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1. Introduction

The µcrl tool set [BFG+01] is a collection of tools for analysing systems of communicating processes
described in µcrl (micro Common Representation Language). An overview of the tool set is given in
Fig. 1.

mcrl • checks whether a specification in (timed) µcrl is well formed,
• linearises certain µcrl specifications.

msim allows interactive simulation of a system described in µcrl.
instantiator generates a finite transition system from a linearised µcrl

specification.
pp pretty prints a linearised µcrl specification.
rewr normalises the data terms in a linearised µcrl specification.
constelm removes from a linearised µcrl specification the data param-

eters that are constant throughout any run of the process.
parelm removes from a linearised µcrl specification the data param-

eters and sum variables that do not influence the behaviour of
the system.

structelm expands the composite data types of a linearised µcrl speci-
fication.

sumelm replaces in a linearised µcrl specification the sum variables
that must be equal to a certain data term by that data term.

Figure 1: Overview of the µcrl tool set

µcrl [GP95] is a language to describe communicating processes. It is based on the process algebra
acp [BW90, Fok00] extended with equationally specified data types [LEW96]. Despite its simplicity
it is quite adequate to specify and analyse (large) distributed systems and algorithms. µcrl has been
extended with features to express time [Gro97], but the tools do not support this extension, except
for the possibility to check the static semantic constraints.
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The tool set is constructed around a restricted form of µcrl, namely the linear process operator
format (lpo) [BG93].1 The tool mcrl checks whether a certain specification is well formed µcrl and
attempts to transform it into a linearised (i.e. lpo) form. This linearised form is stored in binary
form (more precisely in binary aterm format, also called tool bus format (.tbf)). All other tools use
this linearised format as their starting point.

These tools come in four kinds:

1. a tool (msim) to step through a process described in µcrl,

2. a tool (instantiator) to generate a transition system in a format (.aut) that can be read by
the model checker Cæsar Aldébaran.

3. several tools to optimise the linearised specification:

(a) rewr, normalises the data terms in a specification by performing the rewritings it specifies,

(b) constelm, removes data parameters that are constant throughout any run of the process,

(c) parelm, reduces the state space of the transition system by removing the data parameters
and sum variables that do not influence the behaviour of the system,

(d) structelm, expands variables of compound data types,

(e) sumelm, replaces sum variables that must be equal to a certain data term by that data
term.

4. a tool (pp) to print the linearised specification.

An overview of the relations between the tools in the tool set is sketched in Fig. 2.

This is a typical simple session with the tool set:

1. Write the specification with your favourite editor:

vi spec

2. Check well-formedness and linearise the specification with mcrl:

mcrl -tbfile -regular spec

(see Section 3.1 for an explanation of the flags)

3. Generate a state space with instantiator:

instantiator -i spec

(see Section 3.3 for an explanation of the flags)

4. Study the state space with Cæsar Aldébaran:

xeuca &

This manual aims to provide enough information to use the tools of the tool set. It assumes a basic
knowledge of process algebra and abstract data types. You are now reading the introductory section
of this manual (Chapter 1). Chapter 2 describes the language µcrl as it is recognised by the tool set
in an informal way. Chapter 3 describes the functionalities, options and shortcomings of each tool.
Appendix I contains a formal specification of timed µcrl. Appendix II sketches the lpo format and
the linearisation procedure. Appendix III discusses the rewriting method. Appendix IV provides the
text of the license agreement that covers the use of the tool set.

More information:
1see Section II.1.
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structelm, sumelm
rewr, constelm, parelm,

Specification (mCRL)

Linearized specification (.tbf)

finite transition system (.aut)Simulation

Model checking

instantiator ppmsim

Readable linearized specification

mcrl -tbfile

mcrl -linearOptimization

Figure 2: The main relations between the tools in the µcrl tool set

• The lecture notes of Wan Fokkink, Michel Reniers, & Jan Friso Groote (Modelling Concurrent
Systems: Protocol Verification in µcrl) at
<http://www.cwi.nl/~wan/lecturenotes.ps> provide a basic introduction to the use of µcrl.
These notes include crash courses in process algebra, abstract data types and protocol verifica-
tion, as well as a handful of examples of protocol specifications.

• The µcrl tool set is developed by the Embedded Systems group of the Dutch Centre for Math-
ematics and Computer Science (cwi). The µcrl home page at <http://www.cwi.nl/~mcrl/>
provides information about the language and the tool set. The tool set is freely available from
<http://www.cwi.nl/~mcrl/mutool.html>.

• The Cæsar Aldébaran Development Package is developed by the vasy (Validation of Systems)
group of inria (France). The cadp home page is at <http://www.inrialpes.fr/vasy/cadp/>.

About the tool set
The tool set is developed by Jan Friso Groote (JanFriso.Groote@cwi.nl) and Bert Lisser (Bert.
Lisser@cwi.nl). If a problem is detected it is appreciated if a bug report is sent to the authors. The
report should include a description of the problem (including the exact error message) and information
needed to repeat the error (such as the version number of the tool set, name and version number of
the operating system, exact command line used to invoke the tool (including all flags), and a copy of
the input file).

The version numbering policy is this: the number behind the point changes if only a bug is fixed,
the number before the point changes if the functionality is extended or the structure of the code
improved.
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Version history

• Version 1.0, (for tool set version 1.10) Tutorial and Reference Guide for the µcrl tool set, by
Jan Friso Groote and Bert Lisser, distributed with the tool set.

• Version 2.0 (for tool set version 1.11), Manual for the µcrl tool set, August 2000, by Arno
Wouters.

• Version 3.0 (for tool set version 2.8.2), Manual for the µcrl tool set, 14 December 2001, by
Arno Wouters. This manual.

Acknowledgements The author thanks Wan Fokkink, Jan Friso Groote, Izak van Langevelde, Bert
Lisser, Alban Ponse and Yaroslav Usenko for their comments on earlier drafts of this manual.

2. µcrl

This chapter summarises µcrl as it is recognised by the tool set. The chapter is meant as a reference
for people who know the basics of µcrl and want to use the tool set to specify and analyse systems. It
is not meant as a tutorial, neither is it meant as a formal specification of µcrl. A formal specification
of the syntax of µcrl is given in appendix I of this manual.

2.1 The basics
Basic structure A µcrl specification consists of two parts. The first part specifies the data types
(Section 2.2), the second part the processes (section 2.3).

Names In µcrl there are five kinds of entities that have names, namely: sorts, functions, variables,
actions, and processes. The following conditions apply to the use of names:

• Names may consist of letters (a-z, A-Z), digits (0-9) and the special characters ^_’-.

• All names must be declared.2

• Each sort, function, action and process must be declared exactly once.

• Functions, actions, processes and variables may have the same name as a sort.

• Different functions, actions and processes can not have the same combination of name and
domain sorts.

• Variables can not have the same name as function constants, parameterless actions or parame-
terless processes.

• Names of variables must be unique within their declaration (this means that it is allowed to
use the same variable name for different sorts in different equation sections, process declarations
and sum-operators).

Comments Comments start with a % character and end at the end of the line.

2.2 Specification of data
Data are represented as terms of some sort, for example S(S(0)), cos(pi), and concat(L1,L2) could
be terms of sorts natural number, real number, and list, respectively. Fig. 3 gives an overview of a
data specification, Fig. 4 an example.

2In the format descriptions of this manual capitalised words are used to indicate that the corresponding name is
being declared at that point.
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sort Sortname
func Functionname : domain -> sortname
map Functionname : domain -> sortname
var Varname, Varname . . . : sortname
rew data-term = data-term

Figure 3: Data specification format

sort Bool
func T,F: -> Bool
map not: Bool -> Bool

and, or: Bool # Bool -> Bool

var bool -> Bool
rew not(F) = T

not(T) = F
and(T, bool) = bool
and(F, bool) = F
and(bool,F) = F
and(bool,T) = bool
or(T,bool) = T
or(bool,T) = T
or(F,bool) = bool
or(bool,F) = bool

Figure 4: An example data specification

Sorts Sorts are declared with the keyword sort, followed by a name or a list of names (space
separated). Each declared sort represents a non-empty set of data. The elements of that set are
represented as functions.

Functions Functions are declared with the keywords func or map:

func | map Functionname-list : domain -> sortname

For example:

func T, F: -> Bool
map and: Bool # Bool -> Bool

• The keyword func is used to declare the functions that construct a certain sort (the functions
that define the elements of that sort).

• The keyword map is used to declare operations on the elements of an already defined sort.

• The functionname-list is a comma separated list of names

• The domain is a list of declared sort names separated by hashes (#). Domains can be empty.

• It is allowed to overload names of functions, as long as the sort of each term can be determined
uniquely. This means that the combination of the function name and the sorts of its domain
must be unique. It is, for example, allowed to define two functions max in the following way:
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map max: Nat # Nat -> Nat
max: Real # Real -> Real

but not in the following way:

map max: Nat # Nat -> Nat
max: Nat # Nat -> Real

• A function can not have the same combination of name and domain sorts as an action, process
or variable.

• If a sort D is declared without a constructor function that sort is assumed to be arbitrarily large.
In particular D can contain elements that cannot be denoted by terms. As it is not possible to
generate state spaces of processes with infinite data sorts, specifications with arbitrarily large
domains are not practical.

• It is not allowed to define empty sorts. For example, the following definition of D will be rejected:

sort D
func f:D->D

According to this definition every element of D can be written as an application of f onto an
element in D. This means that the only element in D can be written as an infinite sequence of
applications of f. As terms are finite objects D must be empty, which is forbidden.

• There are no pre-defined data types in µcrl. In other words, all data types must be specified.

• The sort Bool must be declared and it must have two constructors, namely T and F.

Data-terms Data-terms can have the following formats:

functionname
functionname ( data-term-list )
varname

Data-term-lists are comma separated lists of data-terms. The following conditions apply:

• The names of functions and variables must be declared.

• Data-terms must be well typed with respect to their declaration.

For example, given the following declarations:

sort Real Point
func 3: -> Real

point: Real#Real -> Point
map cos: Real -> Real

some data-terms are: 3, cos(3), cos(cos(3)), point(3,3).

Equations The additional properties and relations declared with the keyword map are defined by
means of equations. An equation specification consists of an optional variable-declaration (starting
with the keyword var) followed by an equation-section (starting with the keyword rew).
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Variable-declaration Variable-declarations consist of the keyword var followed by a (space separated)
list of typed variables:

var Varname-list : sortname
Varname-list : sortname

The varname-list is comma separated.

• The sorts must be declared.

• Variables can not have the same name as function constants, parameterless actions or parame-
terless processes.

• The names of variables must be unique within the declaration. This means that it is allowed
to use the same name in different equation specifications for different sorts, as in the following
example:

var x: Bool
rew and(T,x) = x

and(F,x) = F

var x,y: Nat
rew eq(0,0) = T

eq(0,succ(x)) = F
eq(succ(x),0) = F
eq(succ(x),succ(y)) = eq(x,y)

It is not allowed to use the same name more than once in an equation specification, as in the
following example:

var x: Bool
x,y: Nat

Equation-section The equation-section consists of the keyword rew followed by a series of equations:

rew data-term = data-term

• Both data-terms in an equation must be of the same sort.

• If the data-terms in an equation section contain variables, these variables must be declared
immediately before that equation-section.

• The tools apply the equations as rewrite rules from left to right. However, this way of using the
equations is not prescribed in the definition of µcrl itself.

