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ABSTRACT
A manhole is a shaft that functions as an access point to the

underground infrastructure and is covered with a very heavy lid,
sometimes weighing more than 100 kg. Occasionally a strange
phenomenon occurs in which such a manhole cover is lifted
above its opening and sort of dances on or above its support-
ing ring without any human intervention. This usually happens
when it is stormy with heavy rainfall, but it is not tied to one
specific location. Videos from all over the world can be found
on the internet showing such ’dancing manhole covers’. Some-
times air seems to be the main driving force behind the behavior,
sometimes water, and sometimes both. Although the videos are
funny, the behavior can create a very dangerous situation for both
traffic and pedestrians. In this report the cause of these ’dancing
manhole covers’ is studied.

The ’dancing’ is simplified into two different problems: one
with an overflow of air and one with an overflow of water. For
both problems a simple model consisting of differential equa-
tions is proposed and the numerical results are studied. The prob-
lem with an overflow of air is driven by an influx of air into the
manhole from below, resulting in an increase in pressure, which

lifts up the cover, until air is allowed to escape, and the pres-
sure decreases again. Two different approaches for the escaping
discharge of air are tried. The overflow of water is driven by a
constant pressure that is exerted on a water column inside the
manhole. Furthermore, a solution to the dancing problem is pro-
posed: attaching the manhole cover to the ground with a hinge.
This solution is tested by using a similar model as the one used
for the overflow of air.

Keywords: manhole cover, air flow, water flow, filling, leak-
ing, vent, hinge, sewer

INTRODUCTION
Displaced manhole covers pose a danger to pedestrians, bi-

cycles, cars, and other traffic. Yamamoto [1] presented one of
the first studies on the subject. Wang and Vasconcelos [2] inves-
tigated the likelihood of manhole cover displacement caused by
either the pressurized air in the vertical shaft headspace or wa-
ter impact when a stormwater system is undergoing rapid filling.
Walski et al. [3] and Chen et al. [4] included cover weight and
displacement in their mathematical models. The problem may be
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so urgent that tilt and vibration sensors are attached to all man-
hole covers in a (smart) city to monitor their displacements [5,6]
and to warn pedestrians via their smartphones [7].

In this study the so-called phenomenon of ‘dancing manhole
covers’ is approached in two different ways. The first problem
considers an overflow of air. What is a realistic way to model the
influx of air and how does the air escape when the cover is lifted
above the ground? The second problem considers an overflow
of water. What is a realistic way to model the leakage of water
when the cover is opened? How does the manhole cover behave
for different driving pressures?

Both problems are described by models containing equa-
tions similar to ones used in [8] and [9]. The current paper is
based on [10].

In a very exploratory fashion the numerical results of both
models are studied, as well as the difference in behavior. The
results are compared to the behavior of manhole covers as seen
on videos.

A possible solution to lessen the impact of the ’dancing’ is
to attach the manhole cover to the ground with a hinge. Hinged
manhole covers are used already in some places, but are they
indeed a safer alternative? For this solution a simple model is
introduced and its dynamics is studied. The hinged cover model
is compared with the other models.

AIR-DRIVEN MODEL
In the first proposed model the manhole cover with mass

mc, diameter Dc and depth dc moves up and down as a result of
a change in pressure P inside the manhole. The manhole itself
is a vertical cylinder with length L and diameter D, as portrayed
in Fig. 1. The system is driven by an influx of air into the man-
hole from below. The air pressure inside the manhole acts on
the area of the cover Ac = πD2

c/4. The cover will start to move
up with vertical displacement xc when (P−Patm)A > mcg, where
A = πD2/4 is the cross-sectional area of the manhole. However,
when the cover is lifted up slightly, the air pressure acts on the
area of the cover Ac instead of A. This gives rise to the differen-
tial equation:

d2xc

dt2 =
dvc

dt
=−g+

Ac

mc
(P−Patm) (1)

Herein vc is the vertical velocity of the manhole cover. Note that
there is a nonlinear constraint on the displacement xc, that is

xc ≥ 0 (2)

since the cover will always rest on its supporting ring when
xc = 0 m.

FIGURE 1. Manhole cover hovering above the ground

In the process the ideal gas law is assumed to hold. Further-
more the process is assumed to be isentropic, as the heat conduc-
tion through the walls and cover is assumed to be too slow with
respect to the time it takes for the air to be compressed, move the
cover, and expand due to the leakage. These assumptions imply
that the system has to satisfy the differential equation:

dP
dt

=
nP
m

dm
dt

(3)

where m is the mass of the air inside the manhole and n is the
polytropic index.

