
GPU Accelerated Strong and Branching
Bisimilarity Checking

Anton Wijs1,2,�

1 RWTH Aachen University, Germany
2 Eindhoven University of Technology, The Netherlands

Abstract. Bisimilarity checking is an important operation to perform
explicit-state model checking when the state space of a model under ver-
ification has already been generated. It can be applied in various ways:
reduction of a state space w.r.t. a particular flavour of bisimilarity, or
checking that two given state spaces are bisimilar. Bisimilarity checking
is a computationally intensive task, and over the years, several algo-
rithms have been presented, both sequential, i.e. single-threaded, and
parallel, the latter either relying on shared memory or message-passing.
In this work, we first present a novel way to check strong bisimilarity
on general-purpose graphics processing units (GPUs), and show experi-
mentally that an implementation of it for CUDA-enabled GPUs is com-
petitive with other parallel techniques that run either on a GPU or use
message-passing on a multi-core system. Building on this, we propose,
to the best of our knowledge, the first many-core branching bisimilarity
checking algorithm, an implementation of which shows speedups compa-
rable to our strong bisimilarity checking approach.

1 Introduction

Model checking [2] is a formal verification technique to ensure that a model
satisfies desired functional properties. There are essentially two ways to perform
it; on-the-fly, which means that properties are being checked while the model is
being analysed, i.e. while its state space is explored, and offline, in which first
the state space is fully generated and subsequently properties are checked on
it. For the latter case, it is desirable to be able to compare and minimise state
spaces, to allow for faster property checking. In action-based model checking,
Labelled Transition Systems (Ltss) are often used to formalise state spaces, and
(some flavour of) bisimilarity is used to compare and minimise them. Checking
bisimilarity of Ltss is a computationally intensive operation, and over the years,
several algorithms have been proposed, e.g. [17,20,15,19].

Graphics Processing Units (GPUs) have been used in recent years to dra-
matically speed up computations. For model checking, algorithms have been
� This work was sponsored by the NWO Exacte Wetenschappen, EW (NWO Physical

Sciences Division) for the use of supercomputer facilities, with financial support
from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands
Organisation for Scientific Research, NWO).

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 368–383, 2015.
DOI: 10.1007/978-3-662-46680-3_29

GPU Accelerated Strong and Branching Bisimilarity Checking 369

presented to use GPUs for several critical operations, such as on-the-fly state
space exploration [4,23], offline property checking [3,8,9,22], counterexample gen-
eration [27], state space decomposition [24], but strong bisimilarity checking has
not received much attention, and branching bisimilarity [14] has received none.
In this paper, we propose new algorithms for these operations, in the latter case
only assuming that the Ltss do not contain cycles of internal behaviour.

Structure of the paper. In Section 2, we present the basic notions used in this
paper. Section 3 contains a discussion of the typical GPU setting, and explains
how to encode the required input. In Section 4, we present our new algorithms,
and Section 5 contains our experimental results. Finally, related work is discussed
in Section 6, and Conclusions are drawn in Section 7.

2 Preliminaries

In this section, we discuss the basic notions involved to understand the problem,
namely labelled transition systems, strong and branching bisimilarity, and the
existing basic approaches to check strong and branching bisimilarity.

Labelled Transition Systems. We use Labelled Transition Systems (Ltss) to rep-
resent the semantics of finite-state systems. They are action-based descriptions,
indicating how a system can change state by performing particular actions. An
Lts G is a tuple 〈S,A, T , s〉, where S is a (finite) set of states, A is a set of
actions or labels (including the invisible action τ), T ⊆ S ×A×S is a transition
relation, and s ∈ S is the initial state. Actions in A are denoted by a, b, c, etc.
We use s1

a−→ s2 to denote 〈s1, a, s2〉 ∈ T . If s1
a−→ s2, this means that in G, an

action a can be performed in state s1, leading to state s2. With T (s), we refer
to the set of states that can be reached by following a single outgoing transition
of s. Finally, the special action τ is used to denote internal behaviour of the
system, and s1 =⇒ s2 indicates that it is possible to move from s1 to s2 via 0 or
more τ -transition, i.e. =⇒ is the reflexive, transitive closure of τ−→.
Strong Bisimilarity. The first equivalence relation between Ltss that we consider
in this paper is strong bisimilarity.

Definition 1 (Strong Bisimulation). A binary relation R ⊆ S×S is a strong
bisimulation if R is symmetric and s R t implies that if s a−→ s′ then t

a−→ t′ with
s′R t′.

Two states s and t are bisimilar, denoted by s ↔ t, if there is a strong
bisimulation relation R such that s R t.

In this paper, when trying to construct a bisimulation relation, we are always
interested in the largest bisimulation. Strong bisimilarity is closed under arbi-
trary union, so this largest relation is the combination of all relations that can
be constructed.

The problem of checking strong bisimilarity for Ltss when |A| = 1 corre-
sponds with the single function coarsest partition problem. The most widely
known algorithms to solve this problem is by Paige & Tarjan (PT) [20] and

370 A. Wijs

by Kanellakis & Smolka (KS) [17], and both can be extended for the multiple
functions coarsest partition problem, to handle Ltss with multiple actions.

A bisimilarity checking algorithm can be used both to minimise an Lts, by
reducing all bisimilar states to a single state in the output Lts, and to compare
two Ltss G1 = 〈S1,A1, T1, s1〉, G2 = 〈S2,A2, T2, s2〉. The latter boils down to
checking whether s1 and s2 end up being bisimilar after checking bisimilarity
on the combined Lts 〈S1 ∪S2,A1 ∪A2, T1 ∪ T2, s1〉 (for convenience, we assume
that S1 ∩ S2 = ∅).

