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Abstract

It is well known that the support conditions may have a significant influence on the
waterhammer behaviour of liquid-filled pipe systems. For rigidly supported systems,
classical waterhammer calculations generally give reliable predictions of the extreme
pressures and stresses in the system. For more flexibly supported systems, classical
predictions may fail due to the dynamic interactions between the vibrations of liquid and
pipes. Fluid-structure interaction (FSI) effects must then be taken into account.

In the present paper two items are investigated as a function of the rigidity of pipe
supports: i) the validity of conventional waterhammer analyses and ii) the magnitudes of
the extreme pressures and stresses.

Calculated results show that in the test case considered conventional waterhammer
analyses fail when the rigidity of bend supports is less than the axial stiffness of one
metre of pipe. Maximum stresses appear to be higher in the more flexible pipe systems,
but the forces acting on the supports are lower.

1. Introduction

The classical theory of waterhammer [Chaudhry 1979; Wylie & Streeter 1993] describes
the transient behaviour of liquid contained in pipe systems in terms of dynamic pressures
and velocities. The elasticity of the pipes is taken into account, but their inertia and
motion in longitudinal (axial) direction is completely disregarded. The stresses in the pipe
follow quasi-statically the pressure P in the liquid. The hoop stress o}, is
o, = Xp o)
and the axial stress g, is €
R 1 R

0, =0 or aax=”?P or oa":EZP 2
depending on the support conditions of the pipe under consideration; R/ e is the ratio of
inner pipe radius to wall thickness and » is Poisson’s ratio. Anchor forces are estimated
from the dynamic pressures [van der Weijde 1985].
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The extended theory of waterhammer [Skalak 1956; Wiggert et al. 1985] requires a
full stress analysis of the pipe system since i) the dynamic axial pipe stress (or
displacement) is a variable in the extended waterhammer equations and ii) the axial
vibrations of dead ends, elbows and T-pieces generate waterhammer in the liquid. All
liquid-pipe interaction mechanisms [Tijsseling & Lavooij 1990] are taken into account
and, in addition to the liquid pressures and velocities, dynamic pipe stresses and
displacements are calculated. Anchor forces are derived from the dynamic stresses
[Biirmann & Thielen 1988]. An extensive review of literature dealing with liquid-pipe
interaction is given in [Tijsseling 1993].

It is believed that the classical theory is valid as long as the pipe system is sufficiently
rigidly anchored. It is known, however, that severe deviations (changed amplitudes and
frequencies) from classical predictions may occur when essential parts of the system are
not rigidly anchored [Wood 1969; Hatfield et al. 1982]. The extended waterhammer
theory should then be applied.

Entirely rigid pipe supports or anchors do not exist. The aim of this paper is to
investigate the influence of pipe support rigidity on waterhammer calculations. The
supports are considered rigid if classical waterhammer calculations are valid. The validity
is approved when classically calculated results agree well with results calculated with
extended waterhammer theory. It is still up to the engineer what he/she regards as
acceptable in this respect. Furthermore, the extreme pressures and stresses occurring in
a transient event are studied as a function of pipe support rigidity. This study relates to
the question whether a pipe system should be fairly rigid or whether it should be more
flexible in coping with waterhammer loads. Cost aspects play a role since support
devices, like snubbers, can be expensive.

One test problem, a reservoir-pipeline-valve system, is analysed numerically. The
pipeline contains six bends, which are supported by linear springs. The stiffness of the
springs is varied from entirely rigid to entirely slack. The response of the system to very
rapid valve closures is investigated.

2, Test problem

The significant effect of pipe motion on contained liquid behaviour has been observed in
many pipe systems, e.g. [Blade et al. 1962; Swaffield 1968-1969; Wood & Chao 1971;
Krause et al. 1977; Kellner et al. 1983; Wiggert et al. 1985; Vardy & Fan 1989;
Kruisbrink & Heinsbroek 1992]. A more complete survey can be found in [Tijsseling
1993]. Most of the pipe systems studied were relatively small and partly unsupported;
some of them were even suspended by wires to take away any resistance to pipe motion.
Problems with apparently rigid supports not being entirely rigid occurred [Swaffield
1968-1969; Wilkinson 1980, p. 197].