• More information about the rewrite process and hints for writing equations can be found in
Appendix III.

2.3 Specification of processes
A µcrl specification describes systems of communicating processes with data. Processes are viewed
as sequences of atomic activities called ‘actions’. Processes are represented by means of process-terms.

Data can be introduced in process specifications as parameters of actions and processes. A condi-
tional (if-then-else construct) allows data to influence the course of a process.

Fig. 5 gives an overview of a process specification.
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act Actionname, Actionname . . . : domain
proc Processname (Varname: sortname, Varname: sortname . . . ) = process-term
comm action-name | action-name = action-name
init process-term

Figure 5: Process specification format

Actions Actions are represented by means of action-terms. Examples of action terms are a, a(3)
and a(T,F,3,f(g(x))).

Declaration of actions Actions are declared by means of the keyword act, followed by a (space
separated) list of action declarations:

act Actionname-list : Domain

For example:

act a b c % simple actions
read, write : Data % read / write a datum
send, receive : Data # NAT % send / receive package consisting

% of a datum and a frame number

• The Actionname-list is comma separated.

• The domain is a list of declared sort names separated by hashes (#). This list defines the
parameters of the action. For example, if an action read is declared as:

act read: D # Bit

two possible action-terms are: read(d1,0) and read(d1,1).

• It is allowed to overload names of actions but the combination of the name and the sorts of
its domain must be unique (except that a parameterless action and a sort may have the same
name).

Predefined actions There are two predefined action names in µcrl:
delta deadlock
tau the internal action

Action-terms Action-terms consist of an action name possibly followed by a parameter-list (i.e. a
comma separated list of data-terms between brackets). All action names must be declared and the
sorts of their parameters must be the same as the sorts in the domain of the declaration.

Processes Processes are represented by means of process-terms. Process-terms describe the order
in which the actions can happen. Process-terms consist of basic process-terms combined by means of
operators.

Declaration of processes Processes are declared by means of the keyword proc followed by one or
more process-declarations:

proc Processname (list of typed variables) = process-term
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• It is allowed to overload names of processes but the combination of the name and the sorts of
its variables must be unique (except that a parameterless process and a sort may have the same
name).

• The list of typed variables is optional.

• The list of typed variables consists of one or more comma separated declarations of the form:

Varname : sortname

• The sortnames must be declared.

• Variables can not have the same name as function constants, parameterless actions or parame-
terless processes.

• A variable name may occur only once within each list.

• Recursion is allowed.

Some basic examples:

1. The first example declares a simple process, X that performs an a action followed by a b action:

proc X = a . b

2. The following declaration recursively defines a process that carries out infinitely many a actions:

proc X = a . X

3. The third example uses parameters to define a counter:

proc Count(n: Nat) = announce (n) . Count(succ(n))

Basic process-terms Basic process-terms are names of actions or processes possibly followed by a
parameter list (i.e. a comma separated list of data-terms between brackets). All basic process-terms
must be declared and the sorts of their parameters must be in accordance with their declaration.

Operators Fig 6 gives an overview of the process operators of µcrl.

• Action-lists are comma separated lists of action names.

• The priority of these operators: @, ., <<, ||, <| . . . |>, +.

The µcrl definition does not distinguish different kinds of operators and allows arbitrary nesting
of all operators. For practical purposes it is useful to group them as in Fig 6:

• The operators +, ., <| . . . |>, and sum are used in the proc section to specify the component
processes of a possibly complex system.

• The operators ||, encap, hide, and rename are used to glue these components together (usually
in the init section). Be advised, that the lineariser is not able to linearise processes in which
these operators occur within the scope of +, ., <| . . . |>, and sum. If one tries to linearise such
process the lineariser will produce the error message Mixing pCRL with mCRL operators.

• The time operators << and @ and the parallel operators | and | are allowed by µcrl, but,
except for the parser, the tool set does not handle processes in which these operators occur.
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process-term . process-term sequential composition
process-term + process-term alternate composition
process-term <| boolean |> process-term conditional
sum (variable, process term) sum
process-term || process-term parallel composition
encap({action-list}, process-term) encapsulation
hide ({action-list}, process-term) hide
rename({rename-list} process-term ) rename
process-term << process term time shift
process-term @ data-term at
process-term | process-term left merge
process-term | process-term communication

Figure 6: Overview of process operators

Communication The keyword comm can be used to specify which actions can synchronise. A
communication specification consists of the keyword comm followed by one or more declarations of
the following form:

comm action-name | action-name = action-name

For example:

comm s2 | r2 = c2

• The names in the action-terms must be appropriately declared.

• The sorts of parameters of the three action terms must match.

The initial behaviour The initial behaviour of the system can be specified with the keyword init
followed by a process-term:

init process-term

For example:

init Count(zero)

would cause the counter to count from zero onwards.

• The µcrl definition does not require a specification to have an init section, but the instantiator
can not instantiate uninitialised state spaces.

3. The Tools

3.1 The tool: mcrl
The tool mcrl checks whether a specification is well-formed timed µcrl. In addition, it can transform
certain µcrl specifications to a linear process operator format.

General description
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Well-formedness check The tool mcrl checks whether a specification is well-formed (timed) µcrl as
defined in [Gro97]. Roughly spoken, ‘well-formed’ means that the following conditions are satisfied:

• The specification is syntactically correct.

• All names in the specification (of sorts, functions, variables, actions, and processes) are appro-
priately declared. This means that there are sort names where there should be sort names,
function names where these are required, and so on. It also means that every sort is declared
only once, that there are no functions, actions and processes that have the same combination of
name and domain sorts and that the names of variables are unique within their declaration and
different from the names of constant functions, unparameterised actions and unparameterised
processes.

• There are no empty sorts.

• The sort Bool is declared, as are the two constructors (T and F) of this sort.

• If the sort Time is declared, both time0 and le are declared as functions of this sort.

• All data-terms conform with the declarations (i.e. they are type correct).

• Both data-terms of each equation are of the same sort.

• All conditions are of sort Bool.

• The term at the right-hand side of every @ operator is of sort Time.

• If an action a is renamed to b, b is declared with respect to all the domains of a.

• The sorts of all communicating actions match.

• The communications are defined in such way that communication is associative and commuta-
tive.

• There is not more than one initial process declared.

Linearisation The tool mcrl can also be used to translate a well-formed µcrl specification to a
linear process operator format3 provided that the specification meets the following requirements:

• The process descriptions do not refer to time (i.e. neither the @ nor the << operator is used).

• The left merge (| ) and the communication merge (|) are not used to specify processes.

• Every process declaration must belong to one of the following syntactic categories:

1. declarations in which action and process names are glued together by means of the operators
., +, <| . . . |>, and sum

2. declarations in which process names are glued together by means of the operators ||, hide,
encap, and rename.

If this requirement is violated the lineariser will respond with the somewhat cryptic error message
Mixing pCRL with mCRL operators.

• The operators ||, hide, encap and rename are not used within the scope of the operators .,
+, <| . . . |>, and sum. If this requirement is violated the lineariser outputs the error message
parallel operator in the scope of pCRL operators.

3Details of the linear process operator format and an impression of the linearisation algorithm are given in appendix II
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• Recursion is guarded.4

• There is no recursion at the level of the ||, hide, encap and rename operators.

The lineariser may need the following functions:

• the function not of type Bool -> Bool,

• the functions and and or of type Bool#Bool -> Bool,

• the function eq with target sort Bool for pairs of certain sorts.

If the lineariser arrives at a point where it needs one of these functions and that function is not
declared it will produce an error message and exit subsequently. It is the responsibility of the author
of the specification to provide appropriate rewriting rules for these functions. The rules for not, and
and or should correspond to the logical operators with the same name (see for example Fig 4); eq is
supposed to be a function that specifies of each pair of constructors of a certain sort whether they are
the same or not. For example, for the sort Bool the rewrite section of eq might read:

rew eq(T,T) = T
eq(T,F) = F
eq(F,T) = F
eq(F,F) = T

The lineariser does not handle terminating processes correctly. In most cases it exits with an
appropriate error message if a process terminates, but it might also produce erroneous output without
any warning. To avoid difficulties one should put a delta behind processes that terminate. This
should not be done carelessly. Consider, for example the following process specification:

proc P = a.P.c + b

This specification specifies a process that executes zero or more a actions, followed by a b action,
followed by as many c actions as there were a actions. One cannot simply put a delta behind the c
and/or the b. One may not put a delta behind the b as this would result in a process with a different
behaviour (no c’s will be performed). However, putting a delta behind the c but not behind the b
will not solve the problem as this means that P may terminate by executing b. In many cases, the
problem might be solved in the init section:

proc P = a.P.c + b
init P . delta

As this works only if there are no processes put in parallel5 a better solution is reached by adding a
process name:

proc X = P.delta
P = a.P.c + b

Format mcrl [ -linear | -tbfile | -stdout [-regular | -regular2]
[-cluster [-binary] | -nocluster] ] infile | [-help] | [-version]

Options
4The notion of guardedness is explained in Section II.2.3.
5if there are parallel processes, a delta in the init section will elicit the Mixing pCRL with mCRL operators error

message



3. The Tools 13

Output format If mcrl is invoked with a filename, infile, and without one of the output format
options (-linear, -tbfile, -stdout) it will perform a well-formedness check on infile, and write the
result to stdout.

If an output format option is specified mcrl will attempt to linearise the specification in infile after
the well-formedness check (but only if the specification is indeed well-formed).

-linear output is written in text format to infile.lin
-tbfile output is written in tool bus format to infile.tbf
-stdout output is written in tool bus format to stdout

Regularity When mcrl is invoked with the flag -regular or -regular2 it attempts to generate an
lpo by applying a regular linearisation method.6 The tool does not check in advance whether such a
translation exists. If such a translation does not exist mcrl will end up in a loop, and will ultimately
crash due to lack of memory.

When mcrl is invoked without a regularity flag it will use stacks to linearise the specification.7 Such
a translation does always exist.

As specifications with stacks are difficult to understand or analyse, it is recommended to use regular
linearisation right away. If the state space associated with a specification is finite, regular linearisation
is always possible. This means that one needs stacks only to linearise specifications with an infinite
state space. As the instantiator of the tool set is not yet able to instantiate infinite state spaces
one might conclude that, currently, in practice, there will seldom or never be a reason to use stacks.

The difference between the flags -regular and -regular2 is explained in Section II.6.3. It influences
the way in which parameters of internally created process names are generated. Both methods have
advantages and disadvantages. In practice one should try both methods to find out which one gives
the best results. The use of -regular often leads to substantially less data parameters than the
use of -regular2, which increases the speed of the lineariser and the instantiator. The -regular2
flag is useful when there are a lot of similar structured process expressions in a specification. In this
case -regular2 might generate smaller state spaces than -regular. Finally, there are cases in which
-regular2 terminates and -regular not.

Clustering If a process term has several summands with the same action they might be packed
together with the help of a sum operator. For example, the process term a(T).X+a(F).X can be
written as the single summand sum(b:Bool,a(b) . X). This is called clustering.

The cluster flags influence clustering during linearisation:
[none] summands are clustered before putting two processes in

parallel
-nocluster summands are not clustered except in very simple cases
-cluster summands are clustered before putting two processes in

parallel and a second time at the end of linearisation pro-
cesses.

Tool info -help provides a short description of the tool with all its flags
-version print version info

Error messages The tool mcrl may produce several kinds of error messages.