We proceed with explaining the basic mechanism to check bisimilarity that
we use in the remainder of this paper, which is partition refinement. In fact, this
mechanism is the so-called “naive” reduction algorithm1 mentioned by Kanellakis
& Smolka [17], since it has been shown in the past to be suitable for paralleli-
sation and, unlike PT, it can be extended straightforwardly for branching and
weak bisimilarity [19]. We further motivate the use of this mechanism in Section 3
after the explanation of the GPU basics.

A partition of S is a set of m disjoint state sets called blocks Bi (1 ≤ i ≤ m)
such that

⋃
1≤i≤m Bi = S. A partition refinement algorithm takes as input a

partition, analyses it, and produces as output a refinement of that partition. A
partition π′ is a refinement of π iff every block of π′ is contained in a block of π.

The idea behind using partition refinement for bisimilarity checking is that
initially, a partition π consisting of a single block B = S is defined, which
is then further refined on the criterion whether states in the same block can
be distinguished w.r.t. π until no further refining can be done. The resulting
partition then represents a bisimulation relation: two states s, t are bisimilar iff
they are in the same block.

The problem of checking strong bisimilarity of Ltss with multiple transition
labels, i.e. the multi-function coarsest partition problem, can now be formalised
as follows:

Definition 2 (Strong Bisimilarity Checking Problem). Given an Lts G =
〈S,A, T , s〉 and an initial partition π0 = {S}, find a partition π such that:
1. ∀B ∈ π, s, t ∈ B, a ∈ A, B′ ∈ π. (∃s′ ∈ B′.s

a−→ s′ ⇐⇒ ∃t′ ∈ B′.t
a−→ t′);

2. No partition π′ �= π can be constructed which refines π and satisfies 1.

Blom et al. [5,6,7] and Orzan [19] define the notion of a signature of a state,
to reason about condition 1 in Def. 2. The signature sigπ(s) of a state s in a
partition π encodes which transitions can be taken from s and to which blocks
in π they lead. In the following definition of sigπ(s), we interpret a partition π
as a function π : S → N:

sigπ(s) = {(a, π(s′)) | s a−→ s′}

In each iteration of a partition refinement algorithm, we can now check for each
block B ∈ π and each two states s, t ∈ B whether sigπ(s) = sigπ(t). If so, then

1 In [17], some optimisations on this algorithm are presented. How well these are
applicable in a GPU setting remains to be investigated.

GPU Accelerated Strong and Branching Bisimilarity Checking 371

Algorithm 1. Partition refinement with signatures
Require: G = 〈S,A, T , s〉, π = {S}

stable ← false
2: while ¬stable do

for all B ∈ π do
4: π′ ← (π \ {B}) ∪ {B1, . . . , Bm},

with
⋃

1≤i≤m Bi = B ∧ ∀1 ≤ i, j ≤ m.∀s ∈ Bi, t ∈ Bj .(i = j ⇐⇒ sigπ(s) = sigπ(t))

6: if π = π′ then
π ← π′

8: else
stable ← true

they should remain in the same block; if not, then B needs to be split. See Alg. 1
for this procedure.

Branching Bisimilarity. The second relation we consider is branching bisimi-
larity [14]. It is sensitive to internal behaviour while preserving the branching
structure of an Lts, meaning that it preserves the potential to perform actions,
even when internal behaviour is involved. It has several nice properties, among
which are the facts that temporal logics such as the Hennessy-Milner logic with
an until operator and CTL∗-X characterise it [12].

Definition 3 (Branching Bisimulation). A binary relation R ⊆ S × S is a
branching bisimulation if R is symmetric and s R t implies that if s a−→ s′ then
– either a = τ with s′R t;
– or t=⇒ t̂

a−→ t′ with s R t̂ and s′R t′.

Two states s and t are branching bisimilar, denoted by s ↔b t, if there is a
branching bisimulation R such that s R t. Again, as in the case for strong bisim-
ilarity, we are interested in the largest branching bisimulation when checking
branching bisimilarity in an Lts.

A well-known property of branching bisimilarity is called stuttering, which
plays an important role when constructing an algorithm to check branching
bisimilarity of Ltss:

Definition 4 (Stuttering [14]). Let R be the largest branching bisimulation
relating states in G =〈S,A, T , s〉. If s τ−→ s1

τ−→ s2
τ−→ · · · τ−→ sn

τ−→ s′ (n ≥ 0) is
a path such that there is a t ∈ S with s R t and s′R t, then for all 1 ≤ i ≤ n,
we have si R t.

Def. 4 defines the notion of an inert τ-path, or inert path, in which all inter-
mediate states are branching bisimilar with each other. Alg. 1 can in principle be
used directly for checking branching bisimilarity if we redefine sigπ(s) as sigbπ(s),
where s

π
=⇒ ŝ expresses that there exists a τ -path between states s, ŝ which is

inert w.r.t. π:

sigbπ(s) = {(a, π(s′)) | ∃ŝ ∈ π(s).s
π
=⇒ ŝ

a−→ s′ ∧ (a �= τ ∨ π(s) �= π(s′))}

In the case of branching bisimilarity, τ -transitions are either inert (or silent)
or not, depending on whether following the transitions results in losing potential

372 A. Wijs

behaviour. This defines whether the source and target states of a τ -transition
are branching bisimilar or not. Consider the Lts shown in Fig. 2. From s1, a τ -
transition to s7 can be done, in which we have a c-loop, and a τ -transition to state
s3. The latter transition is inert, since also in s3, a τ -transition can be done to a
state, s6, which is branching bisimilar to s7. In other words, s3 can simulate the
behaviour of s1. However, in line with the stuttering property, inertness applies
to transitive closures of τ -transitions. In the example, also s0

s−→1 is inert, since
the a-transition from s0 can be simulated by s3. Hence, we have s0 ↔b s1 ↔b s3.

