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Summary

The transient behaviour of liquid-filled pipe systems is studied. The time scale is acoustic.
Pressure waves in the liquid, and axial, lateral and torsional stress waves in the pipes, are
the dominant phenomena. The phenomena in the liquid (waterhammer) and the phenomena
in the pipe system (structural dynamics) influence each other (fluid-structure interaction) if
significant radial and axial pipe motions occur. When, in addition, the dynamic pressure
drops to the vapour pressure, vapour bubbles will form in the liquid (cavitation). The major
new element of the present work is in the simultaneous occurrence of fluid-structure
interaction (FSI) and cavitation, which is investigated both theoretically and experimentally.

An extensive review of literature on the subject is given. One-dimensional basic equations
are obtained by integration of general three-dimensional equations for fluid dynamics and
structural linear elasticity. Three FSI-mechanisms (junction-, Poisson- and friction-coupling)
are taken into account. The governing equations, formulated as a hyperbolic set of fourteen
first-order partial differential equations, are solved by the method of characteristics.
Vaporous cavitation is numerically simulated by the relatively simple concentrated cavity
model.

The cavitation model, without the effects of FSI, is validated against experimental data
of Simpson [1986], whereas the FSI-model, without the effects of cavitation, is validated
against experiments of Vardy and Fan [1989, 1993]. Vardy and Fan’s test rig (laboratory
scale) has also been used for the purpose of the present investigation. Experiments, in which
the combination of FSI and cavitation is evident, were performed with a straight-pipe system
and with a system consisting of two straight pipes connected by a rigid 90-degrees elbow.
The agreement found between theoretical and experimental results justifies the application

of the present numerical model to larger pipe systems than those used in the laboratory tests.
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Samenvatting

Er is onderzoek verricht naar het kortstondige dynamische gedrag van leidingsystemen gevuld
met vloeistof. De tijdschaal is akoestisch. Drukgolven in de vloeistof en spanningsgolven
(longitudinaal, transversaal en torsie) in de leidingen, bepalen de fysische verschijnselen. De
verschijnselen in de vloeistof (waterslag) en in het leidingsysteem (dynamica van
constructies) beinvioeden elkaar (vioeistof-leiding interactie) ten gevolge van de radiale en
longitudinale bewegingen van de leidingen. Bovendien treedt dampbelvorming (cavitatie) op
wanneer de dynamische drukken in de vloeistof de dampspanning bereiken. Het nieuwe
element in het uitgevoerde onderzoek betreft het gelijktijdig optreden van vloeistof-leiding
interactie (VLI) en cavitatie, zowel in fysisch experiment als in numerieke simulatie.

De resultaten van een uitgebreid literatuuronderzoek zijn gerapporteerd. Eendimensionale
basisvergelijkingen worden verkregen na integratie van de algemene driedimensionale
vergelijkingen uit de vloeistofdynamica en de lineaire elasticiteitstheorie. De drie VLI-
mechanismes (junctie-, Poisson- en wrijvingskoppeling) zijn verdisconteerd. De
basisvergelijkingen, geformuleerd als een hyperbolisch systeem van veertien eerste-orde
partiéle differentiaalvergelijkingen, worden opgelost met de karakteristieckenmethode.
Dampcavitatie is numeriek gesimuleerd met het, relatief eenvoudige, geconcentreerde
caviteiten model.

Het cavitatiemodel, zonder VLI-effecten, is gevalideerd aan de hand van experimentele
resultaten van Simpson [1986], terwijl het VLI-model, zonder de effecten van cavitatie, is
gevalideerd met experimentele resultaten van Vardy en Fan [1989, 1993]. Vardy en Fan’s
proefopstelling (op laboratoriumschaal) is ook gebruikt met betrekking tot het huidige
onderzoek. Experimenten, waarin de gevolgen van zowel VLI als cavitatie duidelijk zichtbaar
zijn, zijn uitgevoerd met een systeem bestaand uit een enkele rechte buis en met een systeem
bestaand uit twee rechte buizen die onder een hoek van negentig graden verbonden zijn door
een stijf bochtstuk. De goede overeenkomst tussen theoretische en experimentele resultaten

rechtvaardigt de toepassing van het ontwikkelde numerieke model op grotere leidingsystemen

dan die in het beschreven laboratoriumexperiment.
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1. INTRODUCTION

Fluid-structure interaction is the general term used for physical phenomena where moving
boundaries between fluid and solid play an important role. The moving boundaries cause a
dynamic coupling which makes a simultaneous treatment of fluid and structure necessary
when modelling the phenomena. In the present study fluid-structure interaction refers to the
dynamic coupling between a pipe system and its contained liquid. The liquid is allowed to
vaporize so that liquid-vapour-pipe interactions may take place. Key words are:
waterhammer, cavitation, structural dynamics and fluid-structure interaction (FSI). These are
explained in section 1.1. In section 1.2 the present investigation is placed in its local
historical context; a survey is given of previous research in Delft. (A more general review
of literature is given in chapter 2.) Section 1.3 describes the objectives of the present work

and gives an outline of the report.

1.1. Basic concepts

The subjects waterhammer, cavitation, structural dynamics and fluid-structure interaction are

introduced in the next subsections.

1.1.1. Waterhammer

Waterhammer, also referred to as pressure surges or hydraulic transients, is a spectacular
form of unsteady flow in liquid-filled pipe systems. It is generated by abrupt changes in the
steady flow conditions. These changes are mostly due to the rapid closing or opening of
valves, and to the stopping or starting of pumps. Other causes of waterhammer are load
rejection of turbines, seismic excitation and pipe rupture. Waterhammer involves large
transient pressure variations which may damage the pipe system and its components. In order
to prevent damage, waterhammer can be suppressed and controlled by devices like: surge
tanks, air chambers, flexible hoses, pump flywheels, relief valves and rupture disks. In
practice waterhammer analyses are carried out in order to judge whether the quite expensive

devices are necessary and if so, what their dimensions should be. Predicted maximum
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pressures prescribe the required strength of the pipe work.

1.1.2. Cavitation

Waterhammer not only leads to high pressures but also to low pressures. Low pressures
involve the danger of pipe collapse, especially in case of buried pipelines. When the pressure
comes below a certain level, cavitation occurs. Distinction should be made between gaseous
and vaporous cavitation. Gaseous cavitation occurs when the pressure falls below the
saturation pressure of the gas, so that it comes out of solution. This is a relatively slow
process compared to vaporous cavitation. Vaporous cavitation occurs when the pressure
drops to the vapour pressure. Vapour cavities will form in the liquid. When the vapour
cavities appear as tiny bubbles dispersed throughout the liquid along great lengths of pipe,
it will be referred to as distributed cavitation. When the vapour cavities coalesce and form
one local bubble occupying a large part of pipe cross-section, it will be referred to as column
separation. Column separations generally occur near specific points in a pipe system such
as valves, pumps, bends and high points. Column separations occasionally occur in pipe
intermediate points when two low pressure waves meet. The collapse of column separations
is usually attended with almost instantaneous pressure rises. These may be avoided by
positioning air-inlet valves at critical points in the pipe system. In general the policy is to

prevent cavitation.

1.1.3. Structural dynamics

Steady-flow and waterhammer analyses provide information on the liquid behaviour under
operational conditions. Static pipe stress and structural dynamics analyses give insight in the
corresponding behaviour of the pipe system. Where the liquid-analysis yields extreme
pressures, the structural analysis provides dynamic stresses, reaction forces and resonance
frequencies. It is not unusual to perform an uncoupled calculation. Pressure histories,
resulting from a waterhammer analysis, are used as the dynamic loadings in a structural
dynamics analysis. The calculation is called uncoupled since the predicted structural response
does not influence the liquid pressures. This procedure is doubtful since pipe motion can

significantly affect dynamic pressures. Fluid-structure interaction should therefore be considered.



1.1.4. Fluid-structure interaction

In conventional waterhammer analyses pipe elasticity is incorporated in the propagation speed
of the pressure waves. Pipe inertia and pipe motion are not taken into account. This is
acceptable for rigidly anchored pipe systems. For less restrained systems fluid-structure
interaction may become of importance. In that case the dynamic behaviour of liquid and pipe
system should be treated simultaneously.

Three liquid-pipe interaction mechanisms can be distinguished: friction coupling, Poisson
coupling and junction coupling. Friction coupling represents the mutual friction between
liquid and pipe. The more important Poisson coupling relates the pressures in the liquid to
the axial stresses in the pipe through the radial contraction or expansion of the pipe wall. It
is named after Poisson in connection with his contraction coefficient », and it is associated
with the breathing or hoop mode of the pipe. Poisson coupling leads to precursor waves.
These are stress-wave induced disturbances in the liquid which travel faster than, and hence
in front of, the classical waterhammer waves. Where friction and Poisson coupling act along
the entire pipe, junction coupling acts at specific points in a pipe system such as unrestrained
valves, bends and tees. A standard example is the moving elbow, which induces pressure
waves in the liquid through a combined pumping (compressing) and storage (decompressing)
action. An illustrative explanation of Poisson and junction coupling can be found in
[Tijsseling & Lavooij 1990].

The main effects of fluid-structure interaction are problem dependent. When compared to
predictions of conventional analyses, predictions including fluid-structure interaction may lead
to: higher or lower extreme pressures and stresses, changes in the natural frequencies of the
system, and more damping and dispersion in the pressure and stress histories.

In practice pipe systems are never entirely rigid. Too rigid systems may experience
extremely high stresses due to temperature effects. The problem is to judge when fluid-
structure interaction is of importance. In [Lavooij & Tijsseling 1991] a provisional guideline
is proposed in order to answer this question. The guideline is based on characteristic time
scales of the system under consideration. It says that fluid-structure interaction is important
when the time scale of the pipe system is 1) smaller than the time scale of the liquid and 2)
larger than the time scale of the excitation. The eigenperiods of the pipe system, the main

periods of the waterhammer waves and, for instance, the effective closure time of a valve,



provide the relevant time scales.

Calculations with fluid-structure interaction are necessary in situations with high safety
requirements, mostly encountered in nuclear and chemical industry. They may also be useful
in post-accident analyses [Wang et al. 1989; Obradovié¢ 1990b].

1.2. Previous research in Delft

Delft has a rich history with respect to the subjects introduced in the foregoing section. Here
Delft stands for Delft University of Technology and Delft Hydraulics (formerly Delft
Hydraulics Laboratory). A survey is given of work that is related to the present study. The
realization of the present project as a co-operation between Delft University and Delft
Hydraulics is shortly described. A more comprehensive literature review is given in

chapter 2.

1.2.1. Waterhammer

The Industrial Technology Division of Delft Hydraulics has almost thirty years of experience
in the area of waterhammer. The research started in the mid sixties [Vreugdenhil 1964] and
developments kept pace with the increasing power of computer facilities. The results of
experimental and theoretical work have been published in [Manuel 1968; Manuel et al. 1968;
Nuhoff et al. 1969; Wijdieks 1972, 1974, 1978, 1983; Provoost 1978].

In the Laboratory of Fluid Mechanics of the Department of Civil Engineering of the Delft
University of Technology, quite recently, experiments were performed on hydraulic rams.
Hydraulic rams are self-operating pumps which hamness the waterhammer phenomenon. The
work has been reported in [Tacke 1988; Tacke & Verspuy 1989; Verspuy & Tijsseling
1993].

1.2.2. Cavitation
The research on cavitation due to waterhammer started in the mid sixties as well. Ten years

of close co-operation between Delft Hydraulics and the Delft University of Technology has

led to many valuable results.
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Siemons used a separated flow model' in a theoretical treatment of cavitation [Siemons
1966, 1967]. Dijkman extended this model by taking into account the effects of dissolved gas
[Dijkman 1968; Dijkman & Vreugdenhil 1969]. Kalkwijk and Kranenburg developed their
bubble flow model' and compared the results with experimental data obtained in a PVC
pipeline with length 200 m and diameter 0.08 m [Kalkwijk & Kranenburg 1971, 1973]. The
separated flow model and the bubble flow model are compared in [De Vries et al. 1971;
Kalkwijk et al. 1972]. At Delft Hydraulics experiments were performed in a steel pipeline,
with length 1450 m and diameter 0.10 m, in order to examine distributed cavitation. The
experimental results are compared with predictions of the separated flow model and the
bubble flow model in [Vreugdenhil et al. 1972; Kloosterman et al. 1973]. De Vries simulated
the experiments by applying the concentrated cavity model' to distributed cavitation regions
[De Vries 1972, 1973, 1974]. Safwat did also experiments at Delft Hydraulics [Safwat
1972abcd]. He investigated column separations in a plexiglass pipeline with optionally a high
section with or without condenser. The pipeline had a diameter of 0.09 m and lengths varied
between 40 m and 58 m. Column separations were modelled at two fixed points, distributed
cavitation was modelled in a primitive way [Safwat & de Kluyver 1972; Safwat & van den
Polder 1973a]. Kranenburg did an extensive study on the effects of free and dissolved gas
on transient cavitation [Kranenburg 1972, 1974ab].

A review of cavitation research in Delft can be found in [De Vries 1975]. Provoost
reviews the three developed cavitation models in [Provoost 1976] and compares the results
with the field measurements reported in [Provoost 1975]. Some numerical aspects of the
concentrated cavity model are dealt with in [Provoost & Wylie 1981].

In the second half of the seventies the research in Delft concentrated on cavitation
susceptibility and cavitation on valves [Oldenziel 1975, 1976, 1979, 1982ab; Oldenziel &
Teijema 1976].

1.2.3. Fluid-structure interaction (FS1)

At Delft University Kuiken performed a comprehensive theoretical study on FSI in straight
tubes [Kuiken 1984abed, 1986, 1988]. Dieterman investigated theoretically and

1 see section 2.2
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experimentally FSI effects in water towers [Dieterman 1988].

At Delft Hydraulics the research on FSI started in 1984 with the work of Van der Weijde
[Van der Weijde 1984, 1985ab, 1986]. He did experiments in a 0.05 m diameter PVC
pipeline containing a 24 m long U-shaped test section. An adjustable spring was used to vary
the stiffness of the system. For less stiff systems he found considerable discrepancies between
the experimental results and predictions obtained with conventional waterhammer theory. For
this reason Delft Hydraulics decided to study FSI more thoroughly. A project was set up in
co-operation with and sponsored by participants from industry, public authorities and
consulting engineers’ offices [FLUSTRIN 1986]. The project, named FLUSTRIN, got the
EUREKA status? in 1988 and was therefore subsidized by the European Community as well
[EUREKA 1988]. One of the aims of the project is to make available to users in practice the
advanced FSI-knowledge which is already present at universities.

The FLUSTRIN project was divided in three phases. Phase 1 included the following
items: survey of literature, derivation of governing equations, inventory of field cases,
definition of benchmark problems, testing of various numerical methods, development of
pilot program, assessment of the relative importance of interaction mechanisms. The help of
professor Wiggert of Michigan State University, USA, in this stage of the project was highly
appreciated. Results of phase 1 have been reported and published in [Lavooij 1986; Lavooij
& Tijsseling 1988, 1989, 1991; Lavooij 1990; Tijsseling & Lavooij 1990; Heinsbroek et al.
1991; Heinsbroek & Tijsseling 1993]. Phase 2 consisted of the development of a user-
friendly computer code for the calculation of FSI effects in unbranched pipe systems
[FLUSTRIN 1990]. In phase 3 the computer code was validated against experimental results
obtained in a larger than usual FSI test circuit: length 76 m, diameter 0.10 m, 6 elbows
[Heinsbroek & Kruisbrink 1991, 1993; Kruisbrink & Heinsbroek 1992ab; Heinsbroek 1993].

1.2.4. Fluid-structure interaction and cavitation (present study)
During a three-days course on FSI given by Hatfield, Wiggert and Zielke [Hatfield et al.

1987] and attended by the author, it became clear that the collapse of column separations in
combination with FSI is an important and still unexplored field, which deserves to be studied.

2 EUREKA project 274
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Due to the complexity and novelty of the subject, several years of basic research were
expected to be needed in order to get satisfactory results. Therefore Delft Hydraulics
approached Delft University of Technology to come to a co-operation once more. As a result
the author has been able to work for a period of four years on the present subject, which may
be seen as an extension of the FLUSTRIN work. The final results are presented in the report
at issue. Earlier publications are [Tijsseling & Lavooij 1989; Tijsseling & Fan 1991ab, 1992;
Fan & Tijsseling 1992].

1.3. Objectives and preview of study

In case of severe waterhammer it is not unlikely that cavitation and pipe motion occur
together. The collapse of large vapour cavities or column separations leads to pressure waves
with steep wave fronts. These waves excite the pipe system and, since their fronts are steep,
the time scale of excitation is very small. Then, according to the guideline described in
subsection 1.1.4, fluid-structure interaction (FSI) becomes of importance, provided the
characteristic time scale of the structure is smaller than that of the fluid.

The objective of the present study is to model mathematically the combination of FSI and
cavitation. The model should be suitable to be implemented in existing waterhammer and/or
structural dynamics computer codes. Furthermore the model should be validated against
experimental results in which the combination of FSI and cavitation is evident.

The mathematical model presented herein combines the FSI work of Wiggert® et al. with
the Delft cavitation-work reviewed in subsection 1.2.2. The model is one-dimensional; it is
based on conventional waterhammer and beam theories. The three interaction mechanisms,
friction, Poisson and junction coupling, are taken into account. Cavitation is simulated with
the concentrated cavity model. The numerical approach is the method of characteristics
(MOC).

The experimental apparatus used is that of Vardy and Fan of the University of Dundee,
UK. It consists of an isolated part of a pipe system, closed at the ends and suspended by
wires. The system is filled with pressurized water. Transients are generated by striking one

of the closed ends with a steel rod, as shown in figure 1.1. This report includes results for

3 see subsection 2.3.5
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a straight pipe and for a system with one elbow.

A review of literature is given in the next chapter. Emphasis is placed upon FSI in the
time domain. The basic equations are derived in chapter 3, the underlying assumptions are
given. Initial and boundary conditions complete the mathematical model. The MOC approach
is worked out in chapter 4, together with the concentrated cavity model. In chapter S the
experiments are described, the results of which are compared with theoretical predictions in

chapter 6. Chapter 7 finishes the study with a review and conclusions.

—

L 7

| ]

solid steel rod wvater-filled steel pipe

Figure 1.1. Sketch of Dundee experimental apparatus.



2. REVIEW OF LITERATURE

In this chapter literature referring to the subjects waterhammer, cavitation and fluid-structure
interaction (FSI) is reviewed. In section 1.2 this was already done for work carried out in
Delft; here the review is world-wide. Waterhammer and cavitation are discussed shortly,
most attention is directed to FSI in the time domain. Literature dealing with both FSI and

cavitation is treated separately.
2.1. Waterhammer

The first work with respect to waterhammer is attributed to Ménabréa [1858, 1862].
Although several other publications were brought out in the second half of the 19th century,
the present waterhammer theory is based on the classic investigations of Joukowsky [1898]
and Allievi [1903]. Joukowsky conducted extensive measurements in the Moscow water

distribution system. In his theoretical treatment he derived the formula that bears his name
AP = p;c, AV 2.1

This formula was also derived by Frizell [1898] and earlier by Rankine [1870]. It relates
pressure changes AP to velocity changes AV by the constant factor psCy, With py the mass
density of the fluid and ¢y the velocity of sound in the fluid. Joukowsky used the sound
velocity according to Korteweg [1878], which takes into account both the compressibility of
the fluid and the elasticity of the pipe walls. Allievi gives an excellent mathematical treatment
of the waterhammer equations in [Allievi 1913]. His way of solution has been in use until
the more practical graphical method was developed. This method is connected with the
names of Schnyder [1929] and Bergeron [1935], although there were a few predecessors.
With the introduction of digital computers in the early sixties, waterhammer calculations
evolve to their present form. The method of characteristics (MOC) becomes the standard
numerical approach. All fundamentals can be found in the classic textbook of Streeter and
Wylie [1967]. Other good textbooks on the subject are those of Bergeron [1950],
Gandenberger [1950], Rich [1951], Parmakian [1955], Zielke [1974], Jaeger [1977], Fox
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[1977, 1989], Wylie & Streeter [1978a, 1993], Watters [1979], Chaudhry [1979], Chaudhry
& Yevjevich [1981], Tullis [1989] and De Almeida & Koelle [1992]. Historical reviews are
given by Paynter [1961], Wood [1970], Martin [1973], Anderson [1976] and Thorley [1976].
Jaeger [1977] is very precise in his footnotes, where he refers to the original researchers and

their work.

2.2. Cavitation

Cavitation is a broad field of research. This study is confined to the macroscopic aspects of
transient vaporous cavitation. For information on the physical phenomena on a microscopic
scale, cavitation erosion and advanced cavitation theory, good textbooks are available like
[Knapp et al. 1970; Hammitt 1980; Young 1989]. Valuable information may also be obtained
from Arndt’s [1981] review. An excellent review of literature on cavitation due to
waterhammer is given by Simpson in his dissertation [Simpson 1986]. De Almeida [1987]
reviews the various models that are in use to simulate transient cavitation.

Thorley [1976] attributes the first work on vapour cavities and column separations to Hogg
& Traill [1926] and Langevin [1928]. Simpson [1986] starts his review in the 1930s with
contributions of Billings et al. [1933], Angus [1935, 1937ab], LeConte [1937], Knapp
[1937ab, 1939] and Bergeron [1939]. His survey goes to the mid eighties and includes the
Delft work described in subsection 1.2.2. The early investigations concern the occurrence
of column separations at specific points in a pipe system; the danger of high pressures
following cavity collapse is recognized. Column separations can be adequately modelled in
a simple manner [Bergeron 1950; Streeter & Wylie 1967]. For a physically correct
representation of distributed cavitation more complicated models are needed. The three
models already mentioned in subsection 1.2.2 are basic.

The separated flow model [Baltzer 1967, Siemons 1967] assumes the cavities to coalesce
at the upper part of a pipe, forming one thin layer of vapour and/or gas. Regions of
cavitating fluid are then treated as open-channel flows. Problems encountered in this kind of
modelling are the appearance of gravity waves and the numerical treatment of the moving
boundaries between cavitating and non-cavitating regions. Furthermore, the model is
physically incorrect for vertical pipes. The bubble flow model [Kalkwijk & Kranenburg 1971,
1973] is a physically more realistic representation of distributed cavitation. It assumes the
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cavities to be dispersed throughout the liquid and treats cavitating regions as one-dimensional
two-phase flows [Wallis 1969]. Difficulties in this way of modelling are pressure-dependent
wave propagation, the formation of shock waves and numerical instabilities. Column
separations must be treated separately. The concentrated cavity model, also referred to as
discrete or lumped cavity model, treats distributed cavitation regions and column separations
mathematically in the same way. Cavities are allowed to form only at a fixed number of
locations along the pipe. Pure liquid is assumed to exist between these locations. The great
disadvantage of this method is in the occurrence of spurious oscillations and unrealistic
pressure spikes.!

Simpson [1986] discusses the literature dealing with the various models. In the remaining
of this section the focus is on the concentrated cavity model, since this is the model used in
the present study. After a short historical review, the most recent literature dealing with the
model is summarized, which may be regarded as an addition to Simpson’s [1986] review.

The concentrated vapour cavity model was formulated by Thibessard [1961], Streeter
[1969] and Tanahashi & Kasahara [1969]. However, these investigators did not apply the
model to regions of distributed cavitation. This was done by De Vries [1972] when he
simulated the experiments mentioned in subsection 1.2.2. He is the first who reports on
numerical oscillations induced by the simulated nullification of a region of distributed
cavitation. To suppress these oscillations he adds small amounts of free gas to the discrete
cavities. In fact he then uses the concentrated (discrete, lumped) free gas cavity model
developed by Brown [1968]. This model, later on used by Enever [1972], Tullis et al.
[1976], Ewing [1980] and Suda [1990], allows for the presence of free gas in the liquid.
Ewing [1980] also discusses various damping mechanisms in liquid-gas mixtures. Thorough
treatises of both the vapour and the free gas concentrated cavity models are given by Wylie
[1984] and Zielke & Perko [1985].

The concentrated cavity model is widely used because of its simplicity, its general
applicability and the fact that it fits in with the method of characteristics (MOC) approach
employed in standard waterhammer calculations. Its validity follows from the comparison of
its predictions with results of laboratory and field tests. Provoost [1976] validates the model

against both laboratory experiments and field measurements. The latter concern a 27.9 km

! gee subsection 4.5.3
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long pipeline with a diameter of 1.8 m. Sharp [1977] presents field measurements in a
12.3 km long, 0.25 m diameter, pipeline. In his calculation he allows cavities to form at not
more than six locations. Nevertheless he obtains reasonable results. Kot & Youngdahl
[1978ab] give a clear explanation of the concentrated cavity model and use experiments in
a 9.15 m long closed tube for validation. Aga et al. [1980] apply the model to oil flow in a
250 m long, 0.09 m diameter, test rig. Gottlieb et al. [1981] and Graze & Horlacher [1983]
investigate maximum pressures due to the collapse of column separations in various pipe
configurations. They use discrete cavities in their simulations. Evans & Sage [1983] have
confidence in the model and use it for the waterhammer analysis of a practical situation.
Carmona et al. [1987] conducted extensive measurements in a laboratory set-up resembling
that of [Provoost 1976] and showed numerical results as well. Golia & Greco [1990] find
excellent agreement between computations and experimental data provided by Martin [1983].
Barbero & Ciaponi [1991] report on 23 experiments performed in a nearly 500 m long,
0.11 m diameter, test circuit. In their calculations they examine the influence of initial free
gas and gas release. Anderson et al. [1991ab] discuss several aspects of the concentrated
cavity model and show results of laboratory measurements for three levels of cavitation
severity. Wang & Locher [1991] find surprisingly good agreement between simulations and
field data obtained in a 47 km long cross-country pipeline with a diameter of 0.84 m.

From all the validation tests quoted it may be concluded that, despite its simplicity, the
concentrated cavity model reproduces the essential features of transient cavitation. The
versatility of the model is demonstrated by the variety of pipe systems used in the tests. The
common belief that the model yields conservative results is contradicted by the findings of
Wang & Locher [1991]. The major deficiency of the model is the appearance of non-physical
oscillations in the results. These are highlighted in a paper by Wylie & Streeter [1978b].
Papers by Provoost & Wylie [1981] and Simpson & Wylie [1985] deal with the reduction and
the generation, respectively, of numerical oscillations and unrealistic pressure spikes.

The latest developments aiming at physically better models are due to Streeter [1983] and
Simpson [1986]. Streeter’s consolidation method treats distributed cavitation regions in
sloping pipes as areas of constant pressure moving under the influence of gravity and friction
forces. Column separations are allowed to form at specific locations of the pipe system.
Simpson’s work [Simpson 1986; Simpson & Wylie 1989, 1991; Bergant & Simpson 1992]

is based on that of Streeter. However, his interface model allows column separations to form
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at any point in a pipe system whenever two low pressure waves meet. In his dissertation
[Simpson 1986] he compares predictions of both the interface model and the concentrated
cavity model with experimental data obtained in a 36 m long upward sloping pipe of 0.02 m
diameter. Although the interface model gives reliable results, it is too complicated for general

use.
2.3. Fluid-structure interaction (FSI)
2.3.1. Early developments

In the 19th century the studies of standing waves in musical instruments and pulsatile flows
in blood vessels asked for an accurate determination of the velocity of sound in fluids. The

sound velocity in unconfined fluids was and is known to be

2.2)

o= | K
Pr

where K is the bulk modulus of the fluid. For liquids contained in a tube the sound velocity
was found to be much lower. Von Helmholtz [1848] correctly attributes this effect to the
elasticity of the tube walls. For incompressible fluids in elastic tubes, like rubber hoses and
blood vessels, Young [1808], Weber [1866], Résal [1876] and Moens [1878] came to the

formula
¢ = Ee 2.3)
1= oD
Py

where E is Young’s modulus of the wall material, e is the wall thickness and D is the

internal tube diameter. For compressible fluids in elastic tubes Korteweg [1878] derived
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where the coefficient ¥ = 1. The coefficient ¢ is explained in subsection 2.3.3.

which is equivalent with

Formula (2.5) gives the pressure wave speed ¢ used in standard waterhammer
calculations. For compressible fluids in inelastic tubes, E >> K, crequals ¢, whereas for
incompressible fluids in elastic tubes, K >> E, c,equals ¢; .

In deriving formula (2.5) Korteweg [1878] considers the tube as a series of massless rings
expanding and contracting in accordance with the internal fluid pressure, P. The hoop stress,

o, , and the radial displacement, u,, of a ring are given by

o= Xp 2.6)
4
2

u, = & @7
eE

respectively, where R is the inner radius of the tube. The tube walls follow the liquid, there
is no question of fluid-structure inferaction. Axial stresses in the tube wall, o, , and tube wall

inertia are neglected:

g =0 2.8

0, =0 2.9)

with p, the mass density of the tube wall material.
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Korteweg [1878] indicates that his theory is valid for long? wavelengths. He points out
that Poisson’s ratio effects® occur when the axial stresses in the tube wall are not neglected.
When, in addition, axial tube wall inertia is taken into account, axial stress waves will
propagate along the tube. Korteweg, however, investigates the influence of radial inertia. He
shows that for short wavelengths the radial inertia of both fluid and tube wall becomes of
importance, thereby leading to wave speeds varying with the wavelength. Gromeka [1883],
quoted by Joukowsky [1898], takes pipe wall inertia into account when he considers
incompressible liquids in elastic tubes. He gives a bi-quadratic equation from which two
wave speeds follow: one for the pressure waves in the fluid and one for the axial stress
waves in the tube wall. Lamb [1898] is very complete in his treatment of the combined axial
and radial vibrations of a fluid-filled tube. Poisson coupling® is included in his work. He
distinguishes three classes of vibrations, viz. 1) the pressure waves in the fluid as modified
by the yielding of the tube, 2) the axial vibrations of the tube wall as modified (very slightly)
by the presence of the fluid, and 3) the radial vibrations of the system. Lamb derives a
dispersion equation which relates phase velocities to wavelengths. For long wavelengths the
pressure waves and the axial stress waves are predominant, with the propagation speeds close

to cyand c, , respectively, where

(2.10)
and ¢ is given by (2.5). The radial vibrations are important only for short wavelengths.

Boulanger [1913] gives an extensive survey of the developments in the 19th century.
2.3.2. Wave propagation modes

Lamb’s [1898] work has been extended by numerous researchers dealing with the problem
of wave propagation in fluid-filled cylinders. The general approach is to apply Fourier

2 with respect to pipe diameter

3 see subsection 1.1.4 for Poisson coupling
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analysis to the basic equations. A dispersion equation is then derived, from which the natural
modes of wave propagation follow.

Skalak [1956] presents an excellent piece of work which can be seen as the theoretical
basis underlying the present study. He extends Lamb’s [1898] work by including in his
axially symmetric tube model bending stiffness and rotatory inertia. From his dispersion
equation he finds an infinite number of wave propagation modes. Only the two lowest modes
have a finite phase velocity as the wavelength approaches infinity and the frequency
approaches zero. The lowest mode corresponds to the pressure waves in the fluid, the second
lowest to the axial stress waves in the tube wall. The phenomenon of precursor waves* is
described with the aid of clear pictures. Simplified equations are given which permit
precursor-type solutions without dispersion effects. These are the equations used in the
present study (see subsection 3.1.2).

Lin & Morgan [1956ab] delivered work similar to Skalak’s. Beside bending stiffness and
rotatory inertia, they take into account transverse shear deformation in their tube model.
These matters are of importance only in the high frequency range.

Herrmann & Mirsky [1956] consider an empty tube and find basic equations that slightly
differ from those of Lin & Morgan [1956a). They survey the various models that are in use
for axially symmetric motions of thin-walled cylinders. Equations governing the non-axially
symmetric motion of cylinders are given in [Mirsky & Herrmann 1957], whereas in [Mirsky
& Herrmann 1958] thick-walled cylinders are considered.