Command line errors These errors concern incompatible options such as Options -tbfile and
-linear cannot be used together and the I/O errors Cannot open file for output (does the
file exist in the relevant directory?) and Cannot open file for input (does there exist a file with
the same name, of which you lack the privileges to change it?).

6See Section II.6 for an explanation.
7Details of this method are given in Section II.5.
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Syntax errors After invocation mcrl will try to parse the specification. If it reaches a point where
it does not know how to parse a certain string it exits immediately and produces the error message
line %n: parse error, near string %s. This error message indicates the string that could not be
parsed and the number of the line in which that string occurred. As is usual with parse errors, the
error is always before the string mentioned in the error message and often not near the indicated line.

Other well-formedness errors Next, the tool mcrl checks non-syntactic well-formedness requirements
(see Section 3.1). If it finds an error it exits immediately and tells you what’s wrong. For example, if
mcrl for the second time bumps on a declaration of sort S (which violates the requirement that sort
names must be unique) it will stop and say that

Sort ’S’ appears more than once.

Most error messages speak for themselves. Here are some hints regarding the more difficult ones.

• The wording of the messages is not always consistent. For example, if mcrl for the second time
bumps on a declaration of a certain function name, it will say something like

Function ’f’ appears twice

(even if f is declared four times!).

• Some error messages refer to the order in which the well-formedness is checked. This order is not
necessarily the same as the order in which the terms appear in the specification. For example,
if a specification states:

act a
sort A
func a:->A

mcrl will complain that

Action name ’a’ is already in use,

despite the fact that in the specification act a appears before func a.

• The complaint that a certain function is ‘badly’ or ‘incorrectly’ used may indicate:

1. that the checker has bumped at an undeclared name at a position where it expects the
name of a function or a variable, or

2. that one of the parameters of the function about which the checker complains is of the
wrong type

For example, if f is not declared, the process declaration

proc X(b1: Bool) = sum(b2: Bool, a . X(f(b1,b2)))

will evoke the error message:

The function f in action or process X(f(b1,b2)) in X is
incorrectly used

The same message will be produced if f is declared, but if its actual parameters are of the wrong
type. For example, if f is declared as:

map f: Nat # Nat -> Bool
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On the other hand if the name of one of the actual parameters of f is undeclared, mcrl will
complain about that name. For example, if b2 is not declared, the declaration

proc X(b1: Bool) = a . X(f(b1,b2))

will evoke the complaint:

The function b2 in action or process X(f(b1,b2)) in X is
incorrectly used.

• If the checker complains that a certain variable is ‘already declared as function/variable’ this
means that the name of that variable is also declared as the name of a (constant) function,
another variable in the same declaration, or of an (unparameterised) action or process.

For example, the following declaration

act a b
proc X(b: Bit) = a . X (invert(b))

will provoke the error message

Variable ’b’ is already declared as function/variable.

because b is declared both as a variable and as an action.

Memory problems The well-formedness checker of mcrl attempts to avoid core dumps. This means
that it will exit with an error message if there are memory problems. Examples of this kind of error
messages are:

Too many functions while storing function ’%s’

Out of memory while storing function ’%s’

The first message indicates that in an internally created table there is no room left to store the name
of a function; the second message indicates that mcrl has not enough memory to store the function.

Error messages of the lineariser If one of the output flags is specified mcrl will check whether or not
the specification meets the requirements for linearisation (see Section 3.1). This check takes place after
the well-formedness check. If mcrl discovers a violation it will exit immediately with an appropriate
message. If the requirements are met it will attempt to linearise the specification. The lineariser may
need the functions eq, and, or, or not of sort Bool. If the lineariser arrives at a point where it needs
one of these functions and that function is not declared it will produce an error message and exit
immediately.

Known problems

1. Processes that terminate are not linearised correctly, but a warning is not always given. This
does not apply to intermediate termination, where one process terminates and another continues.
The general solution is to put a delta behind processes to prevent them from terminating.

2. For the enumerated types that are generated when clustering, there are no equality functions
eq defined. This means that linearising an already linearised system may fail due the absence
of these functions.

3. It is not checked whether the functions and, or, not and eq that are sometimes required in the
process are defined in accordance with the normal interpretation of these functions. So, it would
not be noticed if not would be defined by not(T)=T and not(F)=F. The result of the lineariser
depends on the correct definition, and becomes wrong in this case.
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4. When mcrl is invoked with the -regular or -regular2 flag, and the control of the process is
not finite state, then mcrl will loop, and crash after a while due to lack of memory.

5. The lineariser has not been optimised. It uses the general, but not extremely efficient, level 1
aterm functions (with some exceptions). Furthermore, its internal data structures are rather
basic. This may explain that for very large systems, or systems with a lot of parallelism it may
take some time to finish linearisation.

3.2 The tool: msim
The tool msim can be used to single step through a process described in µcrl (text or .tbf format).

Overview A typical session with msim consist of the following steps:

1. start msim by typing msim file.tbf (Fig. 7),

2. initiate the simulation by clicking the Start button (Fig. 8),

3. continue the simulation by selecting actions in the Menu display (Fig. 9),

4. finish the simulation by clicking the Quit button.

Start msim The simulator msim is invoked by:
msim [file]
The simulator will present a window that allows interactive simulation of the system described in

the argument file (Fig 7).
The argument file must be a well-formed µcrl specification in text format or an lpo in .tbf

format. If the argument file is omitted msim will simulate the process described in share/abp.8

Figure 7: The msim window - immediately after start up

Initiate the simulation To start the simulation click the Start button. The simulator will translate
the data types to C code and load them in the program. If all goes well the simulator presents a list
of actions in the Menu display window (see Fig 8). Otherwise an error message will appear in the
message window (bottom of the screen).

8This path is relative to the mcrl top directory
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If the argument file is in text format msim will first generate a .tbf file. It does so by automatically
invoking the command mcrl -tbfile file. Note, that the default method of linearisation is used.
In order to get regular linearisation (the state description of which is much more easy to interpret)
one must linearise the specification before invoking msim (mcrl -tbfile -regular file) and one must
invoke msim with the .tbf file (mcrl file.tbf).

Figure 8: The msim main window after pressing start

Figure 9: The msim main window

Continue the simulation The msim main window (Fig. 9) offers the following possibilities (see also
table 1):

• You can single step through the system by selecting actions in the menu display.

• The program maintains a trace that can be saved in text(Print) or binary format (Save).
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Start Return to the initial state
State Display the state vector describing the current state
Term Display the value of a function in the current state
Undo Back to the previous state in the trace
Redo Forward to the next state in the trace
Print Save the trace in text format
Save Save the trace in binary format
Load Load a trace in binary format
Quit Quit msim

Table 1: The buttons of the msim main window

• You may return to the previous state in the trace by clicking the Undo button. It is possible to
undo the whole sequence of chosen actions up to the initial state.

• You may redo undone actions by clicking Redo.

• To display a description of the current state click State (the interpretation of this description
requires both experience and knowledge of the linearisation process).

• To display the value of a certain function click Term. A term window pops up (Fig 10). Enter
the function and click OK. It is possible to display more than one term window.

• You may change the size of the fonts in the Menu display by clicking on Font size

Figure 10: A term window

Finish and Restart

• To finish the simulation click Quit.

• To restart the simulation click Start.

• To restart the simulation with another specification, change the File and /or Directory and
click Start.

• To load a saved trace in binary format click Load.

References The tool msim is described in [Kor].

Known problems There are no known problems with msim.

3.3 The tool: instantiator
The tool instantiator reads a file in aterm internal format (a .tbf file) and generates a transition
system. By default, the generated transition system is in aut format. This transition system can be
read and manipulated by several tools among which the Cæsar Aldébaran Development Package.
The instantiator can also produce transition systems in svc format [Lan01]. This is a new, compact
format, the tool support of which is rather limit at the moment.
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General description

The .aut format A .aut file is a text file that describes a state space by means of a list of transitions.
Each transition consists of the number of the starting state, the name of an action, and the number of
the resulting state (in that order). The first line in the .aut file describes the state space as a whole
(initial state, number of transitions, number of states). Here is an example of a very simple .aut file
which describes the space pictured in Fig. 11:

des (0,5,4)
(0,"a",1)
(0,"b",2)
(1,"c",3)
(2,"c",3)
(3,"d",0)

State space generation The instantiator reads a file with a linear process in aterm internal format
and explores the state space. The exploration starts with the initial state (which must specified by
means of an init clause). The instantiator traverses all summands of the linear process operator.
If the condition of a summand applies, a transition is added to the .aut file. This transition consists
of the number of the state being explored, the action label of the summand, and the number of the
resulting state. The initial state has label zero. If a resulting state occurs for the first time it gets
the next free number. The instantiator lists all resulting states for further exploration. The initial
state plus all known resulting states (known at a certain point in the exploration process) together
are called ‘visited states’. If a state is completely explored the instantiator proceeds to the next state
on the list (i.e. to the next visited state), until all states are explored.

1 2

0

3

a b

d

c c

Figure 11: A simple state space

Format instantiator [-svc | -svc-num] [-i] [-nohash | -simple] [-case | -order label]
[-rewr] [-monitor] [-deadlock] infile | -help | -version

Options
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Overview

-svc output in svc format; states labeled with state vectors
-svc-num output in svc format; states labeled with numbers
-i print the internal action as i instead of "tau"
-nohash don’t use a hash table during rewriting
-simple another instantiator is run which does not use a hash table during

rewriting,
-case start with the superficial variables when evaluating sum variables

in conditions (useful after applying structelm),
-order specify the order in which sum variables in conditions are evalu-

ated (for experimental use only),
-monitor print to stdout how many states have been explored
-deadlock print the deadlock states to a .dlk file (no .aut file generated )
-help print a short description of the tool and its flags
-version print version info

Output format By default instantiator outputs a .aut file. If the -svc or -svc-num flag is enabled,
the output is in svc format. In the first case (-svc) the states are labeled with aterms, specifying the
state vector; in the second case (-svc-num) the states are labeled with numbers.

The Cæsar Aldébaran tool set assumes that the internal action is denoted by i, whereas
instantiator by default produces "tau". The -i flag causes instantiator to produce i. This
flag is necessary if one wants to reduce the .aut file modulo branching bisimulation or modulo weak
bisimulation with Cæsar Aldébaran.

Hash table during rewriting By default the instantiator checks during each rewriting step if the
-no-hash flag is set. If this flag is not set then a hash table containing normalised terms is present and
the rewriting steps use this hash table. If the -no-hash flag is set then the rewriting steps don’t use
a hash table. The repeated checking of the flag consumes time. This is the reason why the -simple
flag is introduced. If this flag is set another piece of code is run in which there are no checks and
which does not use a hash table during rewriting. This instantiator runs faster on small specifications
in which the benefits of hash tables do not outweight the disadvantages of an extra check.

Enumeration order As is explained in the appendix (Section III.3) the instantiator has a compo-
nent, the enumerator, which determines which instances of a combination of sum variables satisfy a
condition. The speed of this component depends to a large extend on the order in which the different
sum variables are evaluated. This order is affected by the -case and -order flags.

By default, sum variables of enumerated types9 are evaluated before other variables and within each
class the variables are evaluated in the order of the frequency with which they occur in the condition.

After applying structelm followed by rewrite -case, the conditions contain many case functions10

and there are no case functions within non-case functions
(e.g. C(e-1,C(e-2,C(e-3,f(i),g(j)),C(e-4),h(k),h(l)), C(e-5,f(k),g(l)))). In this case it is faster
to start with the most superficial variables. This is accomplished by the -case flag.

