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The authors consider pressure waves in pipes and they propose a
new model for reflections at reservoirs. Their study suggests that
local energy dissipation at a reservoir is nonnegligible and needs to
be included as an additional damping mechanism in water-hammer
models. My main concern is that the additional damping/dispersion
perceived by the authors cannot be attributable to reflection delays.
A second concern is that the new model is validated against exper-
imental data (pressures measured either at a closed valve or at a
distance 1,500D downstream of the reservoir, whereD is the pipe’s
diameter) in which all possible damping mechanisms are mixed. It
is impossible to distinguish between the different mechanisms
and—in addition—there is experimental error and uncertainty.
A better—or at least easier—approach would be to compare with
theory and/or computational fluid dynamics (CFD) to study the
physics of wave reflection at reservoirs. For this reason, numerical
simulations based on acoustics theory are presented here. The test
problem, which may serve as a benchmark, consists of a large res-
ervoir excited by and interacting with a pressure wavefront in a
pipe. As usual, it all boils down to scales of length (of pipe, of
reservoir, of wave, of wavefront, of turbulence, of diameter of pipe,
of penetration depth) and time (of wave return, of pressure increase,
of turbulence, of frequency of excitation). In particular, pressure
increase time (relative to D=a, where a is wave speed) is shown
to be an important parameter that has not been varied by the
authors.

Numerical Simulations

Vardy and Tijsseling (2020) coupled one-dimensional axial wave
equations in the pipe to one-dimensional spherical wave equations
in the reservoir and solved these using a special form of the method
of characteristics. They considered wave propagation in air where
real shocks can occur in pipes due to the self-steepening of wave-
fronts. For the present discussion, we simulated water and used
input data similar to those in the authors’ paper: D ¼ 20 mm,

a ¼ af ¼ 1,400 m=s, ρ ¼ 1,000 kg=m3, and L is sufficiently
large. To isolate the reflection process, we have a stationary initial
situation, no friction, and the same speed of sound in pipe and res-
ervoir. A suddenly applied flow at the remote end of the pipe (with
velocity V0 ¼ −1 m=s) creates a pressure wave of magnitude
1.4 MPa (according to Joukowsky) traveling toward the reservoir
(Fig. 1). This wave reflects at the interface between the pipe and the
reservoir, which is modeled in a manner that ensures continuity of
pressure and flowrate.

Figs. 2 and 3 show the results obtained for a nearly in-
stantaneous (step) pressure increase and velocity decrease arriving
at the reservoir [Figs. 2(a and b)]. As the authors conjecture, the
process of reflection of the wavefront at the reservoir is not instan-
taneous, but gradual. As a consequence, after reflection, the wave-
front is spread over a distance of about 60 mm—i.e., about 3D
[Figs. 2(c and d)]—where the nondelayed classical water-hammer
reflection is given as a reference. Fig. 3 shows the transient pres-
sures and velocities in the reservoir during the same period. At any
particular radial distance, the pressure increases suddenly and then
decays gradually; that is, the induced disturbance is pulse-like, not
a sustained increase, even though the rate of flow from the pipe
remains constant after reflection. The amplitude of the radially
propagating pulse decreases with increasing distance because of
spherical expansion. The interface between the pipe and the spheri-
cal domain experiences a pressure peak of 1.2 MPa, which almost
fully decays within a time span of 0.05 ms, after which initial res-
ervoir gauge pressure (zero herein) prevails. In the same time span,
the flow from the end of the pipe jumps to a velocity of 2 m=s,
which is the magnitude predicted by fundamental water-hammer
theory. During the 0.05-ms interval, the total distance moved by
fluid particles traveling at 2 m=s is 0.1 mm, which is about
0.5% of the pipe diameter. This is more than a thousand times
shorter than the jet lengths discussed by the authors.