The definition of sigbπ(s) actually refers to π-inertness which means that both
the source and target state of a τ -transition are in the same block in π. The
added complication when checking branching bisimilarity w.r.t. strong is hence
that closures of τ -transitions that are π-inert need to be taken into account.
Because of this, the problem of checking branching bisimilarity is also known as
the multiple functions coarsest partition with stuttering problem.

In the algorithm by Browne et al. [10] for checking stuttering equivalence,
in every iteration, it needs to be checked whether for two states s and t the
behaviour reachable via inert paths is equivalent, in order to establish that s
and t are equivalent. This means that for each pair of possibly equivalent states,
inert paths need to be reexplored. The complexity of the algorithm is O(|S|5).

In the algorithm by Groote & Vaandrager (GV) [15], reexploration of inert
paths is avoided, and its complexity is O(|S| · (|S|+ |T |)). There, a pair of blocks
(B,B′) must be identified such that there both is a state in B with a transition
to B′, and there is no bottom state in B with a transition to B′. A state in B is
a bottom state when it has no transition to a state in B. If such a pair of blocks
can be found, then B must be split. This splitting criterion is directly based on
the previously mentioned observation that a τ -path is inert iff it leads to a state
which can simulate all behaviour of the intermediate states. Because of this, GV
requires that no τ -cycles are present. This is not an important restriction, since
compressing τ -cycles into individual states can be done in O(|T |) [1].

After the next section, explaining the basics of GPUs, we return to check-
ing bisimilarity, focussing on existing approaches for many-core settings, and
motivating our approach.

3 GPU Basics

In this paper, we focus on NVIDIA GPU architectures and the Compute Unified
Device Architecture (CUDA) interface. However, our algorithms can be straight-
forwardly applied to any architecture with massive hardware multithreading and
the SIMT (Single Instruction Multiple Threads) model.

CUDA is NVIDIA’s interface to program GPUs. It extends C and Fortran.
We use the C extension. CUDA includes special declarations to explicitly place
variables in the various types of memory (see Figure 1), predefined keywords
to refer to the IDs of individual threads and blocks of threads, synchronisation
statements, a run time API for memory management, and statements to define

GPU Accelerated Strong and Branching Bisimilarity Checking 373

and launch GPU functions, known as kernels. In this section we give a brief
overview of CUDA. More details can be found in, for instance, [9,23].

CUDA Programming Model. A CUDA program consists of a host program run-
ning on the Central Processing Unit (CPU) and a (collection of) CUDA kernels.
Kernels describe the parallel parts of the program and are executed many times
in parallel by different threads on the GPU device. They are launched from the
host. Often at most one kernel can be launched at a time, but there are also
GPUs that allow running multiple different kernels concurrently. When launch-
ing a kernel, the number of threads that should execute it needs to be specified.
All those threads execute the same kernel, i.e. code. Each thread is executed by a
streaming processor (SP), see Figure 1. In general, GPU threads are grouped in
blocks of a predefined size, usually a power of two. A block of threads is assigned
to a multiprocessor.

Multiprocessor 1
SP SP

SP SP

SP SP

SP SP

Shared memory

Multiprocessor N

SP SP

SP SP

SP SP

SP SP

Shared memory

· · · · · · · · ·· · · · · ·

L1 & L2 cache

Global memory

128B 128B

Fig. 1. Hardware model of CUDA GPUs

CUDA Memory Model. Threads
have access to different kinds of
memory. Each thread has a number
of on-chip registers that allow fast
access. Furthermore, threads within
a block can together use the shared
memory of a multiprocessor, which
is also on-chip and fast. Finally,
all blocks have access to the global
memory which is large (currently up
to 12 GB), but slow, since it is off-
chip. Two caches called L1 and L2
are used to cache data read from the
global memory. The host has read
and write access to the global mem-
ory, which allows it to be used for communication between the host and the
kernel.

GPU Architecture. A GPU contains a set of streaming multiprocessors (SMs),
and each of those contains a set of SPs. The NVIDIA Kepler K20m, which we
used for our experiments, has 13 SMs, each having 192 SPs, which is in total
2496 SPs. Furthermore, it has 5 GB global memory.

CUDA Execution Model. Threads are executed using the SIMT model. This
means that each thread is executed independently with its own instruction ad-
dress and local state (registers and local memory), but their execution is organ-
ised in groups of 32 called warps. The threads in a warp execute instructions in
lock-step, i.e. they share a program counter. If the memory accesses of threads
in a warp can be grouped together physically, i.e. if the accesses are coalesced,
then the data can be obtained using a single fetch, which greatly improves the
runtime compared to fetching physically separate data. When checking bisimi-
larity on state spaces, though, the required access to transitions is expected to be

374 A. Wijs

0 2 4 4 7 7 7 8 9offsets
τ a τ τ a b τ c cTlbls
s1 s2 s3 s7 s4 s5 s6 s6 s7Ttgts

s0

s1 s2

s3 s7

s4 s5 s6

τ a

τ τ

a
b

τ
c

c

Fig. 2. An example Lts and its encoding in offsets, Tlbls and Ttgts arrays

irregular. This poses the challenge of reducing the number of irregular memory
accesses despite of that fact.