The largest laboratory system is that of [Kruisbrink & Heinsbroek 1992] and it is this
particular system that is analysed herein. Seven straight steel pipes (109 mm inner
diameter, 3 mm wall thickness) connected by six 90-degrees mitre bends form the three-
dimensional pipe system schematically shown in figure 1. The total length of the system
is 77.5 m. It is supported by long thin steel cables and bearings at two bends (B and G),
thus allowing for significant longitudinal, flexural and torsional deformations. The
anchors at the ends A and B have a measured axial stiffness of 317 kN/mm and
214 kN/mm, respectively. Water is flowing from a constant head air-vessel at one end
of the pipe system to a valve at the other end. Severe transients were generated by the
nearly instantaneous (within 10 ms) closure of the valve. The pressure in the system is



Figure 1. Schematic representation of pipe system analysed.

taken sufficiently high to prevent cavitation.

The pipe system was designed and constructed to validate a numerical model for fluid-
structure interaction (FSI). To this end the system was deliberately made very flexible,
so that FSI effects are predominant. Whereas for rigidly supported pipe systems the
classical waterhammer theory is adequate (e.g. [Simpson 1986]), an analysis of the very
flexible system at issue requires extended waterhammer theory [Kruisbrink & Heinsbroek
1992].

In practice most pipe systems are neither entirely rigid nor very flexible. To assess
the transient behaviour of pipe systems of intermediate rigidity, the system of figure 1
is analysed numerically for different degrees of rigidity. All bends are held by 10 linear
springs (figure 1), the stiffness of which is varied from infinitely large (in the classical
case) to zero (table 1). The spnng stiffnesses in table 1 are relative to the axial stiffness EA, /L
of L =1 m of pipe, which is 215.6 kN/mm. The cross-sectional plpe-wall area A4, is 1078
mm? and Young’s modulus E of the pipe’s steel is 200 GN/m?. The latter value was
provided by the manufacturer, just as Poisson’s ratio » being 0.3 and the steel’s mass
density p, being 8000 kg/m>. The stiffness of the suspension wires is 0.285 kN/mm in
the vertical direction and 0.000243 kN/mm in the horizontal direction. The properties of
water at 20 °C are obtained from tables in literature: the mass density p,is 998.2 kg/m®
and the bulk modulus Kis 2.19 GN/m?. The test case considered here i5 with a 5.87 bar
gauge pressure in the air-vessel and an initial flow velocity of 0.3 m/s. The (American)
Darcy-Weisbach friction coefficient f [Wylie & Streeter 1993, p. 21], including local
losses, is measured 0.031.

19



20

Run # Rigidity Simulation time Main frequency

(* 215.6 kN/mm) (CPU minutes) (Hz)
1 classical 19 4.05
2 1000 56 4.08
3 100 56 4.08
4 10 57 4.08
5 1 72 4.08
6 0.1 89 4.05
7 0.02 96 4.00
8 0.01 96 4.00
9 0.005 96 3.93
10 0.002 96 3.75
11 0.001 98 3.35
12 0.0006 98 3.02
13 0.0005 99 2.89
14 0.0004 100 2.82
15 0.00036 99 2.79/5.75
16 0.0003 100 5.61
17 0.0002 100 5.35
18 0.0001 99 5.20
19 0.00001 98 5.09
20 0.000001 98 5.05
21 0 98 5.02

Table 1. Numerical simulations performed.

Rigidity of all bend supports relative to axial rigidity of one metre of pipe.

Simulation time on a 486-33 PC
(depends on the number of fluid-structure iterations needed).
Main frequency in calculated pressure histories.




3. Numerical simulation

Numerical simulations were carried out with the FLUSTRIN software owned by DELFT
HYDRAULICS [Lavooij & Tijsseling 1989; Kruisbrink & Heinsbroek 1992]. The
software has been validated against physical experiments known from literature and
against numerical results of other investigators. It is based on extended waterhammer
theory for the liquid and extended beam theory for the pipes. Fluid-structure interaction
(FSI) mechanisms due to i) the motion of anchors and bends (junction coupling), ii) the
coupled radial and axial motion of the pipe walls (Poisson coupling), and iii) the mutual
friction between liquid and pipes (friction coupling), are taken into account. The software
is valid for long-wavelength acoustic phenomena, cavitation is assumed not to occur and
the displacements of the pipes must be within the range of linear elasticity.