Figs. 4 and 5 show the corresponding results for a steep but non-
instantaneous (i.e., ramp-like) initial wavefront. For clarity, the
ramp is a linear increase in pressure. The increase time is 2D=a
so the ramp length is 2D ¼ 40 mm [Figs. 4(a and b)]. After reflec-
tion, the ramp length has increased to about 80 mm—i.e., to about
4D [Figs. 4(c and d)]. The consequences of the delays induced by
the reflection process are strongest at the beginning and end of the
reflection sequence. The maximum steepness of the reflected ramp
(roughly midway along its length in this instance) does not differ
greatly from the steepness of the incident ramp. Fig. 5 shows the
decaying transient pressures and velocities in the reservoir. It is
seen that the pressure peak is less than half the peak produced by
the step wavefront. The pressure near the pipe entrance is sustained
above reservoir pressure (zero herein) for a longer period (about
0.1 ms) than for the step wavefront, but at a much lower pressure.
This behavior is very well known in acoustic circles. It is a mani-
festation of the fact that the amplitudes of the disturbances in the
external flow field (i.e., the reservoir) depend (to the first order) on
rates of change of flows from the pipe, not on their amplitudes.

Figs. 6 and 7 show the results obtained for a less steep ramp
wavefront, with an increase time of 10D=a such that the ramp

Fig. 1. Schematic of the reservoir-pipe-valve system. (Reprinted from
the original paper, © ASCE.)
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Fig. 2. Step wavefront. Pressures and velocities in the pipe at different times (with 0.015-ms interval) for (a) incident pressure wave; (b) incident
velocity wave; (c) pressure wave reflected at reservoir; and (d) velocity wave reflected at reservoir (dotted curve = classical water-hammer).

Fig. 3. Step wavefront. (a) Pressures; and (b) velocities at pipe entrance; and at distances D, 2D, 3D, and 4D into the reservoir.
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Fig. 4.Rampwavefront (2D). Pressures and velocities in the pipe at different times (with 0.015 ms interval) for (a) incident pressure wave; (b) incident
velocity wave; (c) pressure wave reflected at reservoir; and (d) velocity wave reflected at reservoir.

Fig. 5. Ramp wavefront (2D). (a) Pressures; and (b) velocities at pipe entrance; and at distances D, 2D, 3D, and 4D into the reservoir.
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Fig. 6. Ramp wavefront (10D). Pressures and velocities in the pipe at different times (with 0.073 ms interval) for (a) incident pressure wave; (b) in-
cident velocity wave; (c) pressure wave reflected at reservoir; and (d) velocity wave reflected at reservoir.

Fig. 7. Ramp wavefront (10D). (a) Pressures; and (b) velocities at pipe entrance; and at distances D, 2D, 3D, and 4D into the reservoir.
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length is 10D ¼ 200 mm. Fig. 6 shows that the wave’s ramp length
(i.e. steepness) is almost unaffected by the reflection from the res-
ervoir: it remains about 200 mm. That is, in common with the
shorter ramp, the delays in the reflection process have greatest in-
fluence at the toe and heel of the ramp and very little influence in
the intermediate region. Accordingly, they cannot be the cause of
the additional wavefront distortion that the authors are attempting
to explain in the original paper. Fig. 7 shows the decaying transient
pressures and velocities in the reservoir. The velocity increases ap-
proximately linearly to a sustained maximum—i.e., it mirrors the
shape of the incident wavefront. In contrast, the pressure increases
to a maximum that remains almost constant for most of the duration
of the pulse. To first-order accuracy, it is responding to acceleration,
not velocity; that is why the maximum is so much smaller than for
the shorter ramp and it is also why it decays to zero after the re-
flection has occurred.

All of the cases illustrated here are for wavefronts that are
much steeper than those that reach the reservoir in the examples
the authors consider (because of experimental valve closure times).
Accordingly, the sustained increases in pressure that will exist at
the pipe entrance in their cases will be even smaller than those in
Fig. 7. This has important implications for the model of the jet that
they propose as well as for the reflection process itself.

