
Tutorial Activiti and SQL

Dirk Fahland

2IO71 DBL Information Systems

MySQL server

PAGE 1

Architecture of the System

Database

`acme`

Database

`activiti`

Activiti Engine

Process Model

A

process-related

information, e.g.

• customers,

• suppliers,

• items,

• orders,

• …

maintained by you

engine-related

information, e.g.

• users,

• roles,

• active process

instances,

• …

maintained by Activiti

In this Tutorial

 First Example

 Writing to the DB

• where SQL queries can be

annotated

• what can be used

 Reading from

the DB

• populating forms with database

contents

 Triggers based on Database

contents

 Interactions between

processes

PAGE 2

MySQL server

Database

`acme`

Database

`activiti`

Activiti Engine

Process Model

A

SQL Queries

in the process model

First Example – Form Properties

 Open Eclipse

 Open project
example_bpmn_model1

 Open diagram
src/main/resources/
diagrams/CreateQuote.bpmn

 select task Add Quote

 open the Properties view

(see Tutorial 01 Activiti Basics)

 select Form

 the properties show a number of

form properties

 Activiti renders these properties

as form fields when the task is

created (to be executed by a user)

PAGE 3

First Example – Execution Listeners

 open Listeners in the Properties view

 there is a listener on event complete

 the listener is of Type expression

 the Implementation is an expression, preceded by the keyword sql:

 the entire query following after sql: gets executed when the task gets

completed

(= when the user clicks the “Complete” button of this task in the UI)

PAGE 4

First Example – SQL Expression in Listener

 entire query of Add Quote
INSERT INTO `quotes` (`customer`, `item`, `itemprice`,
`quantity`, `totalprice`,`handledBy`) VALUES
('${customer}','${item}',${itemprice/100},${quantity},
 ${itemprice/100 * quantity},
 ${execution.processInstanceId}
);

 what it does

• inserts a new row into table `quotes`

• where values for columns (`customer`, `item`, `itemprice`,
`quantity`, `totalprice`,`handledBy`) are specified

• the values in the query are set from variables, e.g., ${customer}, or

calculated from expressions, e.g., ${itemprice/100 * quantity}

• values of variables have been set by the user

(see Form Properties of this task)

PAGE 5

First Example – Expressions on Gateways

 variables can also be evaluated on arcs

 in CreateQuote.bpmn, select the arc between the two XOR-gateways

 open Main config

 the arc expression

${addAnother == ‘true’}

defines that this arc is only

taken when the variable

addAnother has been set to

true

PAGE 6

First Example – Try Yourself

 Log into Activiti and start the process Add Quote

 Fill in the Customer field in the start form of the Add Quote process

 Go to the Tasks tab in Activiti

 There will be an Add Quote task assigned to you

 Fill in Items, Price, and Quantity and choose whether another item

shall be added.

 Repeat until you are done (Add another item to this quote is unchecked)

 Log into MySQL and execute
SELECT * FROM `quotes`;

 The items that you’ve entered will show up in the query result

PAGE 7

In this Tutorial

 First Example

 Writing to the DB

• where SQL queries can be

annotated

• what can be used

 Reading from

the DB

• populating forms with database

contents

 Triggers based on Database

contents

 Interactions between

processes

PAGE 8

MySQL server

Database

`acme`

Database

`activiti`

Activiti Engine

Process Model

A

SQL Queries

in the process model

Where can SQL queries can annotated

 INSERT, UPDATE, DELETE queries can be annotated

• as an Expression of a task listeners of any task, preferably a

listener of type complete

see also http://www.activiti.org/userguide/#taskListeners

 SELECT, INSERT, UPDATE, DELETE queries can be

annotated

• in a service task that has type Expression

• the result of the query can be stored in a variable

 … anywhere, where Activiti allows an expression

http://www.activiti.org/userguide/#apiExpressions

 an SQL expression must be preceded by the keyword
sql:

PAGE 9

http://www.activiti.org/userguide/
http://www.activiti.org/userguide/
http://www.activiti.org/userguide/

What can be used inside SQL queries

 each SQL query in an Activiti expression has to be a valid

SQL query

 values in an SQL query can be
• constants

• Activiti expressions using ${…}, i.e., no nesting of SQL queries

 examples:
• UPDATE `quotes` SET `state`='checking',

`handledBy`=${execution.processInstanceId}
WHERE `state`='added';

• UPDATE `quotes` SET `state`='${quoteOK}',
`itemprice`=${itemPrice},`quantity`=${quantity}
WHERE `id`=${quoteID};

• INSERT INTO `quotes` (`customer`, `item`, `itemprice`,
`quantity`, `totalprice`,`handledBy`)
VALUES ('${customer}', '${item}', ${itemprice/100},${quantity},
${itemprice/100 * quantity}, ${execution.processInstanceId});

PAGE 10

In this Tutorial

 First Example

 Writing to the DB

• where SQL queries can be

annotated

• what can be used

 Reading from

the DB

• populating forms with

database contents

 Triggers based on Database

contents

 Interactions between

processes

PAGE 11

MySQL server

Database

`acme`

Database

`activiti`

Activiti Engine

Process Model

A

SQL Queries

in the process model

Reading from the DB

 SELECT queries can be annotated

• in a Service Task of type Expression

 the result of the query can be stored in a variable

• in Default expressions of a Form of a User Task,

as follows…

PAGE 12

Populating Forms with DB Contents (1)