When the manhole cover is lifted above ground level en-
tirely, i.e. xc > dc, air is allowed to escape and the pressure inside
the manhole will decrease. Two different approaches are consid-
ered to describe the relation between air pressure P and velocity
of leaking air U . The first one is a linear relation as given in [11]:

U = K1(P−Patm) (4)

The second one is an equation based on the valve flow relation
with discharge coefficient as given in [12]:

ρU2 = K2(P−Patm) (5)

Herein K1 and K2 are constants and ρ is the density of the air. The
latter is assumed to be uniform with respect to position within the
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manhole, so it can be written as

ρ =
m

π(D/2)2L+π(Dc/2)2xc
(6)

The velocities above are used in determining the mass flow
rate of escaping air. At one end air flows with velocity vin into
the manhole through a cross-sectional area Ain = πD2/4, com-
pressing the air inside the manhole. At the other end air escapes,
decompressing the air, through an area

Avent =

{
0 if xc ≤ dc

πDc(xc −dc) if xc > dc
(7)

For very large values of xc this equation does not hold anymore
and the maximum outflow area is simply Ac. This maximum has
not been implemented herein, because the model is intended for
small cover displacements only. These can be combined to get
the differential equation for the rate of change of the air mass
inside the manhole:

dm
dt

= ρ(Avin −AventU) (8)

where U is given by either Eq. (4) or (5), ρ by Eq. (6), and Avent
by Eq. (7). The behavior of the manhole cover is described by
the four variables: air mass m, air pressure P, cover displacement
xc and cover velocity vc. They have to satisfy a system of four
differential equations, respectively Eq. (8), Eq. (3), Eq. (1) and

dxc

dt
= vc (9)

Friction is neglected within the manhole.

WATER-DRIVEN MODEL
The second model considers the same setup as shown in Fig.

1, only now with water inside the manhole instead of air. Further-
more, the areas A and Ac are taken equal for simplicity.

The system consists of two masses, the water column m and
the manhole cover mc, which are considered as two separate sys-
tems coupled via an intermediate pressure P1 at the top of the
manhole. A constant pressure Pin is exerted on the water column
from below. Since the water inside the manhole is assumed to
have constant density ρ , the water column will rise and lift the
cover when (Pin−Patm)A> (m+mc)g. The initial situation of the
system is such that the manhole is filled entirely with water. As
water enters the manhole from below, the water column moves

up. Furthermore the assumption is made that air ventilation is
ideal and at all times there is no air between water column and
cover, so the two are always connected. The mass of the water
column is m = ρA(L+ xc). For both water column and manhole
cover a separate equation of motion is defined to describe the
behavior in terms of their respective velocities v and vc:

dv
dt

=
Pin −P1

ρ(L+ xc)
−g (10)

dvc

dt
=

(P1 −Patm)A
mc

−g (11)

In the model two distinct situations can be distinguished
based on the position of the manhole cover: one in which wa-
ter cannot leak, i.e. xc ≤ dc, and one in which water is able to
leak, i.e. xc > dc. In the first case the problem is described by the
system of equations consisting of Eq. (9) and the following:

dv
dt

=
(Pin −Patm)A

mc +m
−g (12)

v = vc (13)

By subtracting Eq. (10) from Eq. (11) and applying Eq. (13) the
intermediate pressure P1 in this case is found to behave like:

P1 =
mcPin +mPatm

m+mc
(14)

In the second case the cover is lifted above the ground and
water is allowed to leak. The system is then decoupled in the
sense that the water column and the manhole cover each have
their own equation of motion, i.e. Eq. (10) and Eq. (11). The
area through which the water can escape is treated like an orifice.
It is described by the equation for the pressure difference on the
cover, which is based on [9]:

P1 −Patm = (
A

CdAvent
)2 1

2
ρ(v− vc)

2 (15)

Note the relative velocity v− vc. Taking vc equal to zero would
give a quasi-steady formula based solely on xc (and excluding its
time-derivative vc) via Avent .

