and academic approaches to cross-domain
model management. We aim at identifying industrial and aca-
demic tools for cross-domain model management and describing
the inconsistency types addressed by them as well as strategies the
users of the tools employ to keep consistency between models of
different domains. Method: We conducted a systematic literature
review. Using the keyword-based search on Google Scholar we
have analyzed 515 potentially relevant studies; after applying
inclusion and exclusion criteria 88 papers have been selected for
further analysis. Results: The main findings/contributions are: (i)
a list of available tools used to support the model management;
(ii) approximately 31% of the tools can provide consistency model
checking on models of different domains and approximately
24% on the same domain; (iii) available strategies to keep the
consistency between models of different domains are not mature
enough; (iv) explicit modeling dependencies between models is not
common in the industry. However, it is considered as a require-
ment by academia if one wishes to manage inconsistency between
models of different domains. Conclusion: This study presents an
overview of industrial practices and academic approaches about
the cross-domain model management. The results presented in
this study can be used as a starting point for future research on
model management topics, and also for further improvement of
actual model management tools.

Index Terms—Model Management, Systems Engineering,
Model-Based Systems Engineering, Systematic Literature Review

I. INTRODUCTION

As in any discipline, inconsistencies can be found in sev-
eral stages of the system development life cycle. In earlier
stages, when engineers are eliciting requirements, they might
misunderstand the stakeholders’ needs. Thus, the stakeholders’
needs might be modeled wrongly, resulting in a product that
does not match their expectations. Another inconsistency can
arise when the models (e.g. class diagram, activity diagram)
are correct but the software developers misunderstand them,
resulting in a source code that does not represent the stake-
holders’ needs. The crucial point here is that the faster the
inconsistency is found, the less it will cost [1].

In the previous examples, only one domain was involved,
i.e. the software engineering domain. In these scenarios,
identifying and managing inconsistencies is already difficult.
However, this task can become even more complicated when
it involves multiple domains.

Furthermore, systems are becoming increasingly complex
to manage. The complexity of design systems increases, es-

pecially when these systems are heterogeneous and there is a
need to combine models created by engineers from different
expertise and different domains [2]-[4]. One example of such
a complex system is a mechatronic component: to develop it,
one might need to combine expertise from different domains
such as mechanics, electronics and software [5].

Due to sheer complexity of modern systems and presence
of multiple authors, inconsistencies between the models might
be inadvertently introduced, e.g., one model might assume
the presence of a certain feature while another one might
assume its absence. This problem might be further amplified
by differences in terminology used in different domains: e.g.,
for a software engineer, a feature is a functionality provided
by the system, but for system engineer, a feature is an aspect
of the system, like the color. This kind of misunderstanding
can affect the consistency of the models. Therefore, the terms
have to be well described in order to simplify the process of
maintaining consistency between models.

Maintaining consistency between models is known to be a
challenging task, especially because it is difficult to predict
the effects of changes introduced in one model on other
models [6]. While maintaining consistency between models
is imperative [7], in practice, it can never be fully ensured [8],
and the system engineer is responsible to define what has to
be consistent and when. The process to manage these models
can be expensive. Thus, we believe that the consistency should
only be managed when the costs to maintain the consistency
are lower than the costs that an eventual inconsistency can
cause. The process of organizing and maintaining models
ensuring consistency is known as model management.

The goal of this study is to present an overview of industrial
practices and academic approaches to cross-domain model
management. We aim at identifying industrial and academic
tools for cross-domain model management and describing the
inconsistency types addressed by them as well as strategies the
users of tools employ to ensure consistency between models
of different domains. The Research Questions (RQ)s used to
guide our study are the following:

« RQI1: What model life cycle management tools are avail-

able?

o RQ2: What inconsistency types are addressed by the

model life cycle management tools?

« RQ3: Which strategies have been used to keep the con-

sistency between models of different domains?

To achieve this goal we have conducted a systematic liter-
ature review. Taking into consideration the fact that scientific
publications do not always reflect industrial practices, we have
decided to include white papers, such as technical reports.
Thus, we have covered both industrial and academic sources.

The main contributions of this study are:

o List of model management tools;
o Classification of inconsistency management approaches;
« Identification of gaps and future work.

II. BACKGROUND

We introduce the concepts related to model management.

INCOSE! defines model-based systems engineering
(MBSE) as “the formalized application of modeling to sup-
port system requirements, design, analysis, verification and
validation activities beginning in the conceptual design phase
and continuing throughout development and later life cycle
phases.” [9]. According to Friedenthal et al. [10] MBSE was
proposed to facilitate systems engineering activities: following
MBSE the system engineers would use models instead of
documents, and this is expected to improve quality of system
specification and design, as well as the communication among
the development team.

A model is a representation of reality, an abstraction of
something relevant to the stakeholder described using well-
defined and unambiguous languages [11].

Model management emerged with the need to organize and
maintain models, ensuring consistency. Franzago et al. [12]
state that the infrastructure for the model management may
include a model repository and modeling tools. This infrastruc-
ture is responsible for managing the life cycle of the models
such as creating, editing, and deleting.

Product lifecycle management (PLM) [13]-[17] is an
environment, infrastructure, a system of methods, processes,
and practices that cover the entire product lifecycle, from
requirements definition, design, to late stages such as mainte-
nance and recycling of the product. While model management
is focused on the models of the product, PLM includes every
artifact related to the product. Since PLM can include model
management features, we have decided to include it.

III. METHODOLOGY
A. Selecting the Literature Review Technique

In order to answer the Research Questions (RQI-RQ3),
we conducted a literature review. Several literature review
techniques have been proposed in the scientific literature,
e.g., snowballing [18], [19], systematic literature review
(SLR) [20], and systematic mapping review (SMR) [21].