 Open Eclipse

 Open project example_bpmn_model1

 Open diagram src/main/resources/diagrams/CheckQuote.bpmn

 select task Check Quote and open Properties > Form

 the Default column contains expressions with SQL queries

PAGE 13

Populating Forms with DB Contents (2)

 for task Check Quote, the form property quoteID
• is of type enum

• has as default expression a query preceded by the keyword
sql_ui:

• query: SELECT `id` WHERE `state`='checking'

 when the user form is shown

• the query is executed, and

• the results of the query are shown in

a drop-down list

• from which the user can pick a value

PAGE 14

Populating Forms with DB Contents (3)

 for task Check Quote, the form property customerName
• is of type String (default type) and

• has as default expression a query preceded by the keyword
sql_ui:

• SELECT `customer` FROM `quotes` WHERE `id`=&{quoteID}

 the expression &{quoteID}
refers to the current value

in the field quoteID

 when a new value is set in

quoteID, the query gets

executed and the first returned

value is shown in customerName

PAGE 15

 a field with Readable=True and Writeable=False
will be read-only (values just displayed)

 a field with Writeable=True

will be pre-filled with a queried value,

the value can be changed by the user

 only values of the first column of a SELECT query will be

used to populate a field

 for field of type enum:

• all values will be put into the drop down list

 for other types (String, Long, Double):

• only the first value will be put into the field

PAGE 16

Populating Forms with DB Contents (4)

 default expressions with sql_ui: queries can refer to

values of any number of fields &{field1}, &{field2}, …

 the fields referred to in a query have to be defined before

the field that uses the query

• there must not be a cycle of references

• use the Up and Down buttons to define a correct order of fields

PAGE 17

Populating Forms with DB Contents (5)

&{quoteID}

In this Tutorial

 First Example

 Writing to the DB

• where SQL queries can be

annotated

• what can be used

 Reading from

the DB

• populating forms with database

contents

 Triggers based on

Database contents

 Interactions between

processes

PAGE 18

MySQL server

Database

`acme`

Database

`activiti`

Activiti Engine

Process Model

A

SQL Queries

in the process model

PAGE 19

Trigger by Start Event (1)

 Open Eclipse

 Open project example_bpmn_model1

 Open diagram src/main/resources/diagrams/CheckQuote.bpmn

 select the start timer event and open Properties > Main config

 the Time cycle field has a value 0 0/1 * * * ?

= UNIX cron expression

 Activiti creates a new instance of this process every minute

PAGE 20

Trigger by Start Event (2)

 to create guarded start timer events:

• select the start timer event, go to Properties > Form

• create a form property with

− Id=sql_trigger and

− Default expression being an sql: query

 when the timer fires, the query gets executed

• if the result is empty, then no process instance is created

• otherwise, a new instance is created

 Example in CheckQuote.bpmn
• the sql_trigger in the start timer event has the expression

SELECT * FROM `quotes` WHERE `state`='added';

• a new instance will be created whenever there is a quote that is in state added

• to prevent creation of infinitely many instances, table quotes should be

updated so that it does not contain quotes in state added anymore

PAGE 21

Trigger by Start Event (3)

 Open Eclipse

 Open project example_bpmn_model1

 Open diagram src/main/resources/diagrams/WaitForEntry.bpmn

 select the Intermediate Catch Event

 the intermediate event pauses the process execution

until a signalX is raised (Properties > Main config > Signal ref)

 signals can be raised in various ways

see http://www.activiti.org/userguide/#bpmnEvents

PAGE 22

Trigger by Intermediate Event (1)

http://www.activiti.org/userguide/

 signals have to be defined

• unfortunately, the Activiti Designer has problems showing signal

definitions in the graphical editor

 to create/edit a signal definition

right click on the model file, Open With > XML Editor

PAGE 23

Trigger by Intermediate Event (2)

 to create/edit a signal definition

in the XML Editor, select the Source View

 every signal definition

• is a child of <definitions …>

• has the form

 <signal id=“idString” name=“text or SQL query”/>

• see http://www.activiti.org/userguide/#bpmnSignalEventDefinition

PAGE 24

Trigger by Intermediate Event (3)

http://www.activiti.org/userguide/
http://www.activiti.org/userguide/

 at any catch event, process execution will halt, and

 continue only when a signal of the referred signal id is

raised

 if signal name contains an sql: query, then

• Activiti regularly executes the query

• when the query returns a result, a signal of the given id is raised,

and any halted execution continues

PAGE 25

Trigger by Intermediate Event (4)

refers to

In this Tutorial

 First Example

 Writing to the DB

• where SQL queries can be

annotated

• what can be used

 Reading from

the DB

• populating forms with database

contents

 Triggers based on Database

contents

 Interactions between

processes

PAGE 26

MySQL server

Database

`acme`

Database

`activiti`

Activiti Engine

Process Model

A

SQL Queries

in the process model

 in project example_bpmn_model1

 processes CreateQuote.bpmn and CheckQuote.bpmn are interacting

PAGE 27

Interactions between processes

Database `acme`
INSERT

table `quotes`

CreateQuote.bpmn

CheckQuote.bpmn

triggered by SELECT

UPDATE UPDATE

Good Luck!

Dirk Fahland

2IO71 DBL Information Systems