Spillers [1965] and Tang [1965] apply the method of characteristics to, respectively,
Herrmann & Mirsky’s and Lin & Morgan’s equations.

King & Frederick [1968] use Lin & Morgan’s equations in a completion of Skalak’s work.
By applying a Hankel transformation to the two-dimensional fluid equations, they obtain an
infinite system of one-dimensional wave equations for the fluid. A finite set from this system,
along with three one-dimensional wave equations for the tube, is transformed into ordinary
differential equations by means of the method of characteristics. Finally, a numerical
integration procedure leads to the early-time waterhammer response solutions which the
authors were looking for.

Thorley [1969] follows Skalak’s approach, but neglects transverse shear deformation,

4 see subsection 1.1.4 for precursor waves
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rotatory inertia and, partly, bending stiffness. He performed physical experiments in steel,
aluminium alloy, and polythene pipes of 0.05 m diameter and 0.005 m wall thickness.
Thorley is the first who actually observes precursor waves.

DeArmond & Rouleau [1972] extend Lin & Morgan’s work by considering a viscous
liquid in an elastic tube. They concentrate on the two lowest modes of wave propagation.
Rubinow & Keller [1978] study, for infinitely many modes, a viscous liquid in a visco-elastic
tube. Kuiken [1984abcd] comes with the most complete model, encompassing viscous liquids
or gases, orthotropic visco-elastic tubes, pre-stressed and surrounded by other materials, and
thermodynamic effects. Mdser et al. [1986] investigate those modes that produce audible
sound. They present results of accurate measurements.

The advanced study of wave propagation in fluid-filled tubes is nowadays still of
importance, in particular with respect to pulsatile flows in mammalian arteries. For the
description of pressure waves in pipe systems one- or two-mode solutions are sufficient.
One-mode solutions are found with classical waterhammer theory, two-mode solutions are
calculated in the present study. The latter are extensively treated in the literature discussed

in this subsection, where the tubes were assumed to be thin-walled.
2.3.3. Wave propagation speeds

Halliwell [1963] gives, within the context of classical waterhammer theory, formulae for the
pressure wave speed in both thin- and thick-walled pipes. He also discusses the disparity in
wave speed formulae found in textbooks. This disparity is due to the way pipe support
conditions are taken into account. In theoretical analyses three support conditions are
standard: 1) pipe anchored with expansion joints throughout, 2) pipe anchored throughout
against axial motion, and 3) pipe anchored at its upstream end only. The correction factor
¥ in the wave speed formula (2.5) accounts for the different support conditions. Support
condition 1) corresponds to the situation described by Korteweg [1878], in which the axial
stresses are neglected (Y = 1). In condition 2) the axial displacements are neglected, leading
to ¥ = 1 - »% In condition 3) the axial stress in the pipe wall is assumed to be proportional
to the fluid pressure acting on a closed valve downstream, giving ¥ = 1 - /2. Correct
treatises of the subject can be found in [Wylie & Streeter 1978a] and [Schwarz 1978]. In

deriving the values of  pipe wall inertia is neglected, so that quasi-static conditions prevail.
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The support conditions 1) and 3) allow for axial pipe motion. For these cases it has been
assumed that the axial stress in the entire pipe is permanently equal to its value at the anchors
or to its value at the valve. The more thorough treatise, presented in the report at issue’,
considers axial stress waves in the pipe wall by taking into account axial pipe wall inertia
[Stuckenbruck et al. 1985). This approach leads to a unique wave speed for a single pipe
supported at its ends, which is physically correct since the wave speed should not depend on
the end conditions: a disturbance generated at the middle of the pipe, and travelling at finite
speed, does not "know" in advance which situation it will meet at the pipe ends. In this
respect it is noted that ignoring axial pipe wall inertia leads to axial stress waves theoretically
travelling at infinitely high velocity, so that the end conditions are permanently "felt" along

the entire pipe.

2.3.4. Junction coupling

In classical waterhammer theory the only influence of the pipe support conditions is in the
correction factor y in the pressure wave speed (2.5). When the support conditions allow for
pipe motion, fluid-structure interaction may occur. The most important interaction mechanism
is junction coupling®. In general a pipe system consists of straight sections of pipe,
connected by elbows, tees and diameter changes, and terminated by reservoirs, pumps and
valves. Here the connecting and terminal points are referred to as junctions. Other hydraulic
equipment than those mentioned above may also be located at junctions. When a junction has
the possibility to move in the axial pipe direction, which is the direction of the pressure
waves, mutual forces between fluid and pipe system may cause a dynamic interaction, which
is known as junction coupling.

Regetz [1960] investigates pressure and velocity fluctuations in a straight pipe filled with
rocket fuel. His experimental apparatus allows for axial pipe motion. Pipe velocities recorded
at the unrestrained pipe end are incorporated in a standard waterhammer analysis in the
frequency domain. It is shown that pipe motion has a definite effect on the fluid behaviour.

Blade et al. [1962] extend Regetz’s work; a flexibly supported elbow is included in the

5 see subsection 4.2.3

© see subsection 1.1.4 for junction coupling
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pipe system. Axial pipe motion is simulated by means of a spring-mass system. Junction
coupling is modelled by relating pressures and velocities in the fluid to stresses and velocities
in the pipe according to the local force equilibrium and continuity; the same approach is
followed in the present study.

D’Souza & Oldenburger [1964] let pressure waves in the fluid interact with stress waves
in the pipe wall by way of junction coupling at an unrestrained pipe end. They utilize
Laplace transformations in a frequency response analysis of their basic equations. Excellent
agreement is found between theory and experiments conducted in a straight pipe filled with
hydraulic oil.

Holmboe & Rouleau [1967] had problems with unwanted FSI-effects in their experimental
apparatus and decided to embed their spiral tube in concrete.

Swaffield [1968-1969] examined the influence of elbows on passing pressure waves by
means of a comprehensive series of tests. The influence of pipe restraint was part of his
work. Unfortunately, his results are invalidated by the fact that some supports in his
experiments were not sufficiently rigid [Wilkinson 1980, p. 197].

Davidson & Smith [1969] model curved pipes in a Timoshenko-beam-like manner
including liquid-pipe interaction. The model is validated against results of frequency response
tests in an oil-filled single-elbow pipe system. The work is extended to non-plane multi-elbow
configurations by Davidson & Samsury [1972].

Wood [1968, 1969] gives a clear explanation of junction coupling in terms of moving
hydraulic discontinuities. He presents a time-domain analysis in which the structure is
represented by a spring-mass system where the fluid pressure is the driving force. His
experimental apparatus consists of a rigidly supported straight pipe terminated by a spring-
mass device. In [Wood 1968] the liquid is subjected to periodic disturbances, whereas in
[Wood 1969] the system is excited by rapid valve-closure. In the latter it is shown that
pressure rises may significantly exceed Joukowsky's value (2.1), when axial pipe motion
occurs. An interesting parameter variation study is given which links up with the guideline
described in section 1.1.4. In [Wood & Chao 19717 the work is extended with elbows and
branches. A valuable series of tests was carried out on 30, 60, 90, 120 and 150 degrees mitre
bends and on a 90 - 90 degrees T-junction. No attempt was made to model the structure;
measured junction velocities were used as input to the analysis. It is shown that rigidly

supported junctions have a negligible influence on pressure waves, whereas unrestrained
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junctions affect them considerably. Jones & Wood [1972] give an analytically derived
expression for the junction coupling induced pressure oscillations around Joukowsky’s value
in case of rapid valve-closure downstream in a single pipe. The pipe is conceived of as a
spring-mass system. Results are compared with measurements in an unrestrained vertical
pipe.

Ellis [1980] considers junction coupling at a check-valve, a T-branch and a 90 degrees
bend in an analysis of a practical system. Pressure waves and axial stress waves are
modelled; flexural motion is accounted for by a spring-mass system. The method of

characteristics is employed to solve the basic equations.

2.3.5. Junction and Poisson coupling

In the work reviewed in the previous subsection the influence of axial junction motion on
pressure waves was investigated. The axial pipe motion was represented by measured data
or by a simple spring-mass system. Only D’Souza & Oldenburger [1964] and Ellis [1980]
model axial stress waves in the pipe wall. However, they did not account for Poisson
coupling, i.e. the FSI-mechanism that relates internal fluid pressures to pipe wall axial
stresses. The work of researchers including this mechanism in their model is discussed in this
subsection. In fact they utilize the two-modes model introduced in subsection 2.3.2.
Biirmann [1974ab, 1975, 1980b] gives a rigorous mathematical treatment of axial wave
propagation in liquid-filled co-axial cylinders, including Poisson coupling. The basic
equations are solved by the method of characteristics (MOC). Non-axial effects are studied
in [Biirmann et al. 1979, 1983, 1987c]. Biirmann [1980a, 1983] compares the responses of
three different tube models to waterhammer induced by the rapid closure of a rigidly
supported valve. The three tube models correspond to the shell and membrane theories such
as given by Herrmann & Mirsky [1956], and to the simple one employed in classical
waterhammer theory. Biirmann concludes that shell theory is necessary for very short pipes
and for obtaining accurate solutions in the vicinity of very steep wave fronts, The membrane
theory in combination with extended waterhammer equations allows for precursor waves and
is sufficient for most practical purposes. The classical waterhammer theory fails to predict
pipe motion. A four-equation model is proposed to describe the coupled axial motion of pipe
and liquid [Thielen & Biirmann 1980; Biirmann et al. 1980]. In principle this is the
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simplified model of Skalak [1956]. Biirmann, and his group, carried out an impressive series
of field measurements in order to validate the theoretical work. In [Birmann 1979; Birmann
& Thielen 1988] measurements are presented on the filling pipe of a subterranean salt
cavern. The salt cavern is used for oil storage and the filling pipe, which is vertically placed
within a second pipe, has a length of more than 1 km. The pipe is minimally restrained and
shows motion in axial and lateral direction when it is excited by waterhammer due to pump
stop. In [Biirmann et al. 1985, 1986b, 1987a] the pipe bridge of a water main across the
river Neckar is studied. Coupled motion of liquid and pipe is generated by rapid valve
opening. At one end the pipe was lifted from its support to enhance axial motion. In
[Biirmann et al. 1986a, 1987b] a loading line, used for liquid transport between storage tanks
and ships, is subject of investigation. A most detailed description of the measurements and
the corresponding simulations is given for all three cases. It is encouraging to see that
satisfactory agreement is found between theory and field data, although in the simulations
measured data was used as input.

Walker & Phillips [1977] present a theoretical study on the propagation of short duration
pressure pulses in a straight elastic pipe, including Poisson and junction coupling. Radial
fluid and pipe inertia is taken into account, leading to a six-equation model. The equations
are solved by the MOC, but the procedure is not described in detail. In this respect some
doubt may exist about the distinction between numerical and physical dispersion, not
discussed by the authors. For the case that pressure and axial stress waves travel at the same
velocity, an analytical solution is given. Valentin, Phillips & Walker [1979] present an eight-
equation model for a liquid-filled curved pipe. Poisson coupling is included, but radial inertia
is neglected. A dispersion equation is derived and elbow reflection and transmission
coefficients are calculated.

Williams [1977] presents valuable experimental results obtained in steel, ABS and PVC
pipes. The effect of pipe motion, brought about by axial stress waves, is clearly visible in
the recorded pressures. The observed damping of pressures is attributed to FSI. Flexural pipe
motion and interaction at bends are discussed. Williams’ correct mathematical analysis is in
terms of jump conditions across wave fronts.

Krause et al. [1977] studied the propagation of axial stress and pressure pulses in water-
filled aluminium and acrylic plastic tubes. Their experimental apparatus consists of a closed

tube supported partly by strings and partly by blocks. Short duration pulses are generated by
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firing steel spheres onto the tube ends. Measured wave propagation speeds are in good
agreement with those predicted by Skalak’s [1956] simplified model. The work is extended,
both experimentally and theoretically, by Barez et al. [1979]. The experiments are executed
on a tube supported by blocks and filled with various liquids, initially either at rest or
flowing. Skalak’s simplified theory is extended with radial tube inertia and a visco-elastic
Young’s modulus, yielding a six-equation model similar to that of Walker & Phillips [1977].
A Laplace transformation gives solutions which are inverted numerically. The computed
propagation of single pulses is in good agreement with the observed ones. Adachi et al.
[1991] apply the same solution technique to the full shell equations and compare the results
of classical, uncoupled and coupled calculations. They come to the same conclusion as
Biirmann [1980a, 1983]: shell theory is only necessary for very short pipes and for accurate
solutions close to wave fronts. Uncoupled calculations lead to erroneous results.

Schwarz [1978] performed an extensive numerical study on coupled axial liquid and pipe
motion in a single straight pipe. His approach is similar to that of Walker and Phillips
{1977]. He starts with a six-equation model and solves it with the MOC. By neglecting the
relatively unimportant radial inertia terms he comes to a four-equation model, which is
subsequently solved by a finite-difference method. Calculations with Poisson and junction
coupling are compared with calculations without coupling.

Wilkinson [1978] presents a complete work formulated in the frequency domain. In
addition to pressure and axial stress waves, he considers flexural and torsional stress waves,
which results in a fourteen-equation model. The flexural waves are in two directions, so that
five wave families are distinguished. The wave families are coupled at the various junctions
described by the author. Poisson coupling is not included in the model, but this may be done
by incorporating the work of Wiggert et al. [1987b] or Kuiken [1988]. In [Wilkinson 1980]
the problem is formulated in the time domain. Reflection and transmission coefficients for
various moving junctions are given. In [Wilkinson & Curtis 1980] a most detailed analysis
of the impact of a liquid column with the closed end of a straight pipe is given and validated
against experimental results. Poisson coupling and plasticity are part of the work. Solutions
are found by tracing wave fronts and applying jump conditions as Williams [1977] did. Since
one incident wave leads to two reflected waves, the method is quite laborious. Edwards &
Please [1988] propose an original alternative method to overcome this problem.

The researchers Wiggert (fluid mechanics) and Hatfield (structural mechanics) at Michigan
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State University joined their knowledge in order to tackle the problem of FSI in liquid-filled
pipe systems. Together with Otwell, Lesmez, Budny and Stuckenbruck, they have been
working on the subject for more than ten years. Many valuable publications were the result.
Their work was in both frequency and time domain. Two different approaches were
followed, the component-synthesis method and the MOC method. These terms refer to the
numerical treatment of the structure. The former method is associated with natural modes of
vibration, whereas the latter corresponds to wave propagations. Experimental validation tests
completed the investigations. The present work is based on the findings of Wiggert and his
team. In [Hatfield et al. 1982a] the component-synthesis method is introduced for application
in the frequency domain. In this method the structural motion is represented by a limited
number of natural modes of vibration, which are determined with a commercially available
finite-element computer code. Fluid-structure interaction is introduced by means of junction
coupling. The method was validated against the experiment of Blade et al. [1962], and, in
[Hatfield et al. 1982b or 1983], against the experiments of Davidson & Smith [1969] and
Davidson & Samsury [1972]. In principle, time-domain solutions can be obtained from
frequency-domain solutions by means of inverse Fourier transformations. In practice,
however, this approach may lead to serious difficulties. In particular, when the transient
response to impact loads is studied, the approach is impractical. Hatfield & Wiggert [1983]
came to that conclusion. As a result they developed a time-domain implementation of the
component-synthesis method, in which the standard waterhammer procedure is coupled to
a modal representation of the structural motion [Wiggert & Hatfield 1983]. Poisson coupling
is not included in this work, which is an extension of [Otwell 1982]. In [Wiggert et al. 1983]
the previous investigations are summarized and laboratory tests are presented in which the
pressures, as a consequence of elbow motion, exceed Joukowsky’s prediction (2.1). The
tests, performed with copper pipes of 0.025 m diameter, are successfully simulated in
[Otwell 1984; Wiggert et al. 1985a]. A four-equation model, including Poisson coupling, was
employed for axial motion; lumped stiffness accounted for flexural motion. The MOC
method was applied to get numerical solutions. In [Wiggert et al. 1985b, 1986, 1987a] a
fourteen-equation model describing the axial, flexural and torsional motions of a liquid-filled
pipe system is solved by means of the MOC method. This approach is adopted in the present
study; it is worked out in the chapters 3 and 4. The fourteen-equation model is treated in the
frequency domain by Wiggert et al. [1987b] in a way similar to that of Wilkinson [1978],
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on the understanding, however, that Poisson coupling is taken into account. The numerical
results are validated against the experimental data of Davidson & Smith [1969], and against
new experimental data on a U-bend [Lesmez 1989; Lesmez et al. 1990]. In [Wiggert 1986]
a brief review of literature is given. The frequency response of a straight pipe to seismic
ground motion is examined by Hatfield & Wiggert [1987, 1990]. Stuckenbruck & Wiggert
[1987] study the axial motion of highly flexible tubes with Poisson’s ratios nearly equal to
0.5. Structural damping, which is of less importance for the early-time solutions calculated
in the present study, is investigated theoretically and experimentally in [Budny 1988; Budny
et al. 1989, 1990, 1991].

Structural damping and associated energy losses are also subject of investigation in [Jelev
1989]. Kojima et al. [1986] study a straight pipe, using a four-equation model with Poisson
coupling from fluid to pipe. Experimental data on an oil-filled pipe are provided.

Vardy and Fan, at the University of Dundee, started research on fluid-structure interaction
in 1984. The main contribution to the development of FSI-knowledge is in their accurate
measurements of axial and flexural wave propagations in isolated parts of a pipe system. In
their theoretical work they follow Wiggert et al. [1987a]. First experimental results are
presented in [Vardy & Fan 1986], where these are compared with predictions from
Wilkinson’s theories [Wilkinson 1980; Wilkinson & Curtis 1980]. Comparison with results
from Wiggert’s approach follow in [Vardy & Fan 1987], together with some theoretical
considerations. In [Fan 1989; Vardy & Fan 1989] experiments in a straight pipe are
described. Excellent agreement is found between theory and experiment for both axial and
flexural wave propagations. Pipe systems with an elbow, a T-piece and a combination of
both, will be dealt with in a forthcoming paper [Vardy & Fan 1993]. The present work is
an extension of that of Vardy and Fan in the sense that cavitation is included. In co-operation
with Vardy and Fan experiments were performed with the test rig at the University of
Dundee. The experimental apparatus is described in detail in section 5.2.

The FSI-work carried out in Delft’ is strongly based upon Wiggert and Hatfield’s
investigations. Lavooij & Tijsseling [1991] apply two techniques to solve the basic equations
in the time domain: the MOC-FEM procedure and the MOC procedure. The MOC-FEM

procedure, which includes Poisson coupling, corresponds to the component-synthesis method

7 see subsection 1.2.3



25

of Wiggert & Hatfield [1983], the MOC procedure to the approach in [Wiggert et al. 1985b].
Laboratory tests on a scale larger than usual were conducted in order to validate the
developed computer code [Kruisbrink & Heinsbroek 1992]. Kruisbrink [1990] attributes the
observed damping of pressures in tests with relief valves to FSI effects, and verifies this
assertion through simulations with the FSI computer-code of Lavooij & Tijsseling [1989].

Obradovi¢ [1990abc] uses the MOC method of Wiggert et al. [1987a] in solving a
fourteen-equation model. In [Obradovié 1990b] an accident is simulated.

The FSI computer code of Bettinali et al. [1991] is based on a solution technique similar
to the MOC-FEM procedure of Lavooij & Tijsseling [1989], although the Poisson coupling
is modelled in a different way. Some numerical results with respect to a simple single pipe
system subjected to seismic excitation are shown.

De Almeida & Koelle [1992, pp. 60-61] show work of Vasconcelos [1991] on a reservoir-
pipe-valve system, in which classical waterhammer predictions are compared with results

calculated with Poisson and friction coupling.

2.3.6. FSl-analysis by coupling or extending existing software

The literature dealt with in the preceding subsection is closely related to the present work.
Fluid and structure are modelled one-dimensionally, junction and Poisson coupling are taken
into account. Some other literature is reviewed here. In contrast to the previous subsection,
where most of the contributions came from universities, here work is discussed that comes
from the practice of, in particular, nuclear power stations. The general approach is to use
existing computer codes based on the finite element method (FEM) to model the pipe system.
Waterhammer loads are calculated by means of existing computer codes as well. FSI is
simulated by coupling the fluid and structural codes. At this point it is worthwhile to cite
Belytschko et al. [1986, p. 249]: "Although the marriage of such fluid and structural analyses
programs for the purpose of conducting fully coupled fluid-structure computations of the
waterhammer response are possible in principle, the awkwardness and large size of such
couples makes them quite unattractive. Furthermore, the amount of computer time which
would be required to run such coupled analyses would be quite exorbitant, for in addition to
the large number of computations, the system would have to cope with the problem of
transferring in and out of fast core the structural and fluid analysis programs for each time

step.
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Data transfer is one of the difficulties when coupling existing software. In many cases
human interference is necessary, in other cases special software has to be developed [Ware
& Williamson 1982]. For uncoupled calculations® data transfer is one-way traffic, from fluid
to structure. The fluid calculation precedes the structural calculation. Typical examples are
given by Meder & Nguyen-Tuong [1984], Bihl [1987] and Hankinson & Van Duyne [1987].
When FSI is taken into account, fluid and structural calculation must run simultaneously,
with data transfer and possible iterations each time step. In the following a selection of
relevant time-domain literature is given.

FSI experiments performed at Stanford Research Institute (SRI) under contract to Argonne
National Laboratory (ANL) were simulated by several investigators using different
mathematical models and solution procedures. The experimental apparatus comprised one
water-filled nickel test pipe of 1.5 m length, 0.07 m diameter and 0.0017 m wall thickness,
or two of these pipes connected by a rigid elbow. Pipe ends and elbow were rigidly fixed to
the ground. At one of the closed ends a pressure pulse of 3 ms duration and 0.2 ms rise time
was generated by means of an explosion, representing a hypothetical core disruptive accident
or a liquid sodium-water reaction in a nuclear plant. The pressure pulse reached values up
to 16 MPa, causing local plastic wall deformation in the nickel pipe, which was extensively
instrumented with pressure transducers and strain gauges.

A-Moneim & Chang [1978, 1979] simulate both the straight pipe and one-elbow
experiment, using a two-dimensional computer code allowing for fluid-structure coupling.
The fluid equations are solved by a finite-difference method, the pipe equations by the FEM
with axially-symmetric thin-shell elements. Precursor effects, predicted for both fluid and
pipe wall, were observed in the pipe wall only. Romander et al. [1980], Youngdahl et al.
[1980], Wiedermann [1982] and Kulak [1982, 1985] simulate the straight-pipe experiment.
Romander et al. [1980] use for the pipe a two-dimensional model similar to that of
A-Moneim & Chang, but solve the fluid equations by the FEM. Youngdahl et al. [1980]
extend a conventional one-dimensional MOC waterhammer code with a simple ring-hoop
deformation model for the pipe. Wiedermann [1982] employs a similar quasi-static interaction
model. Numerical dispersion is presented as physical dispersion (opinion of present author).
Kulak [1982, 1985] utilizes a FEM code with three-dimensional elements for both fluid and

8 see subsection 1.1.3
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pipe. It is noted that all the quoted investigators used a measured pressure pulse as input to
their calculations and that junction coupling was not involved. Their work focused on plastic
wall deformation and/or Poisson coupling.

Junction coupling, and not Poisson coupling, was taken into account by Giesecke [1981],
Kellner & Schonfelder [1982] and Kellner et al. [1983]. Giesecke applies the standard MOC
to the one-dimensional fluid equations and uses beam elements to model the pipes within the
FEM. He validates his results against the, not entirely reliable®, measurements of Swaffield
[1968-1969]. Kellner & Schonfelder [1982] couple a fluid and a structural computer code and
show that neglecting FSI may lead to unrealistic predictions. In [Kellner et al. 1983]
convincing validation tests are presented for three pipe systems: a system with one elbow,
a system with one branch and a three-dimensional system with four elbows. The length of
the latter system was 13.4 m, pipe diameters were 0.10 m.

Structural engineers determine the dynamic behaviour of pipe systems with the aid of
general-purpose FEM computer codes. For them, it is attractive to solve the fluid equations
with the same FEM code as well, especially when FSI has to be taken into account. In
principle this is possible. For example, Bach & Spangenberg [1990] apply the FEM to the
classical waterhammer equations. Romander et al. [1980] and Kulak [1985], already
mentioned before, solved the fluid equations by means of the FEM as well. Their models
were two- and three-dimensional, respectively, and junction coupling was neglected.
Investigators applying the FEM to one-dimensional fluid models are considered next.

Howlett [1971] models the liquid contained within a pipe system by means of beams
without bending stiffness. Schwirian & Karabin [1981ab], Schwirian [1982, 1984], Axisa &
Gibert [1982], Everstine [1984] and Belytschko et al. [1986] follow the same approach and
include elbows, tees and area changes in their work. The pipe system is modelled by beam
elements, junction coupling is included, Poisson coupling is not. Schwirian [1982, 1984],
additionally, presents a multi-dimensional fluid element with Poisson coupling incorporated.
Axisa & Gibert [1982] give a thorough mathematical treatment of their method. Everstine
[1984] compares predictions of a one-dimensional fluid and pipe model with those of a three-
dimensional model (like Kulak’s [1982, 1985]) and with the experimental results of Davidson
& Smith [1969]. Belytschko et al. [1986] introduce silent boundaries in order to analyse

9 see subsection 2.3.4
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small portions of complex pipe systems. Thomas [1991] gives a one-dimensional FEM
treatise of fluid and structure in which the interaction is formulated in terms of local sources
[Gibert et al. 1978]. Just as Axisa & Gibert [1982] and Everstine [1984], he derives a
symmetric coefficient matrix by taking the displacement or velocity potential, rather than the
pressure, as the fundamental fluid-unknown. It is interesting to note that within the context
of an FEM-formulation of waterhammer, Joukowsky’s formula (2.1) is regarded as a
dashpot-equation.

In Germany an impressive research program with respect to the safety of nuclear power
stations started in the mid seventies. The program was carried out by the Karlsruhe Nuclear
Research Center (KfK - Kernforschungszentrum Karlsruhe) on behalf of the German
government. The general objective of the program was the experimental validation of
calculation tools and procedures. For this purpose a full scale test facility was available, the
superheated steam reactor (HDR - Heidampfreaktor) in Kahl near Frankfurt, a former
100 MW nuclear plant. The experimental work was exclusively performed by KfK, whereas
the computations were done by several specialized institutions. Comparison and certification
of software was part of the program. Pipe systems, empty and filled, straight and curved,
branched and unbranched, were extensively investigated for static and dynamic, periodic and
transient, elastic and plastic, as well as failure and crack behaviour. Results have been
presented on all the SMiRT (Structural Mechanics in Reactor Technology) conferences since
1977.

One test configuration, defined as a German Standard Problem, is of particular interest
here. It comprises a three-dimensional pipe system of 20 m length, 0.40 m diameter and
0.02 m wall thickness, including four elbows. The system is filled with subcooled water of
7-9 MPa pressure and about 500 K temperature. In one of the tests, transients are generated
by a check-valve closure due to a simulated pipe break. Some publications dealing with this
specific test are considered now. Bietenbeck et al. [1985] simulate an earlier version of the
above-mentioned experiment. In an uncoupled calculation, measured pressure histories are
used as input to a FEM code in which beam elements represent the pipe system. Miiller
[1986, 1987a] performs uncoupled calculations as well. Predicted pressure histories, obtained
from a one-dimensional two-phase flow computer-code based on the MOC, are used as input
to a FEM code similar to that of Bietenbeck et al. In [Miiller 1987b] FSI effects are taken

into account. Results of coupled and uncoupled analyses are compared, but not validated
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against experimental data. The underlying calculation procedure is described by Grillenberger
[1985], who demonstrates the significance of FSI in a simple reservoir-pipe-valve system.
Firnhaber & Miiller [1987] evaluate the pipe responses computed by eleven German
engineering firms. The firms were provided with measured pressures, whilst the measured
structural response was kept secret. The results of their uncoupled calculations showed
differences which are mainly due to the used structural code, the way the measured pressures
were incorporated, and the insight of the analyst. Kussmaul et al. [1989] perform an
uncoupled calculation with measured data as input. Membrane-type pipe elements were used
in a standard FEM code. Plasticity was taken into account since, after a certain period of
time, local plastification occurred in the experiment as a consequence of pressure peaks with
observed magnitudes up to 31 MPa. It is noted that measured pressures contain the influences
of FSI in case this is of importance. By using these measured pressures in the simulations,
FSI effects are tacitly introduced. In [Malcher & Steinhilber 1991] a review is given of the
seismic tests conducted at the HDR test facility. It is reported that 25 institutions contributed
to the project with analytical work.

2.3.7. Another mechanism of fluid-structure interaction

For the sake of completeness mention must be made of another mechanism of fluid-structure
interaction in liquid-filled pipes. This mechanism has nothing to do with hydraulic transients.
It concerns dynamic instabilities which lead to violent flexural vibrations of liquid-conveying
pipes. The phenomenon occurs when the steady flow velocity reaches a certain limit, the
critical velocity, at which the system looses stability by either buckling or flutter. "In
general, the critical flow velocity is very high and is of no great concern in practice”
[Jendrzejczyk & Chen 1984, p. 145]. Fluid-structure interaction is induced by the fluid
centrifugal force and the fluid Coriolis force. The system response is highly dependent on
the pipe support conditions. Some relevant literature on the subject is [Housner 1952;
Gregory & Paidoussis 1966; Paidoussis & Issid 1974; Paidoussis & Laithier 1976;
Jendrzejczyk & Chen 1984, 1985]. A historical review is given by Paidoussis & Issid [1974].
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2.4. Fluid-structure interaction (FSI) and cavitation

The purpose of the present work is to study, both theoretically and experimentally, the
simultaneous occurrence of FSI and cavitation. In this section, literature dealing with both
FSI and cavitation is considered in order to see to which extent the present investigation is
innovative.

A-Moneim & Chang [1978, 1979] report the occurrence of cavitation in the SRI
experiment described in subsection 2.3.6. They account for this phenomenon by taking a
simple pressure cut-off level in their model. Youngdahl et al. [1980] and Wiedermann [1982]
apply the concentrated cavity model in simulating the SRI experiment. FSI is taken into
account only when the pipe is plastically deforming. Kot et al. [1980, 1981] analyse
cavitation in combination with junction coupling. A thin spherical end cap interacts with the
pressure waves in a liquid-filled pipe. The pressure waves are described by classical
waterhammer theory in combination with the concentrated cavity model; the end cap is
modelled as a thin shell within the FEM. Experimental validation is not given. Giesecke
[1981] mentions the concentrated cavity model but does not show any results. Axisa & Gibert
[1982] and Schwirian [1982, 1984] employ the same model within the context of the FEM;
gaps are allowed to form between the axial beam elements simulating the liquid. They
compare numerical results obtained with and without cavitation. Van der Weijde [1985b]
shows results of experiments with FSI and cavitation. All his calculations were without FSI.

In the HDR experiment described in subsection 2.3.6 subcooled water of 7-9 MPa
pressure and 500 K temperature was used. When depressurizing the water, cavitation will
occur, i.e. a steam-water mixture will form. Miiller [1987b] simulates this phenomenon with
the aid of a two-phase flow computer-code including thermodynamic effects. He couples the
code to a structural FEM code thereby including FSI, although it is not exactly clear to the
present author which coupling mechanisms he takes into account. Miiller states that FSI is
unimportant as long as the two-phase conditions prevail, since all the elasticity is then in the
fluid. The present author agrees with this point of view so far as Poisson coupling is aimed
at, but disagrees when junction coupling is meant. Miiller does not compare his computed
results with the available experimental data of [Miiller 1986, 1987a].

Bettinali et al. [1991] use the concentrated cavity model in their FSI computer-code.