We opted for SLR because of the SLR characteristics that
identify, analyze and interpret the data related to specific RQs.
In contrast, SMR aims to answer general research questions
and snowballing can be labor intensive. Thus, we believe that

The International Council on Systems Engineering (INCOSE) is a non-
profit membership organization dedicated to the advancement of systems
engineering and to raise the professional stature of systems engineers.
https://www.incose.org

this approach is the most appropriate to answer our RQs. To
circumvent the inherent SLR limitations implied by the choice
of the search strings, we have combined different keywords
obtaining 600 different search strings. This process is more
extensively explained in the next section.

The SLR consists of the creation of research questions
(RQs), the queries on electronic sources (data source) having
the RQs as a guide, and the use pre-determined criteria for
eligibility and relevance to form the set of accepted papers
to be used in the study. As the data source, Kitchenham and
Charters [20] recommend the use of a search engine that offers
a wide coverage of sources. Thus, we have chosen Google
Scholar: it offers a wide coverage of electronic sources of
different research areas, and it has been used in multiple
software engineering studies [18], [22]-[24].

B. Data Extraction

Since we are mainly interested in tools (product life cycle
management tools, and model management tools) we create
search strings to query Google Scholar, based on PICO [25].
Thus, we have selected and organized keywords into four
categories: process supported by tools, model, consistency,
and multiple domains. For each category, we have selected
keywords related to the Research Questions, as presented in
Table I.

The first two categories are the base for answering all
RQs, and are more specific for answering RQ2 and RQ3.
For example, the reasoning behind choosing the keyword
“Dependency” in the category “Consistency” was that in our
initial research we found that dependency modeling has been
used to maintain consistency. Thus, this keyword could help
find more results that could answer RQ3.

We have combined the keywords from different categories
to create queries to be executed in Google Scholar. For
instance, for the first query we have used the following
keywords: "Model Management, MBSE, Consistency, Mul-
tidomain Model Integration”. For the second query we used
”Model Management, MBSE, Consistency, Multi Domains”,
and so on. In total we have 600 = 4 x 10 x 3 X 5 combinations.

Due to the similarity of the queries, some papers have been
retrieved multiple times. We have automatically excluded these
duplicates prior to the manual inspection. In total we have
obtained 3222 hits, but only 515 of them were unique.

C. Manual Inspection

The selection criteria was defined in order to avoid bias
and to reduce subjectivity. The inclusion (I) and exclusion (E)
criteria were designed to answer the RQs, as proposed by [26].
The following are the inclusion and exclusion criteria we used:

o I1: Studies written in English and available in full-text.

o I2: Studies review or propose of a new technique, ap-
proach, method, or tool (prototype) that support model
management.

o I3: Studies mention tools related to Product Lifecycle
Management (PLM) and Model lifecycle management.

o El: Studies do not mention model (in)consistency.

TABLE I

Systems Lifecycle Management

Model-Based System Engineering
Model Based System Engineering
Product Modeling

Model-Driven System Engineering
Model Driven System Engineering
Model-Driven Systems Engineering
Model Driven Systems Engineering

KEYWORDS
Process Supported by Tools Model Consistency Multiple domains
Model Management MBSE Consistency Multidomain Model Integration
Model Lifecycle Management Model-Based Systems Engineering Inconsistency | Multi Domain
Product Lifecycle Management | Model based Systems Engineering Dependency Multiple Domains

Domains
Heterogeneous

TABLE 11
THE K VALUE OBTAINED IN EACH ITERATION.
Iteration Cohen’s Kappa Value
First Review Round 0.22
Second Review Round 0.29
Third Review Round 0.33
Fourth Review Round 0.61

e E2: CVs, PhD and Master theses, and books or book
chapters. Although we excluded all PhD theses, we
considered publications related to the PhD theses and
applied the inclusion and exclusion criteria to them. We
decided to check for derived papers because we chose to
be as conservative as possible, and we did not want to
exclude PhD theses without checking for derived papers.
In the end of this process, we included 20 derived papers.

In order to identify the relevance of the paper, we read the
title, abstract and conclusion of 515 papers.

Relevance assessment was performed iteratively. At each
iteration we used 15 papers randomly selected from the list of
papers we had downloaded. The first and the last authors of
this paper, individually read the title, abstract and conclusion
to label the relevance of the paper. Both of the raters were
software engineering researchers having at least a Master’s
degree in Computer Science. At the end of each iteration, we
computed Cohen’s x [27] to measure the agreement between
the raters and discussed the disagreements. According to
Cohen [27] and Landis et al. [28] the Kappa coefficients in
the range of 0.61-0.80 is interpreted as substantial agreement
and this range was used in previous studies [29]-[31].

As presented in Table II, four review rounds were needed
to reach the value greater than 0.6. In the first review round
we obtained the lowest « value, because the interpretation of
the inclusion and exclusion criteria were not clear among the
raters. We improved the agreement level in every subsequent
review round. In the second and third review rounds we
obtained 0.29 and 0.33 respectively. We finalized the process
in the fourth round with the agreement level of 0.61.

When we reached the acceptable agreement level, the first
author continued the selection procedure independently. After
reading the title, abstract and conclusion of 515 papers, we
labeled 168 as possibly relevant. To finalize, the first author
completely read these papers and selected 88 papers to answer

Application of
selection criteria

Initial search

3222
F "

e

515 88
Duplicates
removal

Fig. 1. Search and selection process. We obtained 3222 hits in the initial
search. After removing all duplicated hits, we obtained 515 unique hits. We
obtained 168 papers when the selection criteria was applied, and we conclude
the process with 88 papers.

e
£
o
=
G
n
o2
[=)
Q
o
G]

the Research Questions. Figure 1 presents the summary of the
process to select the papers.

D. Gathering information about tools

The previous section describes how to identify relevant
papers supporting us to find the answers for the RQs. Although
the papers provide a list of tools, the information regarding
to the tools is not necessarily well presented or detailed. As
a consequence, we decided to use additional data sources,
for instance the website of each tool. One option to gather
information about the tools would be to install and to try all the
tools. However, this option was not feasible, mainly because
of the need to know how to use them, but also because most
of the tools are commercial, requiring the license to try them.