Lts Representation. In order to check bisimilarity of Ltss on a GPU, we first
need to find a suitable encoding of them to store the input data in the global
memory. For this, we use a representation similar to those used to compactly
describe sparse graphs. Fig. 2 shows an example of such an encoding of the Lts
on the right. Three arrays are used to store the information. The first one, offsets ,
holds for every state i the start and end indices of its outgoing transitions in the
other two arrays at offsets [i] and offsets [i + 1], respectively. Arrays Tlbls and
Ttgts provide a list of the outgoing transitions, in particular their action labels
and target states, respectively. In practice, actions are encoded by an integer,
with τ = 0, a = 1, etc. To give an example, the transitions of s1 can be found
from offsets [1] up to offsets [2], i.e. at positions 2 and 3, in Tlbls and Ttgts .
Finally, it should be noted that the outgoing transitions of each state have been
sorted by label lexicographically, with τ the smallest element. We will use this
to our advantage later on, when we explain our multi-way splitting procedure.

Finally, we note that in the following, when we refer to an array entry as
being locked, we mean that its highest bit has been set. In general, we use 32-bit
integers to store data elements. Even if we reserve the highest bit of each entry,
we can still refer to 231 states. In a connected Lts, this means that we will also
have at least 231−1 transitions. Since transitions take two integers to store each
(in Tlbls and Ttgts), an Lts of that size would not fit in current GPUs anyway.

4 Many-Core Bisimilarity Checking

Strong Bisimilarity. The algorithm by Lee & Rajasekaran (LR) [18] is the first
that has been proposed to check strong bisimilarity on SIMT architectures, and
is based on KS. We discuss the main approach of it here since we will justify the
choices we made for our algorithm w.r.t. LR, and since we have an experimental
comparison between CUDA-implementations of LR (made by us) and the new
algorithm in Section 5.

Table 1 shows an example situation when running LR on the Lts in Fig. 2.
A number of arrays are used here. First of all, not listed in the table, a B

GPU Accelerated Strong and Branching Bisimilarity Checking 375

Table 1. Running LR on the Lts in Figure 2

P (0,s0) (0,s3) (0,s4) (1,s1) (1,s6) (2,s2) (2,s5) (2,s7) -
V 0 1 2 0 1 0 1 2 -

TSIZE 2 3 0 2 1 0 0 1 -
Lsrc B[s0] B[s0] B[s3] B[s3] B[s3] B[s1] B[s1] B[s6] B[s7]
Llbl τ a τ a b τ τ c c
Lidx 0 0 1 1 1 0 0 1 2
Ltgt B[s1] B[s2] B[s6] B[s4] B[s5] B[s3] B[s7] B[s6] B[s7]

array is maintained indicating to which block each state i belongs. With this, a
partition array P is constructed consisting of tuples (B[i], i), which is then sorted
in parallel on B[i] (initially, if we have a single block, no sorting is required).
Next, a V array is filled assigning to each state i a block local ID between 0 and
|B[i]|, i.e. an identifier local to the block it is in, which can be done using P . The
order in which the states appear in P determines array TSIZE ; the latter must
be filled with the number of outgoing transitions of each corresponding state in
P , which can be done in parallel using P and offsets . Finally, after obtaining
absolute offsets using TSIZE , the L arrays are filled, listing the transitions in
the Lts w.r.t. the current partition in the order of the states in P . Besides source
and target block and the label, also the block local ID of the source is added in
Lidx . Note that from L we can now directly learn the signature of each state.

Once L is filled, it is lexicographically sorted. Because the block local IDs
have been included, this means that all transitions of a state are still next to
each other, but now also sorted by label and target block. After removing dupli-
cate entries in parallel, we have essentially made sure that the lists of outgoing
transitions can be interpreted as sets. Then, the most interesting operation is
performed, namely the comparison of signatures. For this, LR compares in par-
allel the signature of each state i with the one of state i − V [i], i.e. of the state
with block local ID 0 of the same block. This signature can directly be found
using V . When the signatures are equal, nothing is done, but when they are
not, a new block ID x is created and state i is assigned to it, i.e. B[i] is set to
x. How new block IDs should be chosen in parallel is not mentioned in [18], in
fact, they split blocks sequentially, but we chose for the following mechanism:
threads working on the same block and finding states that must be split off to
select a new block ID first check whether TSIZE [i −V [i]] is locked, i.e. whether
its highest bit is set, and if not, lock it atomically. Only one thread will succeed
in doing so, which will subsequently try to atomically increment a global ID
counter. Once it succeeds, it stores the new value in TSIZE [i−V [i]]. After that,
the other threads read this value and learn the new block ID.

LR is a typical SIMT application; all data is stored in arrays, and the threads
manipulate these on a one-on-one basis, i.e. n threads work on arrays of size n.
Moreover, LR uses a number of parallel operations, such as sorting and perform-
ing segmented scans, that are available in standard GPU libraries. For instance,
we have implemented LR using the Thrust library. However, we chose to design
an algorithm which is very different from this one, based on the following ideas:
1. Comparing states with a specific ‘first’ state is very suitable for a GPU, since

it allows for threads to check locally whether their state needs to move to

376 A. Wijs

another block, but we observe that this can be any state, and found a way
to select such a first state, which we from now on will call a representative,
without sorting. This allows for more coalesced memory access when threads
can be assigned to consecutive states as opposed to consecutive elements of
P . The order of states in P can be considered random.