Results of one numerical test case are presented.
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Although there have been interesting developments in the past fifteen years, literature
comprehensively dealing with the combination of junction coupling, Poisson coupling and
cavitation does not exist. Nevertheless, computational tools are available which have the
potential to handle these phenomena. "However, experimental data which would permit the
simultaneous verification of fluid and structural response calculation currently do not exist"
[Kot et al. 1981, p. 350]. Today this still is the case, except for the measurements

documented in the present report.

2.5. Review and conclusions

The history of the research on pressure waves in fluid-filled pipe systems is surveyed.
Important developments are the waterhammer investigations of Joukowsky and Allievi around
1900, the recognition of column separations in the 1930s, and the recognition of FSI effects
in the 1960s. Nowadays powerful computer codes exist which are, in principle, able to
simulate waterhammer, cavitation and FSI phenomena.

In the present study, two adequate and validated numerical models are combined and
adapted in order to simulate the simultaneous occurrence of cavitation and FSI. Cavitation
is modelled by the concentrated cavity model, FSI by models developed by Wiggert and his
team. The combination of these models is new. The numerical results are compared with

unique experimental data obtained in closed pipe systems.
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3. MATHEMATICAL MODEL

A one-dimensional mathematical model is presented which describes the transient behaviour
of liquid-filled pipes. The model is based on conventional waterhammer and beam theories.
Fluid-structure interaction, cavitation and column separation are taken into account. Pipes are
connected at junctions. The governing equations for single straight pipes are derived in
section 3.1 by integration of three-dimensional basic equations. Steady-state initial conditions
are given in section 3.2. Junctions are treated as boundary conditions for the adjacent pipes

in section 3.3.

3.1. Governing equations

The 14-equation model, already mentioned in subsection 2.3.5, is deduced from general
equations for fluid and structure. The fourteen first-order partial differential equations are
divided into four independent groups. Three groups of four equations represent axial and
- for two directions - lateral motion. One group of two equations accounts for torsional
motion. The four groups may be coupled at junctions like diameter-change and elbow, such
as described in the subsections 3.3.5 and 3.3.6.

The axial motion of liquid and pipe is coupled as a result of Poisson’s ratio effects!.
Extended waterhammer equations for the liquid and extended axial beam equations for the
pipe allow for the Poisson coupling. Radial fluid and pipe inertia is neglected, so that the
radial motion is quasi-static; hoop stress and radial displacement follow instantaneously the
fluid pressure and axial pipe stress. The lateral motion of the pipe is governed by
Timoshenko beam equations in which the mass of the liquid is incorporated. Fluid-structure
interaction is not involved. Torsional pipe motion is modelled without interaction as well.
Cavitation is treated separately in subsection 3.1.5.

The main assumptions underlying the governing equations are summarized next.

! see subsection 1.1.4
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3.1.1. Assumptions

The theory developed is valid for straight, slender, thick-walled and prismatic pipes of
circular cross-section. The pipes are surrounded by a non-viscous fluid of constant pressure,
so that they are not restrained in their motion. The pipe wall material is homogeneous,
isotropic, linearly elastic and subjected to small deformations. The resistance to radial motion
by inertia, bending stiffness and shear deformation is ignored. The contained liquid is
Newtonian with homogeneous, isotropic and linearly elastic properties. Isothermal conditions
prevail. Structural and liquid damping mechanisms are disregarded, except for the friction
between liquid and pipe wall, which is modelled quasi-stationary. For torsional motion liquid
and pipe are allowed to slip.

The model is one-dimensional, there is one spatial co-ordinate along the central axis of
the pipe. This approach is valid for long wavelengths or low frequencies (long wavelength
approximation, A >> D).

The liquid and pipe velocities are considered to be much less than the wave velocities, so
that convective terms may be neglected (acoustic approximation, ¢, >> Vand ¢, >> 4,).

Axial, lateral and torsional pipe motions do not interact along the pipe length, only at pipe
junctions such as treated in section 3.3. The interaction between (incompressible) liquid flow
and lateral pipe motion, such as described in subsection 2.3.7, is not taken into account,
neither is the influence of lateral pipe deformation on a (compressible) liquid, such as
observed in a closed pipe by Budny [1988, Appendix A].

The cavitation model is suitable for transient vaporous cavitation. It is based on the strong
physical constraint that the pressure equals the vapour pressure as long as vapour bubbles
exist in the liquid.

The derived equations are linear, except for the relatively unimportant friction terms.
However, non-linear boundary conditions and the occurrence of cavitation may invalidate this

assertion.
3.1.2. Axial and radial motion

The axial or longitudinal motion of an axially symmetric liquid-filled pipe is discussed. Pipe

and liquid interact via the coupled radial motion. The basic equations were already given by
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Lamb? [1898]. A four-equation model is attained that permits two-modes® solutions.
Liguid

In deriving the basic equations for the liquid, the approach of D’Souza & Oldenburger
[1964], Kuiken [1986] and Budny [1988] is followed. Starting-point are the two-dimensional
continuity and Navier-Stokes equations expressed in the cylindrical co-ordinates z (axial) and
r (radial) [e.g. Bird et al. 1960, Mase 1970]. The circumferential co-ordinate (¢) is omitted

in view of the axial symmetry. The equations read
Continuity equation
ad a da a
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Equation of motion in axial direction
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with v, and v, the axial and radial velocities, p the mass density of the liquid, p the pressure,
F, and F, the axial and radial body-force densities for the liquid, « and u the bulk and the
dynamic viscosity, and ¢ the time. Equation (3.1) represents conservation of mass; equations

(3.2) and (3.3) are the linear momentum balances in axial and radial direction, respectively,

2 see also subsection 2.3.1

3 see also subsection 2.3.2
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in which equation (3.1) has been substituted. The variables Prs VsV, and p are functions of
z, rand ¢. The equation of state relates the density, regarded as a function of pressure and

temperature, to the pressure

Equation of state

der _ by (3.4)
p K

in which the bulk modulus X is a function of pressure and temperature. For a liquid under
isothermal conditions K and p;, on the right-hand side of equation (3.4), are approximated
by constant values, yielding a linear relation between density and pressure. By replacing the
derivatives of Py in the continuity equation (3.1) by derivatives of p, the variable Pr is
eliminated in favour of a constant p,. This procedure is valid if p << K. The right-hand side
of equation (3.4) equals 1/cy2, where c, is the isothermal velocity of sound in an unconfined
liquid, as given by equation (2.2). In general ¢, is much greater than v, and v, , so that the
convective terms, i.e. the second and third terms on the left-hand sides of equations (3.1)-
(3.3), may be neglected (see [D’Souza & Oldenburger 1964, Appendix 2]). The only
important viscosity term is %%(r%) (see [D’Souza & Oldenburger 1964, Appendix 2;
Kuiken 1986; Budny 1988]). The axial body force is due to gravity, F, = p;gsiny, in
which -y denotes the angle of inclination of the pipe with the horizontal. Radial body forces
due to gravity are omitted in view of the axial symmetry: F, = 0. With the foregoing

assumptions the basic equations (3.1)-(3.3) simplify to

Continuity equation
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Equation of motion in radial direction

av, op
9 _ 9 3.7
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Note that, although the density in the above equations is constant, liquid compressibility still
exists. It is in the first term of the continuity equation (3.5).

To come to a one-dimensional formulation, in accordance with classical waterhammer
theory, the equations (3.5) and (3.6) are multiplied by 2«7, integrated with respect to r from
0 to R, and divided by xR?. The result is

Conrinuity equation
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Equation of motion in axial direction
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are the cross-sectionally averaged axial velocity and pressure, respectively. The last term in
equation (3.9) represents the shear stress, 7, , between liquid and pipe wall. For a Newtonian
fluid this shear stress is equal to

av

To = _#—5-;]’=R

(3.12)

Substitution of (3.12) in (3.9) yields
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Equation of motion in axial direction
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The radial equation of motion (3.7) is multiplied by 272, integrated with respect to » from
0 to R, and divided by 2xR?. The result is

Equation of motion in radial direction

1 vr
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In deriving this equation it has been assumed that rv, = Rv,|,_g, which is in accordance
with the continuity equation (3.5) if compressibility is disregarded and axial inflow is
concentrated at the central axis by means of a point source (singularity). Walker and Phillips
[1977] find the same equation by using asymptotic expansions.

Pipe

In deriving the axial equations for the pipe, the approach of Lin & Morgan [1956a] and
Herrmann & Mirsky [1956] is followed. Starting-point are the two-dimensional equations of
motion formulated in cylindrical co-ordinates z (axial) and r (radial) [e.g. Kolsky 1953, Mase
1970]. The circumferential co-ordinate (¢) is omitted in view of the axial symmetry.

Circumferential pipe motion is treated in subsection 3.1.4.

Equation of motion in axial direction
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Eguation of motion in radial direction
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with #, and #, the axial and radial velocities, p, the mass density of the pipe wall material,
o, and o, the axial and radial stresses, o, the hoop stress, 7,, and 7,, the shear stresses, F,
and F, the axial and radial body-force densities for the pipe, and ¢ the time. Equations (3.15)
and (3.16) are the linear momentum balances in axial and radial direction. The effects of
bending stiffness, rotatory inertia and transverse shear deformation are omitted in the long
wavelength approximation, see subsection 2.3.2, so that the moment-of-momentum balance
needs not to be considered here. The variables u,, u

0,, 0,, 04 and 7, =7, are

r’ rz

functions of z , r and ¢. The density p, is constant. The convective terms, i.e. the second and
third terms on the left-hand sides of equations (3.15) and (3.16), are neglected because the
deformations are assumed to be small and/or because the acoustic approximation is made,
just as in the liquid equations. The axial body force is due to gravity, F, = p, g sinvy, radial
body forces are not taken into account: F, = 0. The equations (3.15) and (3.16) become

Equation of motion in axial direction

du do, 19(r7,,) .
"'a_tz = a_zz + _r.__a_rz_’ + p,g siny 3.17
Equation of motion in radial direction
o oy 1000) | 97re 0y (3.18)
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See figures 3.1 and 3.2 for definition sketches.
To arrive at a one-dimensional formulation, the above equations are multiplied by 2xr,

integrated with respect to r from R to R+e, and divided by 21r(R+_;e)e, with e the
R+e

thickness of the pipe wall. The axially symmetric shear force, I 27r1,,dr, appearing in

R
the right-hand side of the integrated equation (3.18), is omitted in the long-wavelength

approximation, so that the result is
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Figure 3.1. Definition sketch, side view (z-r plane): stresses acting on pipe wall.

Og

Pout

Figure 3.2. Definition sketch, cross-sectional view (r-¢ plane):

normal stresses acting on element of pipe wall.

Equation of motion in axial direction
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t b4 (R...Ee)e (R+5e)e
Equation of motion in radial direction
9%,  R+e R 1

Tar|r=R - Zid a, (3.20)
(R+se)e e

rlr=R+e ~

YO (Releye
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in which
R+e
T=— Lt [ 2eraa 3.21)
21(R+%e)e R
R+e
h=— Lt [ 20rua (3.22)
2x(R+2e)e &
R+e
G=— Lt [ 2erodr (3.23)

21r(R+%e)e R

(3.24)

are averaged values of #,, u,, o, and 0y

The equations of motion relate axial velocities to axial stresses (3.19) and radial velocities
to hoop stresses (3.20). Stress-displacement relations will complete the mathematical model.
Stress-strain relations are provided by the generalized Hooke’s law. For a three-dimensional

isotropic solid the normal strains ¢,, &, and ¢, depend linearly on the normal stresses o, ,

o, and o,,
g, = é{”z -v(og +0,)} (3.29)
&y = é{od, -v(o, +0,)} (3.26)
g, = %{a’ - (o, + )} (3.27)

or, when inverted,
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E

B (e, r e

(1+»)(1-2v»)

E

= {(1-v)g, +v(g,+8)}

% = T+ (-2

E

0,= ————— {(1-»)g, +v(g+&)}

T+ (1-2»)

which is equivalent with

E v
N l—yz(eerVg"’) T
E v
o, = £, + VE,) + g
(] 1_y2(¢ z) 1-» 7

o,=Eg, +v(o, + 0y)

where E is Young’s modulus of elasticity and » is Poisson’s ratio.

The strain-displacement relations are

du,
g = —=
T 9z
u
r
g, = —
¢ r
du,
s,=—r—

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

The axial stress o, is expressed in displacements after substitution of (3.34)-(3.36) in (3.28),
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Axial stress-displacement relation

E du, .
){(I_V)—é—z— v

’ = o(ru,) (3.37)
(1 +y)(1-2»

Differentiation with respect to ¢, multiplication by 2r, integration with respect to r from R

to R+e, and division by 21(R+%e)e leads to

Axial stress-velocity relation

da, B E
3t (d+n-2»)

R

a'—i-
{(1_v)ﬁ+yﬂ_u p
(R+%e)e

i,|,-r}
9z (R+_;.e)e rlr=R

rlr=R+e -

(3.38)
Unfortunately, this equation is not appropriate for the present investigation, as will become
clear in the next paragraph. An alternative, and more suitable, equation is found by
substituting the axial strain (3.34) in equation (3.25), yielding
Axial stress-displacement relation

0
az=E.§;‘f + Vo, + Vo, (3.39

and, applying the transformation between (3.37) and (3.38),

Axial stress-velocity relation

do, om, da, EYA
R i S it (3.40)
a oz et U r
in which
R+e
= | 2aro,ar (3.41)

21r(R+%e)e



R+e

6= [ 2eroar (3.42)
27(R+2€)e R

Liguid-pipe coupling
The liquid and pipe equations are coupled by means of boundary conditions representing the

contact between liquid and pipe wall on the interface at r = R. Outside the pipe a constant

pressure, P, , is assumed to exist. The interface conditions are

7-I.r|r=R = "7 Tzr|r=R+e =0 (343)
o, Ir=R = _p|r=R g, |r=R+e =-Pyy (3.44)
u, |r=R = vr|r=R i, |r=R+e = (Vou (3.45)

where (v,),,, is the radial velocity of the external fluid, mostly air, but in some cases liquid
[Biirmann 1975]. Buried pipes are not considered here.

The dynamic conditions (3.43) and (3.44) give, respectively, the shear stresses and fluid
pressures acting on the pipe wall. The kinematic conditions (3.45) prescribe the adherence
of solid and fluid. Except for its constant pressure, P, , the fluid outside the pipe is not
modelled, so that (v,),,, is not known. For this reason, and because the liquid inside the
pipe will not be modelled two-dimensionally, the relations (3.45) do not provide suitable
boundary conditions for the pipe equations. Therefore, equation (3.38) has been replaced by
equation (3.40), which is appropriate for the one-dimensional approach in the present study.

The conditions (3.43) and (3.44) are substituted in the equations of axial (3.19) and radial
(3.20) pipe motion. The condition (3.45), at r = R, is substituted in the liquid equations (3.8)
and (3.14). After the substitutions and a rearrangement of terms, eight basic equations remain
for the eight variables P, V, o,, i,, 0y, U,, 0, and p | ,-x - The eight equations stem from,
successively, the equations (3.13), (3.8), (3.19), (3.40), (3.14), (3.20), (3.26)+(3.35) and
(3.27)+(3.36).
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Liquid, axial

v ., 18P —iR'ro + gsiny

av 1P 2.
w2 Fxar T RY

Pipe, axial

du, 1 do, R .
— - = f=__ = 7, +gsiny
at p 0z p,(R+%e)e

du, 1 do, = —

k4 4 14
—_t - - _= _ =0
5z Ear T Eai0e )

Liquid, radial

r

Plrr =P - 'iprwlr=R

Pipe, radial
ou_
'a—zrz‘R—Rie_Pw*R—Rr— r=R'R11
( +5e)e ( +5e)e +se

u =2L{o, - (o +0,)}
r E ¢ z r
du 1
_;'}_ri =’E{"r“’("z+%)}

Substitution of expression (3.50) in (3.51) gives

9

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)



46

Equation of motion in radial direction

aifr 1 2 aur
t

p,(R+%e)ea + 30K =L, .5 = RP - (R+€)P,, - T (3.54)

Substitution of expression (3.52) in (3.47) gives

Continuity equation

av._14P 2 3

a—z Xar ‘E‘a_t{a¢|r=R T VO R ~ ”Urlr=R} =0 3.59)

Four-equation model

For long wavelengths the acceleration in radial direction is negligible, so that the radial
inertia terms in equation (3.54) can be left out [Skalak 1956; Lin & Morgan 1956ab;
Meifiner 1978; Schwarz 1978; Barez et al. 1979; Biirmann 1980a]. A quasi-static relation

between the hoop stress and the internal pressure is the resuit,

— R R+e
a¢=?P— - P (3.56)

Neglecting radial liquid inertia means that p equals P, the pressure is constant across the
cross section of the pipe.

Equation (3.56) is confirmed in appendix A, equation (A.7), where the quasi-static stress
distribution in a pressurized ring is given. Furthermore, from the equations (A.10) and (A.6),
it follows that,

o= .5y R_1 2P
AR R e v 7 (3.57)
2R
and
1+%
9 - (X Ry 9P 3.58
m{adtlrﬂi} (-e—+2+i) 37 ( )
R

Equation (3.57) is substituted in (3.49), and equation (3.58), together with ¢,|,_p = - P,
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is substituted in (3.55). The r-dependency of ¢, and hence g,, is considered to be small,
which means that the pipe cross-section remains almost plane when it stretches axially. The
quantity o,|,_g in equation (3.55) then can be replaced by v,. Note that o, +0,, as
introduced by an internal pressure P, is a function of z and ¢ only (see appendix A), so that
according to equation (3.39) the hoop and radial stresses do not introduce r-dependency in
o,. Four basic equations remain, (3.46), (3.55), (3.48), (3.49), for the four unknowns

P, V, o, and #,,

Liquid, axial

V., 1P _ 2 . gsiny (3.59)

WV (L 2R, TR, P 2 n (3.60)
az K E'e o,¢ at E ot
R
Pipe, axial
ou, do,
T 1%0% . 1 g+ gsing 3.61)
ar  p, 9z p(1+12)e

bl (3.62)

The assumption that the pipe is thin-walled, e << R, will be made in chapter 4, where the
Jour-equation model (3.59)-(3.62) is solved numerically.

Friction

Where Kuiken [1986] and Budny [1988] proceed with frequency-dependent friction*

4 see [Zielke 1968; Trikha 1975; Vardy & Hwang 1991; Eichinger & Lein 1992]
for frequency-dependent friction
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formulations, here the standard waterhammer approach is adopted [Wylie & Streeter 1978a,
p. 18]. The shear stress 7, is assumed to be the same as if the flow were steady. So, in terms
of the Darcy-Weisbach friction factor f,

Vrel I Vrel |

ro = ppf AL (3.63)

where V,,, is the one-dimensional relative velocity V -, between liquid and pipe wall.
Expression (3.63) is obtained from the Darcy-Weisbach [Darcy 1857; Weisbach 1855]
relation AP = fp (L/D)(V?/2) and the steady-state force balance AP (xD?)/4 = 7, 7DL
by eliminating AP. The pressure difference AP exists over a horizontal pipe section of length
L and diameter D. The friction factor f'is generally estimated with aid of the so-called Moody
diagram [Moody 1944]. Equation (3.63) is important for the determination of the stationary
initial conditions. An initial pressure gradient influences the dynamic pressures. When this
phenomenon becomes dominant it is referred to as line packing. Equation (3.63) is a poor
friction model for the strongly dynamic problems treated herein. Fortunately, the effects of
friction are negligible in the beginning of a transient event. This is due to the small time
scales involved.

3.1.3. Lateral motion

The lateral (or flexural, or transverse) motion of a liquid-filled pipe is assumed to be
independent of the axial, radial and torsional motions discussed in the previous and next
subsections. The only influence of the liquid on the lateral motion is in its inertia. Four
equations are attained corresponding to the Timoshenko beam theory [Bresse 1859;
Timoshenko 1921, 1922].

Pipe

In deriving the lateral equations, the approach of Cowper [1966] is followed. Starting-point
are the three-dimensional equations of motion for an empty pipe, formulated in rectangular
co-ordinates z (axial), x (lateral, horizontal) and y (lateral, normal to z and x); see figures 3.3

and 3.4. The z-axis is the central line of the pipe, so that
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"= central axis

laxis of symmetry

Figure 3.4. Definition sketch, cross-sectional view (y-x plane): co-ordinates.

[[xavay = [[yaray =0

(3.64)

where the integration is over the cross-sectional pipe area. In contrast to the subsections

3.1.2 and 3.1.4, where axially symmetric problems are considered, here symmetry about the

plane of deflection is assumed. For deflections in the z-y plane, the equations of motion are

Equation of motion in axial direction

du du ou du ar
— L vpu —L+pu,—L +pu—*=_%
Prgr TPy Y ay 9z ox
Equation of motion in lateral direction
) ou, v ot du, . oot ou, , du, _ a7y,
‘ot Proax 'Y 9 ST ax

dryy 90, F, (.65

ay 4z

9% 9% g (3.66)
dy dz Y
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with #,, i, and #, the axial and lateral velocities of the pipe, p, the mass density, o, and
o, the axial and lateral stresses, 7,,, Tays

and lateral body-force densities, and ¢ the time. Equations (3.65) and (3.66) represent the

linear momentum balances in the axial and the lateral direction, respectively. The influence

Tyx and Tye the shear stresses, F, and Fy the axial

of the axial stress o, on the lateral motion, which is predominant in strings and cables, is
neglected [Clough & Penzien 1975, pp. 296-297], just as the effects of flow-induced
centrifugal and Coriolis forces [Paidoussis & Laithier 1976]. The variables u,, u,,

y?» %x>

Ops Oys Toxr Tpy =Ty, and 7,5 are functions of z, y, x and ¢. The density p, is constant. The
convective terms, i.e. the last three terms on the left-hand sides of equations (3.65) and
(3.66), are omitted because the deformations are small and the acoustic approximation is
valid. The body forces are due to gravity, F, = p,gsiny and F, = -p,gcosy. The

equations (3.65) and (3.66) now become

Equation of motion in axial direction

du ar ar do .
pta_tz = a_;x + a;y + a_zz + p,g siny (3.67)
Equation of motion in lateral direction
i, 37y, . 90, . a1, 0,8 COSY (3.68)

P13 T Tox dy 9z

To come to a one-dimensional formulation, equation (3.67), multiplied by y, and equation

(3.68) are integrated over the pipe wall cross-section. The result is

Equation of rotation about the x-axis

(3.69)

a6, L T M,
Ptltw = jjy(w + 3y ) dxdy - 3z
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Equation of motion in lateral direction

ou, ar, do, a0 (3.70)
y - yx y 0
p,A,W = II( x + B_y) dxdy v p,A,8 cosy
in which
- 1 ) (3.71)
6, = Tjjyuzdxdy
4
— 1 .
51 [ ] ay dxdy (3.72)
M, = - [ [ yo, axdy 3.73)
3.74
Q= -7, wa (3.74)
where
A, = ” dxdy = 27 (R+Le)e (3.75)
It= IIydedy =%w{(R+e)4—R4} (376)

are the area and the second moment, about the x-axis, of the pipe cross-section. The
expressions (3.71) and (3.72) give averaged values of the velocities of the angle of rotation
of the pipe cross-section about the x-axis, and the y-deflection of the pipe, respectively. In
the equations (3.73) and (3.74), where the (unconventional) sign convention of figure 3.5 has

been adopted, the bending moment M, and the lateral shear force Q, are defined.
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=

(LD

Figure 3.5. Definition sketch: generalized forces and displacements, positive directions.

The integrals in the equations (3.69) and (3.70), applying integration by parts and the

divergence theorem of Gauss, are found to be

07, arzy _ a(yr,,) 3(>’sz) ~
5 oran - 2922 5970y

(3.77)
= §y(rpn, + ryn)ds - [ [ 7, dedy = §yT,d5 + @, - 0,

”("’;;x y)dxdy—f(yxx+gyny)ds=f7~yds:0 (3.78)

where n, and n, are the components of the unit-normal to the pipe wall surfaces and ds is a
line element on those surfaces. The surface tractions 7, and T, are due to a constant shear
force 7, and axially symmetric pressures P and P, , respectively; see subsection 3.1.2.
The corresponding integrals vanish, because of symmetry in the integrands.

The equations of motion relate rotational velocities to bending moments (3.69) and lateral
velocities to transverse shear forces (3.70). The following stress-displacement relations

complete the mathematical model,



Axial normal stress-displacement relation
du

E_é_f =g, - v(0, + 0)) 3.79)
z

Lateral shear stress-displacement relation

duy 0w _ 7y (3.80)
G

_J Z
az ay

in which G = % E/ (1 +v) is the shear modulus. The displacements u, and u, are expressed

as their averaged values u, and u, +y 0: plus local deviations u; and uy,

U, :u_y + u; and u, = u_‘Z +y0: + u; (3.81)
with
— 1 _ 1 - 1
uy_E”uydxdy , uZ_Z”uzdxdy and 0x—zjjyuzdxdy (3.82)

The pipe cross-section does not remain plane when it deforms, the residual displacement u;

represents its warping. With (3.64) and (3.82) it follows from (3.81) that
]Ju; dxdy = I[u;‘ dxdy=[jyu;‘ dxdy = 0 (3.83)

Substitution of (3.81) in (3.79) and (3.80) yields

on, 38, ou* ou., — du*  dur
2% L yE2 g e and oL oD 0 O
oz YEgr T varg) m Bt ad ok s T Ty

(3.84)
To arrive at a one-dimensional formulation, the first equation (3.84), multiplied by y, and
the second equation (3.84), divided by 4, , are integrated over the pipe wall cross-section.
Using (3.64), (3.73)-(3.76) and (3.83), the result is

Bending moment-rotation relation

a6,
El 2 = ~M, - v [ [ y(o,+0,) axdy

(3.85)
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Lateral shear force-displacement relation

y _ 1 L oup (3.86)
e A,GJJ(T" G —5-) dxdy

The integral in equation (3.85) is neglected, since the lateral stresses ¢, and g, , which are
symmetric with respect to the z-y plane, are considered to be small as compared with the
axial stress o,. The integral in equation (3.86) is evaluated by approximating ,, and u; .
Analytical solutions, available for the case that Q, is constant or linearly varying with z, are
substituted for Ty and u; [Cowper 1966]. The integral in (3.86) is then calculated as

K

where «? is the shear coefficient. For a thick-walled pipe Cowper [1966] finds

_ 6(1 +»)(1 +m?)? (3.88)
(7+6v)(1 +m?)? + (20 + 12»)m?

with m = 1/(1 + %). For a thin-walled pipe m tends to 1, in which case

- 2(+y) 3.89
«? e (3-89

The expressions (3.88) and (3.89) are valid for long wavelengths and low frequencies, since
they are based on a quasi-static shear-stress distribution. For short wavelengths «? becomes
frequency dependent. Hutchinson and El-Azhari [1986] verified Cowper’s shear coefficients
(3.88), (3.89) by comparing them with x*-values resulting from a three-dimensional analysis

of the free vibrations of a hollow cylinder.

Liquid

With respect to its lateral motion, the liquid is regarded as a rigid column moving together
with the pipe. To account for this effect, the inertia term on the left-hand side of the lateral
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equation of motion (3.70) is modified. The mass per unit length of the liquid is added to that
of the pipe: p,A, is replaced by p,A, +peAy, where A, = 7R? is the cross-sectional
discharge area.

Many investigators, like Paidoussis & Laithier [1976], Wiggert et al. [1986, 1987ab],
Lavooij [1986], Vardy & Fan [1989], Obradovi¢ [1990abc], let, incorrectly, the liquid
contribute to the rotatory inertia of the liquid-filled pipe. They replace p, 1, in the rotational
equation of motion (3.69) by p,I, + oI, where I, = %‘KR4 is the second moment about
the x-axis of the cross-sectional discharge area. However, the rotation about the x-axis of a
cross section of the pipe wall does not introduce a rotation of the corresponding cross section
of the liquid. Due to the small pipe deformations, the rotational motion of the pipe wall is
nearly axial. The associated liquid motion is confined to the boundary layer near the pipe

wall; it is of less importance and can be accounted for only by a proper friction model.

Four basic equations

The four basic equations governing the four unknowns (Z , M, u_y and Q, are given by
(3.69)+(3.77), (3.85) differentiated with respect to time, (3.70)+(3.78) and (3.86)+(3.87)
differentiated with respect to time,

0, 1 M, 1, (3.90)
ol 0z pl?
86, 1 oM, (3.91)
dz  EI 0t
Yy L %%y (3.92)
ar  p A, +pA; 0z
dum, 1 80, _ iy (3.93)
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For deflections in the z-x plane the same equations are found with y replaced by x and, due
to the sign convention of figure 3.5, with opposite signs in the M and § terms and

definitions. Since the x-direction is horizontal the gravity term in (3.92) vanishes.
3.1.4. Torsional motion

The torsional (or circumferential, or tangential) motion of the pipe wall is assumed to be
unaffected by the liquid. Circumferential liquid motion and circumferential liquid-pipe
friction are disregarded. The basic equations for the motion of the pipe wall can be found
in [Timoshenko & Goodier 1970, pp. 341-344], where the axial and radial displacements are
zero and the circumferential motion is axially symmetric. Pipe cross-sections remain plane,
but radii of cross section may distort. The two-dimensional equation of motion, without

convective terms and body forces, in cylindrical co-ordinates z and r, reads

Equation of motion in circumferential direction

p 3t 0Ter  8Ter ) Ter (3.94)
tat 9z ar r

where the circumferential co-ordinate (¢) has been omitted in view of the axial symmetry.
The circumferential velocity #, and the shear stresses 7,, and 7,, are functions of z, r and
t, the density p, is constant. The shear stresses are related to the circumferential displacement

uy by

Circumferential shear stress-displacement relations

Tz = G% (3.95)
4
Tor = Grai(ﬁ) (3.96)
r r

For a prismatic pipe of circular cross-section the assumption is justified that u, varies

linearly with r,
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uy =ro,(z,1) (3.97)

where 8, is the angle of rotation about the z-axis. Now the radii of cross section remain
straight and 7,, vanishes. To arrive at a one-dimensional formulation, the remaining
equations (3.94) and (3.95) are multiplied by 2x7?, integrated with respect to r from R to
R +e and divided by J, . With (3.95) differentiated with respect to time, the result is

Equation of motion in circumferential direction

a4, 1 oM, 0 (3.98)
o o, 92

Torsional moment-rotation relation
30, 1 M, 0 (3.99)
3z CJ, ar

in which the torsional moment M, , the torsional angular velocity éz and the polar second

moment of the pipe cross-section J, , are defined as

96, (3.100)
=5
R+e
M, = [ 227 7,,dr (3.101)
R
R+e
7 = [ 20 dr = La{(R+e)* - RY) 3.102)
R

The two equations (3.98) and (3.99), describing torsional motion, are not used in the present

work where only plane pipe systems are considered.
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3.1.5. Cavitation

The cavitation model is based on the strong physical constraint that the absolute fluid
pressure equals vapour pressure,
P=P (3.103)

v

as long as vaporous cavities exist in the liquid. The vapour pressure P, is a function of the
temperature, as shown for water in figure 3.6. Equation (3.103) is valid if free gas is absent
and gas release does not occur. Cavitation starts at the instant the liquid pressure reaches the
vapour pressure; it ends when all cavities have vanished. The ending has to be inferred from
the void fraction «, which is the ratio of the vapour volume to the total volume,

\
«= TN (3.104)

v

where ¥, and ¥ are the vapour and liquid volumes per unit length of pipe. Column
separations are identified by void fractions close to unity, whereas distributed cavitation is
identified by void fractions which are small with respect to unity. Column separations occur
locally and are therefore treated as boundary conditions in subsection 3.3.7. Distributed

cavitation occurs along great lengths of pipe and is considered here.