We selected the closed card sorting technique [32] to
categorize the type of consistency the selected tools address.
Taylor et al. [33] describe consistency as “an internal property
of an architectural model, which is intended to ensure that
different elements of that model do not contradict one another”
and distinguish the following four inconsistency types.

a) Name inconsistency: components, connectors or ser-
vices have the same name.

b) Interface inconsistencies: connected interface
elements have mismatching values, terminologies
or schemes [34]. Name inconsistencies are interface

inconsistencies but not vice versa.

c) Behavioral inconsistencies: Taylor et al. [33] explain
that these inconsistencies “occur between components that re-
quest and provide services whose names and interfaces match,

but whose behaviors do not.” This kind of inconsistency can
happen when the behavior of the element is not the expected
one. An example of behavioral inconsistency would be if the
service provider assumes that the distance is expressed in
kilometers and the requester assumes it to be in miles.

d) Interaction inconsistencies: These inconsistencies
“occur when a component’s provided operations are accessed
in a manner that violates certain interaction constraints, such
as the order in which the component’s operations are to be
accessed.” [33].

e) Refinement inconsistencies: These inconsistencies oc-
cur between models of different abstraction levels.

We used the consistency types identified by Taylor et
al. [33], to label the selected tools. We opted to use the
consistency types provided by the selected tools, in those
cases which it was not possible to match the consistency
types identified by Taylor et al. with the description of the
consistency type provided by the tools. We labeled DNF (data
not found), those tools that we did not find information about
the consistency type they address.

IV. RESULTS

A. RQI - Which model life cycle management tools are
available?

We analyzed the descriptions of the tools that were men-
tioned in the selected papers.

a) Provide consistency model checking on models of
different domains: ADES [35], [36], CADOM [37], Capella
(Arcadia) [38], [39], CATIA v5 [40]-[44], CoDeMo [42],
COLIBRI [35], Dassault Systemes PLM platform [41], [43]-
[51], Dymola [34], [41], [52], IntePLM [53], Isight [50],
[54], LOTAR [44], Melody [55], [56], Modelica Development
Tooling (MDT) [57], OntoSTEP (Protégé plug-in) [40], [58],
[58]-[60], OpenModelica [57], ParaMagic [56], [61], PDES
[44], ProSTEP [44], Siemens PLM Tools [40], [43], [47], [49],
[51], [62]-[65], Simulink [52], Syndeia (SLIM) [55], [61],
[66], [67], SysDice [45], SysML4Modelica [7], [68], [69],
VEAPD [70], as well as the academic prototypes of Istvan
David [4], [71], and Diana Penciuc [72].

b) Provide consistency model checking but on models of
the same domain: Agile PLM (Oracle) [49] Artisan Studio
[61], [73], Autodesk Vault [43], Cameo [63], ControlBuild
[52], EPLAN [68], EUCLID [43], Magic Draw [6], [7],
[50], [61]-[63], [67], [73]-[75], Mechasoft [69], Mechatronics
Concept Designer (Siemens) [45], ModelCenter (Phoenix Inte-
gration) [50], [54], MOFLON [69], [73], [76], [77], Windchill
(PTC) [36], [43], [49], [78], ParaSolver [56], Rational Rhap-
sody [50], [61], [73], SCADE [52], SimMoLib [79], Simscape
[45], [69], SolidWorks 2010 [40],

c) Do not provide any consistency checking: We as-
sumed that tools that do not explicitly claim that they provide
consistency check, do not have this functionality. Acceleo [76],
Athena Project [36], ATL [76], ATOM3 [76], Comet Work-
bench [54], DXF [80], E2KS tool [35], EA Parametrics (En-
tEterprise Architect) - Sparx systems [56], EAST-ADL2 [5],

Entime [81], Epsilon [76], FUJABA [69], [76], GAM frame-
work [82], GReAT [76], IBM’s Jazz Collaborative Lifecycle
Management (CLM) suite [83], iFEST project [54], IGES [80],
Interdisciplinary Communication Medium (ICM) [37], Ker-
Meta [76], modeFRONTIER [54], ModelHel’X framework20
[74] Modelisar consortium/FMI: Functional Mock-up Interface
[46], [84], OBIIS [85], OntoPLM framework [72], Open Ser-
vice for Lifecycle Collaboration (OSLC) [45], Pro/Engineer
Wildfire 4.0 [40], Product Design Graphics System (PDGS)
[43], Pronoia [86], [87], Rosetta [74], SAP Product Life Cycle
Management [51], Share-A-space (Eurostep) [49], SPML [88],
VIATRA [76], Vitech CORE [50], VW Surf [43].

B. RQ2 - What consistency types are addressed by the model
life cycle management tools?

In order to answer RQ2, we classified the consistency types
addressed by the tools identified in the previous subsection.
We focus on those tools that could provide model consistency
check at some level, more specifically regarding to what type
of consistency those tools provide. However, not all tools
described the consistency check.

Table III presents the list of tools and the consistency types
they address. Additional description of the consistency check
those tools address are presented bellow:

o Requirement Consistency - It checks whether the require-
ments from a requirement list are related to some model
element and if this relationship is valid?.

o Information Consistency - It checks if the data that
can be presented on different media, remain the same
regardless of how they are presented [89]. An example
of Information inconsistency would be when the distance
is presented in different units without respecting the
conversion calculation.

C. RQ3 - Which strategies have been used to keep the con-
sistency between models of different domains?

We have selected papers that cited tools that manage con-
sistency between models of different domains. We selected 56
papers; however, only half described how they check and keep
the consistency between models.

Qamar et al. [62] believe that the way to manage incon-
sistency is through interoperability between tools like Magic-
Draw, TeamCenter, and Simulink. Wegner [90] defines interop-
erability as “the ability of two or more software components
to cooperate despite differences in language, interface, and
execution platform”. On one hand, standard file formats as
[91], [92] and XML [93] are used to maintain interoperability
in engineering and software domains. On the other hand, the
use of these standard files to maintaining consistency could
be problematic due the data loss [94], since the data would be
transiting between different tools and domains.