It is also possible to specify the order in which sum variables are evaluated by means of the -order
flag. This flag is for experimental use only. Possible orders are: no, enum big freq, big freq, and
min depth:

9Enumerated types are sorts that have only constants as constructors
10The term ‘case function’ is explained in Section 3.9.
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-order no the sum variables are evaluated in the order in
which they appear in the conditions

-order enum big freq the sum variables of enumerated types are evalu-
ated before other variables and within each class
the variables are evaluated in the order of the
frequency with which they occur in the condi-
tion (this is the same as the default order)

-order big freq the sum variables are evaluated in the order of
the frequency with which they occur in the con-
dition

-order min depth the sum variables are evaluated in the order of
their depth (from superficial to deep) (this is
equivalent to -case)

The -prerewr flag If the -prerewr flag is enabled the conditions are reduced (by applying the
rules specified in the rew section), before they are submitted to the enumerator. This speeds up the
enumeration process considerably. However, it is recommended that a specification is rewritten before
it is instantiated and in this case the -prerewr flag is superfluous.

Dealing with large state spaces The .aut format is rather inefficient and may grow very large. The
-monitor and -deadlock options assist in dealing with large state spaces.

The -monitor flag prints every 1000 explored states a message to stdout. This message says how
many states have been explored, how many states have been visited, and how many transitions there
currently are in state space.

If the -deadlock flag is enabled instantiator explores the state space but does not generate a
.aut file. Instead it prints the deadlock states to a .dlk file.

Tool info The -help flag provides a short description of the tool, and the -version flag described
its version.

Known problems

1. The current size of state spaces is restricted to approximately 3 ∗ 107 states, but this figure
depends highly on the process for which the state space is generated. Such a large state space
needs approximately 1.5 Gb of memory.

2. You get problems if you try to instantiate several files in the same directory at the same time
or if you run msim, instantiator, rewr, constelm, and/or parelm at the same time on files
residing in one directory. These tools produce produce and use two files called AUXTERM.c and
REWRITERALT.c which contain C-code for reducing data terms. The problems occur because one
instantiation will overwrite (or use) the code of another instantiation.

References The instantiator is described in [DG95].

3.4 The tool: pp
The tool pp pretty prints a linear process operator in .tbf format.

General description The pretty printer pp reads an LPO in .tbf format and transforms it to ascii
format. Output is written to stdout.

Format pp [-ascii] [infile] | [-help] | [-version]
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Options

• By default pp outputs a format similar to that of the tool mcrl with the -linear option. This
output is human readable and can also serve as input for the tool mcrl.

• If the -ascii flag is used, pp outputs the ascii representation of the aterm in infile. This can be
useful to transform a binary represented aterm (.tbf format) to a slightly more readable form.

• If infile is omitted, pp reads from stdin.

• -help provides a short description of the tool and its flags.

• -version prints version info

Known problems There are no know problems with the pretty printer, pp.

3.5 The tool: rewr
The filter rewr normalises an LPO.

General description This filter reduces an LPO in .tbf format by applying the equations of the
data types. A summand is removed if its condition turns out to be false. Output is written to stdout.

Format rewr [-ascii] [-hash] [-case] [infile] | [-help] | [-version]

Options

• By default rewrites outputs binary aterm format (.tbf format).

• If the -ascii flag is used, the output is an aterm in ascii representation.

• If the -hash flag is used, rewr uses a hash table for storing normalised terms.

• If the -case flag is used, rewr uses implicit rewrite rules handling case functions. These rules
pulls the case functions outwards. The command rewr -case must be used after the command
structelm, because structelm generates a lot of (new) case functions. Information about case
functions and their implicite rewrite rules can be found in [LG01].

• If infile is omitted, rewr reads from stdin.

• -help provides a short description of the tool and its flags.

• -version prints version info

Known problems See item 2 of Section 3.3 for the only known problem with rewr.

3.6 The tool: parelm
The tool parelm removes from an LPO those data parameters and sum variables that do not influence
the behaviour of the system. This may reduce the state space considerably.



3. The Tools 23

General description The filter parelm reads an LPO in .tbf format and removes the data parameters
and sum variables that do not influence the behaviour of the system. For example, if process P is
defined as

P(x: Nat) = a . P (succ(x))

x is superfluous and will be removed by parelm.

The tool carries out the following algorithm:

1. Select the parameters that occur in the conditions and/or in the action arguments of the LPO,

2. Extend the selection with all parameters that depend on parameters which are already selected,

3. Repeat step 2 until no parameters are added to the selection,

4. Remove all parameters that are not selected,

5. For each summand: remove all the sum variables that occur neither in the condition, nor in the
action argument, nor in the arguments of the new state.

The output is written to stdout.

Format parelm [-ascii] [infile] | [-help] | [-version]

Options

• By default the output is in binary aterm format (.tbf)

• If the -ascii flag is used, the output is an aterm in ascii representation.

• If infile is omitted, parelm reads from stdin.

• -help provides a short description of the tool and its flags.

• -version prints version info

Known problems There are no known problems with parelm.

3.7 The tool: constelm
The filter constelm removes from an LPO those data parameters that are constant throughout any
run of the process. This may speed up state space generation considerably. It may also improve the
readability of the LPO.

General description The tool constelm reads an LPO in .tbf format, looks for data parameters
that are constant throughout any run of the process and replaces them by this constant value. For
example, in the following specification the value of y is constant

proc P(x: Nat, y: Nat) = a(x,y) . P(succ(x),3)
init P(x,3)

and constelm will replace y by 3. Output is written to stdout.

Format constelm [-ascii] [infile] | [-help] | [-version]
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Options

• By default constelm outputs binary aterm format (.tbf).

• If the -ascii flag is used, the output is an aterm in ascii representation.

• If infile is omitted, constelm reads from stdin.

• -help provides a short description of the tool and its flags.

• -version prints version info

Known problems There are no known problems with constelm.

3.8 The tool: structelm
The tool structelm replaces terms with a constructor function as head symbol by the name of the
constructor and its arguments. In this way variables occurring in subterms are better exposed and
more amenable to be eliminated by one of the tools.

General description The filter structelm -expand sortname reads an LPO in .tbf format and
replaces terms of sort sortname with a constructor function as head symbol by the name of the
constructor and its arguments. For instance, a list expression in(v, l) is split into the value in, and
terms v and l, and a list expression nil is replaced by the value nil . Consequently, a variable of sort
List is replaced by three variables. The first one to indicate whether the head symbol of the term
represented by the variable starts with in or nil and two to represents the two arguments in case the
term starts with in. This expansion method is called structelm, short for structure elimination. The
application of structelm itself does not optimise a specification, the tool is useful only in combination
with parelm and/or constelm. The latter tools might find more parameters that can be eliminated or
replaced by constants if the sorts in the summands are first split up by structelm. Output is written
to stdout.

Format structelm [-expand sortname] [-depth number] [-torewr] [-binary] [-ascii] [infile]
| [-report] | [-help] | [-version]

Options

What to expand

• The -expand flag allows you to specify which sorts must be expanded. If the flag -expand is
omitted then all sorts are taken which have at least one constructor with at least one argument.

• The -depth flag can be used to specify the depth of the expansion.

Method

• The -binary flag translates the name of the constructor which is considered by structelm as a
value into a row of binary values. An advantage of the use of this flag is a more compact storage
of terms.

Input and output format

• By default structelm outputs binary aterm format (.tbf).

• If the -ascii flag is used, the output is an aterm in ascii representation.

• If infile is omitted, structelm reads from stdin.
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Info

• -report returns a list of composite sorts

• -help provides a short description of the tool and its flags.

• -version prints version info

Known problems There are no known problems with structelm.

References structelm is described in [LG01].

3.9 The tool: sumelm
The filter sumelm simplifies an LPO by replacing sum variables that must be equal to a certain data
term with that data term. This might improve the speed of the instantiator and the effect of
constelm and parelm.

General description The tool sumelm looks for summands that have a condition which states that a
sum variable (i.e. a variable bound by the sum operator) must be equal to some data term and replaces
that variable by that data term. An example is the following summand of the process P(e:Nat):

sum(d:D, sum(f:Nat, read(d,f) . Q(d,e) <| eq(f,e)|> delta))

The tool sumelm will replace this by

sum(s:D, read(d,e) . Q(d,e))

The tool will replace sum variables that occur in conditions consisting of a single eq function as
well as in conditions in which the eq function occurs directly within one or more and, or, or case
functions. So, if d is a sum variable, it will be replaced if the condition is and(eq(d,e), eq(f,g)),
but not if the condition is fancyboolean(eq(d,e), eq(f,g)).

A certain function (say f) of a certain sort (say S) is a case function if it satisfies the following
conditions:

• in regard to its signature

– The first argument is of an enumerated sort (i.e. a sort with a finite number of constructors
that have no arguments), say E with n constructors.

– This first argument is followed by n arguments of sort S.

• in regard to its rewriting system:

– There is an equation of the form

f(ci,v1 .... vn) = vj
in which

∗ ci is a constructor of E
∗ v1 .... vn are different variables of sort S
∗ vj is one of the variables v1 .... vn

for each constructor of E.

– The right hand side of all these equations differ from each other.

Output is written to stdout.

The application of sumelm can be useful for two reasons:
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• It speeds up the instantiator because this tool need not try all possible values of the eliminated
sum variable.

• After application sumelm to an LPO tools such as constelm and parelm might do a better job.

Format sumelm [-ascii] [infile] | [-help] | [-version]

Options

• By default sumelm outputs binary aterm format (.tbf).

• If the -ascii flag is used, the output is an aterm in ascii representation.

• If infile is omitted, sumelm reads from stdin.

• -help provides a short description of the tool and its flags.

• -version prints version info.

Known problems There are no known problems with sumelm.
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Appendix I

The syntax of timed µcrl

In this section the syntax of timed µcrl specifications is given. It is defined in the Syntax Definition
Formalism (SDF) [HHKR89]. According to the convention in SDF we write syntactical categories
with a capital, and keywords with small letters. The first LAYOUT rule says that spaces (‘ ’), tabs
(\t) and newlines (\n) may be used to generate some attractive layout and are not part of the µcrl

specification itself. The second LAYOUT rule says that lines starting with a %-sign followed by zero
or more non-newline characters (~[\n]*) followed by a newline (\n) must be taken as comments and
are therefore also not a part of the µcrl syntax.

A Name is an arbitrary string over a-z, A-Z, 0-9 and the special characters ^_’-. By a default
SDF convention keywords cannot be a Name at the same time. In the context free syntax most items
are self-explanatory. The symbol + stands for one or more and * for zero or more occurrences. For
instance { Name ","}+ is a list of one or more Name separated by commas, without a trailing comma.

The phrase {right}means that an operator is right-associative and {assoc}means that an operator
is associative. The phrase {bracket} says that the defined construct is not an operator, but just a
way to disambiguate the construction of a syntax tree.