100

80

60

40

Vapour Pressure (kPa)

20

¢ 20 40 60 80 100

Temperature (°C) ——&

Figure 3.6. Vapour pressure of water versus temperature from melting point

to atmospheric boiling point. Source: [Lide 1991, p. 6-13].
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The liquid equations presented in subsection 3.1.2 are not valid in regions of cavitating
flow. A simple one-dimensional two-phase flow model describing these regions is given now.
The model, developed by Kalkwijk & Kranenburg [1971], Kranenburg [1972, 1974ab] and
extended by Wylie & Streeter [1978b], Streeter [1983] and Simpson [1986], is based on
equation (3.103). When vapour cavities exist in the liquid, all the fluid’s elasticity is in the
vapour and the elasticity of liquid and pipe wall may be ignored in the fluid equations. Fluid-
structure interaction through Poisson coupling is not of importance®; the interface condition

(3.45), at r = R, does not hold any more. The continuity equation then reduces to

Two-phase continuity equation

Jda da A%
yoa _ 0¥
3t 9z 9z (3.103)

where V is the average velocity of the liquid-vapour mixture [Simpson 1986, pp. 50-52]. The
convective term, i.e. the second term on the left-hand side, may not be neglected here, since
the pressure wave speed can be very low in a liquid-vapour mixture and, consequently, the
acoustic approximation does not hold. Equation (3.105) simply states that the void fraction
follows the velocity gradient. It is the equivalent of the liquid continuity equation (3.47), with
P constant and the convective term added, allowing for tearing voids in the liquid. The two-
phase equivalent of the liquid equation of motion (3.46) is

Two-phase equation of motion

v av 2 .
_—t V= = - 3.106
a7 + = pr o + &siny ( )
with 7, defined by (3.63) [Simpson 1986, pp. 53-54]. Equation (3.106) states that the fluid
motion in a region of distributed cavitation is governed by wall friction and gravity.

The three variables P, V and « obey the three equations (3.103), (3.105) and (3.106).
Although an analytical solution of these equations can easily be found, the problem with this

5 Fluid-structure interaction may be important when the nullification of distributed
cavitation regions is accompanied with shock waves [Kranenburg 1974a, pp. 101, 107]
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model is to keep track of the moving boundaries between the waterhammer regions ruled by
equations (3.46)-(3.47) and the cavitating regions ruled by the equations (3.103), (3.105) and
(3.106). The difficulties associated with the moving boundaries, or inferfaces, concern
pressure-dependent wave propagation, shock waves and the occurrence of intermediate
column separations. Although Simpson [Simpson 1986; Bergant & Simpson 1992] finds
reliable solutions with his interface model, in the present work a simpler, numerical,

approach has been adopted. This approach is worked out in section 4.5.

Note

The fluid mass per unit length, prAy, in the lateral equation (3.92) is assumed not to be
affected by distributed cavitation, because the void fractions generally are small.

3.2. Initial conditions

The liquid-filled pipe system is assumed to be in equilibrium (steady state) before a transient
event starts. The initial values of the basic variables, these are generalized forces and
velocities, and of the structural displacements, are derived from the one-dimensional
equations of section 3.1 omitting the non-stationary terms. The basic equations are non-linear
due to the friction term (3.63) and due to the cavitation model of subsection 3.1.5. The
particular (static or stationary) and homogeneous (dynamic) solutions of the differential
equations are therefore not allowed to be superposed. Superposition of solutions is allowed
only for the special case that cavitation does not occur and friction is statically and/or

dynamically negligible.
3.2.1. Single pipe
Initial v for axial motion

The steady state pertaining to the four-equation model (3.59)-(3.62) follows from the
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stationary equations

LLige —zro + pgg siny
9z R (3.107)
3V _o
9z (3.108)
do, 1 ,
—t =~ 7, - pgsiny
0z (1 +li)e 0 !
2R (3.109)
95 _y
9z (3.110)
so that
P = P(0,0) - {%fo - pgsiny} z 3.111)
v =V(0,0) (3.112)
7, = 7,(0,0) - { 1 7o + p,gsiny} 2 3.113)
(1+2%)e
, = ,(0,0) (3.114)

The constants of integration, P(0,0), V(0,0), ¢,(0,0) and %,(0,0), are obtained from
two boundary conditions at each pipe end. These boundary conditions may exhibit coupling
between the liquid and pipe variables. The axial displacement follows from the integrated
equation (3.39),

(o, +5,) (3.115)

With a=¢ + 0, according to equation (A.10) and the axial steady-state (3.111)-(3.114), the

result is
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— — Z ¢ — R 1
u, = u,(0,0) + E,{crz(O,O) - v

1+1e

1-2» 70 + (o, + v§

le 1e
(1+33)e 1+3%

2
b4
25!
where the constant ,(0,0) defines the zero level.

Initial val; or ral motion

(P(0,0) - (1+2)°P,,)} +

py) gsiny }

(3.116)

The steady state pertaining to the four lateral equations (3.90)-(3.93) follows from the static

equations

X Qy

aQ
a_Zy = —(pzAt +pfAf)gCOS'Y

(=T
|5
|
1
kQ:o.l

Q
~N

so that

M, = M(0,0) + 0,(0,0) z - 2p,4,gcosy 2*

6, = 6,(0,0)
Qy = Qy(O,O) - (p(A1+pfAf)gcos7 z

7, = ,(0,0) - §,(0,0) z

3.117)

(3.118)

(3.119)

(3.120)

3.121)

(3.122)

(3.123)

(3.124)

The constants of integration, M, (0,0), 5:(0,0), Qy(0,0) and Il_y(0,0) , are obtained from



63

two boundary conditions at each pipe end. The rotation due to bending and the lateral
displacement follow from the equations (3.85)-(3.87) and the lateral steady-state (3.121)-
(3.124),

6 = 6,(0,0) - == M,(0,0) - > —(p,A +pAs) geosy (3.125)
t

— 0,0 M_(0,0 A A
T = 5(0,0) - {d;(0,0) + Q:f Dy 20D PR ey
A,G . El k“A,G (3.126)
6EI 0,(0,0) - 24EI (p,A, +prAs) gCOS y

where the constants (Z (0,0) and u_y(0,0) define the zero level.

Initial values for torsional motion

The steady state pertaining to the two torsional equations (3.98)-(3.99), combined with
(3.100), follows from the static equations

oM
2 =0 (3.127)
az
EY
_Z=-90 (3.128)
4
a6, 1
_ - - M 12
3z GJI, ¢ (3.129)
so that
M, = M,(0,0) (3.130)
8, = 6,(0,0) (3.131)
6, = 6,(0,0) + -2 M,(0,0) (3.132)
z z GJt b4

The constants of integration, M,(0,0), 0;(0,0) and 6,(0,0), are obtained from three
boundary conditions at the pipe ends.



3.2.2. Multi-pipe system

In multi-pipe systems the single pipes are connected at junctions. Junction coupling relates
the constants of integration of the adjacent pipes. In this way the axial, lateral and torsional
equations may be fully coupled. Due to the friction terms, which are dominant in the steady
state, and due to boundary conditions like pumps and valves, the coupling equations are
non-linear. Minor losses should be included as well [Idelchik 1986; Miller 1990]. Numerical
techniques, shortly described in section 4.6, are generally used to find the steady state in a

multi-pipe system and its connected hydraulic machinery.

3.3. Boundary conditions

The single straight pipes considered in the previous two sections are connected at junctions
and terminated at ends. Both junctions and ends are mathematically treated as boundary
conditions. When the boundary conditions couple the liquid and pipe variables, this is, within
the context of fluid-structure interaction, called junction coupling. Transients are generated
by time-varying boundary conditions.

In one-dimensional pipe systems, being systems where the pipes are in a direct line, the
axial, lateral and torsional equations are not coupled through the boundary conditions. In
two-dimensional pipe systems, being systems where the pipes are in one plane, the axial and
lateral motions within the plane are coupled through unrestrained junctions. Torsional motion
and lateral motion out of the plane are assumed not to occur. In three-dimensional pipe
systems all basic equations given in section 3.1 can be coupled by the boundary conditions.

In the present study only one- and two-dimensional problems without torsion are
considered. These can be described by the axial equations (3.59)-(3.62) and the lateral
equations (3.90)-(3.93). The corresponding initial conditions are given by the expressions
(3.111)-(3.114) and (3.121-3.124). Four boundary conditions, needed at each pipe end to
constitute a proper initial boundary value problem, are obtained from a physical consideration
of the specific situation at junction or end.

The cavitation-free boundary conditions used in the present work are given in the next
subsections. Column separation, mostly encountered at junctions and ends, is discussed

separately in the last subsection of this section.
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3.3.1. Reservoir

The reservoir maintains a constant pressure P, , and the connected pipes are assumed to be
rigidly fixed (figure 3.7). The boundary values for the basic variables are

P =P, (3.133)
T, =i, =6 =0 (3.134)
7
7 7
7077077 7

Figure 3.7. Definition sketch of reservoir.

3.3.2. Valve

The valve is an internal source of transients. The boundary conditions describing the

instantaneous closure of a valve rigidly fixed to the ground are

V=0 (3.135)
I, =7,=0, =0 (3.136)
so that at time ¢ = O the initial liquid velocity V(0,0) drops instantly to zero. Joukowsky’s

formula (2.1) gives the associated upstream pressure rise or downstream pressure drop.

If the valve can move in the axial direction, the boundary conditions become (figure 3.8)



V=i, 3.137)
A/AP = A Ao, £ ml, £ cu, * ku, (3.138)
u, =6 =0 (3.139)

where AP and A, are the pressure and axial-stress differences over the valve. The valve,
of mass m, undergoes an acceleration &, . The damping coefficient ¢ and the axial spring-
stiffness £ model the amount of axial restraint. Equation (3.137) is a mass balance defining
the adherence of solid and liquid at the closed valve; equation (3.138) is a spring-mass-
dashpot equation with fluid pressure and pipe stress as driving forces. Convective terms are
neglected. Depending on the orientation of the pipe axis, the + or - signs in the right-hand
side of (3.138) are valid. The initial liquid velocity V(0,0) does not necessarily drop to zero
now, but generally to a positive value, so that the initial change in pressure is less than
predicted by the classical value of Joukowsky (2.1).

For non-instantaneous valve closures an orifice equation for steady flow replaces the
equations (3.135) and (3.137),

(3.140)

in which (V - &,), is the steady-state relative velocity through the valve, A P, is the steady-
state pressure loss over the valve and 7(¢) is a given function of time. The + or - sign
depends on pipe orientation and flow direction. For points of time greater than the valve

closure time T, 7(¢) = 0.

control volume

0O,

Figure 3.8. Definition sketch of valve; AP = P, - P,; Ao, = (0,); - (0,),.
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Many investigators, like Blade et al. [1962], D’Souza & Oldenburger [1964], Wilkinson
[1978], Wiggert & Hatfield [1983] and Lavooij & Tijsseling [1988], let, in the force balance
(3.138), the liquid pressure act on the cross-sectional valve area A, , which varies in time
between zero and A4,. However, a correct application of the force balance to a control
volume over the valve (figure 3.8) leads to equation (3.138), which is consequently valid for

a non-instantaneously closing valve as well.
3.3.3. Closed end

The boundary conditions for a closed end are essentially the same as those for a closed valve.
These are (3.135)-(3.136) for an immovable end, and (3.137)-(3.139) for an axially
unrestrained end, where in (3.138) the pressure and axial-stress differences are

AP=P-P

o a0d Ao, = g, + P_,, . For an entirely free end of mass m, subjected to a

constant external pressure P, ,, the boundary conditions are (figure 3.9)

V-1 (3.141)
A{(P-P,) = A,(5,+P,,) *+ mT, (3.142)
Q =M, =0 (3.143)

The dimensions and the lateral and rotational inertia of the end piece are neglected.

control volume

Pout > Ap+Ag

Figure 3.9. Definition sketch of closed end.
3.3.4. Axial impact
The axial impact of a freely movable closed end by a solid steel rod, as already sketched in

figure 1.1, is an external source of transients, which is of less importance for practice, but

was used in the experiments to be described in section 5.2. The impact is assumed to be
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purely axial, so that lateral motion is not generated. The boundary conditions during the
period that rod and pipe are in contact (V, = u,), are (figure 3.10)

V-1, (3.144)
A (P-P,) + Y, (i, - V,,) = A,(7, +P,,) * mT, (3.145)
0, =M, =0 (3.146)

where Vj,, is the velocity of the rod just before impact and m is the mass of the end piece.
The admittance Y, of the rod is

Y, = 4,yE,», (3.147)

where the subscript r denotes the properties of the rod. The term Y, (4, - V,,) in (3.145),

which is equal to A4,(g,),, is obtained from the axial-stress equivalent of Joukowsky’s
formula (2.1),

Ao, = -p,Cc, A, (3.148)
2 1C AU,

applied to the rod. Rod and pipe separate when the contact force becomes tensile. After
separation the boundary conditions of a closed end, (3.141)-(3.143), remain.

control volume

Figure 3.10. Definition sketch of axial impact.
3.3.5. Straight junction
The junction of two pipes in a direct line is described by eight coupling relations, since each

of the connected pipes needs four boundary conditions. The eight relations, following from
a consideration of continuity and equilibrium of forces, are (figure 3.11)
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control volume

Figure 3.11. Definition sketch of straight junction.

(4(V-T)}, = {4,(V-T) }, (3.149)
{Ph ={P} (3.150)
{a,},={a,}, (3.151)

{Af(P_Pout) _At(Fz+Pout)}l = {Af(P_Pou:) _AI(FZ+PouI)}2 (3.152)

fa,}, = {4}, (3.153)
{9}, =-{9}, (3.154)
{63, ={6.}, (3.155)
(M} ={M]}, (3.156)

where the indices 1 and 2 refer to either side of the pipe junction. The mass and dimensions
of the junction are neglected, just as the forces due to change in liquid momentum, which
is consistent with the acoustic approximation. The above relations allow for a discontinuity

in the liquid velocity and in the axial pipe stress.

3.3.6. Elbow junction

The junction of two pipes perpendicular to each other is described by the next eight relations,
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{Ap(V-T) } = {4(V-u) }, (3.157)
(P} ={Ph (3.158)

{5}, ={%}, (3.159)
{A(P-P,) -A(0,+P)} ={Q}, (3.160)
{u,}={-4.}, (3.161)

{-Q}y = {4, (P-P,) - 4,(5,+Poy) }, (.162)
{63, ={6}, (3.163)

(M.}, ={M}, (3.164)

where the indices 1 and 2 refer to either side of the junction (figure 3.12). The mass and
dimensions of the elbow junction are neglected, just as the forces due to change in liquid
momentum, which is consistent with the acoustic approximation. This most simple model is
valid if the length of the elbow is small compared to the lengths of the adjacent pipes. The
angle between the pipes remains 90 degrees; elbow ovalization and the associated flexibility
increase and stress intensification [Bantlin 1910; Von Kidrmdn 1911; Hovgaard 1926] is
ignored. However, these matters can be accounted for by flexibility and stress intensification
factors [Vigness 1943; Clark & Reissner 1951; Dodge & Moore 1972]. Bathe & Almeida
[1980, 1982ab] developed an accurate finite-element model of an elbow, which also includes

the increased stiffness due to the internal pressure.

Pout
______ control y volume

Pout

"] el

6z2 P2 6z2

Figure 3.12. Definition sketch of elbow junction.
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3.3.7. Column separation

The column separations, which are most important for the present study, generally occur at
boundaries like valves, elbows, pumps and T-joints. The simple but adequate model of
Bergeron [1950, pp. 89-95] and Streeter & Wylie [1967, p. 209] is used to simulate this

phenomenon.
Closed end

Consider the closed end of a liquid-filled pipe which is allowed to move in the axial direction
(figure 3.13). When the transient velocities of the closed end and the liquid next to it
diverge, the local pressure decreases. At the instant that this pressure reaches the vapour
pressure P, the velocities may still diverge and a vapour cavity is being formed, the growth
of which follows the continuity equation

S5 = A(V-T) (3.165)

where ¥ is the volume of the cavity, and V and #, are the liquid and pipe velocities at the
closed end. The + and - signs, again, depend on the orientation of the pipe axis. The
influence of the radial motion of the pipe wall on the cavity volume is neglected. When, later
on, Vand u, converge, the cavity becomes smaller until it finally collapses. This rejoining
of liquid column and pipe end is usually accompanied with an instantaneous pressure rise.
In the absence of gas, the absolute pressure equals the vapour pressure as long as the cavity

exists,

P-P (3.166)

v

uz

\ fictitious liquid—vapour
A boundary

Figure 3.13. Definition sketch of column separation at closed end.
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The boundary conditions in case of column separation at a closed end are (3.166), (3.145)
and (3.146). So, equation (3.166) replaces equation (3.144) as long as the cavity exists. The
duration of the column separation is inferred from the cavity volume governed by equation
(3.165).

Elbow junction
When a column separation occurs at an elbow, the cavity volume follows from

% =3 {4(V-i) ) 2 {4(V-T) }y (3.167)

where the indices 1 and 2 refer to either side of the elbow (figure 3.14). The mass balance
(3.157) in the elbow boundary conditions (3.157)-(3.164) is not valid during column
separation; it is then replaced by the constant-pressure condition (3.166).

Figure 3.14. Definition sketch of column separation model at elbow.

Note
The liquid column may also break at any point along the pipe whenever two low pressure

waves meet, leading to an intermediate boundary condition.
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3.4. Review and conclusions

A thorough derivation of all (axial, radial, lateral and torsional) equations governing the
transient motion of liquid-filled pipes is presented. One-dimensional basic equations were
obtained after the cross-sectional integration of general three-dimensional equations for fluid
dynamics and structural linear elasticity. Fluid-structure interaction has been taken into
account. One-dimensional two-phase flow equations are given for regions of distributed
cavitation. The steady-state situations in single pipes are used as initial conditions. Junction
coupling and column separations are modelled as boundary conditions.

New elements in this chapter are: the four-equation model for thick-walled pipes
(equations (3.59)-(3.62)), the liquid-pipe coupling through radial pipe stresses (equation
(3.44)) and axial shear stresses (equation (3.43)), the derivation of the liquid-equation of
radial motion (3.14), the omission of the rotatory inertia of the liquid in (3.90) of the basic
equations for lateral motion, and, column separations ruled by both liquid and pipe variables
(equations (3.165) and (3.167)).
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4. NUMERICAL METHOD

The numerical solution of the initial boundary value problems posed in chapter 3 is
described. The axial, lateral and torsional equations given in section 3.1 are dealt with in the
same manner. The method of characteristics (MOC) is applied to obtain ordinary differential
equations, which can be easily integrated. The initial and boundary conditions are treated in
a straightforward way. Cavitation is simulated by the concentrated cavity model. The
developed computer codes are shortly described. In illustration, significant results of

numerical tests are presented in the last section of this chapter.

4.1. Introduction

The governing equations for fluid-structure interaction (FSI) problems can be solved in many
different ways. Belytschko [1980] surveys the available computational methods for general
FSI-problems. For FSI in liquid-filled pipe systems the literature review in the subsections
2.3.5 and 2.3.6 gives an indication of possible solution techniques. In this report the
approach of Wiggert et al. [1987a] is adopted: the basic equations are solved by the MOC.

The term method of characteristics is attributed to Monge [1789]. In principle, it is not
a numerical but an analytical solution method. However, some of the necessary integrations
are generally done numerically.

The MOC-approach is chosen because it is based on the propagation of acoustic waves,
which is the principal mechanism in the considered set of transient events. When the acoustic
approximation is made, see subsection 3.1.1, the wave propagation speeds are constant.
Then, the computational grids, which are based on wave paths in the distance-time plane,
have constant mesh spacings. This is of great advantage; for some problems exact solutions
may be found.

The axial, lateral and torsional equations in section 3.1 are deliberately formulated as
first-order partial differential equations, which is the appropriate form for the present MOC-
approach.

Although not necessary, the customary assumption has been made that the pipes are thin-
walled. Wylie & Streeter [1978a, p. 23] state the requirement that the ratio of pipe diameter
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to wall thickness, D/e, is greater than 25 in that case.

4.2. Axial motion

The four-equation model (3.59)-(3.62) applied to thin-walled pipes is solved numerically.
4.2.1. Basic equations

The coupled propagation of pressure waves in the liquid and axial stress waves in the pipe
wall is described by the four equations (3.59)-(3.62). These equations are valid for thick-
walled pipes; pipe stresses and pipe velocities are averaged over the cross-sectional wall area.
Now the assumption is made that the pipes are thin-walled: ¢ << R. The radial stresses are
then small compared to the hoop and axial stresses (state of plane stress). This may be clear
from the equations (3.56) and (A.13):

P @.1)

T = - %P @.2)

where o, o, and P are relative to the external pressure P, ; 0y = ()5 * Poyr s
0, = (0,)as + P,yand P = P, - P, (abs = absolute). In the following all pressures
and stresses are relative to the outer pressure P, . Furthermore, overlines, indicating
averaged values of the pipe variables, are omitted, since the variations with r are negligible
in thin walls. With the shear stress 7, according to equation (3.63), and e/R << 1, the
equations (3.59)-(3.62) become

Liquid
Vv 1 oP VrelIVrell .
9Y 4 08 - _p_rel rel] 4.3
FTEMPAT: f—gg— &Sy “.3)
v 1 2R 3P 2y 99
(v 220 4.4
5z " X TE) I F o @4




Pipe

Sy 199 _obor Vial Vel o @.5)
at p, 9z P, 8e

ar

=57 =0 (4.6)

“’lx

1 do,
- _ %
at

These are the basic equations for thin-walled pipes. Schwarz [1978] gives a clear derivation
of the equations (4.3)-(4.6) in a way different from that in subsection 3.1.2. His approach
links up with the classical waterhammer theory.

The stress-displacement relations for thin-walled pipes follow from the equations (3.31),
(3.32), (3.34) and (3.35) with ¢, neglected and r = R,

du u
o=__E.__( L4y

(%7 <) @7

E U
0y = —— (= +

du
N @.8)
1-»2 R az

With o, from (4.1) and, again, o, neglected and r = R, the radial displacement given by
equation (3.52) is

4.9)

The basic equations (4.3)-(4.6) can be written in many different forms. The specific form
used in the present work, and in earlier publications, is given now. The o,-term in equation
(4.4) is replaced by a u,-term with aid of equation (4.6); the pressure P is replaced by the
pressure head H defined by

H=2" _zsiny + 4.10)

Pr8

where Ay is an arbitrary datum. With the ratio of discharge-area to wall-area, Al A,
approximated by R/ (2e), the equations (4.3)-(4.6) become



Liquid
v ga_F1= erellVrell
at 9z 4R
3V, g H _, 04
z P ot z
Pipe
& _ l.a& - PfAf VrelIVreII + gsiny
at p, 9z P4, 4R
ou, 1 do, vR 0H
— — — = —pfg__
dz p,c? 9t Ee 0t
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2 1 22R) 17!
= 2 1 il
s polhe o))
and
c? = E
Py

@.11)

4.12)

@4.13)

(4.14)

4.15)

(4.16)

correspond to the classical wave propagation speeds (2.5) and (2.10). See also subsections
2.3.1 and 2.3.3. The definitions (4.15) and (4.16) are rather arbitrary; they depend on the

specific form in which the basic equations are written.

4.2.2. MOC-transformation'

The basic set of equations (4.11)-(4.14) looks particularly simple in matrix notation

>
ol

1 This subsection is based on the theory given by Forsythe and Wasow [1964]

+
w
mlm
N
1
-

@.17)
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in which y is the vector of unknowns, A and B are the matrices of coefficients, and r is the

right-hand-side vector:

|4
H
y-= i,
UZ
1 0 0 0 ]
0 gic 0 0
A=|0 0 1 0
v R -1
L0 pfg-E; 0 ;c—,i
0 g O 0
1 0-2» 0
B=1lo 0 0 -1/p
0 0 1 0
V.|V
s relerell
0
r=
prAr Vil Vil + gsiny
pA, 4R
0

(4.18)

(4.19)

(4.20)

4.21)

The matrices A and B are regular. For r = 0 the system (4.17) is linear with constant

coefficients, whereas for r # 0 the friction terms in (4.21) make the system non-linear. In

appendix B it is shown that the characteristic equation | B - AA | = 0 has four distinct
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real roots, which is equivalent to the statement that the matrix A™'B has four distinct real

cigenvalues. The four characteristic roots or eigenvalues \; are

)\1=+CF, M=_CI:, )\3=+C,, X4=_C’ (4.22)

with &p = ¢y and &, = ¢, (see next subsection) and ¢y # ¢,. Because the values of A,

are distinct and real, the system (4.17) is called hyperbolic. In that case it can be transformed
into a more convenient form through multiplication by a regular matrix T

TAd 1Y _ 1 (4.23)
at 3z

From the theory of linear algebra it is known that for every square matrix with distinct real

eigenvalues, here A~'B, there exists a matrix S such that

STABS=A (4.24)
where A is diagonal:
A 000
0 00
A= M (4.25)
0 0 MO0
0 0 0 A

The matrix T is now chosen as follows:

T=S"'A" (4.26)
Substitution of (4.26) into (4.24) leads to the next condition for T:
TB=ATA 4.27)

The transformation matrix T, which satisfies condition (4.27) for the specific matrices A and
B given by (4.19) and (4.20), is determined in appendix C. With condition (4.27), equation
(4.23) becomes

TAY + ATAYY _Tr (4.28)
at 9z

System (4.28) is called the normal form of system (4.17). Introducing the vector
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v=TAy (4.29)
(4.28) becomes
LAANNA I (4.30)
at az

since TA is independent of z and z. Obviously the basic system (4.17) is equivalent to a set

of four uncoupled equations
av av;

7{' + )\,.a_z‘ =(Tr), , i=1,2,3,4 (4.31)

Each of the equations (4.31) transforms into an ordinary differential equation

dv; .
a5 - (Tr), , i=1,2,3,4 4.32)

when it is considered along a line in the z-¢ plane having the characteristic direction

%: ., i=1,2,3,4 (4.33)

The equations (4.32) are known as the compatibility equations along the characteristic lines
with slopes \;”! in the z-¢ plane.
For the simplified case in which r = 0, the equations (4.32) and (4.33) state that v; is

constant along a characteristic line:

(vi)P = (vi)A‘ ’ l = 1’2’3v4 (4'34)

where P and A, are points in the z-¢ plane such as shown in figure 4.1. According to
definition (4.29) v, is a linear combination of the four unknowns y; (j = 1, 2, 3, 4). The
relations (4.34) provide four equations for the four unknowns ¥;» once (v;) A, is given for
i=1,2,3, 4. Using (4.29) and (4.34), the unknown vector yp can be expressed in vectors
Ya,; at previous times as follows

4
Yp = 3 (TA) 'R, (TA)y, (4.35)

i=1
in which (R;)y = 1 if k = I =i and (R;),; = 0 otherwise. In the matrix R, the ih element
on the diagonal is 1, all other elements are 0.

Calculating forward in time, expression (4.35) gives the exact solution of the

homogeneous (i.e. for r = 0) system (4.17).
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4.2.3. Wave propagation speeds

The four eigenvalues (4.22) of system (4.17) represent the propagation speeds of axial waves
in a liquid-filled pipe. Their magnitudes are obtained from a bi-quadratic equation in
appendix B. Gromeka [1883), Lamb [1898] and Lin & Morgan [1956b] find similar bi-
quadratic equations as a result of wave-train analyses. In fact, the bi-quadratic equation (B.1)
combined with (B.3) is a long-wavelength dispersion equation. It states that the two lowest
propagation modes travel without dispersion. See also the subsections 2.3.1 and 2.3.2.

In addition to subsection 2.3.3, it is remarked that, within the present extended
waterhammer theory, ¢ is the correct and unique pressure wave speed for the support
conditions 1) and 3), whereas ¢y remains valid for support condition 2). The wave speed &,
corresponds to axial stress wave propagation in beams. In water-filled steel pipes, the values
of &r and ¢, differ just slightly from those of ¢y and c,, respectively. The influence of the
temperature on the wave propagation speeds may be more significant, just as the presence
of free gas in the liquid.

The differences between, on the one hand, ¢y and ¢,, which are theoretically correct for
the basic equations (4.11)-(4.14), and, on the other hand, the classical values cg and c, , are
caused by Poisson coupling. Junction coupling may have an even stronger effect on the wave
speeds. Fluid-structure interaction in general, and junction coupling in particular, leads to
a change of the eigenfrequencies of a system [Hatfield et al. 1982a; Kuiken 1988]. A shift
in the main waterhammer frequency corresponds to a change in the virtual pressure wave
speed. Kruisbrink and Heinsbroek [1992ab]} show, both by measurement and simulation, that
this change can be quite substantial.

4.2.4. Compatibility equations

The four compatibility equations (4.32) belonging to system (4.17), with v, T, A and r
according to (4.29), (C.14), (4.19) and (4.21), respectively, can be written as
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Liquid

2
d_V + & ﬁ- +2V2.Ri& M E +
dr |, ¢ || cr € p; 1-(¢plc,)? dr |,

v o, )’ [ ] 2y (&flc)’ g] . (4.36)
1—(6,,-/0,)2 PCE 1-(Epic)? | 4F |1
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--Lv.v 2 (/e pfAfiV 12 i
4R rell rell t oy 1—(CF/C,)2 ptAt 4R rell rctl +gsiny

ﬂ/] _ g l|¢F 2,2 R (CFCF)/C d_H
dr|, ¢ ||ecr e p, 1_(5F/c‘ t
v, (CFle)’? lg] L 2v (eplc)? [f& . 4.37)
1-(&plc)? PCE 1 -(eplc)? | 4 )2
@x/c)? | pA .
= 4f1; rell ell F ) fAf 4'];{ rell reél + g siny
1—(C‘F/C,) p 4,
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Pipe

_RE (efle) [dV] _,RErg Gy (cple)? [d_y}
€, 1-(cple,)? 3 €p € € 1-(cple)?

s 1+22Rpf_(fF/L 44, __(c)[
e 1-(cple)? || 48 s pCo 6 | G2
(4.38)
RP (CF/CI)Z fAf f
= |1+2,22Y V.| +gsiny| +
[ e p, 1-(CF/C,)2 AptA 4R rell rell
Rer (cplc)? Ly
PV = IR Veet| Vet |
e p 1-(cple)? 4R
Rpf (cF/c,) [ ] Rpfg Z‘) (cF/c‘,)2 [d_H} .
e, 1-(cp/e,)? "ehc ¢ 1-(cp/e)? 4
(
B PO R o | K B |9& _
€ p, 1—(0,-/(7,)2 |4t }s pc dr |,
4.39)
)
RP (CF/C;) fAf f .
= {14222 |V, | +gsiny| +
[ e D, 1-(01,-/(7) P,A 4R rel rel

R o (c,-/c,) f

| Veet |
ep, l—(C,,-/f )2 4R rel rel

dy.
where [ —dy_tl ] is the directional derivative of the variable Y in the z-¢ plane, along the
i
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characteristic line with slope 1/\,. It is convenient to summarize the compatibility equations
(4.36)-(4.37) and (4.38)-(4.39) by the following equations

dav dH du, do, )
hudl + fhakeind . + pé, | —= = u,,
af[ dt ]1,2 Bf[ dr |, : wf[ dt ]1,2 yf[ dr |, Y

(4.40)
dv dH du do .
68 il PR I PR s ar ), T eV
3,4 3,4 3,4 3,4
(4.41)

respectively, in which the coefficients o, Bf, V> af and «,, B,, v,, 8, represent the
corresponding coefficients in the equations (4.36)-(4.37) and (4.38)-(4.39), respectively. The
functions 9 and g, represent the right-hand sides in (4.36)-(4.37) and (4.38)-(4.39),
respectively. Integration of (4.40)-(4.41) along the relevant characteristic lines yields

P

af{ Ve - VA: } o+ Bf{HP —HAI } o+ ”’)’f{ (uz)p - (uz)Al }+ Vaf{ (Uz)p - (Uz)A1 } = J qfdt
Al
4.42)

P
ozf{ Vp'VAz} - 5f{Hp—HA2} + ”'Yf{(uz)p“(uz)A,z} - Vﬁf{("z)p"(az)AQ} = I qpds
Ay

(4.43)

P
yat{VP_VAs} + Vﬁ;{Hp“HAs} + 'Y;{(uz)p‘(uz)A3} + 5;{(Uz)p"(UZ)A3} = I q, dr

AJ
(4.44)

P

”at{VP_VA4} = th{HP_HA4} + 'Y;{(uz)p‘(uz)A4} - 5;{(Uz)p‘(UZ)A‘} = j q,d
Ay

(4.45)
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where P and A; are points in the z-¢ plane as shown in figure 4.1. From the integrated
compatibility equations (4.42)-(4.45) it can be seen that, for point P not on a boundary, the
unknowns V, H, &, and ¢, in P are fully determined by their values in the "upstream" points
A; . Hence, if the boundaries are left out of consideration, the solution of system (4.17) in
any point P can be obtained from the equations (4.42)-(4.45), once initial values for
V, H, u, and o, are known. The integrals in (4.42)-(4.45) are treated numerically in the next

subsection. Boundaries are considered in section 4.7.