We organize the papers into categories according to the
approach they use to keep consistency between models of
different domains.

Zhttps://nl.mathworks.com/help/slrequirements/ug/requirements-
consistency-checks.html

TABLE III
TOOLS AND KIND OF CONSISTENCY. Data not found MEANS THAT, ALTHOUGH THESE TOOLS CLAM TO PROVIDE CONSISTENCY CHECK, THEY DO NOT
DESCRIBE WHAT KIND OF CONSISTENCY CHECK THEY PROVIDE AND AT WHICH LEVEL.

Consistency Type Checking

Tool

Interface Consistency

Modelica Development Tooling, Open Modelica, CATIA v5, SysML4Modelica, Prototype [72], ADES

Behavioral and Interaction consistency | OntoSTEP (Protégé plug-in)

Interaction Consistency

CADOM, COLIBRI, SysDice, Prototype [82]

Interface and Requirement consistency | Simulink

Information Consistency VE4PD

Data Not Found

Dassault Systemes PLM platform, Isight, Syndeia/SLIM/, CoDeMo, IntePLM, Dymola, Capella (Arcadia),
Siemens PLM Tools, Prototype [4], [71]

a) Inconsistency Patterns: in order to manage incon-
sistency, this approach recommends selecting the appropri-
ate technique from an extensible catalogue of inconsistency
patterns, and apply it in an unmanaged process to achieve a
managed one [4], [71].

b) Modeling dependencies explicitly: some researchers
believe that making the inter/intra-model dependencies explicit
will facilitate the model management. Such dependencies can
be identified between properties or between structural elements
of two models, in such a way that the properties or elements
can affect each other. This dependency modeling can be
done using any technology that explicitly map dependency,
such as SysML, DSLs, and DSM (Design Structure Matrix)
[6], [54], [62], [63], [65], [95]. Specifically, DSM is used
to make the direct and indirect dependencies explicit. It is
a representation of the components and their relations, in
order to make the shared information more precise and less
ambiguous [5], [53], [96]. DSM consists of a matrix with
properties mapped horizontally and vertically. Each marked
box inside a cell of a DSM indicates a dependency between
the corresponding properties. A dependency loop occurs when
there is a dependency marked above the main diagonal on the
DSM. In order to avoid these loops, a reorganization of the
DSM is needed [54].

c) Parameters or constraints management: This ap-
proach proposes using parameters or constraints to check the
model consistency within a multi-disciplinary development
team. If these parameters or constraints are violated, the
inconsistency can be detected and managed. According to [47],
to implement this approach, it is necessary to have a well-
designed data model. [37], [47], [48], [67], [70], [82]

d) Ontology: Ontology is an explicit specification of a
conceptualization and consists of several components, e.g.:
concepts, relations, attributes, instances and axioms [97]. This
approach allows engineers to independently develop partial
descriptions of the same product and check consistency when
the descriptions are combined [98]-[100].

e) STEP: Standard for the Exchange of Product model
data (ISO 10303) [101]. STEP consists of a number of com-
ponents, called application protocols (APs), which define data
models on which translators for CAD data exchange are based.
The International Organization for Standardization (ISO) de-
veloped STEP in order to cover a wide range of application
areas, such as automotive, aerospace, and architecture [92].
In our systematic literature review, we have not found papers

that only use STEP to check consistency between models of
different domain; instead, all papers use an extension of STEP,
or a combination of STEP and other technologies [40], [58],
[60], [92].

f) KCModel: This approach is organized basically into
“Information Core Entity” (ICE) and “Configuration Entity”
(CE). The former is the smallest information entity used,
responsible for storing parameters and rules, and represents a
generic multi-domain baseline. In order to use the parameters
and rules in a specific context (3d, thermal calculations excel
files, etc.), it is necessary to create a Configuration Entity
instantiating ICE. This approach allows engineers to create
their own models, trace parameters and rules, and check
consistency. [35], [72], [102], [103]

V. DISCUSSION

The results described in this paper can serve as a starting
point for future research on model management topics. We
provide a list of available tools used to support the model
management. We group them according to the functionality
they offer related to the consistency model checking on models
of different or same domains. We observe that approximately
31% of the tools we found can provide consistency model
checking on models of different domains, approximately 24%
on the models of the same domain, and approximately 45%
do not provide any consistency model checking.

Regarding commercial tools, we have found that they do
not fully describe the kind of inconsistency they can address
(Section 4.2). This lack of information makes it difficult to
map the inconsistencies theses tools can handle, since these
tools are commercial and we would need the licenses and
the expertise to use them. Further evaluation on commercial
tools is necessary, and this should be done with the help of
specialists of each tool or at least a full description of all
features should be provided. For those tools that describe the
consistency type they address, we have found that the majority
of them can perform the interface consistency check, checking
whether the connected interface elements have mismatching
values. We expected that these tools could address more than
one kind of consistency type. However, this was not what we
observed. We observed that most of them address only one.

Our study reveals (Section 4.3) that the strategies to keep
the consistency between models of different domains are not
mature enough, because most of them are based on prototypes
or methodologies/approaches.

We found that explicit dependency modeling between mod-
els is not commonly used in the industry [54]; however, this
is regarded as a requirement by academia if one wishes to
manage inconsistency between models of different domains.
Qamar et al. [54] claim that “Capturing dependencies formally
and explicitly is currently not supported by available methods
and tools in MBSE, and having no explicit knowledge of
dependencies is a main cause of inconsistencies and potential
failures”. The explicit dependency modeling between models
can be done using design struct matrix, ontology, and it can
be followed by the use of standards as STEP.

VI. THREATS TO VALIDITY

Wohlin et al. [104] provide a list of threats that researchers
can face during a scientific research.

External validity concerns about how the results and
findings can be generalized. We only accepted studies written
in English, and this can represent a threat despite the fact that
English is the most widely used language for scientific papers.
As one of the goals of this study is to understand what the
industrial practices are we decided to accept gray literature
(white papers and technical report).