HINGED COVER MODEL
In this section, a new model is proposed as a solution to

the ’dancing’ and hovering behavior of the manhole cover for
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air outflow. In this model the manhole cover is attached to the
ground with a hinge, as shown in Fig. 2. This means that the
cover can only rotate around the hinge, making the cover a sort of
lever with the hinge as its pivot point. The behavior of the cover
can be described by the angle φ between the manhole cover and
the ground.

An influx of air at the bottom of the manhole increases the
pressure P inside the manhole. The air pressure inside exerts a
force on the manhole cover from below, resulting in a net torque
τ if this force is larger than the gravity acting on the cover. The
torque depends on the perpendicular component of the force F⊥
acting on the cover like τ = rF⊥, where r is the distance to the
pivot point. This distance is assumed to be r =Dc/2. Besides the
gravitational force the only other force on the cover is assumed
to be the force exerted by the air pressure Fin. Both are directed
vertically, resulting in the equation for the net torque:

τ =
Dc

2
(Fin −mcg)cosφ . (16)

The net torque on the manhole cover directly relates to the deriva-
tive of the cover’s angular momentum Iω , where I denotes the
moment of inertia and ω denotes the angular velocity. By the
cylindrical shape of the cover and Steiner’s parallel axis theorem
the moment of inertia I for the cover around the hinge is found
to be approximately:

I =
5

16
mcD2

c +
1

12
mcd2

c (17)

FIGURE 2. Manhole cover rotated around a hinge

Since the moment of inertia is constant, the time derivative of the
angular momentum of the cover can be written such that:

I
dω

dt
= τ (18)

Hence the system has to satisfy the following system of differen-
tial equations:

dω

dt
=

Dc

2I
(Ac(P−Patm)−mcg)cosφ (19)

dφ

dt
= ω (20)

dm
dt

= ρπ
D2

4
vin −Avent

√
ρK2(P−Patm) (21)

dP
dt

=
nP
m

dm
dt

(22)

where the density of the air inside the manhole ρ is:

ρ =
m

π(D/2)2L
(23)

The variable Avent is more complex in the hinged system, as the
area through which air can escape is not simply an open cylinder.
When the cover is pushed upwards infinitesimally little, the area
Avent increases with the area of an infinitesimally small disk, so
essentially a circle. Doing this for an angle of φ = 2π would thus
yield a torus, with major radius R equal to minor radius r. The
surface area of a torus is 4π2Rr, so in this system the escape area
is approximated depending on the angle φ as such:

Avent =
φ

2π
·4π

2(
Dc
2
)2 =

π

2
D2

cφ (24)

For high opening angles φ this approximation is not valid any-
more and the maximum outflow area is simply Ac.

NUMERICAL RESULTS
The data for the manhole and its cover are based on [8] and

[13]. The following parameters are used for all models: D = 0.5
m, Dc = 0.55 m, dc = 0.055 m, Patm = 1 bar, mc = 100 kg, L= 50
m and g = 9.81 m/s2.

Air-Driven Model
Equations (1), (3), (8) and (9) together form an autonomous

nonlinear first-order ordinary differential system of equations.
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Heun’s method is used to solve the system of equations, with
time-step ∆t = 10−4 seconds.

The parameters are the same as mentioned above, together
with specifically for this model: the polytropic index n = 1.4 and
unity constants K1 = 1 m2kg−1s−1 and K2 = 1.

The studied input parameter for this model is vin. The initial
values for cover displacement xc and velocity vc are xc,0 = 0 m
and vc,0 = 0 m/s. The initial pressure inside the manhole is at-
mospheric, i.e. P0 = 1 bar. The initial air mass is m0 = 11.78 kg.

For a constant influx velocity vin = 1 m/s, the numerical re-
sults are shown in Figs 3-6. The blue line represents the results
of the first model (with K1). The red line represents the numeri-
cal results of the second model (with K2). The dotted blue line in
Figure 5 represents ground level dc.

The mass of the air inside the manhole m and the resulting
pressure P are clearly coupled, as shown in Figs 3 and 4. This
makes sense looking at Eq. (3). Both m and P start increas-
ing immediately and constantly due to the constant influx of air.
The manhole cover starts moving up when the pressure is large
enough, i.e. P > Patm +gmc/Ac ≈ 1.041 bar. The manhole cover
rises in exactly the same fashion in both models, because the
models only differ when air is allowed to leak.

