]J]*fk hﬂenmtnml Meetmg of the
 Work (yrmq) on

THE BEH&WGUR OF HYI)R&ULIC
M&CH' NERY UNDER STE&DY'
LL A ’I'QRY CUNDITIONS

June26 -28. 2001 Trondhelm Nay

FSI IN L-SHAPED AND T-SHAPED PIPE SYSTEMS

A.S. Tijsseling ! P. Vaugrante 2
Eindhoven University of Technology Electricité de France

ABSTRACT

Vibrating elbows and tee-pieces are the primary sources of fluid-structure interaction (FSI)
in liquid-filled pipe systems; they couple the dynamic behaviour of liquid and pipes.
In particular, they alter the natural frequencies of the pipe system, which can be crucial for
its resonance behaviour.

In this paper FSI is considered in the frequency domain. The theoretical development
including governing equations, FSI sources at bends and branches, and solution method,
has been dealt with in previous papers, but the important relations describing FSI at an
elbow and at a tee-piece are given herein. New experimental results concern a freely
suspended L-shaped pipe system. In contrast to experiments previously reported in
literature, the system does not suffer from unknown support conditions. The experimental
results for a T-shaped pipe system were taken from an earlier publication.

The natural frequencies observed in the L- and T-shaped systems are consistent with
the theoretical predictions.

Keywords: FSL, structural vibration, waterhammer, experiment
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1. INTRODUCTION

The axial motion of pipe junctions like L-bows and T-pieces may cause significant fluid-
structure interaction (FSI) in fast transient events such as waterhammer and structural
impact. This phenomenon has been extensively studied in the time domain in previous
work [Tijsseling ez al 1996; Vardy et al 1996). The present paper focuses on the role of
FSIin the free and forced vibrations of liquid-filled pipe systems. The theoretical analysis
is in the frequency domain and the experimental results concern the L- and T-shaped
systems described in the two aforementioned references.

The Ph.D. theses of Lesmez [1989], Tentarelli [1990], Frikha [1992], de Jong [1994]
and Svingen [1996] deal with the theoretical and experimental aspects of FSI in the
frequency domain. The lists of references in these five theses cover most of the important
literature on the subject. More general reviews are those by Wiggert [1996], Tijsseling
[1996], Zhang et al [2000] and Wiggert & Tijsseling [2001].

The review papers show that many physical experiments have been performed in
systems with elbows, ranging from Blade et al [1962] to Jiao et al [1999], and just a few
in systems with branches. Nearly all of the experimental systems had at least one "fixed"
end (support, anchor), for example the connection of the test pipe to a liquid supply
(reservoir). "Fixed" stands for infinitely large impedance (zero mobility), something
impossible in practice. Some researchers, like Davidson & Samsury [1972] and de Jong
[1994], measured the mobility of the pipe supports in their test systems, but it is
nevertheless common practice not to measure or estimate the mobility of supports, but to
neglect it on the simplifying assumption that the support is (looks) rigid. Consequently,
many investiga%tors have overlooked support mobility. The well known experiments by
Swaffield (1969-1969) and Davidson & Smith (1969), the results of which have been used
by many others, suffer from the ignored vibration of "fixed" points, as noted by Wilkinson
[1980, p. 197] and Brown & Tentarelli [1988, p. 148], respectively. Svingen [1996, p. 76]
reported "unintentional” valve motion. Care has to be taken in this respect, always. In
contrast to the many other test rigs, the experimental apparatus employed herein has no
“fixed" points at all, it is structurally "free".

The main contribution of the present paper is in the newly obtained experimental data
for an L-shaped system without "fixed" points, that is: a single-elbow system without
unknown support conditions. Frequency spectra have been deduced from impact tests. The
measured natural frequencies are compared with theoretical predictions. Experimental
results for a T-shaped system, taken from Vardy et al [1996], are also compared with
theoretical predictions.

Moussou er al [2000] presented a very nice and detailed analysis of a two-elbow pipe
system.



2. EXPERIMENTS
L-shaped system

The L-shaped system consists of two steel pipes connected by a rigid 90 degrees elbow.
The system is closed at its two ends and filled with water of at least 20-bar pressure. Three
long thin steel wires carry the system and they practically allow free motion in a nearly
horizontal plane. The system is excited by the axial impact of a long steel rod or by the
lateral impact of a steel hammer. The dimensions and material properties of the pipes are
given in Tables 1. Further details of the experiment can be found in [Tijsseling et al 1996].

