1st Parameterized Algorithms & Computational Experiments Challenge

Where it came from, how it went, who won, and what’s next
WHERE PACE CAME FROM
Inception

• PACE was conceived in fall 2015 when many FPT researchers gathered at the Simons institute

• Born from a feeling that parameterized algorithmics should have a greater impact on practice

• Partially inspired by the success of SAT-solving competitions in neighboring communities

• Discussions with many members of the community (thanks for all your input!) led to a steering committee and two challenge tracks for 2015-2016 with program committees
 – Track A: Treewidth
 – Track B: Feedback Vertex Set
Goals

• Investigate the applicability of algorithmic ideas from parameterized algorithmics
 1. provide bridge between algorithm design&analysis theory and algorithm engineering practice
 2. inspire new theoretical developments
 3. investigate the competitiveness of analytical and design frameworks developed in the communities
 4. produce universally accessible libraries of implementations and repositories of benchmark instances
 5. encourage dissemination of the findings in scientific papers
PACE organization

Steering committee:

Holger Dell
Bart M. P. Jansen
Thore Husfeldt
Petteri Kaski
Christian Komusiewicz
Frances A. Rosamond [chair]

Saarland University & Cluster of Excellence
Eindhoven University of Technology
ITU Copenhagen and Lund University
Aalto University
Friedrich-Schiller-University Jena
University of Bergen
PACE organization

Program committee track A, Treewidth:

Isolde Adler University of Leeds
Holger Dell [chair] Saarland University and Cluster of Excellence
Thore Husfeldt ITU Copenhagen and Lund University
Lukas Larisch University of Leeds
Felix Salfelder Goethe University Frankfurt

Program committee track B, Feedback Vertex Set:

Falk Hüffner Industry
Christian Komusiewicz Friedrich-Schiller-University Jena
PACE timeline in 2015-2016

• March 1st 2016: Call for contributions, benchmark instances available, website online
• June 1st 2016: Register participation
• June 22nd 2016: Prizes and travel awards announced, sponsored by Networks
• August 1st 2016: Submission deadline
• August 24th 2016: Winner announcement

pacechallenge.wordpress.com
A word from the sponsor ...

- We are offering a 2-year postdoc position in Network Algorithms at the Eindhoven University of Technology
 - Broad range: computational geometry, graph algorithms, or FPT algorithms
 - Contact Mark de Berg (m.t.d.berg@tue.nl) before August 31

NETWORKS is a project of

University of Amsterdam
Eindhoven University of Technology
Leiden University
Center for Mathematics and Computer Science (CWI)

thenetworkcenter.nl
How it went and who won

TRACK A: TREEWIDTH
PACE 2016
Track A: Tree width

Isolde Adler
Holger Dell
Thore Husfeldt
Lukas Larisch
Felix Salfelder
PACE challenges, Track A

exact tree width

Evaluation: The running time

3 submissions

heuristic tree width

Evaluation: The obtained width

7 submissions

instances

2 submissions
Treewidth

Given G and k, is $\text{tw}(G) \leq k$?

- NP-hard, but in time n^{k+2}
 (Arnborg, Corneil & Proskurowski 1987)

- in FPT time $\exp(k^3) n$
 (Bodlaender 1996)

- factor-5 approximation in time $\exp(k) n$
 (Bodlaender Drange Dregi Fomin Lokshtanov Pilipczuk 2013)

- open: PTAS?
Some Applications (outside of FPT)

- **Register allocation** in compilers
 (e.g., Thorup 1998)

- Preprocessing for **shortest path**
 (e.g., Chatterjee Ibsen-Jensen Pavlogiannis 2016)

- **Treewidth of specific graph families**
 (e.g., Kiyomia Okamoto Otachi 2015)

- Preprocessing for **probabilistic inference**
 (e.g., Otten Ihler Kask Dechter 2011)
Treewidth implementations pre-PACE

- Python SAGE: slow and buggy
- Outdated C++-library without documentation
- Some non-public implementations
- No standard input/output format
- Hard to compare
The submission requirements

- repository on github.com
- 2-page abstract
- DIMACS input format
- Output: tree decomposition
Benchmark instances

96 control flow graphs
79 special “named” graphs
56 DIMACS graph coloring instances
41 random instances
7 incidence graphs of SAT competition instance
2 transit networks
281 total

Detailed results, benchmark instances, and tools to easily reproduce the results:
https://github.com/holgerdell/PACE-treewidth-testbed
Submission programming languages