The transient behaviour of the pipe system in figure 1 has been simulated with
FLUSTRIN, using the data provided in the previous section as input. It is repeated here
that the suspension wires are modelled as linear springs with both vertical and horizontal
gravity components, that the air-vessel has a constant pressure and that the valve closure
is almost instantaneous. The anchors at A and H are considered to be entirely rigid. At
B and G displacements in the X,- and the X;-direction are fully restrained as well as
rotations about these two axes. The rigidity of all linear springs at the bends B, C, D,
E, F and G is stepwise decreased by the same amount from entirely rigid to entirely
slack, as indicated in table 1. Hence, one classical waterhammer calculation (no pipe
motion) and 20 FSI calculations were carried out. In the numerical calculation the pipe
was divided into 51 elements which corresponds to a numerical time step of 1.2 ms.

4. Calculated results
Waterhammer pressures

Pressure histories calculated close to the valve are shown in figure 2 for six different
rigidities of the bend supports. The classical pressure history, which is based on a
calculation ignoring any axial pipe stresses, is shown as a reference. The main frequency
of the classical waterhammer wave is 4.05 Hz (cf/ (4L) with ¢ = 1257 m/s and 4L =
310 m) and its amplitude is about 3.76 bar (Joukowsky: AP = prfA V with Py = 998.2
kg/m® and AV = 0.3 m/s).

The axial motion of bends is negligible when the rigidity of their supports is 1000
times larger than the axial stiffness of one metre of pipe. In that case junction coupling,
which is the most important FSI-mechanism, does not exist. Consequently, the first
4L/c, = 0.25 seconds of the pressure histories calculated with extended and classical
theory are nearly the same (figure 2, upper left frame). Later on the differences become
bigger due to cumulative Poisson coupling effects. In particular, pressure peaks of
increasing magnitude occur after each time interval of 2L/c, seconds. A similar
phenomenon has been predicted for a straight pipe by Wiggert et al. [1986] and
Tijsseling & Lavooij [1989], but its physical importance may be questioned since the
phenomenon has, as far as the authors know, never been observed in practice.

The calculated pressure histories for bend supports with a rigidity equal to that of one
metre of pipe (figure 2, upper right frame) resemble those obtained for a thousand times
larger rigidity. Therefore, the supports can still be regarded as rigid. When their rigidity
becomes lower, calculated pressure histories will differ from the two shown in the two
upper frames of figure 2.
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Figure 2. Pressure histories at valve for six different rigidities of the bend supports.
( extended waterhammer theory, - - - classical waterhammer theory)

When the bend support rigidities are 100 times lower than the axial stiffness of one
metre of pipe, which is still large compared to the horizontal stiffness of the suspension
wires, the pressure close to the valve as calculated with extended waterhammer theory
is completely different from the one calculated with classical theory (figure 2, middle left
frame). A frequency of 29 Hz, superimposed on the basic frequency of 4 Hz, can be
discerned and the whole signal becomes more triangular as opposed to the rectangular



shape of the classical signal. The pressure peaks substantially (up to 100%) exceed the
classical Joukowsky pressure. With the steady-state pressure equal to nearly 6 barg (as
is the case in all simulations considered) some cavitation would occur in reality, but it
is neglected here.

Further decreasing the rigidity by a factor of 10 (figure 2, middle right frame) leads
to a shift of the pressure wave’s main frequency from 4 Hz towards 3 Hz. This
frequency is considerably lower than the classical one.

When the rigidity is further decreased to a value of 0.00036, the pressure signal
develops a somewhat chaotic character (figure 2, bottom left frame). It is not easy to
distinguish the basic frequency in this case. The authors have based their assessment of
two frequencies (2.79 Hz and 5.75 Hz in table 1) on a simulated time interval of 4
seconds (not shown here).

A qualitatively similar pressure signal, as with rigidity 0.001, is calculated when all
bend supports are removed (figure 2, bottom right frame). Now, however, the main
frequency of the pressure wave is considerably larger than the classical one. This larger
frequency, the trident shape just after valve closure and the triangular shape later on, are
confirmed by physical experiment [Kruisbrink & Heinsbroek 1992].

