
GPU-PRISM: An extension of PRISM
for General Purpose Graphics Processing Units

(Tool Paper)

Dragan Bošnački∗, Stefan Edelkamp†, Damian Sulewski†, and Anton Wijs∗
∗Eindhoven University of Technology, The Netherlands

†TZI, Universität Bremen, Germany

Abstract—We present an extension of the model checker
PRISM for (general purpose) graphics processing units (GPUs).
The extension is based on parallel algorithms for probabilistic
model checking which are tuned for GPUs. In particular,
we parallelize the parts of the algorithms that boil down to
linear algebraic operations, like solving systems of linear equa-
tions and matrix vector multiplication. These computations
are performed very efficiently on GPGPUs which results in
considerable runtime improvements compared to the standard
versions of PRISM. We evaluated the extension of PRISM on
several case studies in which we observed significant speedup
over the standard CPU implementation of the tool.

Keywords-probabilistic model checking; model checker
PRISM; parallel algorithms; GPU;

I. INTRODUCTION

We present an extension of the probabilistic model
checker PRISM [4] which exploits the computation power
of (general purpose) graphics processing units (GPUs). The
current implementation of the tool is based on the CUDA
architecture for NVIDIA graphics cards [3], however the
framework is rather general and it can be adapted seamlessly
to other graphics cards, as well as other model check-
ing tools. GPU-PRISM is fully compatible with standard
PRISM.

Probabilistic Model Checking: Probabilistic model
checking [5] is a branch of model checking which has been
successfully used for the analysis of models that have a
probabilistic/stochastic nature. These models cover a broad
spectrum of applications ranging from communication pro-
tocols like FireWire and Bluetooth, to biological networks
that model gene expression.

In traditional model checking one usually aims at proving
absolute logical correctness of the analyzed model against a
given property. In probabilistic model checking the correct-
ness of the properties is quantified with some probability.
The properties are expressed in extensions of the traditional
temporal logics such that the quantitative probabilistic as-
pects are captured.

The Probabilistic Model Checker PRISM: PRISM [4] is
a probabilistic model checker which was developed initially
at the University of Birmingham and currently is being
developed at the University of Oxford. PRISM is an open-
source tool and written in Java and C++. During the years the

tool has gained a significant popularity and it has been tested
on various case studies. A quite comprehensive summary
of PRISM applications can be found on the tool web page
http://www.prismmodelchecker.org.

PRISM supports three types of models: discrete- and con-
tinuous Markov chains (DTMCs and CTMCs), and Markov
decision processes (MDPs), The models are specified us-
ing the PRISM modeling language which is based on the
Reactive Modules formalism. Systems are described as a
set of modules executed in parallel. Each module contains
transitions to which probabilities are associated in various
ways, depending on the model type.

Properties are specified in the logics PCTL and CSL,
which are probabilistic extensions of the logic CTL. PCTL
is used to specify properties of DTMC models, whereas CSL
is used in the context of CTMCs.

Parallel Probabilistic Model Checking on GPUs: The
main difference between traditional and probabilistic model
checking is that the latter has a numerical component to
capture the probabilities [5]. This numerical part hinges
critically on linear algebraic operations like matrix-vector
multiplication and scalar product of two vectors.

General purpose graphics processing units (GPUs) are
powerful coprocessors that outgrew their applications in
graphics. Since linear algebraic operations can be imple-
mented very efficiently on GPUs significant speedups can
be achieved compared to the sequential counterparts of the
probabilistic model checking algorithms. Motivated along
this line of reasoning, in a previous work [1] we introduced
parallel probabilistic model checking on GPUs.

Previous parallel algorithms were exclusively designed
for distributed architectures, i.e., computer clusters. The
main difference compared to GPUs is that by using fast
shared memory one can avoid the costly communication
overhead between the parallel processors. Besides that, in
GPU programming one should also take into account the
various types of memories since the performance of the im-
plementation depends significantly on the memory latencies.

As already mentioned, GPU-PRISM is based on the
CUDA architecture. Compute Unified Device Architecture
(CUDA) is an interface by the manufacturer NVIDIA [3]
which facilitates the use of GPUs beyond graphics oriented
applications. CUDA programs are basically extended C



programs which comprise features like: special declarations
to explicitly place variables in some of the memories (e.g.,
shared, global, local), predefined keywords (variables) con-
taining the block and thread IDs, synchronization statements
for cooperation between threads, runtime API for memory
management (allocation, deallocation), and statements to
launch functions on GPU.