The priorities say that the operator ‘@’ has highest and + has low est priority when parsing process
terms with ambiguous bracketing.

exports

sorts Name

Name-list

Domain

Sort-specification

Function-specification

Function-declaration

Equation-specification

Variable-declaration

Variables

Data-term

Equation-section

Single-equation

Process-term

Renaming
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Variable

Process-specification

Process-declaration

Action-specification

Action-declaration

Communication-specification

Communication-declaration

Initial-declaration

Specification

lexical syntax

[ \t\n] -> LAYOUT

"%" ~[\n]* "\n" -> LAYOUT

[a-zA-Z0-9^_’\-]+ -> Name

context-free syntax

{ Name ","}+ -> Name-list

{ Name "#"}+ -> Domain

"sort" Name+ -> Sort-specification

"func" Function-declaration+ -> Function-specification

"map" Function-declaration+ -> Function-specification

Name-list ":" Domain "->" Name -> Function-declaration

Name-list ":" "->" Name -> Function-declaration

Variable-declaration

Equation-section -> Equation-specification

"var" Variables+ -> Variable-declaration

-> Variable-declaration

Name-list ":" Name -> Variables

Name -> Data-term

Name "(" { Data-term "," }+ ")" -> Data-term

"rew" Single-equation+ -> Equation-section

Data-term "=" Data-term -> Single-equation

Process-term "+" Process-term -> Process-term {right}

Process-term "||" Process-term -> Process-term {right}

Process-term "||_" Process-term -> Process-term

Process-term "|" Process-term -> Process-term {right}

Process-term "<|" Data-term "|>"

Process-term -> Process-term

Process-term "." Process-term -> Process-term {right}

Process-term "@" Data-term -> Process-term

Process-term "<<" Process-term -> Process-term {left}

"delta" -> Process-term

"tau" -> Process-term

"encap" "(" "{" Name-list "}" ","

Process-term ")" -> Process-term

"hide" "(" "{" Name-list "}" ","

Process-term ")" -> Process-term

"rename" "(" "{" { Renaming "," }+

"}" "," Process-term ")" -> Process-term

"sum" "(" Variable ","

Process-term ")" -> Process-term

Name "(" { Data-term "," }+ ")" -> Process-term

Name -> Process-term

"(" Process-term ")" -> Process-term {bracket}

Name "->" Name -> Renaming

Name ":" Name -> Variable
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"proc" Process-declaration+ -> Process-specification

Name "(" { Variable "," }+ ")" "="

Process-term -> Process-declaration

Name "=" Process-term -> Process-declaration

"act" Action-declaration+ -> Action-specification

Name-list ":" Domain -> Action-declaration

Name -> Action-declaration

"comm" Communication-declaration+ -> Communication-specification

Name "|" Name "=" Name -> Communication-declaration

"init" Process-term -> Initial-declaration

Sort-specification -> Specification

Function-specification -> Specification

Equation-specification -> Specification

Action-specification -> Specification

Communication-specification -> Specification

Process-specification -> Specification

Initial-declaration -> Specification

Specification Specification -> Specification {assoc}

priorities

Process-term "@" Data-term -> Process-term >

Process-term "." Process-term -> Process-term >

Process-term "<<" Process-term -> Process-term >

{ Process-term "||" Process-term -> Process-term,

Process-term "|" Process-term -> Process-term,

Process-term "||_" Process-term -> Process-term } >

Process-term "<|" Data-term "|>" Process-term -> Process-term >

Process-term "+" Process-term -> Process-term
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Appendix II

Linearisation

This chapter describes in an informal style the linear process operator format (lpo) and the lin-
earisation process as it is implemented in the tool set. The tool set implements three methods for
linearisation: the default method and two regular methods. A formal treatment of the default method
of linearisation is given in [GPU01]. There is no formal treatment of regular linearisation in µcrl

yet.
The first section (II.1) of this chapter describes the linear process operator format (i.e. the output

of the linearisation process). The second section (II.2 discusses the required input of the linearisation
process. The remaining sections (II.3– II.7) discuss the linearisation process itself.

This chapter requires some experience with specification in µcrl.

II.1. The linear process operator format (lpo)

An lpo describes a system as a process that consists of a series of summands; each summand gives
a condition, an action that can be performed if that condition applies, and the modified process that
results from that action.

As an example, consider a simple buffer that can receive a datum with the action read and deliver
it with the action send. The following specification of that buffer is not linear, because there are two
actions before the recursive call of the process Buffer:

proc Buffer = sum(d:Datum, read(d).send(d).Buffer)

The specification can be linearised by dividing the Buffer process in two phases. In phase 1 a datum
is received, in phase 2 the datum is delivered. The linearised Buffer needs two parameters: one to
keep track of a read datum and one to keep track of the phase.

proc Buffer(d1:Datum, phase:Phase) =
sum (d2:Datum, read(d2).Buffer(d2,s) <| eq(phase,r) |> delta
+ send (d1).Buffer(d1,r) <| eq(phase,s) |> delta

II.2. The input of the linearisation process

II.2.1 Overview of requirements
As said in Section 3.1, the lineariser of the tool set requires as input a µcrl specification that meets
the following criteria:
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• There are no references to time.

• Every process declaration belongs to one of the following syntactic categories:

1. declarations in which action and process names are glued together by means of the operators
., +, <| . . . |>, and sum

2. declarations in which process names are glued together by means of the operators ||, hide,
encap, and rename.

• The process names occurring in a declaration of the first type are declared by means of a
declaration of the first type.1

• Process names declared by a declaration of the second type are not used recursively.

• Recursion is guarded.

The first requirement (no time operators) speaks for itself. The next three requirements amount
to the requirement that pcrl and parallel pcrl are neatly separated. This is discussed in the next
subsection (II.2.2). The last requirement (guarded recursion) is discussed in subsection II.2.3.

II.2.2 Separating pcrl from parallel pcrl

Due to the second requirement, the set of process declarations to be linearised can be divided into
two parts. These parts are treated differently during linearisation. These parts are called the pcrl

and the parallel pcrl part:2

• The pcrl part consists of the declarations in which action and process names are glued together
by means of the operators ., +, <| . . . |>, and sum. All process names occurring in the pcrl

part must be declared in the pcrl part. Recursion is allowed (provided it is guarded).

• The parallel pcrl part consists of the declarations in which process names are glued together
by means of the operators ||, hide, encap, and rename. The process names occurring in this
part are defined in either the pcrl part or in this part. Recursion is not allowed.

proc S(c:Nat) = sum(d:D, accept(d).send(d,c).S(succ(c)))
R(e:Nat) = sum(d:D, read(d,e).deliver(d).R(succ(n)))
System(c:Nat, e:Nat) = S(c) || R(e)

Figure II.1: A simple Sender/Receiver system

Consider for example the process specification of fig. II.1. This specification specifies a system
consisting of two processes in parallel:

• a sender (S) which accepts a datum from an application, adds a frame number and sends it to
the network

• a receiver (R) which reads a datum from the network (if it has the appropriate frame number)
and, sends it to an application

The declarations of S and R together form the pcrl part, the declaration of System forms the parallel
pcrl part.

1in other words: the operators ||, hide, encap and rename must not be used within the scope of the operators ., +,
<| . . . |>, and sum.

2pcrl is short for pico crl, a subset of µcrl (micro CRL).
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II.2.3 Guardedness
A process name, X, depends on another process name, Y, if Y is used to declare X. For example, if X is
declared as X = a.Y + Z then X depends on Y and Z.

An occurrence of a process name is guarded if there is an action before that occurrence in the
sequence that contains that occurrence. For example, X and Y are guarded in X = a.X.Y + Z (by the
action a before X and Y in the sequence a.X.Y) but Z not (there is no action before Z in the sequence
Z).

The lineariser requires that recursion is guarded in the sense that there are no cyclic unguarded
dependencies in the specification.3 For example, the following specification will be not be linearised:

proc X = a.X + Y
Y = b.Y + Z
Z = c.Z + X

because of the cycle: X depends on an unguarded Y, Y depends on an unguarded Z, Z depends on an
unguarded X. Similarly,

proc X = X <| F |> a.Y
Y = a.Y

will not be linearised, because X is unguarded in X. An example of a specification that will be linearised
is:

proc X = Y
Y = a.X

X depends on an unguarded Y but Y is completely guarded (i.e. Y has no unguarded dependencies).

II.3. Overview of the linearisation process

The linearisation process consists of two main steps:

1. The pcrl part is transformed into a single lpo, and the parallel pcrl part is appropriately
updated.

2. The two parts are integrated into one single lpo.

The tool set provides three methods for performing the first main step:

• A general method

• Two regular methods, described in Section II.6

The general method applies to all specifications that satisfy the requirements. The regular methods
do not apply in all cases.

Both the general method and the regular methods have an important sub step, namely combining
processes. This sub step is introduced in Section II.4. Section II.5 describes the general method (for
the first main step), Section II.6 the regular methods (for the first main step). The second main step
is discussed in Section II.7.

II.4. Combining processes

The two main steps in linearisation can each be divided in several sub steps. One important sub step
(both in general and in regular linearisation) is the combination of two or more processes into one

3Note that this notion of ‘guarded recursion’ differs slightly from the one used in [Fok00]
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process without changing the system. This can be done by means of a state parameter that indicates
which of the original processes the combined process should execute.

As an example of this sub step, consider the two processes S and P of fig. II.1. These two pro-
cesses can be combined into one process (Combined) without changing the system, provided that the
declaration of System is properly updated (see fig. II.2). In order to achieve this, a new sort State
is introduced. The constructors of this sort are S and P. A parameter of this sort is introduced in
the process Combined to indicate whether Combined must behave as the original S process or as the
original R process.

proc Combined(X:State, c:Nat, e:Nat) =
sum(d:D, accept(d).send(d,c).Combined(S,succ(c),e))

<| eq(X,S) |> delta
+ sum(d:D, read(d,e).deliver(d).Combined(R,c,succ(e)))

<| eq(X,R) |> delta
System(c:Nat, e:Nat) = Combined(S,c,e) || Combined(R,c,e)

Figure II.2: Combined process that acts as a Sender or as a Receiver depending on the State-parameter

The lineariser of the tool set represent states by means of numbers in a kind of binary notation:

sort State
func one: -> State % the value 1
func x2p0: State -> State % multiply by 2
func x2p1: State -> State % multiply by 2 and add 1

The function one represents the value 1 and the functions x2p0 and x2p1 represent the functions
‘multiply by 2’, respectively ‘multiply by 2 and add 1’. One can think of a subterm of sort State as
a binary number with the most significant bit at the right (which is the reverse of the normal order).
For example, x2p0(x2p1(one))) corresponds to 110B (1 for one, 1 for the x2p1 and 0 for x2p0).

II.5. Linearisation of the pcrl part - general method

By default, the lineariser of the tool set applies the method described in [GPU01]. This method
transforms the declarations into a ‘pre-linear’ normal form, the Extended Greibach Normal Form
(egnf) before combining them in the manner described above (Section II.4). The single process
operator resulting from the combination of several declarations in egnf form is subsequently linearised.

Hence, the entire default linearisation process consists of the following steps:

1. The pcrl is transformed into one lpo, while the second part is appropriately updated. This
step consists of the following sub steps:

(a) The declarations of the pcrl part are transformed into egnf.

(b) The declarations of the pcrl part (now in egnf) are combined into a single process and
the second part is appropriately updated (as described in Section II.4).

(c) The pcrl part (now consisting of a combined process, the parts of which are in egnf) is
linearised and the parallel pcrl part is appropriately updated.