After approximately 2 seconds the cover is lifted above the
ground and air is allowed to escape. The mass decreases rapidly
to its initial state and as a result the pressure drops to atmospheric
level. For these values of K1 and K2, the air mass m, air pressure
P and cover velocity vc decrease slower in the second model,
since the leaking law (Eq. (4) or (5)) determines the rate of es-
caping air. Therefore the cover is lifted 6.57 cm above the ground
in the second model, whereas it is only lifted 1.74 cm in the first
model, as shown in Fig 5. Both of these values are not unrealis-
tic, however the difference between the two results is going out
of phase. In general, the periods of the numerical solutions are
approximately 1.91 seconds for model 1 and 2.05 seconds for
model 2.

The behavior overall is very simple and stable, the same pro-
cess repeats itself eternally. This is to be expected, as the model
is fairly simple and a constant inflow of air is assumed.

FIGURE 3. Air mass, vin = 1 m/s

FIGURE 4. Air pressure, vin = 1 m/s

FIGURE 5. Cover displacement, vin = 1 m/s

FIGURE 6. Cover velocity, vin = 1 m/s

More interesting behavior is found when the driving velocity
vin is increased or taken as a function of time. Figure 7 shows the
cover displacement for an unrealistically high driving velocity
vin = 50 m/s. Dancing behavior should definitely not be expected
for such velocities, it is more like geysering or an explosion [14].
The manhole cover is blown off more than 2 meters high for the
second model, so that Eq. (7) is not valid anymore. The behavior
in the first model is a bit milder, as the cover only reaches 0.5 m.
Interestingly, the numerical solution for both models is a sum of
sinusoids, with two alternating amplitudes.
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FIGURE 7. Cover displacement, vin = 50 m/s

The same models are also considered with an inflow velocity
that oscillates over time. The following cosine function is used:

vin(t) := vb +Bcos(
2π

T
t) (25)

where vb is the baseline velocity in m/s, B is the amplitude in m/s
and T the period in seconds. Because of the time-dependence of
vin, the ordinary differential equation that describes the system is
not autonomous anymore. The results for vb = 1 m/s, B = 1 m/s
and T = 1 s can be found in Figs 8-10.

Clear oscillatory behavior can be seen over the main oscil-
lation from earlier results, as shown in Figs 4-6. The pressure
inside the manhole increases in oscillatory fashion, and when it
is high enough, the manhole cover is lifted up. As soon as air
is allowed to escape, the pressure drops like in previous results.
The same holds for the displacement and the velocity. In Fig. 10
the dotted line represents the driving velocity vin. In Fig. 9 the
height to which the manhole cover is lifted differs per oscilla-
tion. However, especially in the other figures, it is immediately
noticeable that after 3 oscillations, the system becomes stable and
keeps following the same trajectory. It is interesting that the solu-
tion seems to converge to a fixed frequency pretty quickly. Even
more interesting is the value of this frequency. The observed pe-
riod for both of the models converges to exactly 2 seconds. This
implies that the angular frequency for both models is π Hz and is
independent of the type of model or value of the flow coefficients
K1 and K2.

The frequency of the oscillation is completely determined
by the driving frequency, yet the behavior of the system is not al-
ways convergent; in fact it is very sensitive to the parameters of
the driving velocity, especially the period T . The cover displace-
ment xc for parameter values vb = 1 m/s, B = 1 m/s and T = 0.5 s
and vb = 1 m/s, B = 1 m/s and T = 1.5 s is shown in Fig. 11 and
12 respectively. For the former the periods of the two solutions
are approximately 1.93 and 2.04 seconds. These are the same
periods as for the model with constant influx vin = 1 m/s in Fig.

FIGURE 8. Air pressure, vb = 1 m/s, B = 1 m/s, T = 1 s

FIGURE 9. Cover displacement, vb = 1 m/s, B = 1 m/s, T = 1 s

FIGURE 10. Cover velocity, vb = 1 m/s, B = 1 m/s, T = 1 s

9. Now however the peaks themselves oscillate in height, like a
beat, for both models. This takes approximately 17.5 seconds for
the first model and 24.5 seconds for the second model. Figure 12
shows similar behavior, only even more chaotic. This highlights
the sensitivity of the model and its oscillations.
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FIGURE 11. Cover displacement, vb = 1 m/s, B = 1 m/s, T = 0.5 s

FIGURE 12. Cover displacement, vb = 1 m/s, B = 1 m/s, T = 1.5 s

Water-Driven Model
Equations (9-13) together form a nonlinear first-order ordi-

nary system of differential equations. It is solved by the forward
Euler method with a numerical time-step of ∆t = 10−4 seconds.
Which equations are used at a time-step depends on the cover
displacement xc.