The fact that we could not try all the tools and we could
not find the full description of the kind of inconsistency they
address can represent a threat. We believe that this threat com
be minimized with the help of specialists of each tool or at
least a full description of all features should be provided.

Internal validity: Google scholar continuously indexes new
papers. Hence running the queries at different moments of time
might lead to different results. However, it is not possible to
run all queries simultaneously due to limitations of Google
scholar. We do not think that a considerable amount of papers
was missed, since all queries were similar to each other and
more than half of our query results were duplicated hits.

VII. CONCLUSIONS

We presented a systematic literature review intending to give
an overview of industrial practices and academic approaches
to cross-domain model management. We started with 515
potentially relevant studies and after a rigorous selection
criteria we concluded the process with 88 papers.

We provide a list of available tools used to support the
model management. We observed that approximately 31% of
the tools can provide consistency model checking on models
of different domains, approximately 24% on the same domain,
and approximately 45% do not provide any consistency model
checking.

Our study reveals that the strategies to keep the consistency
between models of different domains are not mature enough
because most of them are based on prototypes or methodolo-
gies/approaches, and the majority of these tools address only
one kind of consistency.

We found that explicit dependency modeling between mod-
els is not commonly used in the industry. However, it is
considered as a requirement by academia if one wishes to
manage inconsistency between models of different domains.

Due to the lack of details about the kind of inconsistency
that commercial tools address, we suggest that a further
evaluation on commercial tools is needed. This should be
done with the help of specialists of each tool or at least a
full description of all features should be provided.

To conclude, we observe that more research has to be done
to improve the quality of the approaches and tools used to
ensure consistency. There is no silver bullet, but at least we
have a set of strategies that together can provide consistency.

REFERENCES

[1] S.J. Herzig and C. J. Paredis, “A conceptual basis for inconsistency
management in model-based systems engineering,” Procedia CIRP,
vol. 21, pp. 52 — 57, 2014, 24th CIRP Design Conference.

[2] A. A. Shah, D. Schaefer, and C. Paredis, “Enabling multi-view mod-

eling with sysml profiles and model transformations,” in The 6th In-

ternational Conference on Product Lifecycle Management. University

of Bath, 2009, pp. 527-538.

T. Vosgien, T. N. Van, M. Jankovic, B. Eynard, and J.-C. Bocquet, “To-

wards model-based system engineering for simulation-based design in

product data management systems,” in /FIP International Conference

on Product Lifecycle Management. Springer, 2012, pp. 612—622.

I. David, “A multi-paradigm modeling foundation for collaborative

multi-view model/system development,” in SRC@MoDELS, 2016.

U. Sellgren, M. Torngren, D. Malvius, and M. Biehl, “Plm for mecha-

tronics integration,” in Proceedings of the 6th International Product

Lifecycle Management Conference (PLM 2009), 2009.

A. Qamar, J. Wikander, and C. During, “Overcoming current mecha-

tronic design challenges: a discussion,” in /3th Mechatronics Forum

International Conference, 2012.

[7]1 A. Reichwein, C. J. Paredis, A. Canedo, P. Witschel, P. E. Stelzig,

A. Votintseva, and R. Wasgint, “Maintaining consistency between

system architecture and dynamic system models with sysml4modelica,”

in Proceedings of the 6th International Workshop on Multi-Paradigm

Modeling. ACM, 2012, pp. 43-48.

S. J. Herzig, A. Qamar, A. Reichwein, and C. J. Paredis, “A conceptual

framework for consistency management in model-based systems engi-

neering,” in International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference. American

Society of Mechanical Engineers, 2011, pp. 1329-1339.

INCOSE, “Systems engineering vision 2020,” INCOSE-TP-2004-004-

02), Tech. Rep., 2007.

S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML:

the systems modeling language. Morgan Kaufmann, 2014.

A. Fisher, M. Nolan, S. Friedenthal, M. Loeffler, M. Sampson, M. Ba-

jaj, L. VanZandt, K. Hovey, J. Palmer, and L. Hart, “Model lifecycle

management for mbse,” in INCOSE International Symposium, vol. 24,

no. 1. Wiley Online Library, 2014, pp. 207-229.

M. Franzago, D. D. Ruscio, I. Malavolta, and H. Muccini, “Collab-

orative model-driven software engineering: a classification framework

and a research map,” IEEE Transactions on Software Engineering, pp.

1-1, 2017.

M. Grieves, Product Lifecycle Management: Driving the Next Genera-

tion of Lean Thinking: Driving the Next Generation of Lean Thinking.

McGraw Hill Professional, 2005.

——, Virtually perfect: Driving innovative and lean products through

product lifecycle management. Space Coast Press, 2011.

J. Stark, “Product lifecycle management,” in Product Lifecycle Man-

agement (Volume 1). Springer, 2015, pp. 1-29.

A. H. G. Rickover, “Product lifecycle management: The salvation of

systems engineering,” 2015.

S. Terzi, A. Bouras, D. Dutta, M. Garetti, and D. Kiritsis, ‘“Product

lifecycle management:from its history to its new role,” International

Journal of Product Lifecycle Management, vol. 4, no. 4, pp. 360-389,

2010.

C. Wohlin, “Guidelines for snowballing in systematic literature studies

and a replication in software engineering,” in Proceedings of the 18th

international conference on evaluation and assessment in software

engineering. ACM, 2014, p. 38.

J. Webster and R. T. Watson, “Analyzing the past to prepare for the

future: Writing a literature review,” MIS quarterly, pp. xiii—xxiii, 2002.

3

—

[4

=

[5

—_

[6

=

[8

—_

[9

[

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering. engineering 2 (2007), 1051,”
arXiv preprint arXiv:1304.1186, 2007.

K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering.” in EASE, vol. 8, 2008, pp.
68-77.

D. Landman, A. Serebrenik, and J. J. Vinju, “Challenges for static
analysis of Java reflection-literature review and empirical study,” in
International Conference on Software Engineering. 1EEE, 2017, pp.
507-518.