2. Maintaining L requires many (expensive) memory accesses, and the involved
reads and writes are not coalesced, due to the randomness imposed by the
structure of the Lts. We chose to directly have each thread use the infor-
mation from Tlbls , Ttgts and B concerning the involved transitions of both
its assigned state and the associated representative, and construct the sig-
natures in its local registers, which allows for fast comparisons, and reduces
the memory requirements from 6 · |S|+ 8 · |T | to 2 · |S|+ 2 · |T |.

3. If we start with a single block, which is not considered in [18], then each
iteration except the last one produces exactly one new block. This does not
scale well. In [16], a multi-way splitting procedure is proposed, but it is based
on the entire signature of states, and not very suitable for our representative
selection. We propose a multi-way splitting mechanism that is compatible.

The new algorithm. First, we will explain multi-way representative selection. In
Fig. 3, part of the initial situation is shown when applying our algorithm on the
Lts in Fig. 2. Initially, states are not in any block, indicated by B[i] = ‘-’.

0 3 s3 s7 s4 s5 s6 s6 s7Ttgts

τ a τ τ a b τ c cTlbls
− − − − − − − − −B

t0 t1 t3

Fig. 3. Representative selection

Each thread ti checks if state si needs to
move to a new block, which is indicated by
the highest bit in offsets [i] being set. Then,
they read a predetermined outgoing transi-
tion label of si. This is handled globally us-
ing variable labelcounter ; if labelcounter = j ,
this means that every thread reads the label
of the j-th transition. Let us call this label �.
Whenever j > |T (si)|, we say that � = 0. Us-

ing B[i] (interpreting ‘-’ as 0) and �, ti computes a hash value h = ((B[i] ·N)+�)
mod |T |, with N the number of different labels in the Lts. Next, Ttgts is tem-
porarily reused to serve as a hash table, and thread i tries to atomically write
a locked i to cell Ttgts [h]. Only one thread will succeed in doing so per cell.
The one that does has now successfully promoted its state to representative of
a new block, and the other threads, knowing that they have failed since they
encountered a locked entry, read the representative ID from Ttgts [h] and store
it in their B cells. Note that in general, h can be larger than |Ttgts |. Since we
want no threads to meet in Ttgts that do not represent states from the same
block, the selection procedure is actually done in several iterations, shifting the
range of the hash table each iteration by |Ttgts |. This way of selecting allows
using state IDs as block IDs, which is possible since the blocks are disjoint.

The selection procedure uses a form of multi-way splitting, i.e. splitting a block
at once into more than two blocks, when possible, by ensuring that threads which
encounter different transition labels try to atomically write to different cells in
Ttgts . Note that in Section 3, we mentioned that the outgoing transitions of

GPU Accelerated Strong and Branching Bisimilarity Checking 377

each state are in Tlbls sorted by label. This means that initially, if two states
do not have the same first label, then they cannot be bisimilar, and can hence
immediately be moved to different blocks. In the next iteration, we know that in
each block Bi, all the states must have the same label on their first transition,
so we focus on the second transition, and so on. Hence, in order for this to be
effective, we use labelcounter to change the splitting criterion, which works as
long as we have not reached the end of the transition list of at least one state.

Algorithm 2 Many-core bisimilarity checking
Require: G = 〈S,A, T , s〉, π = {S}

stable ← false
2: while ¬stable do

labelcounter ← (labelcounter + 1) mod |T |
4: device stable ← true

selectRepresentatives ≪ |S| ≫ (labelcounter)
6: postprocessElection ≪ |T | ≫ ()

while continue do
8: device continue ← false

propagateBlockIDs ≪ |S| ≫ ()
10: continue ← device continue

markNoninertTaus()
12: compareSignatures ≪ |S| ≫ ()

stable ← device stable

Alg. 2 without the boxed
code presents an overview of
the entire strong bisimilarity
checking procedure. We use
the CUDA notation ≪ n ≫
to indicate that n threads exe-
cute a given kernel. Once new
representatives have been se-
lected at line 5, postprocessing
is performed to recreate the
original Ttgts array. This can
be done efficiently, since the el-
ements that were removed during representative selection have been temporarily
moved to the B array cells of the new representatives. At line 12, each block of
threads fetches a consecutive tile of transitions from the global memory and
stores it in the shared memory. Each thread i then does the following:
– It reads the outgoing transitions of si from the shared memory;
– It fetches B[si] from the global memory;
– It employs its warp to fetch the transitions of B[si] in a number of coalesced

memory accesses, and stores all these transitions into its local registers;
– It looks up the block IDs of the corresponding target states;
– Finally, sigπ(si) and sigπ(B[si]) are compared.

This procedure results in the highest bit of offsets [i] being set, and the global
variable device stable being set to false iff the signatures are not equal. The con-
tent of device stable is read by the host at line 13, after which another iteration
is started or not, depending on its value.
Branching Bisimilarity. For branching bisimilarity, we need to handle the pres-
ence of inert paths, as mentioned in Section 2. Without doing so, Alg. 2 would
after line 6 provide an incorrect representation of which blocks can be reached
from each state, resulting in the signatures comparison at line 12 going wrong. To
check branching bisimilarity, we therefore add a procedure to propagate block
IDs over τ -transitions which can be considered inert at the current iteration.
This is similar to the approach in the algorithm by Blom & Van de Pol [7].2

By definition, τ -transitions are inert w.r.t. a partition π iff their source and tar-
get states are in the same block. However, if we want threads to locally compare
their state with the corresponding block representative, without looking beyond

2 An alternative would be to try to port GV to GPUs, but GV requires several linked
lists, and therefore dynamic memory allocation, making it less suitable for GPUs.