2. The pcrl part (now consisting of a single lpo) and the parallel pcrl are integrated into one
single lpo.

A declaration in egnf resembles a linear declaration, except that instead of a single recursive process
call one can have a sequential composition of process calls. The summands of an lpo all have the
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form a.X <| condition |> delta. The “then” part of declarations in egnf can also have forms like
a.X.Y.Z, a.Y.Z, and a.Y.Z.X. However, forms like a.b.Y.Z and a.Y.b.Z are not allowed.

The default method uses stacks to linearise the single process equation that results from combining
several declarations in egnf.

As an example consider the following process specification:

proc Y = a.Y.b + c

This specification describes a process that can do zero or more a actions, followed by a c action after
which as many b actions are executed as there were a actions.

In order to linearise this process it is first brought into egnf (step 1a):

proc Y = a.Y.Z + c
Z = b

Next, the two declarations are combined into a single declaration (step 1b):

X(state: State) = (a.X(Y).X(Z) + c) <| eq(state,Y) |> delta
+ b <| eq(state,Z) |> delta

In order to linearise this declaration (step 1c) it is important to note that the state of the process can
be described as a sequence of process names. For example, X(Y) can perform an a action to change into
X(Y).X(Z), which can perform another a action to change into X(Y).X(Z).X(Z) etc. This sequence
of process names is represented by means of a sort Stack. On this stack entities of sort State are
pushed. The functions getstate, pop and isempty behave as indicated.4

sort Stack
func push:State#Stack ->Stack

emptystack: ->Stack
map getstate:Stack ->State % the state on the top of the

% stack
isempty:Stack ->Bool % true if and only if the stack

% is empty
pop:Stack ->Stack % the stack without the top state

Now, the specification can be linearised, with the following result:

X(s: Stack) =
a . X(push(Y,(push(Z,emptystack))))

<| isempty(s) |> delta
+ c <| isempty(s) |> delta
+ a . X(push(Y,(push(Z,pop(s)))))

<| and(eq(getstate(s),Y),not(isempty(s))) |> delta
+ c . X(pop(s))

<| and(eq(getstate(s),Y),not(isempty(s))) |> delta
+ b . X(pop(s))

<| and(eq(getstate(s),Z),not(isempty(s))) |> delta

In the example above the process to be linearised (X(state:State)) does not have parameters
other than the State. If there are parameters the values of all these parameters must be pushed on
the stack. The specification of the data type Stack is appropriately modified.

4These names are the names used by the tool set.
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II.6. Linearisation of the pcrl part - regular methods

In the general method the declarations of the pcrl part of a specification are first brought into egnf,
then combined into a single process description, which is subsequently linearised with help of a stack
sort. The use of stacks has a considerable disadvantage: as all data parameters are distributed over
different stack frames the lpo is difficult to understand and analyse. However, in many cases, a
process specification can be linearised straight away. If the declarations that make up a linearised
specification are combined (in the manner described in Section II.4) the result is an lpo. There is no
need to introduce stacks. This method of linearisation is called regular linearisation.

Regular linearisation consists of the following steps:

1. The pcrl part is transformed into a single lpo, while the parallel pcrl part is appropriately
updated. This is done by means of the following sub steps:

(a) The pcrl part is linearised.

(b) The (now linear) declarations of the pcrl part are combined into a single lpo, and the
parallel pcrl part is appropriately updated.

2. The pcrl part (now consisting of a single lpo) and the parallel pcrl part are integrated into
one single lpo.

Regular linearisation results in an lpo that is much easier to analyse (by tools such as parelm
and constelm) than an lpo resulting from a linearisation with stacks. However, in contrast with the
default method the regular linearisation is not guaranteed to succeed if the specification meets the
requirements.

In the next sub Section (II.6.1) the notion of a linear specification is described. An example
illustrates that combination of the declarations of a linear specification results in an lpo (step 1b).
Section II.6.2 discusses two methods to linearise a specification (step 1a). Section II.6.3 addresses the
question which method is to be used.

II.6.1 Linear specifications
A process specification is linear if every process equation has the form X=a <| condition |> delta
or x = a.X <| condition |> delta (the condition is not required).

As discussed in Section II.5 if a specification in egnf is combined into a single process that process
must subsequently be linearised in order to get an lpo. In contrast, a linear specification can be
converted into an lpo simply by combining its process declarations in the manner described above
(Section II.4).

Consider, for example, the following linear specification:

proc A = a . B
B = b . B + b . A

Combining A and B into X gives:

proc X(state: State) = a . X(B) <| eq(state,A) |> delta
+ b . X(B) <| eq(state,B) |> delta
+ b . X(A) <| eq(state,B) |> delta

This is indeed an lpo.

II.6.2 Linearisation of regular specifications
In basic process algebra (bpa), a process specification is called regular if the associated state space is
finite. [MM94] describes a method to transform a regular specification into a linear specification.

Consider the following example:
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proc P = a . B . P
B = b . B + b

This specification describes a process that repeatedly performs an a action followed by one or more b
actions. In order to linearise this specification first replace B.P in P by X:

proc P = a . X
B = b . B + b
X = B . P

In order to guard the declaration of X, B is expanded. This results in X = (b.B + b).P which can be
rewritten as X = b.B.P + b.P (by axiom A4 of bpa). As X = B.P, B.P can be replaced by X which
results in: X = b.X + b.P. This gives the following linear specification:

proc P = a . X
B = b . B + b
X = b . X + b . P

If bpa is extended with data (as in µcrl), regular linearisation is more complicated. The lineariser of
the tool set provides two methods for regular linearisation, -regular and -regular2. These methods
differ in the way in which the parameters of the newly created process names are generated:

• With the -regular method the parameters of the newly introduced process names are the
variables of the part to be replaced by that new process.

• With the -regular2 method a new parameter is generated for each parameter of the part to be
replaced.

Consider for example the following process specification:

proc R(b: Bit, queue: List) =
sum(d: D,

read(b,d) . ack(b) . R(invert(b), add(d,queue)))
<| not(is-full(queue)) |>

delta

This specification defines a process that reads a frame consisting of a an alternating bit and a datum,
acknowledges the receipt of that frame and adds the datum to a bounded queue.

In order to linearise this specification ack(b).R(invert(b),add(d,queue)) is to be replaced by a
process X. The flag -regular will use the variables b:Bit, d:D, and queue:List as parameters of X
and invoke X as X(b,d,queue):

proc R(b: Bit, queue: List) =
sum(d: D,

read(b,d) .X(b,d,queue))
<| not(is-full(queue)) |>

delta
X(b: Bit, d: D, queue: List) =

ack(b) . R(invert(b), add(d,queue))

The flag -regular2 will introduce parameters b1:Bit, b2:Bit, and q3:List for respectively b,
invert(b) and add(d,queue) and will invoke X as X(b, invert(b), add(d,queue)):

proc R(b: Bit, queue: List) =
sum(d: D,

read(b,d) . X(b, invert(b), add(d,queue)))
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<| not(is-full(queue)) |>
delta

X(b1: Bit, b2: Bit, q3: List) = ack(b1) . R(b2,q3)

In µcrl there are many cases in which regular linearisation can be successfully applied to processes
that have an infinite state space. For example, if, in the specification above, the bounded queue is
replaced by an unbounded one the associated state space is infinite, but it can be linearised with the
-regular and -regular2 methods in the same way as in the example above. The same is the case
if the alternating bit is replaced by a frame number. The opinions differ on the issue whether or not
such processes should be called ‘regular’.5

II.6.3 Regular versus regular2
The -regular and the -regular2 methods each have advantages and disadvantages:

1. Typically, the use of the -regular flag results in a specification with substantially less data
parameters than the use of the -regular2. This is an advantage because both the lineariser
and the instantiator proceed faster.

2. The -regular2method is especially useful when a specification contains lots of similar structured
process expressions that only differ in the data expressions they contain. Under this conditions
linearisation with -regular2 may result in a specification with a smaller associated state space
(smaller than the state space resulting from -regular).

3. There are cases in which linearisation with the -regular2 flag terminates and linearisation with
the -regular flag not.

I’ll discuss each of these points in the given order.

Ad. 1 – the number of parameters Typically, many parameters are used in more than one data
expression. As a result -regular linearisation will usually generate an lpo with substantially less
parameters than -regular2 linearisation.

There are, however, cases in which -regular2 linearisation results in an lpo with less parameters
than -regular linearisation, as is shown by the following example:

proc P = sum(d: D, sum(e: D, a . b(f(d,e)) . P))

-regular will introduce an X with two parameters d and e; -regular2 will introduce one parameter
v1.

Ad. 2 – structural similarities In general, if a specification contains several similar structured sub-
terms linearisation with -regular2 may result in an lpo with a smaller associated state space than
an lpo generated by -regular.6 The following specification is a case in point:

proc R(b: Bit) =
sum(d: D, read(b,d) . deliver(d) . ack(b) . R(invert(b))

+ read(invert(b),d) . ack(invert(b)) . R(b))

This specification defines a process that reads a frame consisting of an alternating bit and a datum.
If the expected frame arrives, the datum is delivered to an application, after which the receipt of that
frame is acknowledged. If an unexpected (i.e. previous) frame arrives, it is acknowledged and the
process continues unaltered.

Linearisation starts by replacing deliver(d).ack(b).R(invert(b)). As will be clear from the
discussion above, -regular does so by means of X(d:D, b:Bit):

5Intuitively, regular linearisation is possible if the control of a process is finite (no matter whether or not there are
infinite data). Unfortunately, up to know all attempts to formalise this intuition and prove it failed.

6We found reductions by 10–15%
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proc R(b: Bit) =
sum(d: D, read(b,d) . X(d,b)

+ read(invert(b),d) . ack(invert(b)) . R(b))
X(d: D, b: Bit) = deliver(d) . ack(b) . R(invert(b))

Linearisation with -regular2 will introduce a process X(d1:D, b2:Bit, b3:Bit) for the same pur-
pose:

proc R(b: Bit) =
sum(d: D, read(b,d) . X(d, b, invert(b))

+ read(invert(b),d) . ack(invert(b)) . R(b))
X(d1: D, b2: Bit, b3: Bit) = deliver(d1) . ack(b2) . R(b3)

Next, ack(d).R(invert(b)), respectively ack(b2).deliver(d3), is to be replaced. The -regular
flag results in:

proc R(b: Bit) =
sum(d: D, read(b,d) . X(d,b)

+ read(invert(b),d) . ack(invert(b)) . R(b))
X(d: D, b: Bit) = deliver(d) . Y(b)
Y(b: Bit) = ack(b) . R(invert(b))

The -regular2 flag gives:

proc R(b: Bit) =
sum(d: D, read(b,d) . X(d, b, invert(b))

+ read(invert(b),d) . ack(invert(b)) . R(b))
X(d1: D, b2: Bit, b3: Bit) = deliver(d1) . Y(b2,b3)
Y(b1: Bit, b2: Bit) = ack(b1) . R(b2)

Next, ack(invert(b)).R(b) is to be replaced. Note, that this subterm is similar in structure to
the subterm replaced in the previous step. In order to replace this subterm -regular has to introduce
a new process name Z(b:Bit):

proc R(b: Bit) = sum(d: D, read(b,d) . X(d,b)
+ read(invert(b),d) . Z(b))

X(d: D, b: Bit) = deliver(d) . Y(b)
Y(b: Bit) = ack(b) . R(invert(b))
Z(b: Bit) = ack(invert(b)) . R(b)

The -regular2 method needs a Z(b1:Bit, b2:Bit) = ack(b1).R(b2). There is already such a
process declared, namely Y, and -regular2 will use that:

proc R(b: Bit) =
sum(d: D, read(b,d) . X(d, b, invert(b))

