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ABSTRACT

The classical waterhammer equations allow the propagation of jumps (discontinuities) in pressure
and velocity. A newly derived (as far as the authors know) and exact formula describes the
attenuation of these jumps as a result of quasi-steady Darcy-Weisbach friction. For large jumps
in fluid velocity (compared to the steady-state velocity) the attenuation is a hyperbola in time,
whereas for small jumps (disturbances) it is exponential in time. For jumps propagating into a
region of steady flow the attenuation contains both hyperbolic and exponential components.

The newly derived formula has been successfully verified against numerical results from
conventional MOC waterhammer programs.

The theoretical formula provides a criterion for assessing the importance of friction. It can be used

for simple predictions of wave propagation in long transmission lines, in systems with high flow
velocities and in highly viscous flows.

NOTATION

AP oints in xf plane * waterhammer elasticity modulus
P p

C", C” characteristic lines pipe length

c wave speed pressure

c(w) phase velocity attenuation factor
time

pipe diameter

D

f Darcy-Weisbach friction factor fluid velocity
S

i

axial direction
jump or discontinuity

linear friction factor (Hz)
imaginary unit

DR o™ oy
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P mass density Subscripts

v kinematic viscosity + upper side of characteristic
@ angular frequency - lower side of characteristic
MOC method of characteristics 0 steady state or initial value
ODE ordinary differential equation eq equivalent

i imaginary part

r real part
1 INTRODUCTION

The importance, the validity and the numerical approximation of the Darcy-Weisbach friction term
in the classical waterhammer equations have been the subjects of investigation in numerous papers
(e.g. [1-3]). Because the Darcy-Weisbach term is strongly non-linear in nature, most, if not all,
of these papers concern numerical methods.

The present paper introduces an analytical approach based on the method of characteristics
(MOC). A technique developed by Leonard and Budiansky [4] and Chou and Mortimer [5] for
linear systems has been extended herein to account for the quadratic Darcy-Weisbach term.

The analytical method is introduced in Section 2 for linear systems. The quadratic friction term
is treated in Section 3, where small and large waterhammer jumps are considered as special cases.
Section 3.5 gives a simple formula for practical use. The importance and possible applications of
the derived formulae are mentioned in Section 4.

The presented work is part of a research project on vibrational damping mechanisms in liquid-filled

pipes [6].

2 WATERHAMMER WITH LINEAR FRICTION TERM
The waterhammer equations with a linear friction term are:

oV 10P
e
Oi
a 1)

When the friction term is linear no assumptions and approximations are needed in what follows.
Thus an elegant mathematical treatment is possible. The linear friction term appears in laminar
flow and it also describes the damping of small disturbances on top of a steady turbulent flow. The
values of /* for these two cases are given by f* = 8 v/R? and f* = fV/D, respectively, where vis
the kinematic viscosity and £ is the (American) Darcy-Weisbach friction factor.

Using the MOC we can rewrite equations (1) in the form of ODEs which are valid along the
characteristic lines:
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Figure 1: Notation on characteristic lines

dav 1 dP dx
(o —t——F V=0 long — =+c¢ 2
a oea ’ N @)
and
c ﬂ_ig-f_f*V:O’ along-d—x—:—c (3)
dt pc dt dt

where ¢ = \/(K */p). We consider a discontinuity in ¥ and P travelling along the characteristic line
C”. The pressure and velocity just ahead of the discontinuity (wave front) are denoted by V_ and
P_ and those just behind the discontinuity by ¥, and P.. The discontinuity itselfis AV’ = V.—V_ for
the velocity and AP = P.—P._ for the pressure. The points A and P are on the characteristic line C”
carrying the discontinuity. Use A—, P— and A+, P+ for the associated points just ahead and just
behind the discontinuity, respectively. This convention is clearly shown in Figure 1.

The relation between 4V and AP is found by integrating equation (3) between the points P— and
P+ on the C characteristic:

1 P+
We. =V )=—(Po. =B )+ f* [ Vet =0 (@)
oc
and taking the limits: lim P+ — P, limP-— P,

AV -t ap=0 5)
pc

This is the well-known Joukowsky relationship, which is valid everywhere along the C”
characteristic.