P
——————— m\~—‘~“~
- y N ——
Vs N T
A3z // \\ Inoee
/ \,
/ N A4
4 N\,
7 N\,
d N\
7 \,
/, \\
4 N\,
t Ve N
I, \\
/// \\\
<A 1 A2 \
0 L

Figure 4.1. Characteristic lines through point P in the z-# plane.
Point A; can be arbitrarily chosen along the characteristic line with slope 1/\;.

Discontinuities

Discontinuities or jumps in the basic variables are disturbances which travel without
dispersion along the characteristic lines. Steep wave fronts are generally considered as
discontinuities. Pressure wave fronts in the liquid are accompanied with stress changes in the
pipe wall, whereas stress wave fronts in the pipe wall are accompanied with pressure changes
in the liquid (precursor waves). The relation between the discontinuities in pressure and axial
stress at wave fronts is determined now.

Discontinuities across the characteristic line with slope 1/& in the z-¢ plane are examined
first. In a point P on this line, designated as characteristic line 1 in figure 4.2, the other three

characteristic lines intersect. Let the points A; and B; (i = 2, 3, 4) be situated on these three
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characteristic lines on either side of characteristic line 1, as shown in figure 4.2. When the
points A; and B; approach each other, from the integrated compatibility equations (4.43)-
(4.45) it follows that, in the limit,

a (AV), - B(AH), + vy (AlL,), - ¥8,(Ad,), = 0 (4.46)
-va, (AV); - vB,(AH); - v, (Aik,), - §,(Ad,), = 0 (4.47)
v, (AV), - vB,(AH), + v,(AL,), - 8,(Ac,), = 0 (4.48)

in which A designates a discontinuity. These are three independent equations for four variable
discontinuities. When one discontinuity is known, for example from a boundary condition,
the other three are determined. Addition of (4.47) and (4.48) gives the desired relation

between pressure and axial stress

-208,(AH), - 25,(Ad,), = 0 (4.49)
so that
(Ao))y  ¥B, R Crio_1y-1
m = T, = V;Pfg{(c—p) 1} (4.50)

in which the subscript f indicates that a pressure wave is concerned. Equation (4.50), which
is also valid for discontinuities across the characteristic line with slope - 1/¢ in the z-¢
plane, gives the ratio between a pressure jump travelling at velocity ¢ and its associated
change in axial stress. Wilkinson and Curtis [1980, p. 232] find a slightly different
expression.

Equation (4.46) gives, for » = 0 (no Poisson-coupling), the Joukowsky formula (2.1).

line 2

Figure 4.2. Characteristic lines in the z-¢ plane with assumed discontinuity across line 1.
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For discontinuities across the characteristic line with slope 1/¢, in the z-¢ plane, a similar
approach leads via the integrated compatibility equations (4.42), (4.43) and (4.45) to

a(AV), + B(AH), + vy (Ai), + v8,(Ad), = 0 (4.51)
a(AV), - B(AH), + vy (Al), - v8(Ady), = O (4.52)
va,(AV), - vB,(AH), + v,(Au,), - §,(A0), =0 (4.53)
Subtracting (4.52) from (4.51) gives
2B,(AH), + 2v8,(Ad,), = 0 (4.54)

so that, with use of the relations (B.1) combined with (B.3) for A =¢ F2 from appendix B,

(AH), véf 1 [ -1
= - =2y (LY -1 4.55
@, B v Y {(5’17) } (4.55)

in which the subscript  indicates that a stress wave is concerned. Equation (4.55), which is
also valid for discontinuities across the characteristic line with slope - 1/¢, in the z-¢ plane,
gives the ratio between an axial stress jump travelling at velocity ¢, and its associated change
in pressure (precursor wave).

Equation (4.53) gives, for » = 0 (no Poisson-coupling), relation (3.148).
Simplified compatibility equations

By neglecting second-order Poisson-terms (v*~terms), friction terms (f = 0) and gravity terms
(y = 0), the following compatibility equations are obtained from (4.10) and (4.36)-(4.39),

Liquid
dP dv do, du,
-_—F — + G {—= —=} =0 4.56
a Mot A ar PG dt} (4.56)
Pipe
do, du, dP dv
5 Feag G, {-E * prc, E} =0 (4.57)

where the Poisson coupling factors Gy and G, are defined by
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G = - X Syro1yn (4.58)
pt cf
G, = l’5{(5)2-1}‘1 (4.59)
e Cf
and
1 -1
cf={pf[7(+f5_’§ }2 (4.60)

The equations (4.56)-(4.57) nicely exhibit the analogy between the liquid and pipe equations.

4.2.5. Numerical integration

The integrals in the final system of equations (4.42)-(4.45) have the following form

P P
L= kf [ Vi1 Vil de + kyg [ siny dr @.61)
A A

where k; and k, are constants.
The second integral, which results from the gravity force, can be calculated exactly, since

v is assumed to be constant

P
I sinydr = (tp -t,) siny 4.62)
A

The first integral, which results from the friction force, will be approximated by means of

a rule of integration. Three obvious possibilities are

P
I Vrel | Vrell dr = (Vrel)A I (Vrel)AI (tP _tA) (463)
A
P
I Vi | Vil d = (V)p | (Ve | (tp - 24) (4.64)

A
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P

[ Vet Vil @ = 2 {(Vada | V| + Vil | e} (=0 (469)
A

The first two approximations are preferred, because they lead to a linear system of equations.
Of them, the second one is the most accurate [Wylie 1983], but it leads to a time-dependent
matrix of coefficients. The third approximation maintains the non-linearity and consequently
gives rise to a more laborious solution procedure. In the present study the first, and most
simple, approximation is used. Another integral has to be calculated to obtain the value of

the axial displacement u,

P
u =[ud: (4.66)
Q

in which P = (zp,p) and Q = (2p, #y). This integral is approximated by the trapezoidal
rule

Wde = (edg + 5 {(hz)g + (i) (fp = 1) 4.67)

The quantity #, can also be approximated from axial stresses o, and pressures P with the aid
of a stress-displacement relation. Then a numerical integration with respect to distance,
instead of time, has to be carried out:

(e = (U + 5 {(en + () (- 2) (4.67a)

d
in which R = (zg, %) and ¢, = 6_1:.: =(g,-» 1:. P)/E according to (4.6), or (4.7) and
(4.9). 1t is thought that (4.67a) involves a smaller accumulation of integration errors than
(4.67) [Heinsbroek et al. 1991], since the number of spatial steps (elements) is mostly

smaller than the number of time steps.
4.2.6. Computational grids

In the integrated compatibility equations (4.42)-(4.45) the points P and A, can be arbitrarily

chosen in the z-¢ plane, whenever A, lies "upstream” on the characteristic line with slope
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1/X; intersecting P. Although, theoretically, in every point P the four unknownsV, H, &,
and ¢, can be solved, a choice has to be made for the points in which this really will be
done. Usually the points P are chosen at equal distances Az and At in the z-¢ plane, where At
is fixed and Az = L/N with N an integer number of elements and L the pipe length. (In pipe
systems a common value of At is generally used for the computational grids of the individual
pipes. Hence At is fixed and equal for each pipe of the system. For a system consisting of
one pipe this is not necessarily the case.)

In figure 4.3 the points A, are chosen one time step At earlier with respect to point P;
if P = (zp,tp) then A; = (2p - N;Af, tp - At). It is seen that, in general, interpolations
are necessary to obtain the values of the unknowns in the points A,;, since these values are
known only in grid points. However, it is well-known that interpolations cause numerical
damping, especially when steep wave fronts are involved [Wiggert et al. 1986, p. 3].
Therefore the use of interpolations is avoided by adjusting the wave speeds A, in such a way
that all A, are points of the computational grid (see figure 4.4). The error in the calculated
solution, introduced by adjusting the values of \;, is proportional to the magnitudes of the
adjustments. Since these magnitudes decrease when the grid is refined, the introduced error
will decrease too. The "pressure-wave" grid (Az/At = &g) in figure 4.4 has the
disadvantage that interpolations are still necessary in the vicinity of a boundary (see figure
4.5). This disadvantage disappears when a "stress-wave" grid (Az/ At = ¢,), as shown in
figure 4.6, is used. In this grid, to avoid interpolations, the points A; and A, are located

more than one time step earlier with respect to point P.

Figure 4.4. Computational grid and characteristic lines after adjustment of the
wave speeds A;.



There are many other computational grids, that is choices of P and A, , that can be used
to solve the equations (4.42)-(4.45). To minimize the errors introduced by adjusting the wave
speeds, the following two alternative computational grids are used in the present study. Both
grids permit the ratio of wave speeds, ¢,/Cr, to be a rational number. The "pressure-wave"
grid in figure 4.7 is obtained from that of figure 4.4 by a spatial grid refinement, whereas
the "stress-wave” grid in figure 4.8 follows from that of figure 4.6 after a refinement of the
time mesh. The grid in figure 4.7 still has the disadvantage that interpolations are needed for
near-boundary points. To partly obviate this deficiency, the time mesh is refined at the

92

Figure 4.5. Computational grid and characteristic lines near to a boundary.

jlm

Az .
1 1

A1 * A2

Figure 4.6. Alternative computational grid and characteristic lines.

boundaries only [Vardy 1976, Tijsseling & Lavooij 1989].

(t)

time

space (z)

Figure 4.7. "Pressure-wave" grid (&,/¢p = 17/5).

At
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AZ/EF

Figure 4.8. "Stress-wave" grid (&,/¢p = 25/6).

4.2.7. Adjustment of wave speeds

The computational grids in the previous subsection are based on adjusted wave speeds. Since
the wave speeds are functions of X, prs E, oy, R, € and », the only correct manner of
adjusting them is by changing these physical and geometrical data. Here the mass densities
pyand p, are changed to obtain the desired wave speeds ¢ §F and &, the superscript *

indicates changed values. The wave speeds A\, = &7 and \; = ¢, are the roots of the
characteristic equation (B.1) combined with (B.3) in appendix B:

(oo} N = {(ky +kiky) oy + kyp} N2+ {Kiky} = 0 (4.68)

with k, = prc/? = {Tl< v (1 -ui’-)%}-l  ky=p,c?=Eand k, = 2u2§.Toobtain
the desired wave speeds ¢y and ¢, , the mass densities must fulfil the next two conditions
(o7 0 Yo}t - (U +kk)p! + ko' Yep? + (k) =0 (4.69)

(o} o7 Yoot - {(y+kky)pf +hyp 3 &% + {kky} =0 (4.70)

which is equivalent with
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1
o -k CEIAED (@R 1) - chik ) 7 )
S 1 2(1 +k1k3/k2)c;2c‘;2

1
@2 +87%) - (@7 e} - 4L vk k) 622 )

265%¢er?

ol =k “.72)

The computational grids in the figures 4.7 and 4.8 require that the ratio ¢ /&7 is
rational. The ratio ¢; /¢ can then be chosen as close as desired to the actual ratio ¢,/¢p,
so that only slight changes in the physical data are necessary. In fact, pf* and p can be
chosen within the range of measurement accuracy of Pr and p,.

Liou [1983] presents an original method to correct for the adjusted wave speeds.

Unfortunately his method introduces some numerical damping (opinion of present author).

4.3. Lateral motion

The four equations (3.90)-(3.93), describing the flexural behaviour of a liquid-filled
Timoshenko-type pipe, are solved numerically also by the method of characteristics (MOC).
The MOC is an unconventional approach in the area of structural dynamics. It is used here,
because it leads to a unified approach: the axial and lateral equations are mathematically
treated in the same manner. Another benefit of the MOC is in its connection with physical
wave propagations. Furthermore it is thought that for impact loads, and hence steep wave
fronts, the method is more accurate than the numerical methods conventionally applied.

In section 2.3, this is the FSI literature review, most attention is paid to axial
(longitudinal) pipe motion. Here some important literature dealing with the lateral (flexural)

motion of Timoshenko beams is summarized.
Literature

The Timoshenko [1921, 1922] beam theory is credited to Bresse [1859] by Schmidt [1987,
pp. 4.2-4.3]. In his standard work on stress waves in solids, Kolsky [1953] shows that the
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one-dimensional Timoshenko [1921,1922] theory for flexural waves in cylindrical beams is
a very good approximation of the three-dimensional theory of Pochhammer [1876] and Chree
[1889]. Fliigge [1942] clearly explains the propagation of waves and discontinuities in beams.
In [Fligge & Zajac 1959] an analytical solution is given of the wave propagation in a semi-
infinite Timoshenko beam subjected to a step moment. Leonard & Budiansky [1954] solve
the Timoshenko beam equations with the MOC. MOC, modal and analytical solutions are
compared for the simplified, physically unrealistic case that shear and bending waves travel
at the same speed. The analytical solutions concern a simply supported beam subjected to a
step moment and a ramp-platform moment. Plass [1958] shows MOC-results for the case that
shear and bending waves travel at different speeds. Semi-infinite beams are subjected to half-
sine impact loads. The numerical results are validated against one analytical solution, and
against measurements of Ripperger [1955]. Chou & Mortimer [1967] give a thorough
mathematical treatment of the MOC applied to hyperbolic systems of second-order partial
differential equations. Al-Mousawi [1984] uses the MOC when he investigates wave
reflections at discontinuities of cross section in Timoshenko beams. Experimental results are
presented in [Al-Mousawi & Harrison 1987]. Schmidt [1987] studies dispersion in hyperbolic
systems and applies his findings to Timoshenko beams. Vardy & Alsarraj [1989] analyse the
vibrations of free masses supported by single structural members using the MOC. Vardy &
Fan [1989] compare experimental and MOC results on flexural waves in empty and liquid-
filled pipes.

4.3.1. Basic equations

The lateral equations (3.90)-(3.93) are applied to thin-walled pipes. The overlines on 0; and

i, are then omitted and expression (3.89) is used for the shear coefficient «*. The basic

equations read

Shear

¢l 80Q,
2G4, 97

u
B_ty + = - gcosy 4.73)



612y 1 8Qy .

B O s 4 6 4.74
3z 2G4, 0t ¥ “.79)
Bending
30, ¢t oM 1
LA St R 4.75
5 T EL 9z LY “.7)
a6 1 oM,
X220 4.76
3z | EI or .76
in which
2 *GA, 4.7
6 = — 4.77)
p,A,+,OfAf
and
¢ =E 4.78)
oy

are the shear and bending wave speeds [Fligge 1942], respectively. For all practical
situations ¢, < c.

Where shear deformation and rotatory inertia are neglected in the axial basic equations,
these matters are included here to obtain a hyperbolic system of partial differential equations.
The second term in (4.74) represents shear deformation, the first term in (4.75) rotatory
inertia. When these terms are omitted, the Bernoulli-Euler beam equations remain. At first
sight it may look inconsistent to incorporate shear deformation and rotatory inertia in the
lateral, but not in the axial equations, where, in addition, radial inertia is neglected as well.
However, shear deformation and rotatory inertia are needed to get finite wave propagation
speeds, just as in the axial theory the propagation speeds are finite. The Bernoulli-Euler beam
theory leads to waves travelling at infinite speed, which is physically unrealistic [Fliigge
1942]. Nevertheless, Bernoulli-Euler theory is valid for low-frequency, long-wavelength
phenomena in slender beams; the shear deformation and rotatory inertia terms in the basic

equations (4.73)-(4.76) generally are small. Shear deformation is of importance for short
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beams, rotatory inertia for high-frequency vibrations.
4.3.2. MOC-transformation

In the next subsections reference is frequently made to the previous section 4.2, since the

lateral and axial basic equations are mathematically treated in the same way.
In matrix notation the system of lateral equations (4.73)-(4.76) reads

dy ay
A% L BOY 4.79
at  az " “.79)

in which y is the vector of unknowns, A and B are the matrices of coefficients, and r is the

right-hand-side vector:

u)"
[0)
y=1|. (4.80)
01
Mx
1 0 00
0 xl_cl;_ 0 0
A
A = ! (4.81)
0 0 1 0
o o oL
El,
2
0 5 0
KZGA,
s |t o 00 4.8)
0 0 b
EI,
L0 0 1 OJ
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r= 1 (4.83)

System (4.79) is a linear system with constant coefficients. The matrices A and B are
decoupled with respect to shear and bending; the shear (4.73-4.74) and bending (4.75-4.76)
equations are coupled via the right-hand-side vector (4.83). Because A and B are decoupled,
they can be viewed as two 2 * 2-matrices instead of one 4 * 4-matrix, so that the MOC-

transformation is simplified. From the characteristic equation | B-XA | = 0 , or

2

S

2
N 6

EI, EI,

A2 c

N =0 (4.84)
K¥GA, «*GA4,

it follows that the characteristic roots or eigenvalues of system (4.79) are

M=+e, M=-¢, M=+, MN-=-g (4.85)

The transformation matrix T is readily found,

I ¢ 0 0
I -¢, 0 0

T=1o o 1 . (4.86)
0 0 1 -¢

See further subsection 4.2.2.

4.3.3. Wave propagation speeds

From the characteristic equation (4.84) it follows that the shear and bending waves travel at
the constant speeds ¢ and c,. It is important to be more specific at this point. Discontinuities
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in the shear force Qy travel without attenuation at speed c,, whereas discontinuities in the
bending moment M, travel without attenuation at speed c, [Fligge 1942; Fliigge & Zajac
1959]; see also next subsection. Behind these discontinuities at the fronts, the waves are
highly dispersive. The dispersion is caused by the strong interaction between shear and
bending waves. In the mathematical model this interaction takes place through the right-hand
side (4.83). As the characteristic equation | B - XA | = 0 does not depend on the right-
hand side r, dispersion is not predicted through its roots ¢, and ¢, ; the wave speeds are not
frequency-dependent. Schmidt [1987] takes the right-hand sides (in the present model) into
account in a wave-train analysis. On page 5.8 of his work he derives a bi-quadratic equation,
which is the dispersion relation for wave propagation in Timoshenko beams. He considers
both phase and group velocities and clearly explains the two possible modes of deformation
and their frequency-dependence. The highest mode occurs only beyond a certain cut-off
frequency, the lowest mode is considered by Kolsky [1963].

For long wavelengths the phase velocity ¢, of sinusoidal flexural waves is [Kolsky 1963,
pp. 51, 85]

El
¢ = 2% |2 (4.87)
NN oA+ oAy

where A is the wavelength. The group velocity has a maximum for A equal to about R/0.3
in case of a cylindrical bar [Kolsky 1963, pp. 72-73]. This implies that waves with a length
of about 3R appear at the head of a travelling pulse.

It is noted that one must proceed with caution when results of wave-train analyses are
applied to travelling discontinuities or step-pulses.

The influence of boundary conditions on wave propagation is disregarded in most
literature. Timoshenko & Young [1955, pp. 324-357] study the free vibrations of beams. For
a Bernoulli-Euler beam with hinged ends, they find, on page 332, formula (4.87) for the
lowest mode of vibration, and, on page 334, for a Timoshenko beam, Schmidt’s [1987,

p. 5.8] dispersion relation.
4.3.4. Compatibility equations

The four compatibility equations (4.32) belonging to system (4.79), with v, A, r and T
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according to (4.29), (4.81), (4.83) and (4.86), respectively, can be written as

Shear
du d .
Gyl 4 S _&] = -c, 0, - gcosy (4.88)
dr |, KZGA, dr |,
du d .
91 - & &] = +c,0, - gcosy (4.89)
dr ), «*Ga,| 4t |2
Bending
] dM.
|, G |IM | 1 0, (4.90)
dr |, EIL| dr |5 ol
] dM
o _ e |M) 1, @.91)
dt |, EIL| dt |, opol "
dy;| . i _— . .
where | —Z| is the directional derivative of the variable y; in the z-t plane along the
i

characteristic line with slope 1/A;. Integration of the compatibility equations (4.88)-(4.91)

yields

C

C;At{wy)p—(ay),xl} - -¢,

{ (uy)p - (f‘y)Al } o+

K2

o o CS
{(uy)p‘(uy)Az} - m{(gy)p‘(Qy)Az} = +Cg

P
[ {6, +gcosy}dr (4.92)
A

1

{6, -gcosy}ds (4.93)

[



101

P
(=i} + - (M-t} = 1 [ Q& @99
t 't A
C 1 P
L G ) 1 |
(=B} = gr (M- My ) - A[ Q, dr (4.95)

X

where P and A, are points in the z-¢ plane as shown in figure 4.1.
Discontinuities

Fliigge {1942] and Leonard & Budiansky [1954] show that discontinuities travel without
attenuation along the characteristic lines in the z-7 plane provided that the wave speeds ¢, and
¢, are not equal. Discontinuities in the shear force Q, travel at speed c,, whereas
discontinuities in the bending moment M, travel at speed c, . The Joukowsky-type relations

between Q, and &, and M, and 6., are found to be

AQ, = +(pA,+pAp) c, A, (4.96)

AM, = tplc, Al (4.97)

These relations are obtained from a consideration similar to that in subsection 4.2.4, thereby
using (4.92)-(4.95) and (4.77)-(4.78).

4.3.5. Numerical integration

The numerical integration of the right-hand sides of the compatibility equations (4.88)-(4.91)
is the weak spot in applying the MOC to the Timoshenko beam equations. The strong
interaction between shear and bending waves, which is the dominant phenomenon, takes
place via the right-hand sides, and these should therefore be calculated accurately.

The integrated right-hand sides in the final system of equations (4.92)-(4.95) have the

form
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P P
1=k1[yjdz+k2gj cos y d (4.98)
A A

where k; and k, are constants and y; is either g, or Q.
The second integral, which results from the gravity force, can be calculated exactly, since
v is assumed to be constant

P
I cosy dr = (fp ~1,) cosy 4.99)
A

The first integral will be approximated according to the most simple numerical integration

scheme

P
[ yyae = (a-000p0 + 006} -1 (4.100)
A

where 6 generally has the values 0, 1/2 or 1.
The lateral displacement u, and the bending rotation 6, are obtained from the respective

velocities uy and 6,

(u)p = (U)q + %{(ﬂy)q +(ity)p} (5p ~ Q) (4.101)
10, .
(6)p = (B)g + 5 {(69q + (Bp} tp - 1) 4.102)

in which P = (zp, #,) and Q = (zp, Q).

The quantities u, and 6, can also be approximated from the stress-displacement relations
(3.85)-(3.87). Then a numerical integration with respect to distance, instead of time, has to
be carried out.

4.3.6. Computational grids

The applied computational grids are those of the figures 4.7 and 4.8, with characteristic

directions according to (4.85).
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4.3.77. Adjustment of wave speeds

To avoid the use of interpolations the wave speeds ¢, and ¢, are slightly adjusted by changing
the mass densities pr and p,. From the definitions (4.77)-(4.78) it follows with

G = %E/(l +v) that

2
A 2 .
op =iy K & E (4.103)
Af 2(1 + V) cb* CS*2
* E
o= — (4.104)
Cp

where ¢ and ¢, are the desired wave speeds, and pf and p; are the adjusted mass

densities.
4.4. Torsional motion

The equations for torsional motion (3.98)-(3.99) can easily be solved by the method of

characteristics. For two equations the procedure is simple and therefore not given in detail.
Compatibility equations

dé Cor | AM
i - 1 =0 (4.105)
de |, GJ, | dt |,
dé Cor | AM,
L I 2l =0 (4.106)
dt ), GJ, | dr |,
can be derived which are valid along the characteristic directions 1/c,,, and - 1/c,,, in the
z-t plane. The torsional wave propagation speed c,,, is
o = | (4.107)

Py
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Torsional waves are non-dispersive as long as each cross section rotates as a whole about its
centre [Clark 1956; Kolsky 1963].
The torsional equations are not used in the present work.

4.5. Cavitation

The numerical treatment of developing and collapsing vapour bubbles is described. The

underlying assumptions and the limitations of the method are discussed in the last subsection.

4.5.1. Concentrated cavity model

The concentrated cavity model, see section 2.2, is used to simulate vaporous cavitation.
Cavities are allowed to form at the grid points (nodal points or computational sections)
whenever the absolute pressure drops to the vapour pressure. Between the grid points pure
liquid is assumed to exist (see figure 4.9). A single cavity disappears when its volume is
calculated to be equal or less than zero. The present model handles distributed cavitation
regions and column separations numerically in the same manner. In distributed cavitation
regions small cavity volumes are calculated for a series of grid points, whereas column

separations are identified by large cavity volumes calculated for a single grid point.

vapour vapour vapour

grid—point grid—point grid—point
(P=P,) (P=P,) (P=P,)

Figure 4.9. Definition sketch of concentrated cavity model.
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4.5.2. Numerical procedure

In the numerical procedure of section 4.2 the absolute pressure P is not allowed to drop
below the vapour pressure P,. When, at a grid point, P, is calculated to be less than P,
P, is simply set equal to P,,

a

P, =P, (4.108)
which is equivalent with
H=H, (4.109)
where
H, = hy - zsiny - Pou + 5 (4.110)
P8 P8

is the relative vapour head. Condition (4.109) and the integrated compatibility equations
(4.42)-(4.45) constitute an undetermined system of five equations for the four unknowns V,
H, u, and o,. Instead of introducing the void fraction « as the fifth unknown!, to obviate
this problem, the liquid velocity V is assumed to be discontinuous at a grid point (z,£) ; V;

and V, are the values of Vat (z7,¢) and (z°, ¢), respectively. A cavity is now formed, the

volume ¥ of which is governed by

%; =~ AV, - V) @.111)

or, when numerically integrated,

¥(1) = ¥(t-Ar) + Af{ Vo (£) - V(1) } At 4.112)

The cavity disappears when its volume is calculated to be negative. Then, to satisfy the mass
balance, the last positive cavity volume is filled with liquid, according to

¥(r - A7)

AORIACERE - 4.113)
'y

which is equation (4.112) with ¥(¢) = 0.

1 see subsection 3.1.5
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4.5.3. Assumptions and limitations

When the absolute pressure reaches the vapour pressure, cavities, or bubbles, will develop
in the liquid. In the present model these cavities are concentrated, or lumped, at the grid
points. Between the grid points pure liquid is assumed for which the basic equations
(4.11-4.14) or (4.42-4.45) of section 4.2 remain valid. This means that the pressure wave
speed €y is maintained between grid points in distributed cavitation regions. However, in
bubble flows the pressure wave speed is very low and pressure-dependent. These matters are
implicit in the model. Pressure waves do not propagate through an established distributed
cavitation region, since this is at an assumed constant vapour pressure. The nullification of
a distributed cavitation region by a pressure wave causes a delay in propagation which must
be regarded as a reduction of the wave speed.

The basic equations (4.42)-(4.45) are only valid if there is pure liquid between the grid
points. In the computational grid of figure 4.8 this is the case. In the grid of figure 4.7,
however, the characteristic lines span more than one grid length. For the stress-wave
characteristic lines, which concern the pipe wall, this may be of less significance, but for the
pressure-wave characteristic lines this is not correct. The computational grid in figure 4.7
must therefore be viewed as ten (in figure 4.7) separate “pressure-wave" grids, coupled
through the cavity volume equation (4.112), the stress-wave characteristic lines and the
numerical treatment at the boundaries.

The cavities, concentrated at grid points, do not move. This is consistent with the acoustic
approximation: since the overall time scale is acoustic, the convective displacements of a
vapour bubble are small. Vreugdenhil [1964] takes into account, within the concentrated
cavity model, the motion of liquid-vapour boundaries.

The maximum length, L, = ¥/A;, of a cavity must be small compared to the grid
length. Simpson and Bergant [1991b] recommend

L
4 < 0.1 4.114)
Az

For distributed cavitation regions, condition (4.114) is generally fulfilled. If not, the present
model is not valid and the application of models for two-phase plug flow, slug flow or open-
channel flow should be considered.

For column separations, condition (4.114) may sometimes be violated, which is acceptable

(opinion of present author), since column separation is a local phenomenon, and only a few
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grid points are concerned. However, care should be taken when L_,,/Az becomes greater
than 1. In that case liquid-vapour boundaries moving from grid point to grid point should be
explicitly modelled.

The mass of vapour is neglected, just as the influence of radial pipe displacements on the
cavity volume.

From a physical "microscopic" point of view the "macroscopic" concentrated cavity model
is not correct; a two-phase flow [Wallis 1969] approach would be better. However,
P, = P, (4.108) is physically a strong condition, if there is no free gas or gas release
involved. Furthermore, the continuity equation, that is the mass balance, is satisfied through
(4.113).

The concentrated cavity model is a relatively simple model, which is able to cover the
essential phenomena in transient cavitation. It fits in with the standard MOC-approach, so
that it can be used in general waterhammer computer codes. Its main deficiency is in the
numerical oscillations and unrealistic spikes appearing in the calculated pressure histories,
when regions of distributed cavitation occur [De Vries 1972]. One way of partly suppressing
the oscillations and spikes is by assuming small amounts of initial free gas in the grid points
[De Vries 1973; Provoost 1976; Wylie 1984; Zielke & Perko 1985; Simpson 1986; Barbero
& Ciaponi 1991]. Condition (4.108) is then replaced by

(P, - P,) ¥ = constant (4.115)

where the free gas is assumed to behave isothermally. The used free gas void fractions are
of the order of 1077. The numerical integration of equation (4.111) may also affect the
amount of oscillations and spikes [Provoost & Wylie 1981; Simpson & Wylie 1985; Simpson
& Bergant 1991b]. The application of a numerical filter may be considered [Vliegenthart
1970; Kranenburg 1974a]. Simpson & Bergant [1991b], who performed a systematic study
of the numerical oscillations and non-physical spikes, come to the conclusion that the
concentrated cavity model does not converge and, consequently, the number of grid points
should be limited.

The opinion of the present author is the following. Numerical oscillations and spikes are
due to multi-cavity collapse during the nullification of a cavitation region. In fact, the
concentrated cavity model assumes small column separations in every grid point in such a
region. Upon collapse of a single column separation a pressure rise or spike occurs, which,

once generated, does not disappear. The spike travels in a cavitation-free region to and from
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the boundaries and when two of these spikes meet a higher spike is the result. However, the
one-dimensional long-wavelength waterhammer theory is not valid for these short-duration
pressure spikes. (Note that the duration of the spikes decreases when the computational grid
is refined.) Dispersion should be introduced in the model, so that spikes travel with
attenuation and more realistic results are obtained. On the other hand, high-frequency
oscillations are to a certain extent observed in cavitation measurements as well: they are
unstable and physically not repeatable. This instability, reflected in the unstable numerical
oscillations of the concentrated cavity model, is part of the cavitation phenomenon.

It is acceptable to smooth the grid-dependent highest frequencies by means of a numerical
filter.

The overall conclusion is: the concentrated cavity model is adequate, but improvements

concerning the numerical oscillations are welcome.

4.6. Initial conditions

Steady-state conditions form the starting-point of the transient analysis.