- C++-11
- C# / Mono
- Java 8
Exact treewidth
Exact Treewidth Competition Results

Performance of exact sequential submissions (Treewidth vs. Running time)

- 0: Frankfurt University
- 3: Utrecht University
- 6: Luebeck University
- 7: Meiji University
Exact Treewidth Competition Results

instances solved in timeout:

166 Berndt, Bannach, Ehlers (Universität zu Lübeck)
171 Larisch & Salfelder (baseline)
173 Bodlaender & Van der Zanden (Utrecht University)
199 Tamaki (Meiji University)
Algorithmic ideas

Use **SAT-solver** to find elimination order (Team Lübeck)

Branch on **balanced separators + DP** (Team Utrecht)

Tamaki:
- Modify n^k **brute-force** approach of Arnborg et al. (1987) in an upcoming publication
- Running time **not known to be in** $n^{f(k)}$
Heuristic treewidth
Heuristic Sequential Treewidth Competition
Heuristic Sequential Treewidth Competition
Heuristic Parallel Treewidth Competition

histogram integral (Treewidth counts)

- Purple: willmlam/CVO2
- Cyan: 12: ben-strasser/flow-cutter-pace16
- Red: 6: maxbannach/Jdrasil

frequency (cumulative)

Treewidth+1
Evaluation Scheme

6s11-opt.gaifman.gr

<table>
<thead>
<tr>
<th>submission</th>
<th>width after 100s</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>672</td>
</tr>
<tr>
<td>12</td>
<td>957</td>
</tr>
<tr>
<td>9</td>
<td>994</td>
</tr>
<tr>
<td>1</td>
<td>33279</td>
</tr>
<tr>
<td>10</td>
<td>33279</td>
</tr>
</tbody>
</table>

- Preferential voting scheme
- Instances=Voters
- Use Schulze method to combine votes
Heuristic Competition Results

Sequential algorithm

1. Ben Strasser
 (Karlsruhe Institute of Technology)
2. Eli Fox-Epstein
 (Brown University)
3. Abseher, Musliu, Woltran
 (TU Wien)

Parallel algorithm

1. Kask, Lam
 (University of California at Irvine)
2. Ben Strasser
 (Karlsruhe Institute of Technology)
3. Bannach, Berndt, Ehlers
 (Universität zu Lübeck)
Condorcet Winners

Heuristic sequential:

12 (Strasser) better than
1 (IIT Madras) on 100% of instances
6 (Lübeck) on 95.5% of instances
10 (Australia) on 71% of instances
5 (TU Wien) on 61% of instances
9 (Fox-Epstein) on 55% of instances

Heuristic parallel:

2 (UC Irvine) better than
6 (Lübeck) on 99% of instances
12 (Strasser) on 63% of instances
Definition of k-Trees

1. \((k+1)\)-clique

2. k-clique → \(N(v)\)

subgraphs of k-trees = treewidth k graphs

elimination order: reverse of insertion order
Main Algorithmic Ideas for Heuristic TW

Minimum Fill-In Heuristic

Guess elimination order:

- Choose vertex v randomly so that few edges need to be added to turn $N(v)$ into clique

Team Australia (rank 4)

“Turbocharging treewidth heuristics” (IPEC 2016)
PACE challenges, Track A

exact tree width

Evaluation: The running time

3 submissions

heuristic tree width

Evaluation: The obtained width

7 submissions

instances

2 submissions
How it went and who won

TRACK B: FEEDBACK VERTEX SET
The 1st Parameterized Algorithms and Computational Experiments Challenge: Track B Feedback Vertex Set

Falk Hüffner
Technische Universität Berlin

Christian Komusiewicz
Friedrich-Schiller-Universität Jena
Challenge Problem

Feedback Vertex Set

Input: An undirected graph $G = (V, E)$.

Task: Find a minimum set $S \subseteq V$ such that $G - S$ is a forest.
Challenge Problem

Feedback Vertex Set

Input: An undirected graph $G = (V, E)$.

Task: Find a minimum set $S \subseteq V$ such that $G - S$ is a forest.
Challenge Problem

Feedback Vertex Set

Input: An undirected graph $G = (V, E)$.

Task: Find a minimum set $S \subseteq V$ such that $G - S$ is a forest.
Challenge Problem

Feedback Vertex Set

Input: An undirected graph $G = (V, E)$.

Task: Find a minimum set $S \subseteq V$ such that $G - S$ is a forest.