Note that the friction term vanishes because the integration interval A¢ =t,, —f,_ limits to zero.
(In reality, wave fronts are not infinitely steep and the C™ integration interval A¢ across the front
will have a non-zero value. However, for steep wave fronts (jumps) the friction term in equation
(4) is negligible because of the short lengths (rise times) involved. The friction term cannot be
neglected in the remainder of this section, where jumps travelling long distances are considered.)
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Returning to equation (2), describing wave propagation along the C characteristics, we write
integral forms for the upper and lower side of the jump-carrying characteristic:

1 +
(VP+_VA+)+_(PP+ _PA+):_I:+f*th (6)
pc

1 P-
(VP—_VA—)+——(PP— '“PA-):"J.A_f*VdI (7
pc
and take the difference between these two equations:

Vo, -V, )=V, -V, )+ (P, =B )-(P,. ~P)=~[ frva+[ srva (8)
pc pc A+ A

Now we take the limit as the upper and lower characteristic tend towards each other, ie.
limP+—P, limP~—>P, lim A+ —> A and lim A— — A. Thus (8) becomes:

(@), (A7), +—(aP), ~(aP), =-[" 1* ava ©)
pc pc A=ty

By taking the limit A — P, after division by 47 =1¢, —¢,, we obtain a differential equation for
A4V and AP:

a’(AV)+ 1 d(4p) _
dt pc 4t

—frAV (10)

Equation (10) tells us that the compatibility equation (2) is valid not only for ¥ and P, but also for
AV and AP. Using the Joukowsky relationship (5), we may write (10) in terms of AP only, thus:

d(4P) = —%f*APdt )

which can be integrated to give:
AP =(4P),e ™ (12)

where (AP), is the pressure jump at 7 = 0. Equation (12), which describes the attenuation of a
pressure wave, is also found for jumps propagating along the C characteristic.

2.1 Frequency-domain analysis
Frequency-domain analysis is possible for linear equations and in such an analysis exponentially
decaying sinusoidal wave trains may be expressed as:

10t = x[c(@))_ e_qxeiw(t—x/ceq) (13)
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Figure 2: Solution of classical waterhammer in a single pipe (see Table 1) with linear friction.
Initial steady-state values: Vp = 0, Py = 0. Instantaneous velocity drop at downstream end:
(A¥)o =~1.3 m/s. Solid lines: pressure histories at valve (x = L), three-quarter point (x = 3L/4),
mid-point (x = L/2) and one-quarter point (x = L/4), calculated by MOC. Broken line: pressure
rise at wave front as function of time, calculated from equation (12).

where the complex phase velocity c(@) = ¢, + i ¢; and o is the angular frequency of oscillation. In
equation (13) it is shown that the phase velocity may be written in the form of equivalent wave
speed and attenuation factor as defined by, see [7, page 304]:

d . =
cr r = q crz + ci2 ic(a))lz

2 2 2
_C te Ic(a))' ¢, c;
eq - g : (14)

For the waterhammer equations with a linear friction term, the phase velocities obtained from the
dispersion equation are:

*\ X
c(a)):c(l+7f—) (15)

10

see [8, equation (17)]. From the equations (15) and (14) the attenuation factor in the high-
frequency limit is determined as g(e) = f™*/(2c), and also in this limit the equivalent wave speed

Ceq() equals the MOC wave speed c¢. Upon noting that x = ¢t for the wave front, it is easily
shown from (13) that in the high-frequency limit the attenuation is given by

lim, [e*®>]=e """ agreeing with our previous result (12).

2.2 Waterhammer numerical simulation
Numerical solutions of the waterhammer equations with a linear friction term have been obtained
with a Mathcad MOC program and the attenuation, as defined by the newly derived formula (12),
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was checked against the results. An example is given in Figure 2, clearly demonstrating that the
formula does exactly predict the attenuation of the jump. Figure 2 illustrates the pressure history
at intervals along the pipe so that at each location the arrival of the pressure jump is clearly visible.
The dashed line superposed is the attenuation predicted by the formula (12).

The test problem is the single pipeline described by Kaplan ef al. [9]. Table 1 gives its properties
and the different test cases considered herein.