Typical measured time histories, and frequency spectra derived from these, are shown
in the Figures 1 and 2. The measuring time was 1.5 seconds during which, per gauge,
15000 pressures or axial strains were recorded.

T-shaped system

The T-shaped system is symmetric and can be regarded as the L-shaped system, described
above and in Tables 1, mirrored in the axis of the long pipe. A rigid tee-piece connects
three steel pipes. The system is suspended in wires and excited by axial rod impact of the
long leg. Further details of the experiment can be found in [Vardy et al 1996].

Steel pipes Water

pipe lengths Li=451m bulk modulus K=2.14GPa
L[2=134m mass density or =999 kg/m’
(L3=134m) flow area Ar=2125 mm®

inner radius R=26.01 mm

wall thickness e =3.945 mm

Young modulus E=168 GPa TABLES 1. Geometrical and material

shear modulus G =65.1 GPa properties of Dundee test pipes

mass density pr = 7985 kg/m’

Poisson ratio v=0.29

shear coefficient ¥ =0.53

end mass at z=0 mo=1312kg

end mass atz=L, | m;=0.3258 kg

area Ar= 694 mm>

moment of area I, = 272900 mm*
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3. THEORY

The theory underlying the predictions presented in Section 4 has extensively been dealt
with in previous publications [Tijsseling et al 1997; Tijsseling & Vaugrante 1999; Zhang
et al 1999] and is not repeated here. The Transfer Matrix Method has been applied to one-
dimensional liquid-filled Timoshenko-type pipes. Acoustic transfer relations, junction
coupling relations and boundary conditions, describing the entire pipe system and all FSI
mechanisms, have been assembled in one global matrix, which multiplies the vector of the
unknown dynamic variables such that the product equals the excitation vector. The FSI
junction relations used for the elbow and the tee-piece are essential and therefore given in
general form below.

Elbow

The 14 junction relations for the three-dimensional vibration of an unrestrained elbow
(mitre bend), including fluid-structure coupling, are:

(relative fluid velocity)
{ Ar(V—u) },={ A (V~-4) }, (1a)
(pressure)
{ P },={ P}, (1b)
(axial velocity in pipe 1)
{ w, },=1{ 4 }, cosax +{ g, }, sino (1¢)

(axial force in pipe 1)
{ Ar P-A o, },={ Af P-A 0, }, coso +{ Qy }, sina  (1d)
(in-plane lateral velocity in pipe 1)

{uy }1={ ﬁy }2 COS(X—{ uz }2 sin o (16)
(in-plane lateral force in pipe 1)
{Qy }1={Qy }ZCOS(Z—{ AfP—AJO'z }2Sina (lf)
(in-plane angular velocity)
{ 6, },=1( 6, }, (1
(in-plane bending moment)
{ M: },={ M. }, (1h)
(out-of-plane lateral velocity)
{ w }i=1{ iz }, (1)
(out-of-plane lateral force)
{ 0, },={ Q, }, (1j)
(out-of-plane angular velocity in pipe 1)
{ 6, },={( 6, },cosa+{ g, }, sinc (1k)
(out-of-plane bending moment in pipe 1)
{ My },={ M, }, cosa+{ M, }, sina (11)
(torsional angular velocity in pipe 1)
{6, },={ 6, }, cosa-{ g, }, sina (1m)
(torsional moment in pipe 1)
{ M, },={ M, }, cosa —{ M, }, sina (1n)
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where z indicates the axial direction, x and y indicate the lateral directions, and Ar and A;
are the cross-sectional areas of flow and pipe (tube), respectively. The angle ¢ is the
change in flow direction and the indices 1 and 2 refer to either side of the elbow. The mass
and dimensions of the elbow are neglected, just as the forces due to change in liquid
momentum, which is consistent with the acoustic approximation. This simple model is
valid if the length of the elbow is small compared to the lengths of the adjacent pipes. The
angle sm—cor between the pipes remains constant; elbow ovalization and the associated
flexibility increase and stress intensification are ignored. However, these matters can be
accounted for by flexibility and stress-intensification factors.

The special case o = O describes a diameter change (sudden pipe expansion /
contraction).

It is noted that for the planar systems considered herein out-of-plane motion is
disregarded.