The parameters are the same as mentioned above, only now
with constant density ρ = 998 kg/m3 and Cd = 1 in Eq. (15).
The studied input parameter for this model is Pin. The driving
pressure needs to be large enough to lift the water column and
cover, i.e. Pin > Patm +g(mc/A+ρL)≈ 5.945 bar.

The initial values of the variables are displacement xc,0 = 0
m, cover velocity vc,0 = 0 m/s and water velocity v0 = 0 m/s. Be-
cause Avent = 0 m2 introduces a singularity, a numerical buffer of
ε = 10−3 m2 is implemented on Avent . This implies that the water
starts leaking when xc ≈ 0.05564 m instead of xc = dc = 0.055
m. For Pin = 5.96 bar the results are shown in Figs 13 and 14.

The water column and cover start moving up, until the cover
is lifted above the ground after 2 seconds. At this moment the
intermediate pressure P1 drops to 1 bar as the term (v−vc) in Eq.
(15) is 0, before rising back quickly again. Because of this the ve-
locity of the cover drops down and water begins to leak through
the gap between ground and cover. The cover itself slows down

in acceleration, but remains moving up very slightly. The veloc-
ity of the water column keeps rising as well, in contrast to the
cover velocity, implying the water flow out of the system keeps
rising as well.

FIGURE 13. Water column and cover velocities, Pin = 5.96 bar

FIGURE 14. Cover displacement over 5 seconds, Pin = 5.96 bar

FIGURE 15. Cover displacement over 500 seconds, Pin = 5.96 bar

The cover displacement for a longer time period of 500 sec-
onds is shown in Fig. 15. The cover slowly converges to its equi-
librium point x∗c = 0.1517 m. A full equilibrium analysis can be
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found in [10]. The cover is eventually floating 10 cm above the
ground on top of the water column, which is not too unrealistic
given the right conditions. However, no ’dancing’ or even oscil-
latory behavior can be seen in these results.

For a slightly lower driving pressure, more interesting be-
havior happens. Figures 16 and 17 show the results for driving
pressure Pin = 5.9505 bar. The cover starts increasing like in the
results for Pin = 5.96 bar. However, at the moment the cover is
lifted above the ground and the pressure drops, the velocity of
the water column v starts decreasing instead of increasing. As a
result the manhole cover drops very slightly in height (note that
Fig. 17 is zoomed in). The equilibrium point is x∗c = 0.055 m,
but due to the numerical buffer this point is not reached exactly.
Around xc ≈ 0.556 m, the numerical boundary as mentioned be-
fore, the system keeps oscillating between the two situations, im-
plying the cover keeps closing and opening for the remainder of
the time. The pressure drops every time the cover opens. This
results in the cover velocity dropping below 0 m/s, and thus the
cover itself drops as well. When the cover closes, the velocities
of the water column and cover are equal by definition, so the ve-
locity jumps back up and the cover gets lifted up again. It takes
the cover 1.31 seconds to open and close again. The behavior
resembles a kind of burping, albeit on a very small scale. It is an
artifact of this most elementary model.

FIGURE 16. Water column and cover velocities, Pin = 5.9505 bar

FIGURE 17. Cover displacement, Pin = 5.9505 bar

Hinged Cover Model
Equations (19-22) together form an autonomous nonlinear

first-order ordinary differential system of equations. Heun’s
method is used to solve the system with time-step ∆t = 10−4

seconds. The parameters are the same as for the air model. The
initial values are m0 = 11.78 kg, P0 = 1 bar, φ0 = 0 rad, ω0 = 0
rad/s. The angle φ is computed in radians, however for conve-
nience the results are shown in degrees. For a driving velocity
vin = 1 m/s, the results are shown in Figs 18-20.

FIGURE 18. Air pressure, vin = 1 m/s

FIGURE 19. Angular velocity of the cover, vin = 1 m/s

FIGURE 20. Cover angle in degrees, vin = 1 m/s
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Air flows into the manhole. The pressure P rises and when it
is large enough, i.e. P > Patm +mcg/Ac ≈ 1.041 bar, the cover is
lifted up slightly. In contrast to the model with a loose cover, the
air can escape immediately through the little gap between cover
and ground. This results in the pressure dropping soon after the
cover starts opening. The cover reaches an angle of φmax ≈ 2.5
degrees, after which it falls back down quickly. At the far side the
cover reaches a height of at most Dc sinφmax ≈ 0.0222 m above
the ground. This process repeats itself. In the oscillation the
pressure drops to at lowest 1.025 bar.