Feedback Vertex Set is fixed-parameter tractable e.g. parameterized by solution size $|S|$, amenable to different techniques: branching, iterative compression, kernelization, randomized branching,...
Challenge Setup

Benchmark Instances: 230 instances, 100 public instances and 130 hidden instances

Instance origin: Social networks, biological networks, incidence graphs of CNF formulas, road networks, power networks
Challenge Setup

Benchmark Instances: 230 instances, 100 public instances and 130 hidden instances

Instance origin: Social networks, biological networks, incidence graphs of CNF formulas, road networks, power networks

Properties: (hidden benchmark instances)
Challenge Setup

Benchmark Instances: 230 instances, 100 public instances and 130 hidden instances

Instance origin: Social networks, biological networks, incidence graphs of CNF formulas, road networks, power networks

Properties: (hidden benchmark instances)

| | $|V|$ | $|E|$ | $|S|$ |
|-------|-----|-----|-----|
| min | 32 | 63 | 5 |
| median| 308.5 | 1305 | 34 |
| \emptyset | 2079 | 4185 | 153 |
| max | 19362 | 32081 | 6400 |

Winner Criterion: # solved instances within 30 minutes (each) on the set of hidden instances
Challenge Setup

Benchmark Instances: 230 instances, 100 public instances and 130 hidden instances

Instance origin: Social networks, biological networks, incidence graphs of CNF formulas, road networks, power networks

Properties: (hidden benchmark instances)

| | $|V|$ | $|E|$ | $|S|$ |
|-----|-----|-----|-----|
| min | 32 | 63 | 5 |
| median | 308.5 | 1305 | 34 |
| \emptyset | 2079 | 4185 | 153 |
| max | 19362 | 32081 | 6400 |

Winner Criterion: # solved instances within 30 minutes (each) on the set of hidden instances

Participation: 14 registrations, 7 submissions
Results

Team Moscow
Team Bonn
Team Chennai
Team Kiel
Team Saarbrücken
Marcin Pilipczuk
Team Tokyo
Results

1 participant, C++ randomized branching

1
2
3
4
5
6
7

Team Moscow
5 participants, C++
iterative compression, subcubic graphs $\in P$
4 participants, Python branching on shortest cycle, search tree pruning via lb
Results

4 participants, C#
iterative compression & branching, subcubic graphs ∈ P

C. Komusiewicz (FSU Jena)
PACE Track B
5 participants, C++, branching, search tree pruning via lower and upper bounds.
Results

1 participant, C++,
branching, subcubic graphs $\in P$, DP on tree decomposition
Results

2 participants, Java, LP-based branching and kernelization

C. Komusiewicz (FSU Jena)
Results

ILP, gurobi
data reduction, lazy constraints adding short remaining cycles
WHAT’S NEXT?
Long term plan

• Have a PACE challenge every year to continually drive the transition from theory to practice
 – Challenge problems may change from year to year

• PACE does not aim to be a publication venue for papers
 – Authors of submissions are encouraged to submit papers describing their implementations to established venues (IPEC, ESA track B, ALENEX, etc.)

• Desire to have the award ceremony at IPEC every year
 – (To be discussed with IPEC steering committee)
PACE 2016-2017

• PACE will again have two tracks next year
 1. Treewidth track
 • Similarly to this year but without a subtrack for parallel algorithms
 2. Track for “Problem X”
 • Problem still to be determined, to be solved exactly by FPT methods

• Time schedule:
 1. November 1st 2016: Announcement of problems and inputs
 2. March 1st 2017: Submission of prototype program to check input/output formats
 3. May 1st 2017: Submission of final program
 4. June 1st 2017: Result are announced
 5. Early September 2017: Award ceremony at IPEC
Input from the community

• Which “problem X” to use for the second track next year?

• Preferably, problem X:
 1. Has been analyzed successfully from the theoretical perspective, with several different approaches for obtaining FPT algorithms
 2. Is relevant in practice and it is possible to find real-world instances with moderate parameter values
Feedback

• Comments? Suggestions? Tips?
History of parameterized complexity

- 1975: NP-completeness
- 1980: Graph Minors Theorem
- 1985: Parameterized (in)tractability
- 1990: Downey & Fellows book
- 1995: Parameterized complexity newsletter
- 2000: Planar DOMINATING SET kernel
- 2005: 1st I(W)PEC Conference
- 2010: Kernelization lower bounds
- 2015: 1st PACE

THANK YOU!