F. A. Moghaddam, P. Lago, and P. Grosso, “Energy-efficient net-
working solutions in cloud-based environments: A systematic literature
review,” ACM Comput. Surv., vol. 47, no. 4, pp. 64:1-64:32, May 2015.
S. Jalali and C. Wohlin, “Systematic literature studies: Database
searches vs. backward snowballing,” in International Symposium on
Empirical Software Engineering and Measurement, Sept 2012, pp. 29—
38.

B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus
within-company cost estimation studies: A systematic review,” IEEE
Transactions on Software Engineering, no. 5, pp. 316-329, 2007.

M. Kuhrmann, D. M. Fernandez, and M. Daneva, “On the pragmatic
design of literature studies in software engineering: An experience-
based guideline,” CoRR, vol. abs/1612.03583, 2016.

J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and Psychological Measurement, vol. 20, no. 1, pp. 37-46, 1960.

J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159-174, 1977.

L. Barbosa and J. Feng, “Robust sentiment detection on twitter from
biased and noisy data,” in Proceedings of the 23rd international
conference on computational linguistics: posters. — Association for
Computational Linguistics, 2010, pp. 36—44.

I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, “A
systematic literature review on agile requirements engineering practices
and challenges,” Computers in Human Behavior, vol. 51, pp. 915-929,
2015.

F. O. Bjrnson and T. Dingsyr, “Knowledge management in software
engineering: A systematic review of studied concepts, findings and
research methods used,” Information and Software Technology, vol. 50,
no. 11, pp. 1055 — 1068, 2008.

D. Spencer, Card sorting: Designing usable categories.
Media, 2009.

R. Taylor, N. Medvidovic, and E. Dashofy, Software Architecture:
Foundations, Theory, and Practice. Wiley, 2009.

O. Hisarciklilar, K. Rahmani, and V. Thomson, “A conflict detection
approach for collaborative management of product interfaces,” in ASME
2010 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference. — American
Society of Mechanical Engineers, 2010, pp. 555-563.

J. Badin, D. Monticolo, D. Chamoret, and S. Gomes, “Knowledge con-
figuration management for product design and numerical simulation,”
in International Conference on Engineering Design - Impacting Society
Through Engineering Design, vol. 6, 2011.

D. Penciuc, A. Durupt, F. Belkadi, B. Eynard, and H. Rowson,
“Towards a plm interoperability for a collaborative design support
system,” Procedia CIRP, vol. 25, pp. 369-376, 2014.

M. Rosenman and F. Wang, “Cadom: A component agent-based design-
oriented model for collaborative design,” Research in Engineering
Design, vol. 11, no. 4, pp. 193-205, 1999.

S. Bonnet, J.-L. Voirin, V. Normand, and D. Exertier, “Implementing
the mbse cultural change: Organization, coaching and lessons learned,”
in INCOSE International Symposium, vol. 25, no. 1. Wiley Online
Library, 2015, pp. 508-523.

L. Jinzhi, D. Chen, M. Torngren, and F. Loiret, “A model-driven and
tool-integration framework for whole vehicle co-simulation environ-
ments,” in European Congress on Embedded Real Time Software and
Systems. No, 2016.

R. T. Chaparala, N. W. Hartman, and J. Springer, “Examining cad
interoperability through the use of ontologies,” Computer-Aided Design
and Applications, vol. 10, no. 1, pp. 83-96, 2013.

P. Graignic, T. Vosgien, M. Jankovic, V. Tuloup, J. Berquet, and
N. Troussier, “Complex system simulation: proposition of a mbse
framework for design-analysis integration,” Procedia Computer Sci-
ence, vol. 16, pp. 59-68, 2013.

Rosenfeld

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

A. Sharon, D. Dori, and O. De Weck, “Model-based design structure
matrix: deriving a dsm from an object-process model,” in Second
International Symposium on Engineering Systems, 2009, pp. 1-12.

S. K. Chandrasegaran, K. Ramani, R. D. Sriram, I. Horvith,
A. Bernard, R. F. Harik, and W. Gao, “The evolution, challenges,
and future of knowledge representation in product design systems,”
Computer-aided design, vol. 45, no. 2, pp. 204-228, 2013.

J. Lubell, S. P. Frechette, R. R. Lipman, F. M. Proctor, J. A. Horst,
M. Carlisle, and P. J. Huang, “Model-based enterprise summit report,”
Army Research Lab Aberdeen Proving Ground MD Weapons and
Materials Research Directorate, Tech. Rep., 2014.

M. Chami and J.-M. Bruel, “Towards an integrated conceptual design
evaluation of mechatronic systems: The sysdice approach,” Procedia
Computer Science, vol. 51, pp. 650-659, 2015.

G. Belloncle, P. Chombart, and B. Clark, “An integrated approach to
developing automotive climate control systems,” in Complex Systems
Design & Management. Springer, 2013, pp. 209-226.

L. Weingartner, P. Hehenberger, M. Friedl, A. Kellner, S. Boschert, and
R. Rosen, “A lightweight approach to manage engineering parameters
in mechatronic design processes,” in IFIP International Conference on
Product Lifecycle Management. Springer, 2016, pp. 79-88.

E. Thomas, M. Ravachol, J. B. Quincy, and M. Malmheden, “Collabo-
rative complex system design applied to an aircraft system,” in Proceed-
ings of the 9th International MODELICA Conference; September 3-5;
2012; Munich; Germany, no. 076. Linkoping University Electronic
Press, 2012, pp. 855-866.

S. Aram and C. Eastman, “Integration of plm solutions and bim systems
for the aec industry,” in ISARC. Proceedings of the International
Symposium on Automation and Robotics in Construction, vol. 30.
Vilnius Gediminas Technical University, Department of Construction
Economics & Property, 2013, p. 1.

J. Murray, “Model based systems engineering (mbse) media study,”
International Council on System Engineering (INCOSE), 2012.

A. Shaout, M. Arora, and S. Awad, “Automotive software development
and management,” in Computer Engineering Conference (ICENCO),
2010 International. 1EEE, 2010, pp. 9-15.