378 A. Wijs

their outgoing transitions (which would lead to expensive searching through the
global memory), then it cannot be ensured that source and target states are al-
ways in the same block. For example, consider the Lts in Fig. 2. Say we perform
the initial representative selection without multiway splitting, and states s1 and
s3 end up in the same block with s1 as representative. Then a direct comparison
of the two states would reveal that they have unequal signatures, even though
transition s1

τ−→ s3 is inert. On the other hand, s1
τ−→ s7 is not inert, so these

cases must be distinguishable by the checking algorithm.
To resolve this, we define the notion of a visible signature sigπ(s) = {(a, π(s′)) |

s
a−→ s′ ∧ a �= τ}, and use the label τ to denote a visible τ -transition. Visible τ -

transitions are also included in a visible signature, but initially, all τ -transitions
are invisible. This means that in our branching bisimilarity checking algorithm
(for an overview, see Alg. 2 with the boxed code), we initially select representa-
tives and compare signatures based on signatures without τ -transitions.

After representative selection, it must be checked whether τ -transitions are
possibly π-inert, and if they are, the block IDs of their target states should
be propagated to their source states, making the latter propagating states. The
condition for a τ -transition to be possibly π-inert directly corresponds with the
observation made in Section 2 that inert τ -paths must end in a state which can
simulate all previously potential behaviour. The following is a relevant lemma.

Lemma 1. A state can reach at most one block via π-inert τ-paths.

Proof. Say that from a state s two blocks B1, B2 can be reached via π-inert
τ -paths, leading to states s′ ∈ B1, s′′ ∈ B2. Since each subsequently discovered
partition will be a refinement of π, we must have that s′ �↔b s′′. But then, we
must have that s ↔b s′ and s ↔b s′′. From the facts that s′ �↔b s′′ and that
branching bisimilarity is an equivalence, we derive a contradiction. ��

Definition 5 (Inertness condition and propagating state). A transition
s

τ−→ s′ is possibly π-inert, and s is a propagating state, iff
– either s′ is not propagating, and (sigπ(s) \ {(s, τ, π(s′))}) ⊆ sigπ(s

′);
– or s′ is propagating, and (sigπ(s) \ {(s, τ, π(s′))}) ⊆ sigπ(B[s′]).

The first alternative in Def. 5 refers to the case that the target state s′ is not
propagating. In that case, its visible signature should be a superset of sigπ(s)
minus τ -transitions leading to π(s′), i.e. s′ should be able to simulate s. Note
that this uses Lemma 1: all τ -transitions leading to blocks different from π(s′)
in the signature of s are involved in the comparison, since a τ -transition to π(s′)
can only be π-inert if all other τ -transitions to different blocks are not. The
second alternative enables propagating results over τ -paths. If s′ is propagating,
then the signature of the representative B[s′] must be taken into account.

In Alg. 2, at lines 7-10, all possibly π-inert τ -transitions are detected, and we
mark the source states as propagating using one bit. If a state s has multiple
possibly π-inert τ -transitions to different blocks, we define B[s] =‘-’ and mark s
propagating. The latter is a conservative action; we refrain from propagating a
block ID until we can detect a single block as being reachable via inert τ -paths.

GPU Accelerated Strong and Branching Bisimilarity Checking 379

 1

 10

 100

 1000

 10000

 100000

a b c d e f g h p q r

ru
nt

im
e

(s
ec

.)

models

GPU(ms)
GPU(ss)

LR
LTSmin(4c)

LTSmin(16c)
LTSmin(32c)

 1

 10

 100

 1000

 10000

 100000

i j k l m n o p q r

ru
nt

im
e

(s
ec

.)

models

GPU(ms)
LTSmin(4c)

LTSmin(16c)
LTSmin(32c)

Fig. 4. Strong and branching bisimilarity checking runtimes (sec.)

When propagation finishes, τ -transitions that are not π-inert are relabelled
to τ at line 11, thereby adding them to the visible signatures. The signature
comparison at line 12 now only concerns the non-propagating states.

Completeness of the algorithm follows from the inertness criterion (Section 2)
and the fact that τ -transitions are conservatively marked visible (as long as we
do not mark inert τ -transitions as visible, our partition has the largest branching
bisimulation as a refinement). Finally, if in any iteration, a state must be moved
from ‘-’ to a block, then it must be added to a new block, i.e. one does not need
to find an existing suitable block. That this is correct is shown next.

Lemma 2. Say that state s has been marked non-propagating in iteration i > 0,
when we have partition π. Then it should be added to a new block not in π.

Proof. By reasoning towards a contradiction. Consider that when s is marked
non-propagating, there already exists a block B′ with representative t to which
it should be added. Then, in iterations j < i, s still had at least one possibly π-
inert τ -transition. Let us call the block reachable via that transition B′′, and say
that sigπ(s) = T ∪{(τ, B′′)}, with T some set of (action, block)-pairs. Because s
should be added to B′, we must have that t has the same signature as s, hence
sigπ(t) = T ∪ {(τ, B′′)}. But then, also t must have been propagating in j < i,
contradicting the assumption that before i, t already represented a block. ��

Complexity of the algorithms. If we assume that we can launch |S| and |T |
threads, then each kernel in Alg. 2 can be performed in O(1). Hence, strong
bisimilarity checking can be done in O(|S|), since worst-case, |S| iterations are
required. In addition, branching bisimilarity checking requires worst-case a prop-
agation procedure of |S| iterations, so its complexity is O(|S|2).