+ read(invert(b),d) . Y(invert(b), b))
X(d1: D, b2: Bit, b3: Bit) = deliver(d1) . Y(b2,b3)
Y(b1: Bit, b2: Bit) = ack(b1) . R(b2)

It is easy to see that the state space associated with the specification generated with -regular2 has
a smaller state space than the one associated with -regular (fig. II.3). Assume that there is only one
datum (d). Starting with R(0), a read(0,d) can be executed resulting in X(0) (-regular) respectively
X(0,1) (-regular2). From this state a deliver(d), can be executed (resulting in Y(0), respectively
Y(0,1)), followed by a ack(0) resulting in R(1) in both cases. At this point, if a read(0,d) is executed
-regular will enter state Z(0), but -regular2 will return to Y(0,1). Similar considerations apply
to what happens if read(1,0) is executed from state R(0).
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Figure II.3: The state spaces with -regular (left) and -regular2 (right)

Ad. 3 – termination There are cases in which linearisation with the -regular2 method terminates
and linearisation with the -regular flag not. Here is an example:

proc P(n: Nat, m: Nat) = a . B(succ(n)) . P(n,succ(m))
B(n: Nat) = b . B(succ(n)) + c

Linearisation with the -regular flag will start by introducing an X(n:Nat, m:Nat) to replace
B(succ(n)).P(n,succ(m)):

proc P(n: Nat, m: Nat) = a . X(n,m)
B(n: Nat) = b . B(succ(n)) + c
X(n: Nat, m: Nat) = B(succ(n)) . P(n, succ(m))

Next B(succ(n)) of X must be expanded in order to guard the declaration of X. After application of
axiom A4 this gives:

proc P(n: Nat, m: Nat) = a . X(n,m)
B(n: Nat) = b . B(succ(n)) + c
X(n: Nat, m: Nat) = b . B(succ(succ(n))) . P(n, succ(m))

+ c . P(n, succ(m))

In the next step B(succ(succ(n))).P(n,succ(m)) will have to be replaced. As there is no suitable
X, a new process name, say Y(n:Nat, m:Nat), is introduced, which must be guarded subsequently,
and so on ad infinitum.

However, linearisation with -regular2 will terminate. First B(succ(n)). P(n,succ(m)) will be
replaced by X(n1:Nat, n2:Nat, n3:Nat):

proc P(n: Nat, m: Nat) = a . X(succ(n), n, succ(m))
B(n: Nat) = b . B(succ(n)) + c
X(n1: Nat, n2: Nat, n3: Nat) = B(n1) . P(n2,n3)
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Then X is guarded by expanding B(n1). After application of axiom A4 this gives:

proc P(n: Nat, m: Nat) = a . X(succ(n), n, succ(m))
B(n: Nat) = b . B(succ(n)) + c
X(n1: Nat, n2: Nat, n3: Nat) = b . B(succ(n1)) . P(n2,n3)

+ c . P(n2,n3)

Note that B(succ(n1)).P(n2,n3) = X(succ(n1), n2, n3). The application of this equality to
replace B(succ(n1)).P(n2,n3) in the declaration of X results in the following process specification:

proc P(n: Nat, m: Nat) = a . X(succ(n), n, succ(m))
B(n: Nat) = b . B(succ(n)) + c
X(n1: Nat, n2: Nat, n3: Nat) = b . X(succ(n1), n2, n3)

+ c . P(n2,n3)

This specification is linear.
In theory, the situation that linearisation with -regular does not terminate whereas linearisation

with -regular2 does, occurs only if the associated state space is infinite. If the state space is finite
there will be some point in the replacement cycle where a suitable process name already exists.
However, as the specification is not rewritten during linearisation the lineariser may not recognise
this. This means that in practice it is always worth to try whether -regular2 terminates if -regular
does not. For example, if in the example above the sort Nat is replaced by a data type Mod-2 defined
in the following way:

sort Mod-2
func 0,1: -> Mod-2
map succ: Mod-2 -> Mod-2
rew succ(0) = 1

succ(1) = 0

the associated state space is finite but -regular will not terminate as the lineariser will not recognise
that succ(succ(0)) is the same as 0. Similarly, if the function succ is replaced by some func-
tion succ-mod2:Nat->Nat which computes n mod 2 the associated state space is finite but lin-
earisation with the -regular flag will not terminate as the lineariser does not recognise that e.g.
succ-mod2(succ-mod2(succ-mod2(0))) equals to 0.

II.7. Parallel composition

After the pcrl part is transformed into an lpo and the parallel pcrl part is properly updated the
two parts are integrated into a single lpo. This transformation is usually called parallel composition.

One of the advantages of lpos is that parallel composition of two lpos comes down to the con-
catenation of the list of summands of each process. To see this, suppose Z(S) is an lpo and Z and
P = Z(X) || Z(Y) are to be integrated into a single lpo. In order to do so a new process name
U(S1,S2)=Z(S1)||Z(S2) is introduced. Now P can be written as U(X,Y). By axiom CM1

U(X,Y) = Z(X) ||_ Z(Y)
+ Z(Y) ||_ Z(X)
+ Z(X) | Z(Y)}

Consider the first summand (Z(X) || Z(Y)). As Z is linear Z(X) consists of summands the “then-
par” of which have the form a.Z(K) or a. According to axiom CM4 each of these summands can be
left merged separately to Z(Y). So, the first summand (Z(X) || Z(Y)) can be replaced by a series of
summands each has either the form a.Z(K)|| Z(Y) or a|| Z(Y). According to axiom CM3 summands
of the first type equal to a.(Z(K)|| Z(Y)) which can be rewritten as a.U(K,Y). Summands of the
second type equal to a.Z(Y). Similar considerations apply to the second ((Y) || Z(X)) and the
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third summand (Z(X) | Z(Y)). The result at this point is a series of summands each consisting of an
action followed by U or Z. In order to transform this into an lpo, U and Z must be combined into a
new process, say V, in the manner described in Section II.4.
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Appendix III

Rewriting

The equations specified with the keyword rew are applied by msim, instantiator and rewr to rewrite
(reduce) the specification. These tools use the equations to generate c-code for reducing data terms.
This code is compiled using the gnu c-compiler (gcc) and dynamically linked to the relevant tool.

This chapter describes how the equations are applied (Section III.1), and discusses some problems
related to the rewriting method (Section III.2) and to the way in which the rewriter is used by the
instantiator (Section III.3).

III.1. Method

• Currently, the rewriter applies the equations of rew sections as rewrite rules from left to right.

• The rewriter attempts to rewrite the arguments of a function before it rewrites the function as
a whole (this is called innermost rewriting).

• If more than one argument can be rewritten by application of the rewrite rules the rewriter will
choose the leftmost argument.

• If more than one rewrite rule applies to the same term the rewriter will use the one that appears
first in the specification.

This way of using the equations is not prescribed in the definition of µcrl and it may change in
the future. More than that, a change is planned for the last two usage rules. It is therefore highly
recommended that a specification is written in such a way that the results of the application of the
rewrite rules depend neither on the order in which the terms appear nor on the order in which the
rules appear.

III.2. Innermost rewriting

Some algebraic equations do not terminate when applied as rewrite rules in innermost rewriting. For
example, the modulo function mod can be specified algebraically as

mod(m,n) = if (ge(m,n),mod(sub(m,n),n),m)

However, if this equation is used as a rewrite rule, innermost rewriting will not terminate. To under-
stand this, assume the following specification:
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sort Nat
func 0: -> Nat

s: Nat -> Nat

map ge: Nat # Nat -> Bool % greater than or equal to
var n,m: Nat
rew ge(n,0) = T % ge-1

ge(0,s(0)) = F % ge-2
ge(s(n),s(m)) = ge(n,m) % ge-3

map if: Bool # Nat # Nat % if(Bool,m,n) is m if Bool is T
% n if Bool is F

var n,m: Nat
rew if(T,m,n) = m % if-1

if(F,m,n) = n % if-2

map sub: Nat # Nat -> Nat % sub(m,n) means m minus n
var n,m: Nat
rew sub(n,0) = 0 % sub-1

sub(s(n),s(m)) = sub(n,m) % sub-2

map mod: Nat # Nat -> Nat % mod(m,n) means m mod n
rew mod(m,n) = if(ge(m,n),mod(sub(m,n),n),m) % mod-1

and consider what happens if mod(s(s(s(0))),s(s(0))) (3 mod 2) is rewritten (the sub term that
will be rewritten in the next step is underlined):

1. The rewriter will start by applying mod-1 to rewrite

mod(s(s(s(0))),s(s(0)))

as a whole as:

if(ge(s(s(s(0))), s(s(0))), mod(sub(s(s(s(0))),s(s(0))),s(s(0))), s(s(s(0))))

2. The leftmost argument of this function can be rewritten to T (applying ge-3 and ge-1). This
results in the following term:

if(T, mod(sub(s(s(s(0))),s(s(0))),s(s(0))), s(s(s(0))))

3. Algebraically, this whole term can be replaced by mod(sub(s(s(s(0))), s(s(0))) (equation
if-1), but as the rewriter works innermost, it will not do this. Instead, it will try to rewrite
the second argument (the function mod(sub(s(s(s(0))),s(s(0))),s(s(0)))). Rule mod-1
applies to this term, but as one of its sub terms (sub(s(s(s(0))),s(s(0)))) can also by
rewritten (applying sub-1 and sub-2) the innermost rewriter will do that. The result is:

if(T, mod(s(0),s(s(0))), s(s(s(0))))

4. The second argument can be rewritten once more (applying mod-1). The result is:

if(T, if(ge(s(0),s(s(0))),mod(sub(s(0),s(s(0)))),s(s(0))), s(s(s(0))))

5. The leftmost sub term of the second argument can be rewritten to F (using ge-3 and ge-2). The
result is:

if(T, if(F,mod(sub(s(0),s(s(0))),s(s(0)))), s(s(s(0))))
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6. Algebraically if(F,sub(s(0),s(s(0))),s(s(0))) could be replaced by s(s(0)) (if-2), but
as rewriting is innermost the rewriter will now apply sub-2 to replace sub(s(0),s(s(0)) by
sub(0,s(s(0))). There are no rules to reduce this further. The result is:

if(T, if(F,mod(sub(0,s(s(0))),s(s(0))),s(s(0))), s(s(s(0))))

7. The underlined function can be rewritten again using mod-1:

if(T, if(F, if(ge(sub(0,s(s(0))), s(s(0))), mod(sub(sub(0,s(s(0))), s(s(0))), s(s(0))),

s(s(0))), s(s(s(0))))

8. Rule mod-1 can be applied to the result (note that ge(sub(0,s(s(0))), s(s(0))) can not be
rewritten):

if(T, if(F, if(ge(sub(0,s(s(0))),s(s(0))), if(ge(sub(sub(0,s(s(0))), s(s(0)))),

mod(sub(sub(sub(0,s(s(0))), s(s(0))))),s(s(0))),s(s(0))), s(s(s(0))))

9. and so on.