F. Corbier, M. Soodeen, S. Loembe, and G. Thurston, “Creating a
systems simulation framework & roadmap,” SAE Technical Paper,
Tech. Rep., 2013.

Y. Li, L. Wan, and T. Xiong, “Product data model for plm system,” The
International Journal of Advanced Manufacturing Technology, vol. 55,
no. 9-12, pp. 1149-1158, 2011.

A. Qamar, C. J. Paredis, J. Wikander, and C. During, “Dependency
modeling and model management in mechatronic design,” Journal of
Computing and Information Science in Engineering, vol. 12, no. 4, p.
041009, 2012.

A. Gondhalekar, S. Kale, and A. Vidap, “Tool-agnostic framework
for systems engineering implementation,” in INCOSE International
Symposium, vol. 26, no. s1. Wiley Online Library, 2016, pp. 1-10.
S. O’Brien, R. Peak, P. Alldredge, L. Warden, J. Fortune, S. Cim-
talay, A. Scott, M. Wilson, B. Aikens, and D. Martin, “Verification,
validation and accreditation using aadl,” SYSTEMS ENGINEERING
RESEARCH CENTER HOBOKEN NI, Tech. Rep., 2011.

T. Johnson, A. Kerzhner, C. J. Paredis, and R. Burkhart, “Integrating
models and simulations of continuous dynamics into sysml,” Journal
of Computing and Information Science in Engineering, vol. 12, no. 1,
p. 011002, 2012.

R. Barbau, S. Krima, S. Rachuri, A. Narayanan, X. Fiorentini,
S. Foufou, and R. D. Sriram, “Ontostep: Enriching product model data
using ontologies,” Computer-Aided Design, vol. 44, no. 6, pp. 575-590,
2012.

M. Borsato, “Bridging the gap between product lifecycle management
and sustainability in manufacturing through ontology building,” Com-
puters in Industry, vol. 65, no. 2, pp. 258-269, 2014.

S. Krima, R. Barbau, X. Fiorentini, R. Sudarsan, and R. D. Sriram,
“Ontostep: Owl-dl ontology for step,” National Institute of Standards
and Technology, NISTIR, vol. 7561, 2009.

G. Barbieri, C. Fantuzzi, and R. Borsari, “Tools for the development
of a design methodology for mechatronic systems,” in Emerging Tech-
nologies & Factory Automation (ETFA), 2013 IEEE 18th Conference
on. IEEE, 2013, pp. 1-4.

A. Qamar, M. Meinhart, and G. Walley, “Model based systems
engineering to support failure mode avoidance for driver-assistance
systems,” in Aerospace Conference. 1EEE, 2017, pp. 1-9.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

A. Qamar, J. Wikander, and C. During, “Managing dependencies in
mechatronic design: a case study on dependency management between
mechanical design and system design,” Engineering with Computers,
vol. 31, no. 3, pp. 631-646, 2015.

A. Qamar, M. Torngren, J. Wikander, and C. During, “Integrating
multi-domain models for the design and development of mechatronic
systems,” in 7th European Systems Engineering Conference EuSEC
2010. INCOSE, 2010.

M. Torngren, A. Qamar, M. Biehl, F. Loiret, and J. El-Khoury,
“Integrating viewpoints in the development of mechatronic products,”
Mechatronics, vol. 24, no. 7, pp. 745-762, 2014.

M. Bajaj, D. Zwemer, R. Yntema, A. Phung, A. Kumar, A. Dwivedi,
and M. Waikar, “Mbse++foundations for extended model-based sys-
tems engineering across system lifecycle,” in INCOSE International
Symposium, vol. 26, no. 1. Wiley Online Library, 2016, pp. 2429-
2445.

M. Bajaj, D. Zwemer, R. Peak, A. Phung, A. G. Scott, and M. Wilson,
“Slim: collaborative model-based systems engineering workspace for
next-generation complex systems,” in Aerospace Conference. 1EEE,
2011, pp. 1-15.

K. Kernschmidt, G. Barbieri, C. Fantuzzi, and B. Vogel-Heuser, “Possi-
bilities and challenges of an integrated development using a combined
sysml-model and corresponding domain specific models.” in MIM,
2013, pp. 1465-1470.

A. B. Fotso and A. Rettberg, “State of the art for mechatronic design
concepts,” in Mechatronics and Embedded Systems and Applications
(MESA), 2012 IEEE/ASME International Conference on. 1EEE, 2012,
pp. 232-240.

T. Wu, N. Xie, and J. Blackhurst, “Design and implementation of a
distributed information system for collaborative product development,”
Journal of Computing and Information Science in Engineering, vol. 4,
no. 4, pp. 281-293, 2004.

1. David, J. Denil, K. Gadeyne, and H. Vangheluwe, “Engineer-
ing process transformation to manage (in)consistency,” in COMMit-
MDE®@MOoDELS, 2016.

D. Penciuc, A. Durupt, F. Belkadi, B. Eynard, and H. Rowson,
“Towards a plm interoperability for a collaborative design support
system,” Procedia CIRP, vol. 25, pp. 369-376, 2014.

G. Barbieri, C. Fantuzzi, and R. Borsari, “A model-based design
methodology for the development of mechatronic systems,” Mecha-
tronics, vol. 24, no. 7, pp. 833-843, 2014.

M. L. Mckelvin, Jr, R. Castillo, K. Bonanne, M. Bonnici, B. Cox,
C. Gibson, J. P. Leon, J. Gomez-Mustafa, A. Jimenez, and A. M.
Madni, “A principled approach to the specification of system archi-
tectures for space missions,” in AIAA Space 2015 Conference and
Exposition, 2015, p. 4462.

S. Feldmann, S. J. Herzig, K. Kernschmidt, T. Wolfenstetter, D. Kam-
merl, A. Qamar, U. Lindemann, H. Krcmar, C. J. Paredis, and
B. Vogel-Heuser, “Towards effective management of inconsistencies
in model-based engineering of automated production systems,” IFAC-
PapersOnlLine, vol. 48, no. 3, pp. 916-923, 2015.