Related Work and Novel Elements: Compared to the
above mentioned precursor work [1], we parallelize the algo-
rithms to a greater extent. In particular, for each of the three
types of models supported by PRISM we parallelize the
algorithms for bounded until. By running a series of matrix-
vector multiplications, the critical parts of these algorithms,
on GPUs we achieve significant runtime improvements.

II. IMPLEMENTATION

The implementation of the extension was done in a mod-
ular fashion, since it required modification of just several
files in the subfolder sparse of the standard PRISM
distribution. For the parallelization of the Jacobi algorithm
which solves systems of linear equations we replaced the
corresponding parts of the code with methods using func-
tions to be run on the GPU cores.

We implemented two different approaches to parallelizing
the multiplication of an n × n matrix A with an n vector
x, resulting in an n vector b. In one approach (M1), for
the computation of each entry in b, one core is used, i.e.
core i multiplies each non-zero entry in row i of A with
the i-th element in x, and computes the sum of these
multiplications. In the other approach (M2), first n×n cores
are used to perform the direct multiplications, i.e. each core
only performs one multiplication of a specific entry in A
with the corresponding entry in x. After that a backwards
inclusive segmented scan is performed on n cores, using
the CUDPP library [2], in order to determine the sums of
the results in each row. This scan is an efficient method to
compute the sums of the multiplications. It takes the array
of multiplications as input, plus an array of boolean flags
indicating where the results of each row begin. The results
of a row together form a segment for the scan. Even if
many multiplications need to be performed in a number of
iterations, such as those in the Jacobi algorithm, the flags
array only needs to be computed once at the start, and this
can be done in parallel on a GPU. In the scan itself, the
sum of the entries in a single segment is computed from
right to left, and the intermediate results are written in the
array, overwriting the multiplication results. In this way, the
final results for the segments are written at the positions of
their first entries. The following example illustrates this:

prod 4 1 6 3 8 6 1 2 5
flags T F F T F T F F F
result 11 7 6 11 8 14 8 7 5

Finally, on n cores, the results of the scan are extracted

Table I
PARALLEL METHODS IN GPU-PRISM (N.A. = NOT APPLICABLE)

parallel method algorithm M1 M2

1 reachability in prob. reward models Jacobi
√ √

2 probabilistic until checks Jacobi
√ √

3 stoch. steady state checks Jacobi
√ √

4 non-det. bounded until checks bounded mult.
√

5 prob. bounded until checks bounded mult.
√

6 stoch. bounded until checks bounded mult.
√

7 set flags array init. for scans N.A.
√

8 matrix diagonal modification used with 6
√

9 matrix uniformisation used with 6
√

10 set vector elements to 0 used with 6
√

11 compute sum of two vectors used with 6
√

and used for the final computation, which differs between
methods (solving system of linear equations, probabilistic
bounded until check, etc.). Among the many algorithms
available for solving systems of linear equations, we chose to
investigate two parallel versions of Jacobi, because Jacobi al-
lows straightforward parallelization, since the computations
done within a single Jacobi iteration do not depend on each
other. Comparing M1 and M2 with each other, M2 exploits
more GPU cores, since the multiplication work is distributed
more rigorously (in the first step).

One feature playing a very important role in the achieved
speedups is the parallel termination checking for the Jacobi
method; at the end of each iteration k, the algorithm checks
whether conversion to some small ε has taken place, i.e.
whether for all i, |xki − x

k−1
i | < ε, with xki the i-th entry in

the (intermediate) result of iteration k. By checking this on
n cores at the end of each iteration, copying the intermediate
results to the CPU main memory and back, which is the main
performance bottleneck for algorithms employing GPUs, can
be avoided. Inclusion of parallel termination checking meant
a speedup of M2 of up to 61%. Other aspects have also
been parallelized; Table I lists all parallel methods in GPU-
PRISM. The top half lists the main methods, while the
bottom half lists the supporting methods, consisting of the
previously mentioned method to initialise the flags array, and
some basic vector and matrix manipulations for stochastic
bounded until checks.