The frequency shift in the pressure waves as caused by FSI mechanisms is studied in
figure 3. Based on the values given in table 1, the lowest frequency in the pressure
signals is portrayed as a function of the rigidity of the bend supports. For bend support
rigidities larger than one per cent of the axial stiffness of one metre of pipe, the main
pressure wave frequency is very close to the 4.05 Hz found with classical theory. For
rigidities smaller than 10°5 times the axial stiffness of one metre of pipe, the frequency
is close to the 5.02 Hz predicted and observed in a system without bend supports. A
transition area exists for rigidities between 10 and 1072, with more or less chaotic
behaviour when the rigidity is between 0.0003 and 0.0006. The "chaos” is most severe
for rigidity 0.00036 (figure 2, bottom left frame). It is noted that all frequencies in table
1 were assessed by finding the best fit of a sine wave through the pressure histories at
four different locations. Since we are only interested in the lowest frequency, this method
is sufficient. A Fourier analysis is required if one is also interested in higher frequencies.
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Rigidity (* 215.6 kN/mm)

Frequency (Hz)

Figure 3. Main frequency of pressure wave versus rigidity of bend supports
(see table 1).
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Pipe stresses

The ANSI/ASME B31 Codes for pressure piping recommend application of the
equivalent stress according to Tresca at the outer fibre of the pipe wall [Helguero 1985].
The radial stresses are assumed to be zero, indicating a plane-stress case. The principal
stresses expressed in terms of the total axial stress g,,, (resulting from axial forces and
bending moments), the total shear stress 7, (resulting from shear forces and torsional
moments) [Heinsbroek 1993] and the hoop stress o, are [Gere & Timoshenko 1987}

o =5 [vm+oh+ Y47+ O -0 ] ©
0, = % [am+ o) \/4fi+(am—ah)2 ] @

g3 =0 o)

The convention is to sort these three stresses such that o; > o; > o03.

For a general tri-axial stress state it is assumed that yielding of the material occurs
when the local stress reaches a critical value: the allowable stress o,. The yield condition
applied here is the Tresca condition, which is preferred by the ANSI/ASME B31 Code
above the Von Mises condition. The Tresca condition (equivalent stress) is defined as:

0, = 27, = max(o;,0,,05) - min(o,,0,,0,) 6)

To avoid yielding: ¢, < 0,.

In the classical waterhammer theory the bending, shear and torsion of pipes is
disregarded. In that case the Tresca stress o, equals R/e | P | , which follows directly
from the equations (1) to (6).

The distributions of the maximum equivalent stresses according to Tresca for four
cases with different rigidities are shown in figure 4. The static Tresca stress distribution,
caused by dead weight and stationary flow only, is included as well (dashed line). The
peaks, at positions 22.5 m, 28.5 m, 34.5 m, 40.5 m, efc., are caused by the negative
bending moments at the suspension wire locations due to dead weight. The zero-moment
points and maximum-moment points in between these peaks can clearly be distinguished.
In the static equivalent stresses, the bending moment distribution is lifted upward by a
value of about 10 N/mm? as a result of the hoop stress induced by the steady-state
pressure of 5.42-5.87 barg (formula ).

When the bend support rigidity is 1000 (figure 4, upper left frame) the contribution
of the waterhammer load to the dynamic solutlon is clearly visible as a "bottom level
rise” from about 10 N/mm? to about 20 N/mm?. The peak values, however, only rise
with about 2 or 3 N/mm? from 32 N/mm? to 34 N/mm?. Simpl Ly increasing the static
Tresca stresses by the hoop stress g, (= R/e AP = 7 N/mm®) associated with the
classical Joukowsky pressure AP (= psc,AV with AV = 0. 3 m/s) inadvertently neglects
the changes in the overall internal force Jlstribution and support reactions. Therefore, the
quasi-static Tresca stresses should be determined in a static pipe stress analysis by
increasing the steady-state pressure distribution by the Joukowsky pressure AP. An
alternative approach is increasing the steady-state pressure distribution by twice the
Joukowsky pressure to take so into account a dynamic load factor (DLF) of 2, which is
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Figure 4. Distribution along the pipe system of the maximum equivalent stresses.
(— static + dynamic (FSI) solution, - - - static (steady-state) solution)

commonly used for step loads [Biggs 1963]. The results of these different methods of
calculation are given in table 2, together with the results of full FSI computations.

The static + dynamic Tresca stress distribution in case of a spring support rigidity of
0.01 (figure 4, upper right frame) shows a "bottom level rise” of about the same
magnitude as in the previous case, although the peaks reveal a larger increase.