T-piece

The 21 junction relations for the three-dimensional vibration of an unrestrained T-piece,
including fluid-structure coupling, are:

(relative fluid velocity)
[ A (V=) Ji=0 A (V—i) },+{ A (V—-u) ), (a

(pressure)

{ P },={ P J,=( P ], (2b)
(axial velocity in pipe 1)
{uz }1={uy }2={_l.ly }3 (20)
(axial force in pipe 1)
[ ArP-Ac, },={ 0, },-{ Q, }, (2d)
(in-plane lateral velocity in pipe 1)
{dy }1={_uz }2={ Uz ]3 (2¢)
(in-plane lateral force in pipe 1)
{—Qy }1={AfP_At0'z }2—{ AfP_AtO'z }3 (Zf)
(in-plane angular velocity)
{ 6, }=1{ 6, }.=1{ 6, }; (28)
(in-plane bending moment)
{ My },={ M. },+{ M. }, (2h)
(out-of-plane lateral velocity)
[ ue bo={ e Jo=( s }; 29
(out-of-plane lateral force)
{Q }i={ Q, },+( Q, }, ©3))
(out-of-plane angular velocity in pipe 1)
{6, },=( 86, },=({-96, }; (2k)
(out-of-plane bending moment in pipe 1)
{ My },={ M. },-{ M. }, @D
(torsional angular velocity in pipe 1)
{éz }1={—éy lz={éy }3 (21'1‘1)
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(torsional moment in pipe 1)

{Mz }]=_{ My }2+{ My }3 (21'1)

where the indices 1, 2 and 3 refer to the three sides of the tee-piece. The mass and
dimensions of the tee-piece are neglected, just as the forces due to changes in liquid
momentum. The angles between the pipes are assumed to remain at 90 degrees.

It is noted again that for the planar systems considered herein out-of-plane motion is
disregarded .

FSI

FSI junction coupling of liquid and pipe is caused by the axial vibration of each leg of the
L-bow or T-piece. It is modelled through the relations (1a, 2a), (1d, 2d) and (1f, 2f).
Lateral and torsional vibrations do not cause FSI effects in a direct way. In lateral pipe
vibrations, the liquid acts as added mass. In torsional pipe vibrations, the influence of the
liquid is negligible.

Spectra

Typical calculated frequency spectra obtained with a Dirac-pulse excitation are shown in
Figure 3 for the L-shaped system and in Figure 4 for the T-shaped system.

4. RESULTS

The measured and calculated natural frequencies are compared.
L-shaped system

Table 2 displays the natural frequencies up to 500 Hz of the L-shaped system. The
theoretical model predicts all the observed frequencies, but the magnitudes are slightly too
high up to 400 Hz. This might be attributed to the fact that the inertia of the elbow, which
has a mass of 0.88 kg, has been (partly) neglected in the simulation. Tentarelli [1990;
Tentarelli & Brown 2001; Brown & Tentarelli 2001] showed that a fair amount of detail
of the system has to be put into FSI calculations to get highly accurate results. For
example, care has to be taken in modelling lumped masses.

T-shaped system

Table 3 displays the natural frequencies up to 250 Hz of the T-shaped system. The
measured data have been taken from [Vardy et al 1996]. The system was excited in the
direction of its axis of symmetry along the long leg, which resulted in pure axial vibration
of the long pipe and hence higher natural frequencies than in the L-shaped system. The
theoretical model predicts the first four natural frequencies reasonably accurate. The
inertia of the T-piece has been (partly) neglected in the simulation.
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. TABLE 2. Natural frequencies of L-
fxpeiment |ytheory shaped pipe system.
9 9
17 18.5
35 37.5
66 69
104 107.5
124 128
136 137
168 175.5
231 232
239 241.5
303 310 Experiment | Theory
346 347.5 27 7
361 363 112 113
401 410.5 159 55
473 471 226 228
483 480
499 504 TABLE 3. Natural frequencies of T-

shaped pipe system.

5. CONCLUSIONS

The paper gives newly measured natural frequencies in an L-shaped pipe system and
previously measured natural frequencies in a T-shaped system. Both systems do not suffer
from a structurally "fixed" point. The measured data are consistent with theoretical
predictions. The important FSI junction coupling relations for elbows and tee-pieces are
explicitly given.
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