Two important differences are found with respect to the
model in which the cover is not attached to the ground. For the
same initial values and parameters the cover is lifted up 0.0657
m above the ground for the air model using K2 (as seen in Fig.
5). Hence, the hinged cover is lifted up less, which might make it
less dangerous to its surroundings. On the other hand, the hinged
cover is able to oscillate more frequently. For the hinged cover
the period is roughly 0.94 seconds, instead of the 2 seconds found
for the air model using K2. Thus it oscillates twice as fast.

For very high input velocities, there is a point at which the
cover gains so much momentum that it will flip over and end
on its top. This happens for driving velocity vin = 24.5 m/s,
which can be seen in Figs 21-23. As a lot of air starts to flow
into the manhole from below, the pressure inside the manhole
immediately rises to 1.1 bar. The cover gains angular velocity,
and is lifted up. The air inside can now escape and the pressure
drops quickly back to 1 bar. The velocity of the cover decreases,
however the cover has angular momentum and is lifted up so far
that the perpendicular component of the gravitational force is too
small to bring the cover back down. The cover surpasses a 90◦

angle, and the cover falls back down on its top side, lying on the
street with a dangerous hole next to it. After this the cover is at
rest at the wrong position allowing a huge flow of air to leave the
shaft.

FIGURE 21. Air pressure, vin = 24.5 m/s

FIGURE 22. Angular velocity of the cover, vin = 24.5 m/s

FIGURE 23. Cover angle in degrees, vin = 24.5 m/s

DISCUSSION
The models proposed and discussed in the paper appear to

be very sensitive. They contain nonlinearities and singularities.
Despite this, the obtained results are stable in most cases, and
sometimes asymptotically stable. For the numerical results either
Heun’s method or forward Euler is used. Although the latter is a
very basic explicit method, it is used because it is convenient for
modeling the system and its nonlinearities. The used time-step
proved to be small enough.

Both the air-driven and water-driven model do not result in
very chaotic behavior. This is due to the simplistic nature of
the model. Another addition might be to include friction in the
model like in [8], which is now neglected in the models in gen-
eral. Nevertheless, both the air and water model show some sim-
ilarities to real-life behavior of manhole covers.

In the air model two different relations for the flow rate of
leaking air are tried. There is no clear result on which model
performs better with respect to manhole cover behavior in real
life. However, because K2 is dimensionless, it is preferred, as
it can be universally used. Most likely a choking flow model as
in [8] would be a better suited option to model the outflow of air.

The water-driven model is very sensitive and has some other
issues. Walski et al. [3], based on their unique experimental data,
already warned for sensitivity and potential instability. Further
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research has to be done on an appropriate way to model the leak-
ing outflow of water. It is a difficult aspect of the model, since
the leak is initially perpendicular to the flow direction, forcing
the water column to flow sideways. Jet-type behavior may be
expected. Furthermore, the area through which the water can
leak changes over time, and the model shows singular behavior
around Avent = 0 m2. The numerical buffer used to work around
this is also sensitive. Lastly, the constant pressure from below as
driving force is not realistic.

The last proposed model, attaching the cover to the ground
with a hinge, has its advantages and disadvantages. Hinged man-
hole covers are used in practice and have the advantage that the
cover cannot separate from the manhole. However, they may
clatter or even flip over. A simple model has shown that the lat-
ter can occur. The hinged cover model does give some promis-
ing results, perhaps in combination with other features, such as a
permanent orifice to release pressure, or a chain or latch to limit
displacement and rotation.

CONCLUSION
Dancing manhole covers are observed worldwide. Herein

both dancing on air and dancing on water has been studied via
basic mathematical models. Dancing on air seems possible, but
dancing on water not. Floating on water is possible, but unsta-
ble. Hinged covers have been modeled for the first time and it
is shown that they may flip over. A remedy to the latter is to
limit rotation by means of a chain or a string. In practice, alter-
nating air and water outflow is often observed, which asks for
a combination of the proposed models. This study should be
complemented in the future by experimental measurements and
by additional modeling techniques. In particular, the FSI model
coupling outflow and cover velocity needs attention.
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