5 Experimental Results

In this section, we present some of our experimental comparisons of various GPU
setups, and with the LTSmin toolset, which is the only toolset we are aware of

380 A. Wijs

that offers parallel strong and branching bisimilarity checking, and therefore
allows us to experimentally compare our implementations with the scalability of
CPU approaches.3 LTSmin offers implementations of the algorithms by Blom
et al. [5,6,7]. In this section, we report on a comparison with the algorithms
from [5,6]. For the GPU experiments, we used an NVIDIA K20m with 5 GB
memory on a machine with an Intel E5-2620 2.0 GHz CPU running CentOS
Linux. For the CPU experiments with LTSmin 2.0, we used a machine with an
Amd Opteron 6172 processor with 48 cores, 192 GB RAM, running Debian
6.0.7.

Table 2. Benchmark set

id Model #st. #tr. #ss #sb

a BRP250 219m 266m 101m n.a.

b coin8.3 87m 583m 20m n.a.

c cwi_33949 33m 165m 122k n.a.

d cwi_7838 8m 59m 1m n.a.

e diningcrypt14 18m 164m 18m n.a.

f firewire_dl800.36 129m 294m 34m n.a.

g mutualex7.13 76m 654m 76m n.a.

h SCSI_C_6 74m 404m 74m n.a.

i BRP250 h2 219m 266m n.a. 19k

j cwi_33949 h1 33m 165m n.a. 12k

k cwi_33949 h2 32m 158m n.a. 3k

l diningcrypt14 h2 2m 16m n.a. 497k

m firewire_dl800.36 h2 129m 294m n.a. 26m

n mutualex7.13 h1 76m 613m n.a. 41m

o mutualex7.13 h2 76m 562m n.a. 32m

p vasy_6020 6m 19m 7k 256

q vasy_6120 6m 11m 6k 349

r vasy_8082 8m 43m 408 290

Table 2 shows the characteristics of each
Lts, namely 1) number of states, 2) num-
ber of transitions, 3) number of states in
the strongly reduced Lts, and 4) number
of states in the branching reduced Lts.
Note that in some cases, no reduction can
be achieved, which is an interesting worst-
case scenario for our experiments. The mod-
els the Ltss stem from have been taken
from various sources, namely the Beem
database [21], the CADP toolbox [13], the
mCRL2 toolset [11], and the website of
Prism.4 To produce cases for branching
bisimilarity checking, we wrote a tool to au-
tomatically relabel a predefined number of
transitions to τ . In the cases suffixed with
h1 roughly 25% of the transitions have the
label τ , while in the h2 Ltss this is 50%.

Fig. 4 presents the runtimes we measured
(in seconds) for strong and branching bisim-
ilarity checking, on the left and the right,
respectively. We used the following setups:

a CUDA implementation of our algorithms with (GPU(ms)) and without
(GPU(ss)) multi-way splitting, a CUDA-version of LR, and the LTSmin tool
Ltsmin-reduce-dist running with 4, 16, and 32 cores, which we refer to as
LTSmin from now on. In those cases where no result is given for a particular
tool and model, the tool ran either out of memory (the CPU tools) or out of
time (the GPU tools) on the aforementioned machine.

First of all, considering our algorithm, the positive effect of multiway split-
ting is apparent, it can speed up the checking by 2 to 50 times, and as expected,
since it allows the checking to finish in fewer iterations. Second of all, notice
that LR is clearly slower than our approach, in those cases that LR could ac-
tually be run, due to its higher memory requirements. These findings support

3 For a list of all the experiments, and the relevant source code and models, see
http://www.win.tue.nl/~awijs/GPUreduce

4 http://www.prismmodelchecker.org

http://www.win.tue.nl/~awijs/GPUreduce
http://www.prismmodelchecker.org

GPU Accelerated Strong and Branching Bisimilarity Checking 381

the hypothesis that our new approach performs better than LR on modern GPU
architectures. In a number of cases, our tool achieves runtimes comparable to
the 16-core LTSmin setup. Given that LTSmin scales nicely, this is encourag-
ing. Since the multiway splitting in our approach is more limited to the one in
LTSmin, involving a specific transition label as opposed to entire signatures,
our tool in particular performs worse when LTSmin can aggressively use mul-
tiway splitting. Finally, it is worth noting that sometimes, LTSmin runs out of
memory. Storing signatures explicitly is more memory consuming than recreating
them every time, but of course, one needs the parallel computation power for the
recreation not to be a drawback. Since LTSmin does not exploit shared memory,
but keeps the memory separated per worker, this also means that increasing the
number of workers tends to increase the presence of redundant information.

6 Related Work

Blom et al. [5,6,7,19] use the aforementioned signatures to distinguish states for
distributed bisimilarity checking. In each iteration, the signatures are placed in
a hash table, and used as block IDs to refine the partition. On GPUs, however,
storing full signatures is very hard, requiring dynamic memory allocation.

Zhang & Smolka [28] propose a parallelisation of KS where threads commu-
nicate via message-passing. Such an approach cannot easily be migrated to the
GPU setting, since message-passing among threads running on the same GPU
does not naturally fit the GPU computation model. On the other hand, one could
use message passing between GPUs that together try to check bisimilarity.

Jeong et al. [16] propose a parallel KS algorithm along the lines of [18] with
multi-way splitting, but there is a probability that wrong results are obtained.