R. F. Paige and D. Varrd, “Lessons learned from building model-driven
development tools,” Software & Systems Modeling, vol. 11, no. 4, pp.
527-539, 2012.

A. A Shah, D. Schaefer, and C. Paredis, “Enabling multi-view modeling
with sysml profiles and model transformations,” 01 2009.

H. Abid, P. Pernelle, D. Noterman, J.-P. Campagne, and C. Ben Amar,
“Sysml approach for the integration of mechatronics system within plm
systems,” International Journal of Computer Integrated Manufacturing,
vol. 28, no. 9, pp. 972-987, 2015.

M. Deshmukh, R. Schwarz, A. Braukhane, R. P. Lopez, and A. Gerndt,
“Model linking to improve visibility and reusability of models during
space system development,” in Aerospace Conference. 1EEE, 2014,
pp. 1-11.

H. Song, L. Roucoules, B. Eynard, and P. Lafon, “Interoperability
between a cooperative design modeler and a cad system: Software
integration versus data exchange,” Journal for Manufacturing Science
and Production, vol. 7, no. 2, pp. 139-149, 2006.

F. Abrishamchian and A. Trichtler, “Configuration of mechatronic
systems using feature models,” Procedia Technology, vol. 15, pp. 27—
34, 2014.

M. Sadeghi, F. Noel, and K. Hadj-Hamou, “Development of control
mechanisms to support coherency of product model during cooperative

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]
[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

design process,” Journal of Intelligent Manufacturing, vol. 21, no. 4,
pp. 539-554, 2010.

L. VanZandt, “Engineering lifecycle management. what a bunch of
rhetoric,” in INCOSE International Symposium, vol. 26, no. 1. Wiley
Online Library, 2016, pp. 1905-1921.

E. Fourgeau, E. Gomez, and M. Hagege, “Managing the embedded
systems development process with product lifecycle management,” in
Complex Systems Design & Management Asia. Springer, 2016, pp.
147-158.

L. He, X. Ming, Y. Ni, M. Li, M. Zheng, and Z. Xu, “Ontology-based
information integration and sharing for collaborative part and tooling
development,” Concurrent Engineering, vol. 23, no. 3, pp. 199-212,
2015.

F. Demoly, A. Matsokis, and D. Kiritsis, “A mereotopological prod-
uct relationship description approach for assembly oriented design,”
Robotics and Computer-Integrated Manufacturing, vol. 28, no. 6, pp.
681-693, 2012.

E. Gruhier, F. Demoly, O. Dutartre, S. Abboudi, and S. Gomes, “A
formal ontology-based spatiotemporal mereotopology for integrated
product design and assembly sequence planning,” Advanced Engineer-
ing Informatics, vol. 29, no. 3, pp. 495-512, 2015.

J. Lee, S. Fenves, C. Bock, H. Suh, S. Rachuri, X. Fiorentini, and
R. Sriram, “A semantic product modeling framework and language for
behavior evaluation,” NIST IR, vol. 7681, 2010.

J. Costello, D. S. Canestraro, J. R. Gil-Garcia, and D. Werthmuller,
Using XML for Web Site Management: Lessons Learned Report.
Center for Technology in Government University at Albany, SUNY,
2007.

P. Wegner, “Interoperability,” ACM Computing Surveys (CSUR),
vol. 28, no. 1, pp. 285-287, 1996.

J. Lubell, “From model to markup: Xml representation of product data,”
2002.

K. Chen and D. Schaefer, “Mcad-ecad integration: Overview and future
research perspectives,” in ASME 2007 International Mechanical Engi-
neering Congress and Exposition. American Society of Mechanical
Engineers, 2007, pp. 123-132.

K. Czarnecki and S. Helsen, “Classification of model transformation
approaches,” in Proceedings of the 2nd OOPSLA Workshop on Gen-
erative Techniques in the Context of the Model Driven Architecture,
vol. 45, no. 3. USA, 2003, pp. 1-17.

A. Ball, L. Ding, and M. Patel, “An approach to accessing product
data across system and software revisions,” Advanced Engineering
Informatics, vol. 22, no. 2, pp. 222-235, 2008.

C. Tristl and A. Karcher, “Integrating systems and mechanical/electrical
engineering-how model-based interface management supports multi-
domain collaboration,” in International Design Conference, 2012.

G. Sirin, B. Yannou, E. Coatanéa, and E. Landel, “Analyze of the
simulation system in an automotive development project,” 2012.

T. R. Gruber, “A translation approach to portable ontology specifica-
tions,” Knowledge acquisition, vol. 5, no. 2, pp. 199-220, 1993.

C. Bock, X. Zha, H.-w. Suh, and J.-H. Lee, “Ontological product
modeling for collaborative design,” Advanced Engineering Informatics,
vol. 24, no. 4, pp. 510-524, 2010.

O. Penas, R. Plateaux, S. Patalano, and M. Hammadi, “Multi-scale
approach from mechatronic to cyber-physical systems for the design
of manufacturing systems,” Computers in Industry, vol. 86, pp. 52—69,
2017.

S. Mostefai, A. Bouras, and M. Batouche, “Effective collaboration in
product development via a common sharable ontology,” International
Jjournal of computational intelligence, vol. 2, no. 4, pp. 206-212, 2005.
M. Pratt, “Iso 10303, the step standard for product data exchange, and
its plm capabilities,” vol. 1, 01 2005.

F. Belkadi, N. Dremont, A. Notin, N. Troussier, and M. Messadia, “A
meta-modelling framework for knowledge consistency in collaborative
design,” Annual Reviews in Control, vol. 36, no. 2, pp. 346 — 358,
2012.

J. Badin, D. Monticolo, D. Chamoret, and S. Gomes, “Using the
knowledge configuration model to manage knowledge in configuration
for upstream phases of the design process,” International Journal on
Interactive Design and Manufacturing (IJIDeM), vol. 5, no. 3, p. 171,
Jul 2011.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer
Science & Business Media, 2012.