Table 1: Data used in examples

All examples: L =201 km D=0.762m c=1000m/s  p=1000 kg/m’
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6
Vo=0m/s Vo=l.3 m/s Vo=1.3 m/s Vo=1.3 nvs Vo=l.3 m/s
(AV)0= -1.3 m/s (AV)()= +1.3 m/s (AV)0= 1.3 m/s (AV)()= 1.3 m/s (AV)O'_— -3 m/s
f¥=003Hz |f=0018 F=0.018 F=0.018 F=0.018

3 WATERHAMMER WITH QUADRATIC FRICTION TERM

The classical waterhammer equations have a quadratic friction term:

%+-]—g+'_f_lV|V:O

o pox 2D (16)
oV 1 OP
—_—t———=0
ox  K* ot

To start off, it is assumed that J does not change sign so that ¥ is written in place of [’V and
to account for this assumption we employ the convention that f is positive when ¥, > 0 and f is
negative when V, < 0. However, the methodology presented can also be applied to situations in
which the direction of flow changes during the passage of the jump, as will be shown in Section
34.

Using the MOC we can rewrite equations (16) in the form of ODEs which are valid along the
characteristic lines:

ot LI N 2 0, along & e 17)
dt pcd 2D di
and
c @ _14° f V?=0, along £=—C (18)
dt pcd 2D dt

These equations may be found in many texts, for example Wylie and Streeter [7, page 39]. The
propagation of a discontinuity along the C™ characteristic is again considered (see Figure 1) and
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the analysis proceeds parallel to that in Section 2.

It may be shown that the Joukowsky relationship (5) holds independently of the friction term
employed and can be determined from (18). Thus as before we write integral forms of (17) for the
upper and lower side of the C* characteristic and take the difference between the resulting
equations. The upper and lower characteristic are allowed to tend towards each other and the
lim A — P is taken after division by 4¢. In place of (10), the resulting equation is determined as:

d(av) , 1 d{ap) _ ~ L ) (19)
di pc di 2D

We may write A(V ) in many different forms:

A=V V=V + WV V=V AV =, + V)V, V) 20)
=20 AV +(AVY =2V, AV ~(AV) =V, +V )4V

from which we see that equation (19), using (5), can be integrated analytically when V_, V. or

V.+ V_are constant. In general V_ and/or V. depend on 7. Approximations which allow analytical

integration can be made when the jump is either large or small, i.e. when IV {<< ]AV] (or

|V+| << 'AV|) and when |V| >> |AV| (or IVJ >> ,AV[). The case when V_ is constant will be

examined in detail and also cases for small and large jumps. Large jumps changing the sign of
are considered in Section 3.4.

Using the Joukowsky relationship (5) and one specific form of (20), we may write (19) in terms
of AV only, thus

d(av)= -%V_Ath - %(AV)Z dt (21)

For large jumps, the second term in the right-hand side dominates, whereas for small jumps it is
the first term in the right-hand side that is important.

3.1 Constant V_

This case relates to the situation in which the jump is propagating into a region with a constant
velocity, for example a region of steady flow. With V_ constant equation (21) can be integrated
analytically, such that for a discontinuity propagation along the C" characteristic:

AP AV o2’
= - (22)
(4P),  (4V), - (42111// )o (1 _ e-i-lb—fV_zJ

If the discontinuity was assumed to propagate along the C characteristic the analysis may be
repeated giving an identical result to that above, noting that the Joukowsky formula as stated by
(5) 1s replaced by a similar formula valid everywhere along the C™ characteristic:
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Figure 3: Comparison of attenuation factors given by the right-hand side of equation (22).
Waves generated by a positive jump in flow velocity are damped more heavily than waves
generated by a negative jump.

A+ ap -0 (23)
pc

Taking into account possible cases that the formula (22) can be applied, there are two distinct
attenuations. These are illustrated in Figure 3.

The initial propagation of a jump, for example following the sudden closure of a valve in a
stationary reservoir-pipe-valve system, are examples in which V_ is constant and in particular for
these cases V_ = V. Figure 4 illustrates the same example used in the paper by Kaplan et a/. [9,
Fig. 5; also in 7, Fig. 3-18]. Imperial units have been retained to allow direct comparison with the
figure given in [9], but SI units are given in Table 1. The discontinuity propagates along the C
characteristic. The attenuation is given by (22) noting that AV <0. Figure 5 gives an example
with the propagation of the discontinuity along the C* characteristic, because the valve
manipulation is now upstream and AV > 0. The figure illustrates pressure histories at intervals
along the pipe. Both figures confirm equation (22).