4.6.1. Single pipe

The initial values of the variables in the grid points are obtained from the steady-state
solutions given in subsection 3.2.1. The liquid velocity is constant and the pressure head
decreases linearly in downstream direction. The initial generalized forces are constant, linear

or quadratic in z.

4.6.2. Multi-pipe system

Fluid-structure interaction is a dynamic phenomenon. It does not occur in liquid-filled pipe
systems under stationary conditions, where the liquid exerts a static load on the pipe system.
Therefore it is customary to determine first of all the steady-state of the hydraulic system.
This can be quite complicated in multi-pipe systems and networks, since a, mostly large, set

of non-linear algebraic equations must be solved. Several numerical procedures are available,
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of which the Hardy Cross method is the oldest and probably most well-known [Cross 1936].
Other standard techniques are those of Shamir & Howard [1968], Epp & Fowler [1970] and
Wood & Charles [1972]. Wood & Rayes [1981] and Walski [1985] give surveys. It is also
possible to find the steady-state with a time-marching approach using the method of
characteristics (MOC) [Fox & Keech 1975; Vardy & Chan 1983; Shimada 1988]. Once the
hydraulic steady-state is found, the deformation of the pipe system can be determined with
standard pipe-stress computer codes, which are generally based on the finite element method
(FEM).

In the present work the axial, lateral and torsional equations describing the structure are
coupled at junctions. To obtain the static deformation of the pipe system the constants of
integration of each individual pipe must be known, see section 3.2. Since, in general, these
constants depend on each other (they are coupled at junctions), a linear system of equations
has to be solved. Alternatively, the MOC may be used to find the steady-state, so that a
unified, that is for steady and unsteady situations, approach is obtained.

4.7. Boundary conditions

The boundary conditions of section 3.3, expressed in relative pressure heads H and relative

axial stresses o, , are numerically treated.
4.7.1. Introduction
Ends

The terminal points of a pipe system are called ends.

When a grid point P in the z-¢ plane is an end point, as shown in figure 4.10 for an
exemplary computational grid, there are only two characteristic lines meeting in P. Hence,
there are only two compatibility equations available for the four unknowns y; defined by
either (4.18) or (4.80). Two additional equations are provided by two boundary conditions
of the type

?(¥1:Y2,3:Y4,8) = 0 (4.116)

where ¢ is an arbitrary function of five arguments. It is assumed that the end conditions for
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the axial and lateral equations are independent, so that the axial problem of section 4.2
requires two boundary conditions of the type
@(V,H, i, 0,,1) =0 (4.117)

and the lateral problem of section 4.3 two of the type

o (uy,,Q,,6,M,t) =0 (4.118)

Figure 4.10. Point P at an end.

Junctions

The connection points of the single pipes in a pipe system are called junctions.

When a grid point P in the z-¢ plane lies on the straight junction of two single pipes, as
shown in figure 4.11 for exemplary computational grids, the vectors of unknowns Yp, and
Yp, at either side of the junction are generally different, since discontinuities may occur, for
instance at a diameter-change. There are eight unknowns to be determined, for which four
compatibility equations are available. The remaining four equations come from the junction
coupling condition

M D yp = MP yp, 4.119)

which is derived, for both the axial and the lateral equations, from mass and momentum

balances (see subsection 3.3.5).

(1) junction (2)
bz (1)) @ LW

At

>
[FX N
—
~
>
N
=
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>
N~
N
S
.
—~
N
~

Figure 4.11. Point P at a junction.
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For a straight junction the axial and lateral motions are assumed to be decoupled, so that
two 4 * 4 coupling matrices Mjc(") exist for both k¥ = 1 and & = 2 (see subsection 4.7.6).

For an elbow junction the coupling between axial and lateral pipe motion leads to one
8 + 8 matrix M;,® for both k = 1 and k = 2 (see subsection 4.7.7).

4.7.2. Reservoir

At a reservoir the following conditions are imposed (see subsection 3.3.1)

H=H, ad 1u,=0 (4.120)
u,=0 and 6,=0 4.121)

where H,, is the reservoir’s constant pressure head.

4.7.3. Valve

The instantaneous closure of a an immovable valve is modelled by (see subsection 3.3.2)

V=0 and u, =0 (4.122)
#, =0  and 6, =0 (4.123)

The instantaneous closure of an axially unrestrained valve is modelled by (see subsection
3.3.2)

V=u and pr8A;AH = A Ag,

I+

mi, tcu, t ku, (4.124)

i, =0 and 6, =0 (4.125)

where AH is the pressure-head difference over the valve. Because the quantities %, and u,
in (4.124) are not basic variables, they have to be approximated. The acceleration #, and
the displacement u, are obtained from the velocity #, by numerical differentiation and
integration, respectively. The differentiation is with a backward finite-difference scheme, the
integration with the trapezoidal rule. Then

()p - (i)g

4.126
i (4.126)

(ﬁz)P =
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(#)p = () + %{(uz)q +(a)p) At 4.127)

where P = (2p,%4), Q = (2p, to) and Af = fp - to - Substitution of (4.126) and (4.127)
in the second equation of (4.124) gives

} gy = % (2 - "A‘}(u Do t kg

A
by8A; (R, - 4, (B0)p 7 (1L o K2 kAg

(4.128)

Alternative, and probably more accurate, ways of integrating the second equation in
(4.124) are provided by the average-acceleration method or Newmark-g =1/4 method [Craig
1981, pp. 41-43, 146-150] and the method of Vardy & Alsarraj [1989]. Otwell [1984] uses
the average-acceleration method, but calls it a trapezoidal rule [Wiggert, private

communication with Lavooij, 1987].

Non-instantaneous valve closures are modelled by replacing the first equations in (4.122)
and (4.124) by the non-linear equation (see subsection 3.3.2)

(4.129)

where AH, is the steady-state head-loss over the valve. The specific function 7(z) used in
the present investigation is

(1-¢/1,)*% for 0 <t < 047,
() = { 03%(1-t/T) for 04T, <t < T, (4.130)
0 for T, <

in which T is the valve closure time. This function, which is based on empirically obtained
ball-valve discharge coefficients, see [Lavooij & Tijsseling 1988, Vol. 1, App. A], was
provided by Wiggert to Delft Hydraulics in 1987. More information on ball-valve discharge
characteristics can be found in [Van Rij 1970; Schedelberger 1975].

The squared, and hence quadratic, equation (4.129) is solved simultaneously with three
linear equations (two integrated compatibility equations and one boundary condition). This
is done exactly [Lavooij & Tijsseling 1988, Vol. 2, App. E].
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4.7.4. Closed end

The boundary conditions used for a freely moving closed end are (see subsection 3.3.3)
V=u, and pr8AH = A o, £ mi, (4.131)
Q =0 and M, =0 (4.132)

The second equation in (4.131) is numerically treated in the same manner as the second
equation in (4.124).

4.7.5. Axial impact

The boundary conditions describing the axial impact of a solid rod with a closed pipe end are

(see subsection 3.3.4)
V=u, and pr8AMH + Y, (1,-V,,) = Ayo, T mil, (4.133)

0, =0 and M, =0 (4.134)
4.7.6. Straight junction

The 4 * 4 matrices Mjc,z(k) that couple the vectors of axial variables, y; = (V,H,u,, az)lT

andy, = (V,H,u,,o0, )2T, at either side (k) of a straight junction, are (see subsection 3.3.5)

(k) _ 4 (k)
0 1 0 0
M. B - 4.135
ez 0 0 1 0 ( )

0 pgd® 0 -4®

The 4+4 matrices M, ,® that couple the vectors of lateral variables,
i = (i, 0,,6,,M)," and y, = (i, 0,,6,,M,),", at either side (k) of a straight

junction, are
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1000

0100

G
M., 0010 (4.136)

0001

4.7.7. Elbow junction

The 8* 8 matrices Mjc’e]bow(k) that couple the vectors of axial and lateral variables
. = (V,H,u,,0, iy, Qy, O'x, Mx),;r at either side (k) of an elbow, are (see subsection

3.3.6)

J

(400 -4 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0
M apon® = | © pgAf 0 -4 0 0 0 0 *.137)

0 0 0 0 1 0 0 0

0 0 0 0 0 -10 0

0 0 0 0 0 0 1 0

| 0 0 0 0 0 0 0 1|

(4 0 -4® 0 0 0 0 0]

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

o |0 0 0 0 0 1 0 o0
Mioemow™ = | ¢ 0 -1 0 0 0 0 0 (4.138)

0 pgd® 0 -4® 0 0 0 0

0 0 0 0 0 0 1t 0

| 0 0 0 0 0 0 0 1]
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4.7.8. Column separation

Column separation is simulated when the pressure head H, at end or junction, is calculated
to be less than the vapour head H, defined in (4.110). The pressure head is then held
constant

H=H (4.139)

v

and a cavity is allowed to form. Condition (4.139) replaces the V = 0, the V = i, and the
{Af( V-u,)}, = {Af( V -u,)}, conditions in the foregoing subsections, since these are not
valid any more, when a cavity exists. The volume ¥ of the cavity follows from the
numerically forward integrated equations (3.165) or (3.167). These are

V() = ¥(1-An £ A { V() -u, (1) } At (4.140)

for a closed end, and
V() = ¥(t-AD = [Af{ V(t) -u, (1)} At ]1 + [Af{ V(t) -u,(t) } At ]2

(4.141)
for a straight junction or an elbow junction; the indices 1 and 2 refer to either side of the
junction. The column separation collapses when its volume is calculated to be less than zero.
To satisfy the overall mass balance, the last positive cavity volume is exactly filled up with

liquid, according to

o _ . ¥(@-4Arn
V() - (1) = = —dar (4.142)
for a closed end, and
£ [4V0 - 0,0} ], * [A{V0 -u,01 ], - 2D @)

for a straight junction or an elbow junction.
The motion of the liquid-vapour interface is disregarded; column separation is modelled
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as a non-moving boundary condition. However, care should be taken when

L
%> 05 (4.144)
Az

where L, = V/Af is the length of the column separation. See further subsection 4.5.3.
4.8. Multi-pipe systems

In multi-pipe systems each individual pipe has its own computational grids: one for axial and
one for lateral wave propagation. Torsional waves are not considered here. The "axial" and
"lateral" grids are independent, so that the adjustment of wave propagation speeds (see
subsections 4.2.7 and 4.3.7) may lead to different values of s and p, in one and the same
pipe. This is physically inconsistent. However, the differences may be brought within the
measurement accuracy range of the mass densities.

A common numerical time step A¢ is used for all computational grids, so that they can
easily be coupled at junctions.

The stress-wave grid of figure 4.8 is preferred over the pressure-wave grid of figure 4.7.
The latter grid leads to interpolations, which not only give numerical damping but also a
more complicated computer code. Furthermore, the pressure-wave grid is not entirely correct
when cavitation occurs, as explained in subsection 4.5.3. The pressure-wave grid has more
elements than the stress-wave grid, so that condition (4.144) is more easily violated. It is
noted that very fine computational grids are required to simulate the highly dispersive lateral
wave propagations [Heinsbroek et al. 1991]. Then, because of the common numerical time
step, the axial grids are very fine as well (small Az), and possibly too fine with respect to
condition (4.144).

4.9. Computer codes

The developed computer codes are called SINGLECS, SINGALT, BEND, BENDALT and
DOUBLE. They are based on the numerical method(s) described in this chapter. SINGLECS
and SINGALT simulate the axial motion of a single pipe, BEND and BENDALT the lateral
motion. SINGLECS and BEND are based on the computational grid of figure 4.7, SINGALT
and BENDALT on that of figure 4.8. The SINGLECS code uses linear interpolations at and
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near to boundaries. In the codes the ratio A;/\; of wave speeds is a rational number, except
in BEND, where this ratio is an integer. Except for the non-linear valve closure in
SINGLECS and SINGALT, the boundary conditions (4.117) and (4.118) are taken as linear
combinations of the basic variables, in which the coefficients and the right-hand sides may
be either constant or a function of ¢.

The program DOUBLE is a combination of SINGALT and BENDALT. Two pipes in the
horizontal plane are connected by one junction. The coupling matrices representing a
diameter-change and a 90-degrees elbow are given by (4.135)-(4.136) and (4.137)-(4.138),
respectively.

4.10. Numerical tests

The developed computer codes, and hence the underlying mathematical model and numerical
method, have been extensively tested. Numerical tests were performed on the Delft
Hydraulics benchmark problems A-B-C-D, which are based on an inventory of field cases
and defined in consultation with Wiggert [Lavooij & Tijsseling 1988, Vol. 1, pp. 20-27].
Verification and validation tests were carried out by comparing computed results with
1) results of other codes, 2) analytical solutions and 3) experimental data known from
literature.

A selection of the tests performed is shortly discussed in this section.

4.10.1. Axial motion

The present MOC-approach gives exact solutions of a slightly changed physical problem if
interpolations and numerical integrations are not part of the procedure. This is the case when
the stress-wave grid of figure 4.8 is used, the relatively unimportant dynamic friction is
neglected and numerical integration of boundary conditions is not necessary. Convergence
is then trivial. With the pressure-wave grid of figure 4.7 almost identical results were
obtained, so that it can be concluded that the influence of interpolations at and near to
boundaries is small.

The numerical integration of the boundary conditions, such as described in subsection
4.7.3, may ask for a small time step to attain convergence, whereas the numerical integration

scheme itself is also important.
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The applied change of physical data in subsection 4.2.7 can be made so small, by
choosing finer computational grids, that it is within the measurement accuracy range of the
changed data.

The Delft Hydraulics benchmark problems A, B and C concern a simple reservoir-pipe-
valve system. The solutions of these problems, computed with the codes for axial motion,
were compared with MOC results of Wiggert [Wiggert, private communication with Lavooij,
1987] and with MOC-FEM results of the Delft Hydraulics FLUSTRIN-code [Lavooij &
Tijsseling 1988 (Vol. 2), 1989, 1991; Heinsbroek et al. 1991]. The compared results were
almost identical, although the MOC-FEM results exhibited numerical oscillations in case of
instantaneous valve closures.

The experiment of Wilkinson & Curtis [1980] was simulated in [Tijsseling & Lavooij
1989], the experiments of Vardy & Fan [1986] and [1989] in [Tijsseling & Lavooij 1990]
and [Lavooij & Tijsseling 1991], respectively. Favourable results were obtained.

Schematic representation of reservoir-pipe-valve system. The pipe and valve are allowed to move
freely in the axial (z) direction. Length = 20 m, inner radius = 0.3985 m, wall thickness = 0.008 m,
Young’s modulus = 210 GPa, Poisson’s ratio = 0.3, shear coefficient = 0.5, mass density of pipe
wall material = 7900 kg/m>, mass density of liquid = 1000 kg/m>, bulk modulus = 2.1 GPa, Darcy-
Weisbach friction coefficient = 0.02, initial liquid velocity = 1 m/s, pressure behind valve = 0 Pa,
valve closure time = 0 s.

Figure 4.12. Benchmark problem A.
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The aforementioned tests before mentioned are not repeated here. Emphasis is laid upon
the effects of interpolations, since a new element of the present numerical method is the
avoidance of interpolations. Solutions of benchmark problem A, defined in figure 4.12,
obtained with and without interpolations are shown in figure 4.13. A small time-shift is
introduced to make the differences between both solutions better visible. The present method
modifies the ratio ¢,/¢p of wave speeds from 5.153 to the rational number 67/13 by
changing the mass densities into p; = 1000.3 kg/m? and p = 7900.0 kg/m>. The
numerical time step used is 0.29 ms and the number of elements is just 1. The results
obtained with time-line interpolations [Goldberg & Wylie 1983] were provided by Fan
[private communication 1992]. He used 8, 16 and 256 elements in his calculations and the
corresponding time steps were 0.47 ms, 0.24 ms and 0.015 ms. The overall agreement
between the present and Fan’s results is excellent. It is seen that interpolations smooth the
wave fronts and that details appear in the solution only when very fine grids are used. The
advantage of the present method is that, with approximately the same time step such as in

the middle graph of figure 4.13, 1 element, instead of 16 elements, is sufficient.
4.10.2. Lateral motion

The application of the MOC to problems on bending waves in beams is not common. One
reason is that Bernoulli-Euler beam theory is not suitable for the MOC, since this theory does
not lead to a hyperbolic system of partial differential equations. Timoshenko beam theory has
to be used instead. A second reason is that the MOC requires very fine computational grids,
as will be explained next.

The refinements of Timoshenko beam theory, being shear deformation and rotatory
inertia, make the basic system of equations (4.73)-(4.76) or (4.79) hyperbolic. However, the
terms in question in the equations (4.74) and (4.75) are very small with respect to the other
terms and, in particular, with respect to the right-hand sides. Very fine grids are needed to
take effectively into account the small terms inducing hyperbolic behaviour of the system.
The experience of the author is that the element length Az must be of the order of the radius
of gyration R, (R, = Ai; = % for empty thin-walled cylindrical pipes of circular cross-
section).

The major numerical error made in the MOC procedure is in the integration of the right-

hand sides as described in subsection 4.3.5. In the equations (4.73)-(4.76) the right-hand
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sides are dominant. They couple the shear (4.73-4.74) and bending (4.75-4.76) wave
equations and cause the strong physical dispersion already discussed in subsection 4.3.3. In
the numerical solution, the right-hand sides in the integrated compatibility equations (4.92)-
(4.95) dominate the shear deformation and rotatory inertia terms, unless the numerical time
step is small (see equation (4.100)). Only for a small time step Az, and hence small element
length Az, all the elements in the matrix of coefficients (TA in equation (4.28)) become
important, thereby enhancing the hyperbolic character of the system and the performance of
the MOC.

Summarizing one can say that the dominating right-hand sides impair the hyperbolic
character of the basic system of equations, so that the MOC becomes less aitractive.
Nevertheless, the MOC is used in the present work because of its simplicity and the desired
unified approach.

From numerical tests it became clear that the trapezoidal rule is the best way of
integrating the right-hand sides. Hence 6 is taken equal to 1/2 in equation (4.100). Other
integration schemes produced too little or too much damping, or were too complicated
[Lavooij & Tijsseling 1988, Vol. 2].

The free lateral vibrations of a simply-supported (hinged ends) liquid-filled pipe, with the
dimensions and properties of the pipe in figure 4.12, were simulated with the codes for
lateral motion in [Lavooij & Tijsseling 1988, Vol. 2]. The numerical results were compared
with analytical solutions. Convergence was found, but relatively fine computational grids had
to be used.

The analytical solution of Leonard & Budiansky [1954], concerning a simply-supported
beam with a step-moment applied at one of the ends, was used for verification of the BEND-
code [Lavooij & Tijsseling 1988, Vol. 2]. The analytical solution, in which the ratio of wave
speeds ¢,/ c, equals 1, could be reproduced.

In [Heinsbroek et al. 1991; Heinsbroek & Tijsseling 1993] MOC results and FEM results
with respect to pulse and impact loads in a single liquid-filled pipe were shown to be in good
agreement. It was concluded that the MOC needs fine computational grids when compared
to the FEM.

One test case of [Lavooij & Tijsseling 1988, Vol. 2] is shown here. It concerns the
response of the pipe in benchmark problem A (figure 4.12) to an impact load at one of the
ends. The pipe is assumed to have one fixed and one free end and the ratio ¢ »/ ¢ of bending
wave speed to shear wave speed is for simplicity taken as 5 ( pf' = 1220 kg/m?, e, = 7900
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kg/m>). The number of elements used is 2049. The free end is subjected to a step moment
of 200 kNm. Calculated responses at the instants ¢, = %L/cb y by = %L/cb and t; = L/¢,
are shown together in figure 4.14. The present results were calculated with the "bending-
wave" grid of figure 4.8, those in [Lavooij & Tijsseling 1988, Vol. 2, Fig. 41] with the
"shear-wave" grid of figure 4.7. The main reason for showing figure 4.14 is to demonstrate
the propagation of discontinuities, discussed in subsection 4.3.4, and the physical dispersion,
discussed in subsection 4.3.3. The instantaneous application of a moment on the right end
(z = 20 m) generates a bending wave, the front of which travels with a velocityc, =
5156 m/s to the left. The jump in the moment decreases when the front travels from right
to left (figure 4.14 top). This is due to numerical error, since the jump remains theoretically
equal to the initial value (200 kNm) [Fliigge 1942; Leonard & Budiansky 1954]. Behind the
wave front dispersion is nicely exhibited by shorter waves travelling the fastest. This is most
evident at £; when the bending wave front reaches the fixed end (z = 0 m). The shear wave
front is identified in figure 4.14 (bottom) by a peak in the shear force travelling at speed
¢, = 1031 m/s to the left.
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Figure 4.14. Propagation of discontinuity in bending moment M,

and associated shear force Q, along pipe (benchmark problem A).



123

4.10.3. Combined axial and lateral motion

Delft Hydraulics benchmark problem D, defined in figure 4.15, is used to verify the code
DOUBLE, in which axial and lateral pipe motions are combined through the elbow junction
coupling. The present results are compared with results of the FLUSTRIN code [Lavooij &
Tijsseling 1989; Heinsbroek & Tijsseling 1993] (see subsection 1.2.3), which solves the fluid
equations with the MOC and the structural equations with the FEM. Pressures calculated at
the valve and displacements at the elbow are shown in figure 4.16. The agreement between
the present MOC (with &,/¢y = 35/8 and c,/c, = 24/8) and the FLUSTRIN MOC-FEM

predictions is excellent.

Schematic representation of reservoir-pipe-valve system with one elbow. The pipes and elbow are
allowed to move freely in the horizontal (y-z) plane; the valve is rigidly fixed to the ground. Length
of long pipe = 310 m, length of short pipe = 20 m, inner radius = 0.1032 m, wall thickness =
0.00635 m, Young’s modulus = 210 GPa, Poisson’s ratio = 0.3, shear coefficient = 0.53, mass
density of pipe wall material = 7900 kg/m>, mass density of liquid = 880 kg/m3, bulk modulus =
1.55 GPa, Darcy-Weisbach friction coefficient = 0, initial liquid velocity = 4 m/s, pressure behind

valve = 0 Pa, valve closure time = 0.5 s.

Figure 4.15. Benchmark problem D.
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Figure 4.16. Comparison of MOC and MOC-FEM results for benchmark problem D.

Pressure at valve and displacements at elbow.
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4.10.4. Cavitation and column separation

The numerical models for cavitation and column separation were tested on simple reservoir-
pipe-valve systems. Results obtained with column separation at the valve only were validated
against the experiments of Martin [1983] in [Tijsseling & Lavooij 1989]. Results obtained
with cavitation along the entire pipe in benchmark problem A were verified against
predictions of the Delft Hydraulics waterhammer code WILMA, which also uses the
concentrated cavity model. Except for the high-frequency numerical oscillations and
unrealistic pressure spikes, see subsection 4.5.3, the results obtained (not shown here) were
the same. The concentrated cavity model is validated against the experimental data of
Simpson [1986] in section 6.1.

One thing to be reported here is the grid-dependency of the present model, when regions
of distributed cavitation occur. Benchmark problem A (figure 4.12) is the test case. The ratio
of wave speeds ¢, /¢y 1is for simplicity taken equal to 5 by modifying the mass densities
into p? = 1008 kg/m’, p;’ = 8463 kg/m’. The pressure head is not allowed to drop below
-10 m: H, = - 10 m. Results obtained with the grids of the figures 4.7 and 4.8 are
compared in figure 4.17. The upper two graphs show pressure-head histories at the valve
as calculated with the grid of figure 4.7. The lower two graphs result from calculations with
the grid of figure 4.8 with plotted values every fifth time step. The middle two graphs were
obtained with the finest grids (40 elements), whereas the top and bottom graphs were
obtained with coarser grids (8 elements). The predicted durations of the two column
separations shown are slightly different for all four grids, but the magnitudes of the pressure
peaks following their collapse are nearly the same. The shapes of the pressure peaks caused
by cavity collapse show large differences due to the grid-dependent numerical oscillations of

high frequency.
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4.11. Review and conclusions

The method of characteristics (MOC) is applied in the numerical solution of the basic
equations derived in chapter 3. Although not strictly necessary, the assumption has been
made that the pipes are thin-walled. The numerical procedure is worked out in detail.
Compatibility equations, these are ordinary differential equations which are valid along the
characteristic lines in the distance-time plane, are obtained for which the special case » = 0
(no Poisson coupling) does not require a separate treatment, such as in [Otwell 1984; Budny
1988]. Simplified compatibility equations for axial motion, resembling those of Wiggert et
al. [1987a], are given. Discontinuity relations are derived for both axial and lateral motion.
The validity of the calculated axial wave propagation speeds is discussed, just as the
dispersive propagation of lateral waves and discontinuities. A short literature review is given
on the MOC-application in Timoshenko beam theory.

New are the computational grids in the figures 4.7 and 4.8, which permit the ratios of
wave speeds ¢,/€ and ¢,/c, to be rational numbers. Interpolations, which cause numerical
damping, can then be avoided by just a slight modification of the actual wave speeds. This
is done through an adjustment of the mass densities p, and ps ; explicit formulae are given.

New is the incorporation of the concentrated cavity model within the FSI four-equation
model of subsection 3.1.2. The underlying assumptions and associated limitations are
discussed.

The calculation of the steady-state situation in liquid-filled pipe systems is shortly
reviewed. The numerical treatise of the boundary conditions representing pipe ends and pipe
junctions is described. The performed numerical tests are summarized and a few important

results are presented.
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5. EXPERIMENTS

Experimental results obtained in three different pipe systems are used to validate the
cavitation and fluid-structure interaction (FSI) models of the chapters 3 and 4. The test rigs
and the experiments performed are described in this chapter, the obtained results in
chapter 6.

The experiment of Simpson [1986] is used to validate the cavitation model without the
influence of FSI, whereas two experiments of Vardy and Fan [1989, 1993] are used to
validate the FSI model without the influence of cavitation. New are the experiments with
both FSI and cavitation. These were performed in Vardy and Fan’s test rig by Fan and the

present author.

5.1. Cavitation

Simpson [1986] studied short-duration pressure pulses due to cavity collapse. An
experimental pipeline apparatus was designed and constructed in the G.G. Brown Hydraulics
Laboratory at the University of Michigan (USA), in which measurements were done for eight
levels of cavitation severity. Experimental results obtained for three levels of cavitation
severity are compared with predictions by the concentrated cavity model in the next chapter.
The laboratory set-up is shortly described here. A more detailed description is given by
Simpson [1986, pp. 92-108].

The test rig, sketched in figure 5.1, consists of a 36 m long copper pipeline with an inner
diameter of 19 mm and a wall thickness of 1.6 mm, The pipeline connects two reservoirs and
is upward sloping. The difference in elevation between the downstream end and the upstream
end is 1 m, so that the elevation angle y = -0.028 rad. The pipeline is rigidly supported
every 2.5 m by brackets affixed to a wall. The elbow in the pipeline is also rigidly fixed, by
two brackets, so that FSI effects are insignificant. Pressure waves are generated by the
manual closure of a downstream ball-valve. Ordinary tap water has been used in the
experiments.

Dynamic pressures were measured at three locations along the pipe: at the valve, at the

downstream one-quarter point and at the upstream one-quarter point. The used piezoelectric
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Figure 5.1. Schematic representation of Simpson’s [1986] experimental apparatus.
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pressure transducers (PCB Piezotronics Inc., Series S111A26) have a rise time of 2 us and
a natural frequency of 400 kHz. The frequency of sampling was 1 kHz.
The data used in the simulations of chapter 6 are given in table 5.1. Note that the vapour

head H, depends on the barometric pressure.

Water-filled pipe Position of instrumentation
L=360m Z(PT) = 9.0m
R =9.525 mm z(PT2) =27.0m
e = 1.588 mm Z(PT3) =36.0m

y = -0.027781 rad

K = 1.9534 GPa (so that ¢y = 1280 m/s)
pr=996.8 kg/m3

E =119.5 GPa

p, = 8900 kg/m® (not used)

v =0 (no Poisson coupling)

g =9.813 m/s?
Level 0
Level 2 Level 5 Level 7
(no cavitation)
f=0.0325 f=0.029 f=0.027 f=0.024
Vo = 0.239 m/s Vo = 0.401 m/s Vo = 0.596 m/s Vo = 0.938 m/s
Hy(z=L) =24.12 m | Hy(z=L) =22.93 m | Hy(z=L) = 22.32 m Hy(z=L) =20.51 m
H,=-9.83m H, = -9.86 m H,=-9.83m H,=-98m
T, =65 ms T, =65 ms T, =65 ms T, =65 ms

Table 5.1. Simpson’s [1986] experiment; input data for simulations.
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5.2. Fluid-structure interaction

Vardy and Fan [1986, 1989, 1993] studied, without cavitation, fluid-structure interaction in
liquid-filled pipe systems. An extensive series of high-quality measurements was carried out
on four different pipe systems in a test rig built in the Hydraulics Laboratory at the
University of Dundee (UK). Two of these pipe systems are considered here: a straight pipe
and a system with one elbow. The two systems are described in the next subsections,

experimental results are shown in chapter 6.
5.2.1. Straight pipe

The first FSI experiments in Dundee started in 1984 with bouncing a water-filled pipe onto
a concrete block (see figure 5.2a). Besides the occurrence of cavitation, there was the
problem of the experimenter getting wet. Both problems were solved by closing the pipe
(figure 5.2b). Results of this experiment were presented at the 5th Conference on Pressure
Surges [Vardy & Fan 1986]. Two problems exist in the experiment: 1) the system is
accelerating, 2) the adhesive between concrete block and steel impact plate causes too much
damping, in the opinion of Vardy and Fan. Therefore a third configuration, sketched in

figure 5.3, was adopted.

9| 9 5

& water—filled
| steel pipe

ater—filled
teel pipe

steel plate steel plate

adhesive adhesive

concrete
block

concrete
block

@ (b)
Figure 5.2. (a) Falling pipe with open end,
(b) Falling pipe with closed end.
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solid steel rod

S

water—filled
steel pipe

Figure 5.3. Straight-pipe experimental apparatus.

The principal part of the ultimate system (figure 5.3) is a 4.5 m long stainless steel pipe
with an inner diameter of 52 mm and a wall thickness of 3.9 mm. The pipe is closed at both
ends and filled with pressurized tap water. It is suspended by two long (about 3.3 m) thin,
vertical steel wires from the ceiling, so that it can move freely in a nearly horizontal plane.
The measured static deflection of the pipe caused by its weight is less than 0.2 mm relative
to the suspension points, which are situated about 0.95 m from the pipe ends. Transients are
generated by the impact of a solid steel rod onto one of the pipe ends. The used rod is 5 m
long and suspended on a movable frame by short steel wires.

This apparatus is less complicated than the conventional reservoir-pipe-valve system, since
1) an initial steady-state pressure gradient is absent, 2) valve-closure characteristics are not
needed and 3) the influence of pipe supports is negligible. Friction and gravity effects are
unimportant due to the time scale (milliseconds) of the experiment. The experiment isolates
the effects of fluid-structure interaction in case of axial wave propagations. Cavitation is
avoided by taking a sufficiently high static pressure of the water, usually 2-7 MPa.

The pipe is extensively instrumented. Piezoelectric pressure transducers (Kistler 7031,
701A) are mounted (with their diaphragms flush with the inner wall of the pipe) near to the
impact end, at the remote end and at three intermediate points, as indicated in figure 5.4.
The transducers have an observed rise time of 0.15 ms [Fan 1989, p. 20], or 0.2 ms/MPa,
and a natural frequency of 80 kHz. The connected amplifiers (Flyde FE428CA) have a cut-
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Figure 5.4. Water-filled straight pipe. (Measures in mm.)
Pressure transducers at sections 1 through 5.
Strain gauges at sections A through D.