When the rigidity is 0.00036 (figure 4, bottom left frame) the static + dynamic
Tresca stress distribution is by no means similar in form to the static distribution and
much more capricious. Upstream of elbow G (position 74.5 m) a large peak develops.

With a rigidity of O the distribution again changes rather drastically (figure 4, bottom
right frame), be it somewhat more similar in form to the static distribution. Here a stress
peak develops at mid-span of pipe CD. The increases in the Tresca stresses are
substantially larger than the Joukowsky hoop stress (R/e AP = 7 N/mm?).

It is striking to observe that the static Tresca stress distributions in the cases with
support rigidity other than zero hardly show any variation. Only the peak values vary
slightly (table 2, second column). The spring stiffness corresponding to a rigidity 0.00036
is 0.078 kN/mm, which is not regarded as high. The conclusion may be drawn here that
as long as the bends are more or less "kept in place” the variation of the static Tresca
stress distribution is insignificant. The main effect of releasing the springs is that elbows
C and F are enabled to rotate about the X;-axis, thus relieving the rotational spring
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stiffness supporting the upstream end point of pipe CD and the downstream end point of
pipe EF with consequently lower clamping bending moments. Apart from this effect, the
static stress distribution in the unrestrained pipes DE and EF (16.5 m to 70 m) is nearly
identical to the other three. The dynamic Tresca stress distributions, however, vary
greatly in the four cases considered.

It is noted that the contribution of the dynamic stresses to the equivalent stresses
becomes proportionally larger when the initial flow velocity (here 0.3 m/s) increases.

In table 2 the maximum Tresca stresses following from the different approaches are
summarised. It may be concluded that, in case of almost rigid springs, the simple
approach of increasing the steady-state pressure distribution by the Joukowsky pressure
followed by a structural steady-state (static) computation produces reliable results. The
Poisson coupling effects, clearly visible in the pressure histories of the upper two frames
of figure 2, appear to be of less importance for the maximum stresses. For the cases with
spring stiffnesses less than almost rigid this approach turns out to be highly unreliable
and non-conservative. Heinsbroek [1993] has shown that uncoupled computations, in
which at each time step the temporary liquid pressure distribution (resulting from a
waterhammer computation) is applied as load in the structural dynamics computation,
lead to far too conservative Tresca stress predictions. However, this conclusion might be
highly dependent upon the pipeline system analysed.

Rigidity Static Static+AP Static+2AP FSI
1000 32 34 36 34
0.01 33 36 40 41

0.00036 34 37 40 70

0 40 43 46 60

Table 2. Maximum equivalent (Tresca) stresses in N/mm? for four different
rigidities of the bend supports and different methods of calculation
(AP = classical Joukowsky pressure load).

Table 3 gives the maximum values of the pressures, stresses and reaction forces
occurring in the pipeline system during one second of simulation. The maximum
pressures in the rigid pipe systems (rigidity 1 - 1000) are much higher than the 9.63 barg
predicted by classical waterhammer theory (if friction effects are disregarded: static
pressure of 5.87 barg at valve + dynamic Joukowsky pressure of 3.76 bar). This is due
to the pressure peaks of increasing magnitude (see figure 2, top frames), which are
believed to be physically unrealistic. From rigidity 0.002 on, the maximum pressure
decreases when the system becomes more flexible. The maximum stresses, however, do
not decrease. They are the lowest in the most rigid systems. On the other hand, the
forces on bearings, anchors, and, in particular, the bend supports, are the highest in the
rigid systems. The forces in the suspension wires are the highest in the more flexible
systems, where the vertical junction force components at bends C and F are no longer
directly borne by the vertical bend supports. The vertical junction force components are
thus no longer restrained to excite the system in vertical direction, with consequently
larger amplitudes of the suspension wire forces.