The function mod is replaced by a term that contains the function mod as one of its sub terms, this
sub term in turn is replaced by a term that contains mod as one of its sub terms, and so on. Note
that, mod-1 does not put any limitation on the form of the arguments of mod, every (well-typed) mod
can be rewritten. As a work around one might limit the possibility to rewrite mod, preferably, in such
way that it can not be rewritten after the point were the answer is known (step 6). This can be done
by replacing mod-1 with the following rules:

rew mod(0,n) = 0 % mod-2a
mod(s(m),n) = if(ge(s(m),n),mod(sub(s(m),n),n),s(m))

% mod-2b

Now, mod can only be rewritten if the first argument is 0 or s(m). This precludes the end-less rewriting
of mod(sub(n),m).

Rewriting of mod(s(s(s(0))),s(s(0)))will proceed in the same way as above, up to and including
6 (mod-2b is applied instead of mod-1). This results in:

if(T, if(F,mod(sub(0,s(s(0))),s(s(0))),s(s(0))), s(s(s(0))))

But then a difference occurs. This time there is no rule to replace mod(sub(0, s(s(0))), s(s(0))).
Instead, the rewriter will apply if-2 on the underlined function. This results in:

if(T, s(s(0))), s(s(s(0))))

To this term the rewriter will apply if-1:

s(s(0))

which is the desired result.

III.3. Rewriting of open terms

Although a mapping is completely specified by equations telling how the mapping applies to the
constructors, it it is often useful or even necessary to add rules for boolean open terms. An example
of such a rule is:

var b: Bool
rew and(b,not(b)) = F
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In order to understand why such an addition might be useful one must delve into the inner workings
of the instantiator.

As said, in Section 3.3 the instantiator generates the state space reachable from the initial state
described in the specification. One main component of the instantiator is the stepper. The stepper
accepts an input state and a linearised specification and returns a list of (action,state) pairs, repre-
senting steps that are possible from the input state. In order to determine which steps are possible the
stepper evaluates the condition of each summand. If a summand contains a sum operator the stepper
will pass the condition (an open terms of type boolean) to another component, the enumerator. This
component enumerates the data terms for which the condition is true.

For example, suppose that a summand contains a sum operator with sum variable n of type Natural
and a condition le(n,s(s(0))) (n < 2). The stepper will pass the open term le(n,s(s(0))) to the
enumerator (together with the specification of the relevant data types). The enumerator will try to
evaluate this term and if it does not succeed it will try to evaluate all terms in which the variable
n is replaced by a constructor of its type (Natural) applied to a fresh variable. Suppose le(n,m) is
specified as follows:

map le: Nat#Nat -> Nat
var n,m: Nat
rew le(0,0) = F

le(0,s(n)) = T
le(s(n),0) = F
le(s(n),s(m)) = le(n,m)

Let’s see what happens:

• The enumerator will first try to evaluate le(n,s(s(0)).

• As there is no rule for this open term it will not succeed.

• Next, the enumerator will try to evaluate le(0,s(s(0))) and le(s(n’), s(s(0))) (which are
all terms resulting from replacing n by one the constructors of Natural (0 and s(n)) applied to
the fresh variable n’).

• The evaluation of le(0,s(s(0))) will result in T and the enumerator will return 0 as a data
term that satisfies the condition

• The second term (le(s(n’),s(s(0)))) can be rewritten as le(n’,s(0)), but no further reduc-
tion is possible. Hence the attempt to evaluate le(s(n’),s(s(0)) does not succeed.

• Therefore, the enumerator will now try le(s(0),s(s(0))) and
le(s(s(n’’)),s(s(0))).

• The first term (le(s(s(0)),s(s(0)))) can be rewritten to T and is returned to the stepper.

• The attempt to evaluate the second term (le(s(s(n’’)),s(s(0)))) does not succeed as this
term reduces to le(n’’,0).

• Therefore, the enumerator will now try le(s(s(0)),s(s(0)) and
le(s(s(s(n’’’))),s(s(0,0)).

• The first term evaluates to F.

• The second term can be reduced to le(s(n’’’), s(s(0))) which evaluates to F as well.

• Hence, the enumerator is done.
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It can occur that certain conditionals have a value but that it cannot be evaluated by the enumerator.
As an example consider the condition and(even(n),not(even(n))). Obviously, this condition is false.
However, in absence of the equation and(x, not(x)) = F the enumerator will not be able to evaluate
it and will return the error message Condition %s does not evaluate to T or F.

Assume the following specification of even and odd

map even, odd: Nat -> Bool
var n: Nat
rew odd(s(0)) = T

even(s(0)) = F
odd(s(s(n))) = even(s(n))
even(s(s(n))) = odd(s(n))

The enumerator will first try to evaluate and(even(n),not(even(n))). It will not succeed. It will
then try the terms and(even(0),not(even(0))) and and(even(s(n’)),not even(s(n’))). As,
there are no rules for these terms, neither will succeed. The enumerator will now try the terms
and(even(s(0)), not(even(s(0)))) and and(even(s(s(n’’))), not(even(s(s(n’’))))). The
first term reduces to F. The second term will be reduced to and(odd(s(n’’)), not(odd(s(n’’))))
which cannot be evaluated. For that reason, the enumerator will try
and(even(s(s(0))),not(even(s(s(0))))) (which reduces to F) and
and(even(s(s(s(0)))),not(even(s(s(s(0)))))) (which does not succeed). And so on . . . . After
a certain number of trials the enumerator will give up as a result of which instantiator will exit
with the error Condition and(even(zero),not(even(zero))) does not evaluate to T or F.

However, if the equation and(x,not(x)) = F is added to the specification, the first attempt will
succeed, as and(even(n),not(even(n)))will be reduced to F. The enumerator will inform the stepper
that there are no substitutions that satisfy the condition and all goes well.

Here are some examples of other equations that are worth adding:

• if(b,x,x)=x (b is of sort Bool)

• not(not(b)) = b
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Appendix IV

License

The software of the µcrl tool set may be used provided the following license agreement is obeyed.

IV.1. Preamble

The µcrl tool set version 1.xx (where xx stands for any one or two digit number) is a set of programs
to transform and analyze µcrl specifications. This license is intended to make clear that the software
may be used freely, both for commercial and non commercial purposes, provided that when it is used
in part or as a whole it must be made clear that

1. the µcrl tool set version 1.xx, developed at the theme SEN2 of the Centrum voor Wiskunde
en Informatica (CWI), Kruislaan 413, Amsterdam, The Netherlands, developed by Jan Friso
Groote and Bert Lisser

2. the aterm library version 0.xx, developed at the faculty of mathematics, computer science, phys-
ical science and of the University of Amsterdam, Kruislaan 409, Amsterdam, The Netherlands
developed by Hayco de Jong and Pieter Olivier.

have been used to deliver certain product or service.
Furthermore, this license excludes any liability caused by direct or indirect use of the software, and

any obligation to provide support or updates in any form.

IV.2. License Agreement

Hereinafter “LICENSEE” refers to the person or institution who has made a copy of the file mcrl-
1.xx.tar.gz which contains analysis and transformation programs and documentation and a copy of
this License Agreement.

Hereinafter “LICENSOR” refers to

The Stichting Mathematisch Centrum, existing under the laws of The Netherlands, and having offices
at the

Kruislaan 413 Amsterdam The Netherlands

WHEREAS
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LICENSOR has developed a body of computer programs and associated documentation, referred to
as “the µcrl tool set version 1.xx” by the authors, and hereinafter referred to as the SOFTWARE,

LICENSOR has made available the SOFTWARE in a file mcrl-1.xx.tar.gz which contains the SOFT-
WARE and a copy of this Academic License Agreement,

LICENSEE desires to use the SOFTWARE for any purpose,

LICENSEE agrees as follows:

The LICENSOR grants to the LICENSEE a non-exclusive, non-transferable, license to use the SOFT-
WARE subject to the following conditions.

1. LICENSEE’S RIGHTS. LICENSEE shall have the right to use the SOFTWARE for any pur-
pose. In particular LICENSEE may use the software for the commercial or non-commercial
analysis or transformation of µcrl specifications, the construction of commercial or non com-
mercial software based on (parts of) the SOFTWARE, or the construction of commercial or non
commercial software analysis packages.

2. RESTRICTIONS ON USE. LICENSEE takes care that whenever the SOFTWARE is used,
either directly or indirectly, as a whole or in part for delivering services of any kind, construction
of new software or software analysis packages it is made clear that the service or software makes
use of:

(a) the µcrl tool set version 1.xx, developed at the theme SEN2 of the Centrum voor Wiskunde
en Informatica (CWI), Kruislaan 413, Amsterdam, The Netherlands, developed by Jan
Friso Groote and Bert Lisser

(b) the aterm library version 0.xx, developed at the faculty of mathematics, computer sci-
ence, physical science and astrophysics of the University of Amsterdam, Kruislaan 409,
Amsterdam, The Netherlands developed by Hayco de Jong and Pieter Olivier.

(This can for instance be done by mentioning 1. and 2. above in a README file, an “about”
section, or by referring to the software in an accompanying paper. For services offered, it suffices
to make clear either verbally or in writing that above mentioned software has been used)

3. LICENSING FEE. There is no fee for this license.

4. NO SUPPORT. The LICENSEE recognizes that the LICENSOR is not obligated to provide
support, maintenance, consulting, or revision of the SOFTWARE. If the LICENSOR chooses to
release to the LICENSEE updates of, additions to, or modifications of the SOFTWARE, this
agreement shall apply to them as though they were part of the original SOFTWARE.

5. NO PRODUCT WARRANTY. The SOFTWARE is released on an “as is” basis. There is no
warranty whatsoever as to functioning, performance or effect on hardware or other software,
express or implied. By way of an example, but not limitation, the LICENSOR makes no rep-
resentations or warranties of merchantability or fitness for any particular purpose or that the
use of the licensed SOFTWARE will not infringe any patents, copyrights, trademarks or other
rights.

6. OWNERSHIP. The LICENSEE agrees that the SOFTWARE, including any updates, additions,
and modifications, is, and shall at all times remain, the property of the LICENSOR, and that it
has been copyrighted by the LICENSOR. The LICENSEE shall have no right, title or interest
therein or thereto except as expressly set forth in this agreement.



IV.2. License Agreement 51

7. CREDITS. All credits and copyright notices in the SOFTWARE, both in listings and/or docu-
mentation, whether names of individuals or organizations, shall be retained in place. Publica-
tions referring to the SOFTWARE, or to other SOFTWAREs containing the SOFTWARE in
whole or in part, shall refer to it as the µcrl tool set version 1.xx and the aterm library version
0.xx, and shall specify that the SOFTWARE was obtained under license from the Stichting
Mathematisch Centrum in Amsterdam.

8. NO LIABILITY. Neither the LICENSOR nor any individual or any legal entity involved in
creating, modifying, updating, or supplementing the SOFTWARE, shall be liable for damages
arising out of the failure or malfunctioning of the SOFTWARE. The LICENSEE hereby assumes
the risk of and releases and forever discharges the LICENSOR, their employees and any other
individual or legal entity referred to in the foregoing sentence with respect to any expense, claim,
liability, loss or damage, direct or indirect, including any incidental or consequential damages,
whether made or suffered by LICENSEE or by third parties obtaining access to the SOFT-
WARE through LICENSEE in connection with the failure or malfunction of the SOFTWARE.
LICENSEE acknowledges that the SOFTWARE is in the process of development and is not
error-free, that the foregoing exclusion of liability is therefore an essential term of this Agree-
ment without which exclusion the LICENSOR would not be willing to enter into this Agreement
and to make the SOFTWARE available for free.

9. ACCEPTANCE. Installing or using of any part of the SOFTWARE implies acceptance of the
terms and conditions of this agreement.