Axial pipe-wall velocity measured near to section 1.

off frequency of 50 kHz. Strain gauges (TML-FRA-1-11) are attached to the pipe wall at
four locations along the pipe. At each location four three-way (axial, hoop, shear) strain
gauges are equidistantly placed around the pipe circumference, see figure 5.4. The connected
amplifiers (Flyde FE458AC) have a cut-off frequency of 70 kHz. A laser Doppler vibrometer
(DISA 55X) is used for non-contact measurements of one-directional pipe wall velocities at
one selected location. Furthermore it is used to determine the impact velocity of the rod. The
connected amplifier (DISA 55N21, 55N11) has a cut-off frequency of 26 kHz. A high-speed
video camera (Kodak Ektapro 1000) was used to film the impact of the rod and the
subsequent response of the pipe. The maximum sampling rate of the camera is 6000 frames
per second. This is, unfortunately, too small with respect to the time scale of the present
experiment (milliseconds). Nevertheless, pipe vibrations on a larger time scale can nicely be
recorded. Furthermore, the impact velocity of the rod can be determined from the successive
frames prior to impact.

The results presented in chapter 6 were obtained with a sampling frequency of 125 kHz,
although a few 1 MHz (cavitation) measurements have also been performed. More details on

the instrumentation and its performance can be found in [Fan 1989, pp. 17-26].
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The procedure preceding each test or series of tests is described in subsection 5.3.1,
where the cavitation experiments carried out by the present author, after instruction by Fan,
are discussed. Vardy and Fan performed only non-cavitation tests. They investigated axial
and lateral wave propagation in both empty and water-filled pipes. In the present work only
the axial motion of the water-filled straight pipe is studied; the lateral motion of a straight
pipe is less interesting, because it does not involve significant FSI effects. Lateral motion is
considered in the one-elbow system of the next subsection.

The physical dimensions and material properties of pipe, water and rod, such as used in
the simulations of chapter 6, are given in table 5.2, together with the measuring positions of
the pressure transducers (PT), strain gauges (SG) and laser Doppler vibrometer (LDV). The
method of measurement and the accuracy of the values in table 5.2 are given in [Fan 1989,
p. 28; Fan & Tijsseling 1992]. The masses m; and m, of the end plug and end cap,
respectively, which close the pipe, are incorporated in the simulations. The dimensions of
the end pieces and the mass of the attached instrumentation, given by Fan [1989, p. 29 and
p. 16, respectively], are neglected. The influence of the inertia of the end pieces, which can
be assessed from the empty-pipe measurements of Fan [1989, pp. 41-42], is neither
negligible nor dominating the phenomena. The relatively unimportant friction factor f in
table 5.2 is four times smaller than the one assumed by Fan [1989, p. 28]. The gravitational
acceleration g is taken as 9.813 m/s?.

If cavitation does not occur, the underlying theory in chapter 3 is almost linear (see
subsection 3.1.1). The pressures, velocities and strains are then linearly proportional to the
impact velocity of the rod, so that measurements for one particular impact velocity are

considered to be sufficient.
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Water-filled pipe Position of instrumentation | Solid steel rod
L =4.502m Z(PT1) =0.0195 m L, =5.006 m

R =26.01 mm zZ(PT2) = 1.1265 m R, =25.37 mm
e = 3.945 mm z(PT3) =2.2510 m E, = 200 GPa
v=0 z(PT4) = 3.3760 m p, = 7848 kg/m’
K =2.14 GPa z (PTS) = 4.5020 m Vor = 0.73% m/s
ps = 999 keg/m’ Z(SGA) = 0.5740 m

E = 168 GPa Z(SGB) = 1.6880 m

p, = 7985 kg/m’ Z(SGC) = 2.8140 m

v =0.29 Z(SGD) =3.9440 m

f=0.01 Z(LDV) = 0.0465 m

m; = 1.2866 kg

m, = 0.2925 kg

H, = -1000 m

(no cavitation)

Table 5.2. Vardy and Fan’s straight-pipe experiment; input data for simulations.

5.2.2. One-elbow pipe system

In the one-elbow pipe system the 4.5 m long straight pipe of the previous subsection is
connected to a second pipe of length 1.3 m by a rigid 90-degrees elbow, as sketched in figure
5.5. The system is suspended by three wires now. The experiments, performed by Fan and
the present author, concern the axial impact of a water-filled system. After impact at the long
pipe’s end, lateral motion is induced at the elbow by reflecting/transmitting axial stress and
pressure waves.

The data used in the simulations of chapter 6 are given in table 5.3. The elbow is assumed
to be entirely rigid; the 90-degrees angle between the two pipes does not change. The mass
of the elbow, 0.8807 kg, is not explicitly modelled; it is partly incorporated in the pipe

lengths. The masses of the end pieces are taken into account with regard to their motion in
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axial direction, which is the direction of the important junction coupling. The lateral inertia
forces acting on the end pieces are neglected. The value of the relatively unimportant Darcy-
Weisbach friction factor f is four times smaller than Fan’s [1989, p. 28] skin friction factor.
The value of the shear modulus G = E/(2(1 +#)) is 65.1 GPa and the value of the shear
coefficient «* = 2(1+»)/ (4 +3») is 0.53. The value of g is again 9.813 m/s2.

The data in table 5.3 (provided by Fan) correspond to the data in table 5.2, except for the
length of the long pipe, the mass of the end plug and the impact velocity of the rod.

end
cap
pt6 -r
sgk 1210
L 574 . 1114 1126, 1130 . 740 tS 4
end 4 4 7 125
plug sgé sgB sgC sgD z
% : - f = % - { = [ elbow
pti pt2 pt3 pt4
L * ¥ |
20 1107 1124.5 1125 4 1130.3 7
—_—Z

Figure 5.5. Water-filled one-elbow pipe system. (Measures in mm.)



138

Long pipe Short pipe Liquid Solid rod
L=451m L=134m K =2.14 GPa L, =5.006 m

R = 26.01 mm R =26.01 mm pr=999 kg/m* | R, =25.37 mm
e = 3.945 mm e = 3.945 mm H, = -1000 m E, = 200 GPa
v=0 y=0 (no cavitation) p, = 7848 kg/m’
E = 168 GPa E =168 GPa Vor = 0.809 m/s
p, = 7985 kg/m® o, = 7985 kg/m3

v =0.29 v =0.29

f=10.01 f=0.01

m, = 1.312 kg my = 0.3258 kg

z(PT1) =0.0195m | z(PT5) = 0.13 m

Z(PT2) = 1.1265m | z(PT6) = 1.34 m

z(PT3) =2.2510m | z(SGE) = 0.74 m

zZ(PT4) =3.3760m | z(LDV) = 1.34 m

Z(SGA) =0.5740 m

Z(SGB) = 1.6880 m

Z(SGC) =2.8140 m

Z2(SGD) = 3.9440 m

z(LDV) = 0.0465 m

Table 5.3. Vardy and Fan’s one-elbow pipe system experiment; input data for simulations.

5.3. Fluid-structure interaction and cavitation

‘ For the sake of the present investigation, experiments with both fluid-structure interaction
and cavitation were performed in Vardy and Fan’s straight-pipe and one-elbow systems
described in the previous section. The experimental results are used, in chapter 6, to validate
the combined FSI-cavitation model developed in the present work. As far as the author

knows, the present experiments are the only well-documented experiments in which FSI and
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cavitation occur simultaneously and are both significant!,

5.3.1. Straight pipe

The cavitation experiments in Vardy and Fan’s straight-pipe apparatus, see subsection 5.2.1,
were performed in September 1989. If the static pressure of the water is not too high, the
rod-pipe impact will lead to dynamic pressures which cause transient cavitation and column
separation. The advantage of the present apparatus is that the (ordinary tap) water is stored
under pressure in a closed container, so that the amount of free gas is negligible. The release
of dissolved gas is negligible as well due to the time scale of the experiment (milliseconds)
[Zielke et al. 1989]. The experiment isolates vaporous cavitation in combination with fluid-
structure interaction. The way of generating transients leads to very steep wave fronts
(pressure rises in microseconds) and the vapour-liquid interfaces at column separations are,
in contrast to figure 3.13, believed to be nearly perpendicular to the pipe axis. Furthermore,
it is noted that the column separations in closed pipe systems are small.

The amount of cavitation depends on the initial pressure of the water. Cavitation
experiments were performed for five different initial pressures, and hence five levels of
cavitation severity. Furthermore, the impact velocity of the rod, 0.739 m/s, has been
increased to 1.122 m/s in one special experiment, in which, for the first time, Poisson
coupling induced cavitation has been observed. Poisson coupling induced cavitation is
cavitation caused by the radial expansion of the pipe wall such as associated with a
compressive stress wave, or, in other words, cavitation induced by a precursor wave.

Although, in theory, the cavitation phenomena are non-linear, all but one series of tests
were done with the same impact velocity of the rod (0.739 m/s).

Prior to all tests the pipe is filled with water. This is done with a garden hose connected
to the municipal water supply system and the pipe finally placed in a nearly vertical position.
When filled, the pipe is closed by fastening the end cap to its top. The water is slightly
pressurized with the aid of a hand pump connected by a rubber hose to a small ball-valve in
the end plug. A mallet is used to tap the pipe to encourage gas bubbles, possibly attached to
the pipe wall, to rise to the top of the pipe. Then the water is highly pressurized and the

1 see section 2.4
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bleed screw in the end cap is carefully opened to let the free gas, accumulated at the top end,
out. The procedure of tapping with a mallet at low pressure and opening the bleed screw at
high pressure is repeated several times, until just water comes out of the opened bleed screw.
The water is highly pressurized before the pipe is placed in its horizontal position in the
suspension wires, which are attached to the ceiling in such a way that the released rod almost
touches the pipe. The vertical line of each suspension wire is checked with the aid of a
theodolite, and, if necessary, adjusted by changing the position of the suspension points at
the ceiling. The initial pressure is obtained by depressurizing the water to the desired value.
This is done through the hand pump and a calibrated (with a dead-weight tester) manometer.
The valve is closed and the rubber hose of the hand pump is disconnected. The cables of the
instrumentation are connected. The horizontal position (v = 0) of the pipe is checked and
adjusted, by shortening or lengthening the suspension wires, with the aid of a surveying level
and a staff. The impact of the rod must be exactly in the centre of the pipe cross-section to
avoid the generation of flexural waves. Therefore the difference in vertical position between
the top of the pipe’s impact end and the top of the released rod’s end, which theoretically
should be R+e-R, = 4.6 mm, is checked with a dial gauge and adjusted, if necessary,
by changing the pipe’s vertical position via the lengths of the suspension wires. When the
pipe has finally got the right horizontal and vertical position, rod and pipe must be brought
in a direct line to ensure axial impact and hence to avoid, again, the occurrence of flexural
waves. This is done with the aid of a theodolite and small remote-controlled magnets which
bring and maintain the pipe in the right position. Rod and pipe are brought in one line prior
to each test run, whereas the pipe’s horizontal and vertical position are checked prior to a
each series of test runs. The rod is finally raised to a fixed position, the constant height of
which ensures one and the same impact velocity for all tests. The release of the rod is
remote-controlled and data acquisition is triggered just before impact by the signal from an
accelerometer (PCB305A05) attached to the rod. The recorded signals are directly transmitted
from the data acquisition system (Microlink) to a personal computer, where they are plotted
on the screen. Then it must be decided which part of the recorded signal will be stored on
hard disk. For most tests the first 20 to 30 ms after impact were stored.

In the cavitation experiments pressures were measured at all five locations along the pipe.
Axial strains were measured at all four locations along the pipe, at the top of the pipe cross-

section. At location B (figure 5.4) the axial strains were also measured at the bottom and at
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the sides of the pipe. Hoop and shear strains, which are not important if one is interested in

the axial and hoop stresses only, have not been measured. The axial stress and the hoop

stress are related to the pressure and the axial strain by

o, = Eg, +V§P

G.1)
P (5.2

The axial pipe-wall velocity was measured close to the impact end with the laser beam
focused on a small PVC block bolted to the pipe.

Difficulties

The static pressure of the water appeared to be highly dependent on the temperature. Due to
the daily changes of the temperature in the laboratory it was difficult to get test results for
one and the same static pressure. Three test runs were usually performed within ten minutes
of time, so that the three initial pressures were nearly the same (the ten minutes change of
the laboratory temperature is sufficiently small). The time elapsed between (de)pressurizing
the water and doing a next series of test runs was usually larger than ten minutes. The static
pressure, as measured with the manometer on the hand pump, is therefore not valid any
more. An accurate value for the initial pressure of the water is inferred from the dynamic
pressure measured at the remote end (PT5), knowing that the pressure remains at the vapour
pressure, which has at room temperature an almost constant value of 2 kPa (absolute, see
figure 3.6), as long as a column separation exists.

The signals recorded by the pressure transducer near to the impact end (PT1 in figure 5.4)
showed unrealistic pressure spikes and spurious oscillations. Signals of the other pressure
transducers did not show this behaviour. Replacing PT1 by an other pressure transducer led
to the same results. The violent signals recorded by PT1 are thought to be due to its location
very close to the edge of the column separation occurring at the impact end. The numerous
exploding and imploding cavitation bubbles in this particular area may lead to pressure
signals with a frequency spectrum up to 1 MHz [Oldenziel & Teijema 1976, p. 14]. The

pressure transducer’s natural frequency of 80 kHz (manufacturer’s value) is then too low.
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Graze and Horlacher [1983] and Simpson and Bergant [1991a] reported unrealistic pressure
spikes and oscillations for inductive and strain-gauge type pressure transducers and attributed
these to the fact that the natural frequency of the transducer was too low. Sayir and Hausler
[1991], who performed cavitation experiments in a 20 m long, 0.11 m diameter, closed tube
of transparent PVC, had also problems with a too low natural frequency of piezoelectric
transducers. Le Quang et al. [1989, p. 3] developed their own special transducers with a
natural frequency of 1.7 MHz to overcome this problem. In the present work all signals
recorded by PT1 in the cavitation experiments were filtered by a Shuman filter [Vliegenthart
1970], which smooths oscillations of the (sample-rate dependent) highest frequency. The
filtered signals are believed to represent reliably the low-frequency phenomena.

Another matter to be remarked in this context is that several pressure transducers got
damaged during the tests. One of them even got a hole in its diaphragm. Apparently the
local, nearby explosion and implosion of small cavitation bubbles is a too severe load for the
transducers [Chen & Israelachvili 1991].

5.3.2. One-elbow pipe system

The cavitation experiments in Vardy and Fan’s one-elbow system, see subsection 5.2.2, were
performed in April-May 1990. Now a needle-valve is mounted at the end plug, which
explains the different masses m; in the tables 5.2 and 5.3. Pressures were measured at all six
locations along the pipe. Axial strains were measured at all four positions around the pipe
cross-section at the locations A, D and E (see figure 5.5). The bending moment is related
to the axial strains by

El,

- W _ g0 ‘
M 2(R+e){sz &} (5.3)

where sz(l) and 82(3) are axial strains measured at opposite positions of the pipe

circumference as indicated in figure 5.4. The shear force cannot be inferred from the
measured axial strains. Axial pipe-wall velocities were measured near to the impact end, and,
via a mirror, at the remote end.

Of the recorded signals 30 to 40 ms was stored on hard disk.
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5.4. Review and conclusions

The laboratory set-ups and the measurements performed in three different pipe systems are
described. The upward sloping pipe system of Simpson [1986] is used for cavitation
experiments. Two closed pipe systems, a straight pipe and a system with one elbow, of
Vardy and Fan [1989, 1993] are used for fluid-structure interaction (FSI) experiments. These
pipe systems are also used for experiments in which the simultaneous occurrence of FSI and
cavitation is evident. The latter experiments, which are described in section 5.3, form a
major new element in the present study.

Experimental results were not shown in this chapter. They will be presented in the next
chapter together with predictions of the various models. The input data for the calculations
underlying the predictions are given in the tables 5.1, 5.2 and 5.3.

Three illustrative photographs are shown next.

Photo 5.1. Rod (left) and pipe (right) prior to impact.
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Photo 5.2. Detail of pipe, with from right to left: pressure transducer (PT2),

suspension wire, remote-controlled magnets and strain gauges (SGA).

Photo 5.3. Rigid 90-degrees elbow.
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6. EXPERIMENTAL AND THEORETICAL RESULTS

Experimental results obtained in the test rigs described in chapter 5 are compared with
predictions from the numerical models of the chapters 3 and 4. The object of the comparison
is 1) a validation of the theory underlying the predictions, and 2) a better understanding of
the physical phenomena involved. A novel aspect of the experiments is the inclusion of both
fluid-structure interaction (FSI) and cavitation. In particular the prediction and observation

of Poisson-coupling induced cavitation is a highlight of the present work.
6.1. Cavitation

The experiment of Simpson [1986] is used to validate the concentrated cavity model of
section 4.5 without the effects of FSI. It is important to know what can and what cannot be
expected of the concentrated cavity model, before it is incorporated in a more complex FSI
model.

Simpson’s test rig, a reservoir-pipe-valve system, is described in section 5.1. Simpson
performed experiments for eight different levels (1-8) of cavitation severity. Martin [1983]
infers the severity of cavitation from the duration, T, of the first, mostly largest, column
separation at the valve. He introduces the cavitation severity index § = T, cf/ (2L) , where
< is the pressure wave speed and L is the pipe length. Carmona et al. [1987] and Anderson
et al. [1991a] propose a somewhat different index. Numerical values for the cavitation
severity have not been used in the present work. Simpson increased the cavitation severity
by taking higher initial velocities of the liquid, see table 5.1.

Results, viz. gauge pressure-heads at the valve, for three cavitation severity levels 2,5
and 7) are presented in figure 6.1 as function of time, together with calculated results. Non-
cavitation results, representing the case of classical waterhammer, are shown in the upper
graph of figure 6.1; the results of measurement and calculation are in phase because the
measured wave speed of 1280 m/s has been taken as input to the calculations. The calculated
cavitation results were obtained on a conventional computational grid, not staggered, with
fixed mesh-spacings Az = 0.56 m and Ar = 0.44 ms, so that the number of elements N is

64. The decreasing amplitudes in the non-cavitation results measured give an idea of the
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Figure 6.1. Validation of the concentrated cavity model against experimental results of Simpson

[1986]. Gauge pressure-heads at valve for four different steady-state situations (table 5.1).
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amount of damping in the system; FSI seems to be of less importance, since only small
disturbing oscillations are observed in the recorded pressure traces.

The level 2 and level 5 graphs in figure 6.1 are typical for the concentrated cavity model;
the researchers mentioned in section 2.2 show similar graphs for other pipe systems. The
durations of the column separations and the magnitudes of the pressures following their
collapse are predicted reasonably accurate. The amplitudes are slightly over-predicted, but
this is also the case with the non-cavitation results. The calculated oscillations, already
discussed in subsection 4.5.3 and inherent in the concentrated cavity model, do not occur in
the measurements. The most severe case of cavitation, level 7 in the lower graph, shows a
too long existence of the computed column separation. The maximum pressure is predicted
accurately. Simpson [1986], who compared level 1, 3 and 8 measurements with predictions
from both the concentrated cavity model and his own interface model, gives a more detailed
analysis.

In conclusion it can be stated that the concentrated cavity model gives reasonable estimates
of the extreme pressures, considering its simplicity. The timing of the events becomes less
accurate when the cavitation becomes more severe. Non-physical oscillations of high, grid-
dependent frequency, disturb the calculated results, but the low-frequency results remain
valid.

6.2. Fluid-structure interaction (no cavitation)

Vardy and Fan [1989, 1993] have already shown that the present mathematical model for
FSI, in combination with a numerical method based on the MOC, leads to excellent
predictions of the transient behaviour of the pipe systems described in section 5.2 if
cavitation does not occur. Their results are not reproduced in this section; in section 6.3 non-
cavitation results are presented as a reference for the cavitation results. The physical
phenomena in the straight-pipe system are explained in terms of axial waves travelling up and
down the pipe. The individual wave fronts are clearly visible in the measured and calculated
pressure histories. The situation in the one-elbow system is more complex due to the

dispersive lateral waves.
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6.2.1. Straight pipe

Krause et al. [1977] and Barez et al. [1979] hit a closed liquid-filled straight pipe with a steel
sphere and use the axial strains measured near to the point of impact as input to their
calculations. Strong point of Vardy and Fan’s [1989] work is that, beside the geometrical and
material properties, the impact velocity of the rod is the only measured input to their
calculations. In fact, this is not necessary either, since the impact velocity is theoretically
equal to m , where k, is the elevation of the rod in raised position. However, a slight
deviation was observed [Fan 1989, p. 24] in practice.

LLLL LLLL
lg 7.4_4 7.44
[ ] f ] t <0
solid steel rod fluid-filled steel pipe
L L LL AL L L
>
[ <F ] a0 2P<0 | =0 | 0 <t < L/
R1 >
L1 S1
LLLL L L L L
—+> L/cp < t < 2L/cy
R2
LLLL ALl L
e
— = __<F R 2l/cy < t < 3L/cy
R3 R4 >
3 S3 L2 L1

Figure 6.2. Sequence of events in straight-pipe experiment (¢, = ;).




149

Figure 6.2 shows the sequence of events following the impact of the solid rod onto the
water-filled steel pipe. The radial expansion/contraction of the pipe is portrayed in an
exaggerated way. The impact generates two axial waves in the pipe: a pressure wave (L1)
in the liquid and a compressive stress wave (S1) in the pipe wall. One stress wave (R1)
propagates in the rod. When the stress wave, which travels 3.4 times faster than the pressure
wave, reaches the remote end of the pipe, the end cap is pushed away from the liquid so that
the pressure drops and a new pressure wave (L2) is generated. The reflected stress wave (S2)
arrives at the impact end before its counterpart (R2) in the rod does, since the length L, of
the rod is deliberately chosen such that L,/c, > L/¢,. Pipe and rod separate and a third
pressure wave (L3) is generated. The stress waves S3 and R3 stem from the separation, R4
is the reflection of R2.

The characteristic time scale of the experiment, L/¢,, is about 1 ms. Computed (with
present numerical model) and observed (repeat of Vardy and Fan’s measurements) pressures
for the first 10 ms after impact are shown in figure 6.3. These pressures can best be
understood from the calculated wave paths in the distance-time diagram of figure 6.4. Each
wave front is associated with a jump in the pressure. The arrivals of the wave fronts in the
diagram are easily recognized in the pressure traces of figure 6.3. The first pressure drop
recorded at the middle of the pipe is caused by a stress wave (S1) in the pipe wall. It travels
in front of the main pressure wave arriving at ¢ = 1.7 ms and is therefore called a precursor
wave. From the wave paths diagram it is seen that each incident wave leads to two reflected
waves: one in the pipe wall and one in the liquid. This is a general rule when fluid-structure

interaction is taking place at a pipe boundary.

6.2.2. One-elbow pipe system

Vardy and Fan [1993] conducted non-cavitation experiments in the one-elbow system of
subsection 5.2.2. The interactions between axial and lateral waves at the elbow make, in
combination with the dispersive character of the lateral waves, the situation significantly
more complex than in the straight-pipe experiment. An explanation of the physical
phenomena, such as in the previous subsection, has therefore not been attempted. Non-
cavitation results (repeat of Vardy and Fan’s measurements) are used as a reference for the

cavitation results in subsection 6.3.2.
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6.3. Fluid-structure interaction and cavitation

Results of the cavitation experiments in Vardy and Fan’s FSI test rig are compared with
output from the computer codes developed by the present author. The experiments are
described in the sections 5.2 and 5.3, the computer codes in section 4.9. Pressures, velocities
and strains, measured at various locations along the pipe(s) for several levels of cavitation

severity, are compared with calculated values. Non-cavitation results are given as a

reference.

The results presented in this section form a significant selection out of the large number

of experimental data obtained in about 160 successful test runs.
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6.3.1. Straight pipe

Kot and Youngdahl [1978ab] used an apparatus similar to the present straight pipe to study
transient cavitation. However, FSI was not fully included in their numerical model and
measured pipe velocities were input to their calculations. In the calculations presented in this
section the only measured input data are the impact velocity of the rod and the initial
pressure of the liquid. Both impact velocity and initial pressure can be adjusted by the
experimenter; together they define the cavitation severity. A numerical index for cavitation
severity, such as given in [Fan & Tijsseling 1992], may be useful but has not been applied
here.

The reproducibility of the experiments is good as regards the time of occurrence and the
amplitudes of the highest pressure peaks [Fan & Tijsseling 1992]. High-frequency oscillations
due to collapsing vapour bubbles are not reproducible.

The numerical results shown in this subsection were obtained with the SINGLECS-code,
which is based on the computational grid of figure 4.7. The number of elements used is 150,
so that Az = 0.03 mand A¢ = 0.11 ms. The ratio of wave speeds &,/ is taken exactly
equal to 17/5 through an adjustment of the mass densities of liquid and pipe wall (subsection
4.2.7). The input data are given in table 5.2. The densities p, and p, were changed into
pf =999 kg/m> and p; = 8039 kg/m’ leading to a pressure wave speed €7 = 1354 m/s
and an axial stress wave speed & = 4602 m/s in the simulations. The characteristic time
scales are L/¢; = I msand L/¢g = 3.4 ms.

Measured and calculated pressure histories for five different levels of cavitation severity
are shown in the figures 6.5, 6.6 and 6.7. Non-cavitation results are shown in the upper
frames. The cavitation severity increases, when the static pressure in the pipe, given in the
bottom right corner of each frame, decreases. The lowest static pressure in the experiments
performed is close to the atmospheric pressure of 0.1 MPa. The vapour pressure of water,
which is about 0.002 MPa at room temperature, is negligible with respect to the dynamic
pressures. In the following, cavitation at the pipe ends will be referred to as column
separation.

In figure 6.5 pressures near to the impact end are presented. A static pressure of 2 MPa
is sufficiently high to prevent cavitation; the dynamic pressures remain above the zero-line,

which is the bottom level for the calculated absolute pressures. The agreement between
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measurement and calculation is excellent, see also subsection 6.2.1. An initial pressure of
1.44 MPa, in combination with a rod impact velocity of 0.739 m/s, is too low to prevent
cavitation. From a comparison with the non-cavitation results in the upper frame, it is seen
that column separation occurs about 4.5 ms after impact. The pressure remains at the zero-
line until, about 6 ms after impact, the cavity collapses. High-frequency small-amplitude
oscillations are then observed in the measured signal, possibly due to local vapour bubbles
collapsing under the high pressure (see also section 5.3). Note that the time scale is
milliseconds and that the events are strongly dynamic. Since there is only a small amount of
cavitation, the P, = 1.44 MPa results resemble the non-cavitation results. The agreement
between measurement and calculation is still excellent. When the initial pressure is
1.07 MPa, the occurrence of cavitation is more evident. Nevertheless, the agreement between
numerical simulation and physical experiment is very good. In the Py = 0.70 MPa results the
recorded pressure traces have small negative values, when the calculation predicts column
separations. This must be a measuring error. A loose contact in the connection of the cables
to the pressure transducers is the most likely cause; these had to be checked regularly.
Simpson and Bergant [1991a] report a drift in the measured signals when moisture affected
their electrical equipment. The two bottom frames give the most severe cases of cavitation.
The agreement between measurement and calculation is amazingly good considering the
complexity of the phenomena and the simplicity of the cavitation model.

The pressures at the middle of the pipe are shown in figure 6.6. Due to a damaged
pressure transducer, Py = 1.44 MPa measurements are not available. For the same reason
the lower two graphs have different initial pressures from the corresponding graphs in the
figures 6.5 and 6.7. The two pressure spikes in the P, = 0.31 MPa results are unrealistic and
can be attributed, again, to a loose contact. The impact of the solid steel rod is an extremely
heavy load for the attached instrumentation. The agreement between experiment and
simulation goes from excellent for the non-cavitation case to satisfactory in the most severe
cavitation cases.

The pressures measured and calculated at the remote end (figure 6.7) are the most
interesting ones, since this is the place where the largest column separations occur. The non-
cavitation results are explained in subsection 6.2.1. For P, = 1.44 MPa the first pressure
drop, after about 1 ms, is too small to cause a column separation at the remote end; for this

case the first column separation occurs at the impact end. For the other four cases (i.e.
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P, = 1.07 MPa and lower) the first column separation is at the remote end. Their durations
increase with decreasing initial pressures. The pressure rises after the collapse of the first
column separations are predicted accurately by the present numerical model, because the
early events are dominated by the column separations at the pipe ends. Later on, when
distributed cavitation occurs in the interior of the pipe, the predictions become less accurate.
For example, in the P, = 0.33 MPa case a too high pressure peak is predicted about 14 ms
after impact. The most severe cavitation case in the lowest frame shows one high pressure
peak, all subsequent peaks are substantially lower. After 20 ms high peaks did not occur
either.

The overall agreement between the measured and calculated pressures is very good.
Numerical oscillations as observed in the simulation of Simpson’s experiment (figure 6.1)
are absent. This is thought to be due to the relatively large numerical time step of 0.11 ms
used in the calculations. Results obtained with the SINGALT-code, which is based on the
computational grid of figure 4.8, exhibited more high-frequency oscillations.

Tensile stresses

Davies et al. [1956] used an apparatus resembling the present one to determine the tensile
strength of water; transient pressures were generated by firing a bullet at a closed pipe’s end.
They included junction coupling effects in their analysis. Tensile stresses in liquids, already
described by Huygens [Rouse & Ince 1963, p. 80], are identified here as short-duration
negative pressures tearing the liquid before it separates from the solid end pieces. For
example, in the Py = 1.07 MPa case of figure 6.7 the pressure drop after 1 ms is initially
of the same magnitude as in the non-cavitation case. The absolute pressure then becomes
negative, so that a tensile stress exists in the liquid. The liquid sustains this tensile stress for
a short period of time, about 0.15 ms, before it begins to cavitate and the pressure becomes
equal to the vapour pressure. Large tensile stresses, up to 0.7 MPa, are observed only
preceding the first occurrence of cavitation and, in particular, of a column separation. Later
on the cavitation susceptibility [Oldenziel 1982a] is sufficiently high to prevent large tensile
stresses. Oldenziel [1982a], who performed quasi-static tests, finds for ordinary tap water
a tensile strength of 0.12 MPa. It should be remarked that column separation in the present

experiment can be compared to the breaking of a solid rod (this analogy was already
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described by Galilei [Rouse & Ince 1963, p. 57]). A more thorough treatise of the tensile
strength of liquids is given by Plesset [1969], Overton et al. [1984] and Trevena [1984].

Axial pipe wall velocities, measured and calculated near to the impact end, are shown in
figure 6.8. If the dynamic pressure at the impact end is above the vapour pressure, liquid and
end plug are in contact, so that the local liquid velocity is equal to the velocity of the plug.
Hence, the axial pipe wall velocities measured close to the end plug give an indirect
indication of the convective velocities in the liquid. From theory and experiment [Fan 1989,
p. 42; Vardy & Fan 1989] it is known that the response of an empty (air-filled) pipe to axial
rod impact consists of two rises in the velocity, one at = O ms and one at ¢ = 2L/¢, =
2 ms. After the second rise the pipe maintains a constant velocity. Here the velocity response
of the pipe is more whimsical due to the interaction with the pressure waves in the liquid.
The amount of cavitation affects the response of the pipe. Roughly one can say that the
frequency of the major oscillations tends to increase with the cavitation severity. The
magnitude of the second velocity rise, at 1 = 2 ms, increases with a decreasing initial
pressure, because a smaller pressure drop at the remote end (figure 6.7), at ¢ = 1 ms, makes
it easier for the end cap to move away from the liquid (see stress wave S1 and its reflection
S2 in figure 6.2). A higher second rise in velocity results also in a higher second rise in
pressure as can be seen in figure 6.5. The agreement between measurement and calculation
is of the same degree as in the pressure histories of the figures 6.5, 6.6 and 6.7.