Jet Model

Although not strictly necessary for the purposes of the main thrust
of this contribution to the discussion, the discusser would like to
raise a few points about the authors’ description of the behavior of
jets. The jet is assumed to develop after the reservoir acoustics—as
described previously—has died out (i.e., after 0.1 to 0.2 ms). It is
important to consider things within the context of the available time
scales. One time scale is related to L=a; this is the one that is of
relevance to water-hammer effects. Another time scale is related to
D=a; this is the one that is of relevance to wave reflections at boun-
daries. A third is the pressure increase time.

The most common way to model a reservoir is to treat it as a
location of constant pressure exactly at the entrance of the pipe.
Sometimes the reflection point of constant pressure is taken some-
where inside the reservoir, thus effectively extending the pipe
length L by δL to account for added mass and/or elasticity effects.
The authors have elaborated on the latter.

To ease the discussion and focus on the outflow at the reservoir,
all possible friction and damping mechanisms are ignored in the
following description. Instantaneous closure of the valve in a
reservoir-pipe-valve system yields (at time L=a, where a is the
wave speed in the pipe) a stagnant compressed liquid column at
Joukowsky pressure. If the pressure at the pipe entrance is regarded
as constant (at the hydrostatic reservoir pressure), then for the
next 2L=a period there will be a convective counterflow from
the pipe into the reservoir with velocity V0 (the initial flow velocity
before valve closure). Following the authors’ model, this will pro-
duce a jet of maximum length l ¼ 2LV0=a (for the special case
that the jet has the shape of the pipe). For the jet to be slender,
l=D ¼ 2MaL=D should not be too small, with Ma ¼ V0=a.
For the authors’ data in Table 1 of the original paper, l=D has
the value 9 and one might assume the forming of a jet. However,
for Bergant’s experiment (Table 3 of the original paper) l=D is
smaller than 1 and it is difficult to regard this as the aspect ratio
of a conventional jet.

If the liquid in the reservoir is treated as incompressible
(because of its free surface) (the wave speed in the reservoir
af ¼ ∞) and the connected pipeline is long enough, then a con-
vective jet of conical shape may be assumed (Fig. 2 of the original
paper), the (front) velocity of which decreases with time and dis-
tance into the reservoir. The conjectured jet is to be regarded as
a rigid column, having mass but no elasticity. However, in the dis-
cusser’s model, there is no net force for long-enough time to drive
the jet because the pressure pulse at the pipe entrance has died out.
Such a net force must come from convective—as opposed to
acoustic—mechanisms, that is, pressures scaling with ρV2 instead
of ρaV. Convective pressures are ignored in the authors’ model,
which is understood to hold for a sudden expansion and, if the
jet is reversible, also for a sudden contraction, although jet reversal
(different in- and outflow behavior, i.e., hysteresis), vena contracta,
and kinetic and entrance (or exit) losses [quasi-steady ð1þ KÞV2=g
head term] have not been considered. Like the maximum jet length
l, the ignored convective terms in the water-hammer equations
scale with Ma, and they will possibly have a similar (to the pro-
posed end effect), if not larger, influence on the pressure waves
in the pipe.

Conclusions

The discusser agrees with the authors that there is not a well-
defined reflection point or area.

The reservoir is inherently incapable of sustaining elevated pres-
sures at the pipe entrance for anywhere near as long as the authors’
model requires.

After reflection, a step wavefront is spread over a distance of
only about three pipe diameters. Other wavefronts will increase
in length by about three pipe diameters, but this will usually be
undetectable in comparison with their lengths.

The amplitude of the resulting pressure pulse radiating into the
reservoir is negligible after traveling, say, 10 pipe diameters into the
reservoir.

The authors’ conjectured influence of a jet on the reflection pro-
cess is inconsistent with physics because its time scales are much
greater than those involved in the true reflection process of pressure
wavefronts. A jet could have time to develop when a pipeline is
sufficiently long, but it would do so long after the reflection has
occurred.
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