Rigidity | Tresca | Anchor / Bend | Suspension | Pressure

(* 215.6] stress bearing | support | wire force (barg)
KN/mm) | (N/mm?) | force (N) | force (N) o)

1000 34 5658 6219 1173 12.94
100 34 5674 6273 1173 12.92
10 34 5688 6129 1176 13.25

1 35 5324 5885 1177 12.30

0.1 38 4974 4732 1197 12.00

0.02 41 5039 3193 1234 13.17

0.01 41 5047 2548 1345 13.32

0.005 40 5050 1959 1405 12.18

0.002 42 5052 1774 1412 12.60

0.001 44 5053 1683 1488 12.45

0.0006 52 5052 1247 1480 12.05
0.0005 58 5052 1093 1520 11.91
0.0004 66 5051 1000 1595 11.75
0.00036 70 5051 951 1575 11.67
0.0003 65 5051 863 1555 11.56
0.0002 63 5049 673 1564 11.35
0.0001 52 5045 409 1555 11.10
0.00001 59 5022 84 1548 10.87
0.000001 59 5011 12 1543 10.84
0 60 5009 0 1543 10.84

Table 3. Maximum values of the Tresca stresses, forces on anchors (A and H) and
bearings (B and G), forces on bend supports, forces on suspension wires,
and fluid pressures, as a function of the rigidity of the bend supports.

5. Discussion

It is known that the classical waterhammer theory is adequate for either very rigid or
very heavy pipe systems. The classical theory fails ‘when the pipe system has a certain
amount of flexibility and the valve closure is rather rapid. These matters are confirmed
by the pressure histories in figure 2. The behaviour of the main pressure wave frequency
as a function of bend support rigidity is most interesting (figure 3). A nearly
discontinuous transition from a low frequency for larger rigidities to a high frequency for
smaller rigidities seems to occur in the vicinity of rigidity 0.00036. The pressure history
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at the valve is whimsical in that case (figure 2, bottom left frame). One might question
whether pipe supports with a rigidity of (0.00036 * 215.6 =) 0.078 kN/mm are found in
4" (schedule 10 S) pipe systems in practice. Pipe clamps connected via a bar to wall or
floor are not uncommon and their rigidity can be very low. Unsupported bends have no
rigidity at all.

To have a physical reference frame, the rigidity of the bend supports has been quoted
relative to the axial stiffness of one metre of pipe. This one metre is quite arbitrary. It
has been chosen for lack of a better length scale. The authors did not want to use a
length scale based on static considerations for the strongly dynamic problem treated
herein. A possible dynamic length scale is: ¢, T with ¢, the speed of propagation of
axial stress waves and T, (>0) the effective closure time of the valve (defining the
steepness of the wave frontg). In the test problem analysed ¢, = (E/p)'’? = 5000 m/s and
Top = 03T, = 0.3 » 10 = 3 ms, so that the dynamic length scale would be 15 m. See
[Lavooij & Tijsseling 1989] for the importance of timescales in FSI calculations.

The ANSI/ASME pressure piping Codes do not clearly indicate how to derive pipe
stresses from dynamic pressures as calculated by classical waterhammer theory. Dynamic
load factors 2 are recommended for step loads. Static stresses should be taken into
account when calculating the equivalent stresses. This is usually not done in connection
with a conventional waterhammer analysis.

6. Review and conclusions

The influence of the rigidity of pipe anchors on the transient behaviour of one specific
reservoir-pipeline-valve system (77.5 m long 4" diameter pipeline with six bends) has
been studied numerically. The anchors, located at the bends and modelled as linear
springs, determine the flexibility of the pipe system. For anchors with a rigidity larger
than the axial stiffness of one metre of pipe, the influence on the transient behaviour of
the system is small; the classical waterhammer theory gives then reliable predictions of
the pressures in the system. For less rigid anchors the motion of bends leads to severe
deviations between the predictions of classical and extended waterhammer theory. Higher
extreme pressures and different basic frequencies in the pressure histories are the result.
Starting with a very rigid pipe system, the main frequency of the pressure wave decreases
for less stiff systems until at a certain rigidity/flexibility it jumps to a higher value from
which it decreases to the frequency pertaining to a system without bend supports.

For an accurate determination of the equivalent stresses in the pipe system both a
static (steady-state) and a dynamic (fluid-structure interaction) stress analysis is required.
With classical Joukowsky pressures as additional input in the static stress analysis only,
reliable results are obtained in the more rigid pipe systems, whereas the stresses are
highly underestimated in the more flexible systems.

In the more flexible systems the maximum stresses are higher, but the forces on the
supports are lower.

It has been shown that a detailed analysis of the static and dynamic behaviour of
liquid-filled pipe systems is possible with present-day software. Exercises like those
underlying this paper might eventually lead to guidelines and design rules useful to pipe
engineers.
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