Using M1, we also investigated the possibility to use
several GPUs in parallel. To utilize g GPUs, the matrix
A is split up in a way that n/g rows reside on each
GPU. The vector x is copied to all GPUs and space for
a partial resulting vector b is reserved on each GPU which
computes n/g entries of it. The Jacobi algorithm relies on
switching x and b after each iteration which can be assured
by switching the pointers to the vectors residing on a single
GPU. In a multi GPU environment, all parts of b have to
be merged after each iteration by copying them between
the GPUs. Although copying the data is a time consuming
step, the usage of multiple GPUs enables GPU-PRISM to



Table II
RESULTS FOR VERIFYING PROPERTY 1 OF THE HERMAN , CLUSTER ,

AND TANDEM PROTOCOL

protocol seq. time par. time M1 par. time M2

1 GPU 2 GPUs 1 GPU
herman 15 10.54s 12.84s 12.14s 3.99s
cluster 464 4,270.26s 643.85s 1,024.34s 807.42s
tandem 2,047 3,642.62s 384.68s 946.76s 279.65s

check larger problems and significant speedups can still be
achieved. This approach can also be utilized to check large
problems on a single GPU by copying the partitioned A
sequentially to this GPU. Here the copying of data slows
down the computation to a level where the sequential CPU
method is faster.

III. EXPERIMENTS

We evaluated GPU-PRISM on several case studies from
the standard distribution of PRISM (cf. [1]). The experi-
ments were performed on (one core of) a personal computer
with Intel Core i7 CPU 920 running at 2.67GHz with 8 CPU
cores and 12 GB RAM. We used two NVIDIA geForce
285 GTX (MSI) graphics cards with 1 GB VRAM and
240 streaming processors each running at 0.6 GHz. The
computer was running Ubuntu 9.04 with CUDA 2.2 SDK
and the NVIDIA driver version 195.36.24. Table II presents
the runtime results for verifying property 1 of instances of
the herman, cluster, and tandem protocols. (All these
models and their corresponding property files are part of
the standard distribution of PRISM.) This property requires
solving a system of linear equations. The advance of using
the GPU for computing the matrix vector multiplication can
be clearly seen for both methods. Comparing the usage of
one or two GPUs in M1 reveals the slowdown imposed by
copying parts of b between the devices, still a speedup of
nearly 4 is achieved. While M2 is faster for herman and
tandem it can not cope with M1 in the cluster protocol.
This can be explained by the density of the matrix A, the
cluster protocol consists of a sparser matrix where more
of the n× n threads are idle while the first stage.

Table III contains the runtimes for verifying a stochastic
bounded until property (property 3 in the corresponding
property file) of instances of the tandem protocol. Here
we see a direct correlation of the complexity of the model
and the speedup achieved by using a GPU. This proves our
assumption of copying being the bottleneck. The speedup
achieved by parallel computation can not recompense the
time needed for copying.

IV. CONCLUSION AND FUTURE WORK

GPU-PRISM exhibits much faster runtimes when matrix-
vector multiplications are involved. In the future the tool
will develop towards using better algorithms for the crucial
linear algebraic operations. There are at least two directions

Table III
RESULTS FOR VERIFYING PROPERTY 3 OF THE TANDEM PROTOCOL

protocol seq. time par. time M2

tandem 255 0.60s 0.79s
tandem 511 7.42s 4.48s
tandem 1,023 34.14s 8.20s
tandem 2,047 268.31s 54.31s

in this context: 1) a more efficient use of a single GPU by
employing as much as possible processors in parallel, and
2) use of multiple GPUs. We tested GPU-PRISM on two
GPUs with significant improvements that we report in the
extended version of [1]. The algorithm that we use is easily
scalable for multiple GPUs.

GPU-PRISM is available from the authors on request.1

REFERENCES

[1] D. Bošnački, S. Edelkamp, and D. Sulewski. Efficient Prob-
abilistic Model Checking on General Purpose Graphics Pro-
cessors. In Proc. 16th International SPIN Workshop, LNCS
3925, pp. 32–49, Springer, 2009. Extended version submitted
to STTT.

[2] CUDA Data Parallel Primitives Library.
http://gpgpu.org/developer/cudpp

[3] CUDA Programming Forum.
http://www.nvidia.com/object/cuda_home.html

[4] M.Z. Kwiatkowska, G. Norman, D. Parker, PRISM: Proba-
bilistic Symbolic Model Checker, Computer Performance Eval-
uation, Modelling Techniques and Tools 12th International
Conference, TOOLS 2002, LNCS 2324, pp.200-204, Springer,
2005.

[5] M. Kwiatkowska, G. Norman, D. Parker. Stochastic Model
Checking, Formal Methods for the Design of Computer, Com-
munication and Software Systems: Performance Evaluation,
LNCS 4486, pp. 220-270, Springer, 2007.

1Once licence issues related to standard PRISM are resolved, we will
make GPU-PRISM available via a tool web page.