The axial strain histories in the figures 6.9 and 6.10 demonstrate that the rod impact is
the most severe load for the pipe wall. A strong compressive stress wave (S1) travels up and
down the pipe as sketched in figure 6.2. When pipe and rod separate after about 2 ms, the
pipe has two free ends. In an empty (air-filled) pipe the strain then remains zero [Fan 1989,
p. 42], since the pipe ends are stress-free. In a liquid-filled pipe pressure waves and
collapsing column separations excite the pipe wall. The dynamic strains in the figures 6.9 and
6.10, which were measured at about 0.57 m from the impact end and the remote end
respectively, oscillate around the zero level. The magnitude of the first and largest strain
drop in figure 6.10 is, both in experiment and calculation, smaller than the corresponding
drop in figure 6.9. Except for the first positive strain peaks, the agreement between
measurements and calculations is good.

One observation to be mentioned concerns audible sound. The sound generated by the rod

impact is less dull when the amount of cavitation is larger.
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Poisson ing ind avitation

The compressive stress wave S1 in figure 6.2 is accompanied with a pressure drop in the

fluid due to the pipe wall’s radial expansion. Since the pressure drop travels with the speed

of the stress wave, it is called a precursor wave. See also subsection 1.1.4. The precursor
wave arrives at the middle of the pipe 0.5 ms after impact, as can be seen from figure 6.6;
the associated drop in pressure lasts for about 1 ms.

When a precursor wave causes cavitation, it is referred to as Poisson-coupling induced
cavitation. In the experiment considered sofar, the precursor wave causes a pressure drop
of 0.14 MPa. This drop is too small to induce cavitation in the cases shown in figure 6.6.
The cases in the lowest graphs of the figures 6.5 and 6.7 correspond to an initial pressure
of 0.12 MPa, or more accurately 0.125 MPa, so that, in theory, Poisson-coupling induced
cavitation should occur. However, there is no experimental evidence that it actually does.
Possibly the precursor pressure-drop is still too small to surmount the threshold of cavitation
inception.

To obtain a significant amount of Poisson-coupling induced cavitation the impact velocity
of the rod has been increased to 1.122 m/s, which is about 1.5 times the previous value. The
precursor-wave pressure-drop is then about 0.21 MPa. With a static initial pressure of 0.11
MPa, this pressure drop is sufficiently high to cause the desired cavitation by radial pipe
motion. Figure 6.11, where measured and calculated pressures at four locations along the
pipe are presented, is, to the author’s knowledge, the first record of Poisson-coupling
induced cavitation. In the upper graph the oscillations of the pressure during the first two
milliseconds indicate that there is cavitation right from the beginning, both in experiment and
calculation. The pressure wave L1 in figure 6.2 is entering a distributed cavitation zone
which has been generated by the precursor wave. This can be inferred from the middle two
graphs where the first pressure drop, which would have been 0.21 MPa in the non-cavitation
case, generates vapour bubbles either in the liquid or at the solid-liquid interface of the pipe
wall.

The collapse of the column separation at the remote end gives now a high pressure rise
of 3 MPa. The pressure histories at the impact end and at the remote end are similar to the
P, = 0.12 MPa case in the figures 6.5 and 6.7, respectively. As opposed to the non-linear
cavitation model, the experimental results seem to exhibit linearity with here a multiplication
factor 1.5. It is remarked that the first 8 ms the phenomena are dominated by column
separations at the pipe ends [Tijsseling & Fan 1992], so that distributed cavitation is of minor

! importance. The agreement between experiment and simulation is, again, amazingly good.

o
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Figure 6.11. Measured and calculated pressures in straight-pipe experiment with
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Poisson-coupling induced cavitation is predicted and observed, but its effects seem to be of

less importance.

6.3.2. One-elbow pipe system

The one-elbow system and the experiments performed are described in the subsections 5.2.2
and 5.3.2. The main difference with the straight-pipe system is in the occurrence of lateral
waves. These are generated at the elbow. The dispersive character of the lateral waves, the
interactions between axial and lateral waves at the elbow, and the formation of column
separations at the elbow, make the situation significantly more complex than in the straight-
pipe experiment. Consequently, the computations are more complex. Lateral wave
propagation is, with the present numerical model, more difficult to calculate than axial wave
propagation, as discussed in subsection 4.10.2. Furthermore, the simple elbow plus column-
separation model of the subsections 4.7.7 and 4.7.8 is new and has to be validated.

The numerical results presented in this subsection were obtained with the DOUBLE-code,
which is based on the computational grid of figure 4.8. Four independent grids, two for each
pipe (one for axial motion and one for lateral motion), are used in the calculations. The grids
are coupled at the elbow. The grid properties and p-adjustments, to avoid interpolations, are
given in table 6.1.

oy Apslp
N Az At |e)1eg ey le) j; A f/ 4 i
Py P/ Py lour
(m s ¢) -
) | @) O] (kg/n®) %)
axial motion 999 -0.0
138 | 0.033 | 7.1/5 | 17/5 - 40
of long pipe 8036 +0.6
axial motion 998 -0.1
41 0.033 | 7.1/5 | 17/5 - 40
of short pipe 8035 +0.6
lateral motion 1006 +0.7
138 | 0.033 | 7.1/5 - 13/5 40
of long pipe 7929 -0.7
lateral motion 1006 +0.7
. 41 0.033 | 7.1/5 - 13/5 40
of short pipe 7929 -0.7

Table 6.1. Properties of the four independent grids.
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The number of elements ratio N;/N, = 138/41 corresponds to the pipe-length ratio L, /L,
= 3.366. The adjustments in the mass densities are then less than 1%. The small numerical
time step, 1.42 ps, leads, with a simulation time of 20 ms, to huge output files. For practical
reasons, computed results were written to an output file every 40 (i5y7) time steps.

The geometrical and material properties of the elbow system are given in table 5.3. The
changed mass densities in table 6.1 lead to the following propagation speeds for the pressure,
the axial stress, the shear and the bending waves, respectively: ¢f = 1354 (1354) m/s,
¢} =4603 (4618) m/s, ¢ = 1770 (1768) m/s and c," = 4603 (4587) m/s, where the
numbers in brackets are the original values. The shear and bending waves are highly
dispersive; the ¢ and c,’ values represent the speeds of their leading edges. See also the
subsections 4.3.3 and 4.3.4. The main time-scales for the axial waves are: 7; =
(Ly+Ly))/¢p =43 ms, T, = L/ = 3.4 ms, T; = (L;+L,)/¢, = 1.3 ms, T, =
L,/¢p = 1ms, T5 = L, /¢ = Il msand Tg = L,/ ¢, = 0.3 ms. The mass of the elbow
(see subsection 5.2.2) is neglected, the masses of the end pieces are maintained in the
calculations of the axial motions.

The reproducibility of the experiments is examined in figure 6.12. Dynamic pressures
measured at the remote end in two successive experimental runs, the second run about five
minutes later than the first run, are compared. The non-cavitation experiment in the upper
graph shows excellent reproducibility. In the cavitation experiments for P, = 1.24 MPa and
Py = 0.87 MPa the reproducibility is less. This is due to a slightly increased static pressure
in the second run resulting from a small change in the laboratory temperature (see subsection
5.3.1). In the Py = 0.30 MPa experiment in the bottom graph, the initial static pressure in
the two runs is practically the same. The time of occurrence and the magnitude of the first
and highest pressure peak are highly reproducible. The subsequent pressure peaks are less
reproducible, possibly due to the large amount of cavitation. For the purpose of the present
work the level of reproducibility is considered to be sufficient.

The impact velocity of the rod in the elbow-system experiment is about 10% higher than
in the straight-pipe experiment. Accordingly, the initial jumps in pressure, velocity and strain
at the impact end are about 10% higher as well.

Measured and calculated pressures near to the impact end (PT1), close to the elbow (PT5)
and at the remote end (PT6) are shown in the figures 6.13, 6.14 and 6.15, respectively. The
non-cavitation results in the upper graphs are considered first. The second pressure rise at

the impact end (figure 6.13) is, when compared to the straight-pipe experiment (figure 6.5),
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Figure 6.12. Reproducibility of one-elbow pipe-system experiments; pressures at remote end.
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more rounded, because the axial motion of the long pipe is retarded at the elbow by the
lateral inertia forces in the short pipe. The pressure history close to the elbow (figure 6.14)
is the most interesting one, since the interactions between axial and lateral waves take place
here. It is difficult to make a correct wave paths diagram in the distance-time plane, because
of the dispersive character, and hence non-constant propagation speeds, of the lateral waves.
Therefore only a few early-time main effects are explained next.

The arrival of the compressive stress wave (S1) at the elbow, about 1 ms after impact,
causes a pressure drop of 0.7 MPa (figure 6.14, top frame) which is substantially lower than
in the straight-pipe experiment (figure 6.7). The pressure drop leads to an unbalanced force
in the short pipe, which makes the remote end move away from the liquid. This happens
about 1.3 ms after impact, as can be inferred from the first pressure drop in figure 6.15. The
low-pressure wave generated at the elbow arrives and reflects at the remote end 2.0 ms after
impact, giving a total pressure drop of about 1.7 MPa relative to the initial pressure (figure
6.15, top frame). It is this pressure drop that causes the first column separation when the
initial pressure is 1.24 MPa and 0.87 MPa. In the Py = 0.30 MPa case, the first column
separation occurs at the elbow. After 3.4 ms the initial pressure wave (1) generated by the
rod impact reaches the elbow. The pressure rise at the elbow causes a large unbalanced force
in the short pipe which makes, 3.7 ms after impact, the end cap move in the direction of the
fluid thereby increasing the pressure (figure 6.15, top frame). The original pressure wave
(L1), as transmitted at the elbow, arrives at ¢ = 4.4 ms at the remote end, thereby raising the
pressure over the initial value of 2 MPa (figure 6.15, top frame).

The agreement between experiment and numerical simulation is, in view of the complexity
of the phenomena, good in the non-cavitation case. The first 12 to 15 milliseconds in the
cavitation experiments are predicted rather accurately. Later on, the agreement between
experiment and prediction becomes much less. In particular, the Py = 0.30 MPa simulation
shows cavitation (P = 0 MPa) where the experiment does not. A possible reason is a too
simple model for column separation at the elbow. Another plausible reason is in the
generation of distributed cavitation by lateral pipe accelerations, which cannot be simulated
with the present one-dimensional model.

Axial pipe-wall velocities measured and calculated near to the impact end are shown in
figure 6.16. The shape of the velocity traces during the first four milliseconds corresponds
to the shape of the pressure traces in figure 6.13. This confirms the junction coupling
phenomenon: the axial motion of the pipe end generates pressure waves in the liquid. The

overall agreement between measurement and calculation is good, even for the cavitation
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experiments. The calculated, but not observed, peak after 12 ms in the Py = 0.30 MPa
experiment corresponds to the mismatch in time of occurrence and magnitude of the pressure
rise caused by the collapse of the first column separation at the impact end in figure 6.13.

Axial strains, measured and calculated at position A on the long pipe and at position E on
the short pipe (figure 5.5), are shown in the figures 6.17 and 6.18, respectively. The
calculated axial strains in the long pipe, figure 6.17, exhibit, in contrast to the axial strain
results in the straight-pipe experiment of figure 6.9, too large amplitudes. This is supposed
to have to do something with the lateral waves; the use of finer computational grids might
give some improvement. The frequency of the strain oscillations is calculated accurately, for
all levels of cavitation severity. The axial strains in the short pipe, figure 6.18, are, as can
be expected, of a higher frequency. The first drop, after 1.15 ms, is a consequence of the
first pressure drop at the elbow (figure 6.14), which makes the short pipe move in the
direction of the remote end through a compressive axial stress wave. The observed, but
surprisingly not calculated, highest strain peak in the bottom graph corresponds to the
collapse of the first column separation at the remote end (figure 6.15).

Calculated bending moments, according to formula (5.3), are validated against
measurements in the figures 6.19 and 6.20. The bending moments at position A on the long
pipe show to some extent the dispersive character of the lateral waves; small oscillations of
relatively high frequency are recorded before the arrival of the larger oscillations. Although
there is a qualitative agreement between predictions and observations, the calculated moments
are obviously too high. This is, again, attributed to a too coarse computational grid for the
lateral wave propagation. The number of elements in the present grid, see table 6.1, has been
taken of the same order of magnitude as in the straight-pipe simulation in order to get a
similar number of concentrated cavities in both numerical calculations. The bending moments
in the short pipe, figure 6.20, show a considerably better agreement between experiment and
calculation than those in the long pipe. A plausible explanation for this fact has not yet been
found. The axial impact of the rod onto the long pipe leads to a lateral impact of the short
pipe. The extreme bending moments in the short pipe are therefore larger, about a factor 2,
than in the long pipe. The arrival of the calculated bending moments is somewhat too early
in both the short and long pipe.

Due to the large number of waves, axial and lateral, travelling up and down the two pipes,

and due to the occurrence of cavitation at various locations in the system, a detailed analysis

and interpretation of the recorded signals has not been attempted.
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Figure 6.17. Measured and calculated axial strains in long pipe at 0.57 m from

impact end in one-elbow pipe-system experiment.
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Figure 6.18. Measured and calculated axial strains close to middle of short pipe in

one-elbow pipe-system experiment.
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from impact end in one-elbow pipe-system experiment.
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6.4. Review and conclusions

Experimental and theoretical results are compared in this chapter.

The concentrated cavity model of section 4.5 is validated against the experiments of
Simpson [1986] in which FSI effects are of minor importance. The agreement between
experiment and numerical simulation for three different levels of cavitation severity is typical
for the concentrated cavity model. The durations of the first column separations and the
magnitudes of the pressures following their collapse are predicted reasonably well. High-
frequency oscillations, not observed in the measurements, appear in the calculated results.
For practical purposes the validity of the model is sufficient. It is noted that in the
experiment considered free gas and gas release did not play a role.

The straight-pipe FSI experiment of Vardy and Fan [1989] is explained by means of an
illustrative sketch of the sequence of events in the apparatus. Measured and calculated
pressures are understood from a wave paths diagram in the distance-time plane.

The cavitation measurements and corresponding numerical simulations in Vardy and Fan’s
straight-pipe and one-elbow experimental apparatus are new. The reproducibility of the
experiments is sufficient for the present purpose. Measured and calculated pressures,
velocities and strains are presented for five different levels of cavitation severity in the
straight-pipe experiment and for three levels in the one-elbow pipe system experiment. Non-
cavitation results are given as a reference. The agreement between experiment and simulation
is good for all levels of cavitation severity in the straight-pipe experiment, whereas the
agreement is somewhat less satisfactory in the one-elbow pipe system experiment for the
more severe cavitation cases. In view of the complexity of the phenomena and the simplicity
of, in particular, the cavitation model, the theoretical results obtained are amazingly good.
In this respect it has to be remarked that Vardy and Fan’s apparatus is of high quality; it has
been designed and constructed carefully and accurately.

Poisson-coupling induced cavitation, that is cavitation generated by the radial expansion

of the pipe wall, was predicted and observed, for the first time, in one special experiment.






179

7. REVIEW AND CONCLUSIONS

The transient behaviour of liquid-filled pipe systems is studied, including the effects of
cavitation and fluid-structure interaction (FSI). An extensive review of literature on the
subject reveals that a thorough theoretical and experimental investigation into the occurrence
of cavitation combined with FSI does not exist.

One-dimensional governing equations are derived from the cross-sectional integration of
general three-dimensional equations for fluid dynamics and structural linear elasticity. The
FSI-mechanisms junction-, Poisson- and friction-coupling are taken into account. The
equations derived are valid for phenomena with long wavelength and hence low frequency.
Low-frequency dynamic behaviour is characterized by pipes which respond only in their
beam (rather than radial) modes and by fluid wavelengths which are large compared to the
pipe diameter. The equations for the liquid are extended waterhammer equations. The
equations for the axial motion of the pipe wall are extended beam equations; these are
membrane equations in which the radial inertia of pipe-wall and liquid (added mass) is
neglected. In radial direction a quasi-static relation between the fluid pressure and the hoop
stress has been assumed. The equations for the lateral motion of the pipe correspond to the
Timoshenko beam theory in which the liquid mass is incorporated. The relatively simple
equations for torsional motion are not used in this study, since pipe systems moving in one
plane only are considered. One-dimensional two-phase flow equations are given for regions
of distributed cavitation.

The basic equations, which are valid for thick-walled pipes, are formulated as a hyperbolic
set of fourteen first-order partial differential equations. These are solved by the method of
characteristics (MOC). The MOC is probably the best solution method for hyperbolic
problems with constant eigenvalues, that is for systems in which disturbances propagate with
constant speeds. This is the case for the coupled axial motion of liquid and pipe-wall. Almost
exact solutions can be found if friction is neglected and cavitation is absent. The dispersive
character of the lateral wave propagations make the MOC less suitable to solve the equations
for lateral motion. Very fine computational grids are required to get satisfying results.
Computational grids are introduced by which the use of interpolations can be avoided, so that

the inherent numerical damping does not occur. Cavitation is simulated by the concentrated
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cavity model, which - and that is new - is incorporated in the four-equation model describing
the coupled axial motion of liquid and pipe wall. The model used is valid for transient
vaporous cavitation; free gas and gas-release effects are not included. Column separations,
governed by both liquid and pipe motion, are modelled as boundary conditions.

The concentrated cavity model is validated against experiments of Simpson [1986]. The
results shown are typical for the concentrated cavity model: the duration of the first, mostly
largest, column separation and the maximum pressure following its collapse are predicted
accurately. The durations of subsequent column separations are predicted less accurately and
numerical oscillations, not existing in the measurements, appear in the calculated pressure
histories. Nevertheless, the accuracy of the model, which has been adopted for its simplicity
and its general applicability within standard waterhammer computer codes, is sufficient for
practical purposes.

The FSI-model, applied to thin-walled pipes, can be attributed to Wiggert et al. [1987a].
It has been extensively validated by Vardy and Fan [1989, 1993] for the case that cavitation
does not occur. However, Vardy and Fan’s FSI test rig is also suitable for cavitation tests.
These tests have been performed by Fan and the present author on a straight-pipe system and
on a system consisting of two straight pipes connected by a rigid 90-degrees elbow, for
several levels of cavitation severity. A representative selection of results obtained in about
160 successful test runs is presented in this report. In 135 test runs the combination of FSI
and cavitation was evident.

The predictions of the numerical model developed are in good agreement with the
observations for the straight-pipe experiment, whereas the agreement becomes less in the

; one-elbow-system experiment for the more severe cases of cavitation. The lesser agreement

‘ may be attributed to a too simple model for column separation at an elbow and to ignoring

‘ distributed cavitation induced by lateral pipe motions.

‘ Poisson-coupling induced cavitation, that is cavitation generated by the radial expansion
of the pipe wall, was predicted and observed, for the first time, in one special experiment.

It is noted that the pipes in the FSI experiments were relatively thick, R/e = 6.6, and
that, on the contrary, the numerical simulation was based on the assumption of thin-walled
pipes. Regarding the good results, it can be concluded that thin-walled FSI-theory may also
be applied to fairly thick pipes.

The good agreement between numerical simulation and measurement allows to explain the

O
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physical phenomena in the relatively simple experiments with the help of computer output.
The program developed is not (yet) suitable to predict dynamic pressures and stresses in
practical systems, because it is restricted to two straight pipes connected by either a straight
junction or an elbow junction. But many lessons can be learned from it. It makes clear what
is happening, when cavitation and pipe motion due to waterhammer occur simultaneously.

In conclusion it can be stated that the numerical model developed gives accurate
predictions of the physical phenomena in the two pipe systems considered. The simplicity of
the model and the satisfying validation tests may lead to more general applications.
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Appendix A. Two-dimensional stress distribution in a pressurized ring

In the present investigation the radial inertia forces in both liquid and pipe wall are neglected.
For the liquid this means that the pressure is uniform over the pipe cross-section, whereas
for the pipe a quasi-static stress distribution across the thickness of the pipe wall is assumed.
This particular stress distribution, given by Timoshenko & Goodier [1970, pp. 68-71] and
attributed to Lamé [1852], is integrated here over the pipe wall cross-section.

Consider the two-dimensional axially symmetric stress problem of a circular ring subjected
to an internal pressure P and an external pressure P, . The ring, shown in figure A.1, has

inner radius R and thickness e. The hoop and radial stresses have the form

o, = -4 1 2c (A.1)
r2
o, = % +2C (A.2)

where the constants of integration, A and C, are determined from the boundary conditions

arlr=R = _P(Z;t) orlr=R+e = _Poul (A3)
Pout Y
5 X 05 I’G(?
P pEEET p
out B : = =t
- =
2 e
Pout 4

Figure A.1. Definition sketch of stress distribution in a pressurized ring.
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It follows that

2 + 2 _
L. F® e)?(P,, - P) A
2(R+.;.e)e

R2P - (R+e)?P
( )" Pou (A.5)
2(R+%e)e

2C =

The stress solutions ¢, and o, are independent of Poisson’s ratio », so that they are valid for

both plane stress and plane strain situations. The sum oy + 0, equals 4C and is therefore
independent of r.

The value of o4 at r = R follows from (A.1), (A.4) and (A.5),

e
A R, R+e YR
6¢|r=R=—F+2c=;P- P Pout+2+£(P_Pom) (A.6)
R

The averaged value of o, defined by equation (3.24) and calculated with (A.1), (A.4) and
(A.5), is

R+e
3;=l o¢dr=—__A——+2C=£P—R+e
e 2 R(R+e) e

Pou A7)

The averaged value of ¢, defined by equation (3.41) and calculated with (A.1), (A.4) and
(A.5), is
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_ L R In(l+%)
a_¢=—1 21rra¢dr=-—l—RA +2C =
27r(R+5e)e R (R+5)e

. 1
R? (R+e)21n(1+-§) +(R+5e)e}P+ (A.8)

' 2e? R+1ey?

2 (R+e)’In(1+2) + (1+2)2(R+1e)e
R_ R R 2 } P,

1,42
(R+5e)

2e?

The averaged value of ¢, , defined by equation (3.42) and calculated with (A.2), (A.4) and

(A.5), is
R+e In(l+%)
3;=—1__.[21rrardr= R A+2C-=
27r(R+%e)e R (R+%)e

e 1
R (R+e)?In(1 +2) - (R+ze)e L p A9)

142
(R +5e)

2e?

& (R+e)?In(1 +2) - (1 +%)2(R+%e)e L p

* 1
2
(R +5e)

2e2

The sum of the averaged values of o and ¢, , defined by the equations (3.41) and (3.42),

and calculated with (A.1), (A.2), (A.4) and (A.5), is

= e R 1 r(1+3)
A [ 22r(oy+0par=ac= 2 p-R__® p

27(R+1le)e % e14+1e e 1,1¢

2 2R 2R
(A.10)
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For thin-walled pipes, e << R, the approximation In (1 +e/R) = e/R is made. Terms of
order e/R, and higher, are neglected with respect to unity. The averaged values of ogand g, ,

given by the expressions (A.7), (A.8) and (A.9), then become

5= Xw-r,) (A.11)
e

<l
I

- B p-Po) A.12)

?,:—;P-ip (A.13)
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Appendix B. Solution of the characteristic equation belonging to system (4.17)

In this appendix the characteristic equation of system (4.17)
|B-AA| =0 (B.1)

is solved. The matrices A and B are given by (4.19) and (4.20), so that

-

-\ g 0 0
1 -Xgle? -2» 0
B-M=[0 0 -\ -1/p ®-2)
R
0 -Noggro 1 Lz
€ p;C,
and
2
IB-AA| = -8 {1-(X)21(1-(2y2y + 2028 R
it Cr < p, Ee (B.3)
) .
= - gz . (A - (e +c? +2pf% Ec,‘-zc,z))\2 + ciPelr}
PCF € ¢
For » =0 the solution of the characteristic equation (B.1) is
M=Cr=¢, M=-cp=-¢, M=¢, N\N=-¢ (B.4)
with ¢, ¢t and c, defined by (4.15), (4.60) and (4.16), respectively, whereas for v # 0 the
solution is
1 1
N o= 4[5 {d7 (@ -4eP e}’
3 1
1g 2 4 2.2v7173
=-[= - -4cc
)\2 [2{(] (q F r)l}ll ®.5)
Ay =+ [% { qz + (‘14 ‘4CF2C;2)5}17
1 1
M= ~[5{q7+(g*-dc )P

with g% = ¢ + ¢ + 21:2&56',-2.
p, €
If the second-order Poisson-term (¥*-term) in g%and in ¢ is neglected, the solutions (B.4)
and (B.5) are equal.

Physically the characteristic roots A; and A\, represent the speed of pressure waves in the
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liquid, whilst the characteristic roots A; and A, represent the speed of stress waves in the pipe
wall. For most practical situations the pressure wave speed is smaller than the stress wave
speed: 0 < A < A,
For convenience the following notation is used for the four characteristic roots specified
by the formulae (B.5):
M =8, MN=-Cp, MN=E&, N=-¢ (B.6)
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Appendix C. Determination of the transformation matrix T according to condition (4.27)

In this appendix a regular transformation matrix T is determined that satisfies the condition
TB=ATA
with A and B given by (4.19) and (4.20) and A (diagonal) given by (4.25). Written out in

full, condition (C.1) reads

I
by
l3;
4y
A 00
0 A
) 0

which is equivalent with

Iip 8ty ~2vtp 4ty
Ly 8y —2vlyy +iyy
3y 8531 ~ 2wty +1yy

g 8ty ~2vigy +1yy

Ly b3
lya Ir;
Iy 33

l4r 43

~115/p,
~lslp,
~t33/p,

~tys/p,

Lia

QO = O

Mty

Mty

A3ty

Aty

g 0 0
0-2» O
0 0 -1/p
1 0
f! 0 0 0
ty
0 gic 0 0
lhy
; 0 0 1 0
34
R -1
0 prg== 0 =
) r
44 Ee plct2

R
M(E b, v0,82 50 ) N2
1 CF2 12 f Ee 14 1°13

v R
)‘2(c—g2-’22 *Pr8 g5 te) Mains
F

R
M(E by, 082 b)) At
3 o2 32t Pr8E— 13 33

R
)\(it +p.82 %4 ) Mgt
4CF242 8 2 t4a) Malas

These are sixteen equations for the sixteen unknowns ¢ ;j - Consider row i :

(C.1)

(C.2)
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ta = Nty
vy R
84y = )‘i_gz'tiz * Npp8 5 2 i
CF (C.4)
“20ty + ly = Nl
1
iy = -\ t;
Py i3 ’p,C,2 i4
or
[y, 10 o |
t
8 ‘)\ii 0 —)\,.pfg—— i Y
cF il [0 (C.5)
0 -2y =N 1 ts “lo
o o -1 N hef L0
| Py ptctz
With t; = (41,42, 435 £;4)7 system (C.5) can be written in matrix notation,
(B-NA)Tt, =0 (C.6)

If matrix (B - )\,-A)T is regular, equation (C.6) has only the trivial solution t; = 0, which
leads to a singular matrix T. To obtain a regular matrix T, (B - )\,.A)T has to be singular.
Hence

IB-NA| =0 .7

since |[M| = |MT| for every square matrix M.
Choosing A, according to equation (4.22), that is (B.5)~(B.6), condition (C.7) is fulfilled.
The equations in system (C.4) or (C.5) are now dependent, which means that for the
determination of t; one of them can be omitted. To avoid the trivial solution 0 = 0 when
» = 0, the second equation in (C.4) is omitted if i = 1 or i = 2. For the same reason the
fourth equation is omitted if i = 3 or i = 4.
For i = 1 and i = 2 the (eigen)vector t; is calculated as follows. From (C.4) or (C.5):
Nty v, =0
“20fp - Nty + 44 =0

1 1
-—ti3+)\l~ zti =

Pt PiCy

(C.8)
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which is equivalent with

1
txl = _.t12
1
A2
(1 _'2)t,-4 =2t
Cl
1
iz = )‘i—ztm
¢
Take #;, = \;, then:
til = 1
Ly = N

tiy = 20N - N?)
iy = 20NC2I(c R - N?)

(C.9)

(C.10)

For i = 3 and i = 4 the (eigen)vector t; is calculated as follows. From (C.4) or (C.5):

Nty 42 =0

vy R
8t - ki_gitiZ - )‘ipfg-E'Z’m =0

CF
_2Vti )\t,3+t4=0

which is equivalent with

1
ttl = 7\;['2
1 R
(= - )tz = g g lis
i CF
Iy = T(ti4_2"ti2)

Take #;, = A;, then:

pf15 NEc2l(c - N

-
—
1

pf——)\ Pl (c - )
ty=1- 2pff.e.>\,.2cﬁ/(cp2->\,?)

Lig =N

]

(C.11)

(C.12)

(C.13)

Substitution of the characteristic roots or eigenvalues A; from equation (4.22) in (C.10) for

i =1,2andin (C.13) for i = 3,4 yields
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li = ~l = Cp

- (-
! t

-~
iy
w
|

-~
nN
w
i

= 2,,@F{1_(2)2}—1

-~
Ny
'S
|
|

-
[})
PN
|

C.14
By = Iy~ ‘”f‘E‘—Cr {1 ‘(—)2} ' €19

v R -
t32= —t42=—pr—-CFc{1 6 }1
t
2
R ¢ -
Ly = tp =1+ 2pf%?ch{1—(FF)2} !
t
B34 = lyy = G,

The equations (C.14) give the components t;; of a transformation matrix T that satisfies
condition (C.1). Finally, the regularity of T is checked. From (C.14) it follows that |T| can

be written as

i ha Yy Iy
T 1y ~hia h3 ~ly (C.15)
I3y By BLy Iy,

L) —ly I3 -~
Addition and subtraction of rows leads to

ty 0 45 0
0 1, 0 14

(C.16)
0 6, 0 5,

L1 (talystay —t3plyaliy) + b3y (“lpt3t + 3t 30,)

= (Y1533 ~ t3831) (f2854 — 114033)

For the sake of simplicity it is assumed that ¢, < ¢, and ¢z < &,. With these assumptions
it can easily be shown (substitution of (C.14) in (C.16)) that |T| > 0. Hence T is regular.
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waterhammer with cavitation” van A.S. Tijsseling, Delft, 29 juni 1993

De snelheid waarmee de belangrijkste waterslaggolf zich voortplant kan wezenlijk
worden beinvloed door junctiekoppeling; Poissonkoppeling is hierbij van ondergeschikt
belang.

De methode der karakteristicken vervalt tot een gewone eindige-differentie-methode als
de roosterpunten buiten de karakteristieken vallen.

Het gascavitatiemodel van Kalkwijk en Kranenburg wordt instabiel bij grotere
gasfracties. De instabiliteit zal verdwijnen als, naar het voorbeeld van Geurst in het geval

van bellenmengsels, toegevoegde vloeistofmassa in rekening wordt gebracht.

J.P.Th. Kalkwijk & C. Kranenburg, 1971, ASCE J. Hydr. Div., 97, 1585-1605.
J.A. Geurst, 1985, Physica, 1294, 233-261.

Leidingsystemen voor drink- en rioolwater zijn in het algemeen beter op waterslag

doorgerekend dan leidingsystemen in de chemische industrie.

Het opnemen van historische aspecten in vakcolleges leidt niet alleen tot een beter zicht
op het betreffende vakgebied, maar verlevendigt bovendien het onderwijs.

Nut van lidwoord is minimaal.

Mede gezien het feit dat er nog steeds nieuwe diersoorten worden ontdekt, dient de
wettelijk vastgestelde lijst van beschermde uitheemse diersoorten vervangen te worden

door een lijst van onbeschermde diersoorten.

Het korten op de WAQ is niet rechtvaardig: WAO’ers hebben al de pech lichamelijk niet
volledig gezond te zijn; een financieel ongezonde situatie daar bovenop wordt teveel van
het slechte.

Uit een vergelijking van de misdaadcijfers van Australi€ met die van andere landen blijkt

niet dat crimineel gedrag erfelijk is.

De conditie van veel recreatievoetballers is zodanig dat op het veld de speelbal over de
meeste lucht beschikt.
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