7 Conclusions

We presented new algorithms to perform strong and branching bisimilarity check-
ing on GPUs. Experiments demonstrate that significant speedups can be achieved.
As future work, we will try to further optimise the algorithms. There is still po-
tential to avoid signature comparisons in specific cases. Furthermore, we will con-
sider employing GPUs for other applications of model checking, for instance to
find near-optimal schedules (e.g. [26]) and quantitative analysis (e.g. [25]).

References

1. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley (1974)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
3. Barnat, J., Bauch, P., Brim, L., Češka, M.: Designing Fast LTL Model Checking

Algorithms for Many-Core GPUs. J. Parall. Distrib. Comput. 72, 1083–1097 (2012)
4. Bartocci, E., DeFrancisco, R., Smolka, S.: Towards a GPGPU-parallel SPIN Model

Checker. In: SPIN, pp. 87–96. ACM (2014)

382 A. Wijs

5. Blom, S., Orzan, S.: Distributed Branching Bisimulation Reduction of State Spaces.
In: FMICS. ENTCS, vol. 80, pp. 109–123. Elsevier (2003)

6. Blom, S., Orzan, S.: A Distributed Algorithm for Strong Bisimulation Reduction
of State Spaces. STTT 7(1), 74–86 (2005)

7. Blom, S., van de Pol, J.: Distributed Branching Bisimulation Minimization by
Inductive Signatures. In: PDMC. EPTCS, vol. 14, pp. 32–46. Open Publishing
Association (2009)

8. Bošnački, D., Edelkamp, S., Sulewski, D., Wijs, A.: GPU-PRISM: An Extension
of PRISM for General Purpose Graphics Processing Units. In: PDMC 2010, pp.
17–19. IEEE (2010)

9. Bošnački, D., Edelkamp, S., Sulewski, D., Wijs, A.: Parallel Probabilistic Model
Checking on General Purpose Graphic Processors. STTT 13(1), 21–35 (2011)

10. Browne, M., Clarke, E.M., Grumberg, O.: Characterizing Finite Kripke Structures
in Propositional Temporal Logic. TCS 59, 115–131 (1988)

11. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wes-
selink, W., Willemse, T.A.C.: An Overview of the mCRL2 Toolset and Its Recent
Advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 199–213. Springer, Heidelberg (2013)

12. De Nicola, R., Vaandrager, F.: Three Logics for Branching Bisimulation. Journal
of the ACM 42(2), 458–487 (1995)

13. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino,
K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg
(2011)

14. van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimu-
lation Semantics. Journal of the ACM 43(3), 555–600 (1996)

15. Groote, J., Vaandrager, F.: An Efficient Algorithm for Branching Bisimulation and
Stuttering Equivalence. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp.
626–638. Springer, Heidelberg (1990)

16. Jeong, C., Kim, Y., Oh, Y., Kim, H.: A Faster Parallel Implementation of the
Kanellakis-Smolka Algorithm for Bisimilarity Checking. In: ICS (1998)

17. Kanellakis, P., Smolka, S.: CCS Expressions, Finite State Processes, and Three
Problems of Equivalence. In: PODC, pp. 228–240. ACM (1983)

18. Lee, I., Rajasekaran, S.: A Parallel Algorithm for Relational Coarsest Partition
Problems and Its Implementation. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818,
pp. 404–414. Springer, Heidelberg (1994)

19. Orzan, S.: On Distributed Verification and Verified Distribution. Ph.D. thesis, Free
University of Amsterdam (2004)

20. Paige, R., Tarjan, R.: A Linear Time Algorithm to Solve the Single Function Coars-
est Partition Problem. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp.
371–379. Springer, Heidelberg (1984)

21. Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

22. Wijs, A.J., Bošnački, D.: Improving GPU Sparse Matrix-Vector Multiplication for
Probabilistic Model Checking. In: Donaldson, A., Parker, D. (eds.) SPIN 2012.
LNCS, vol. 7385, pp. 98–116. Springer, Heidelberg (2012)

23. Wijs, A., Bošnački, D.: GPUexplore: Many-Core On-The-Fly State Space Explo-
ration Using GPUs. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 233–247. Springer, Heidelberg (2014)

GPU Accelerated Strong and Branching Bisimilarity Checking 383

24. Wijs, A., Katoen, J.-P., Bošnački, D.: GPU-Based Graph Decomposition into
Strongly Connected and Maximal End Components. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 310–326. Springer, Heidelberg (2014)

25. Wijs, A.J., Lisser, B.: Distributed Extended Beam Search for Quantitative Model
Checking. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS (LNAI),
vol. 4428, pp. 166–184. Springer, Heidelberg (2007)

26. Wijs, A., van de Pol, J., Bortnik, E.: Solving Scheduling Problems by Untimed
Model Checking - The Clinical Chemical Analyser Case Study. In: FMICS, pp.
54–61. ACM (2005)

27. Wu, Z., Liu, Y., Liang, Y., Sun, J.: GPU Accelerated Counterexample Generation
in LTL Model Checking. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829,
pp. 413–429. Springer, Heidelberg (2014)

28. Zhang, S., Smolka, S.: Towards Efficient Parallelization of Equivalence Checking
Algorithms. In: FORTE, North-Holland. IFIP Transactions, vol. C-10, pp. 121–135
(1992)

	GPU Accelerated Strong and Branching Bisimilarity Checking
	1 Introduction
	2 Preliminaries
	3 GPU Basics
	4 Many-Core Bisimilarity Checking
	5 Experimental Results
	6 Related Work
	7 Conclusions