3.2 Small jumps
For small disturbances propagating in a steady flow, V, =V_ =V, we obtain from (19), (20) and

(5):

ﬁi—g—) = —% V,dt (24)
and integrate this linear equation:
AV = (ay),e @5)
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Figure 4: Solution of classical waterhammer in a single pipe with quadratic friction term.
Valve closure downstream. Hydraulic grade line along the pipe is given at specified time

intervals.
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Figure 5: Solution of classical waterhammer in a pipe with quadratic friction term. Valve
opening upstream giving instantaneous velocity increase at upstream end: (4V) = 1.3 m/s.
Solid lines: Dynamic pressure histories at intervals along the pipe. Broken line: pressure rise at
wave front as function of time, calculated from equation (22).
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Because this is a linear friction case (Section 2), the decay in the jump is described by an
exponential factor. Note that equation (25) directly follows from equation (22) by taking the limit
(AV)o — 0. It also follows from (22) for large #, because eventuaily the jump will be small.

33 Large jumps
For large disturbances we obtain from (21) the approximation:

d(AVZ) =— idz (26)
(av) 4D
Integrating this equation gives:
4V = (a7), 27

1+ g f (V)

Note that equation (27) directly follows from equation (22) by taking the limit V. — 0. When
V=0, ajump is always large.

3.4 Jumps changing the flow direction
If a jump changes the direction of flow, the friction term in equation (16) changes sign and the

right-hand side of equation (19) becomes f/(2D)(¥, +¥?) which equals
F/(2D)Y{(AV)* +2V_AV +2V.*} . Using equation (5) to eliminate AP the following ODE for AV
is obtained:

dav) _ f (v 2
e LA A (28)

which, if V_is constant, can be integrated analytically:

AV =V [1 + tan{arctzn(—— 1- (A—V)A] - iV_tH (29)
v 4D

Equation (29) is valid as long as 7 <1, with 7. defined by:

: =ff§mam[-1_(‘;ﬂj (30)

The wave front attenuates and at 7 = the jump has become so small that it does not change the
flow direction anymore. For ¢ > 7, formula (22) is valid. Figure 6 illustrates an example where this

is the case, i.e. the jump in the velocity is negative with a magnitude greater than the steady-state
velocity. Attenuations given by (29), starting at = 0, and (22), starting at f = #,, are superposed
on the numerical simulation.
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Figure 6: Solution of classical waterhammer in a single pipe with quadratic friction term.
Special case in which a downstream jump changes the flow direction.

3.5 Extended Joukowsky equation

For those having done a steady-state analysis but not willing to do a full waterhammer analysis,
we propose a useful extension to Joukowsky’s equation, which takes into account the influence
of quasi-steady Darcy-Weisbach friction. The Joukowsky formulae (5) or (23) are multiplied with
the attenuation factor (22) so that:

€2y

AP(x) =+ pe (4V),

where x is the distance travelled by the wave front and f, D and ¥, are additional parameters
already known from the steady-state analysis.

4 CONCLUSIONS

The paper gives a mathematical derivation of formulae describing the attenuation of travelling
waterhammer jumps as a result of quasi-steady Darcy-Weisbach friction. The formulae have been
successfully checked against numerical results.

The derivation for linear friction requires no further assumptions, but for quadratic friction the
denivation is valid only under certain conditions. Fortunately, these conditions are not severe. For
example, the attenuation of a jump travelling into a region of steady flow can be calculated exactly.
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The attenuation formulae may be used explicitly in numerical schemes to prescribe exact front
propagation and so to increase computational accuracy and/or to reduce grid sizes.

The attenuation formulae may be used to assess the error caused by numerical integration of the
friction term.

The attenuation formulae may be used to predict the importance of friction.

The extended Joukowsky equation (31) takes into account the influence of friction. It may be used
in a typical reservoir-pipe-valve system to estimate the initial pressure rise not only at the closing
valve, but also at any position along the pipeline. However, it does not include the effect of line
packing.

It is noted that the magnitude and steepness of pressure jumps are important factors in fluid-
structure interaction (FSI) analyses, because they determine the dynamic loads on the pipes.
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