The Feed-Forward Loop Network Motif

2IF35 Formal Modelling in Cell Biology

Technische Universiteit Eindhoven

November 20, 2012

feed forward loops

feed-forward loops in E. coli transcription network

all 13 connected 3-node graphs

feed-forward loop (nr. 5) and feedback loop (nr. 9)

graph G of N nodes and E edges subgraph g of n nodes and e edges with s symmetries

probability for specific edge $p = E/N^2$ expected subgraph frequency $[N_g] \approx \frac{1}{5}N^n p^e$ mean connectivity $\lambda = E/N$ thus $p = \lambda/N$ and $[N_g] \approx \frac{1}{s}N^{n-e}\lambda^e$

scaling relation $[N_g] \sim N^{n-e}$ (fixed λ)

V-shape	3 - 2 = 1	$[N_g] \sim N$
full 3-clique	3 - 6 = -3	$[N_g] \sim N^{-3}$

mean connectivity $\lambda = E/N$ thus $p = \lambda/N$ and $[N_g] \approx \frac{1}{s}N^{n-e}\lambda^e$

scaling relation $[N_g] \sim N^{n-e}$ (fixed λ)

 $\begin{array}{ll} \mbox{V-shape} & 3-2=1 & \left[\ N_g \ \right] \sim N \\ \mbox{full 3-clique} & 3-6=-3 & \left[\ N_g \ \right] \sim N^{-3} \end{array}$

constant expectations

 $[N_{FFL}] = \frac{1}{1}\lambda^3 N^0 = \lambda^3$ and $[N_{3loop}] = \frac{1}{3}\lambda^3 N^0 = \lambda^3$

	Feed-Forward Loop		Feedback Loop
E. coli	42		0
Erdös-Reyni random	1.7 ± 1.3	(Z=31)	0.6 ± 0.8
degree-preserving random	7 ± 5	(Z=7)	0.2 ± 0.6

coherent and incoherent feed-forward loops

integration of activation/inhibition

C1-FFL with AND logic

C1-FFL as sign-sensitive delay element

C1-FFL as sign-sensitive delay element (cont.)

dynamics of C1-FFL following an OFF step

C1-FFL as sign-sensitive delay element (cont.)

persistence detector: protection against brief input fluctuations

sign-sensitive delay in the arabinose system

C1-FFL compared to simple regulation

sign-sensitive delay in the arabinose system

C1-FFL compared to simple regulation

C1-FFL with OR logic

sign-sensitive delay for OFF steps

C1-FFL with OR logic

sign-sensitive delay for OFF steps

type-1 incoherent FFL

two parallel antagonistic paths

type-1 incoherent FFL (cont.)

dynamics of I1-FFL

type-1 incoherent FFL (cont.)

production of Y

$$\begin{aligned} \frac{dY}{dt} &= \beta_Y - \alpha_Y Y \\ Y(t) &= Y_{st} (1 - e^{-\alpha_Y t}) \qquad Y_{st} = \frac{\beta_Y}{\alpha_Y} \end{aligned}$$

production of Z while $Y < K_{XY}$

$$\frac{dZ}{dt} = \beta_Z - \alpha_Z Z$$
$$Z(t) = Z_m (1 - e^{-\alpha_Z t}) \qquad Z_m = \frac{\beta_Z}{\alpha_Z}$$

production of Z once $Y \ge K_{XY}$

$$\begin{aligned} \frac{dZ}{dt} &= \beta'_Z - \alpha_Z Z\\ Z(t_{rep}) &= Z_{rep} \quad Y(t_{rep}) = K_{YX} \quad Z_{st} = \frac{\beta'_Z}{\alpha'_Z}\\ Z(t) &= Z_{st} + (Z_{rep} - Z_{st})e^{-\alpha_Z(t - t_{rep})} \end{aligned}$$

I1-FFL as pulse generator

repression factor
$$F = \frac{\beta_Z}{\beta'_Z}$$

I1-FFL shortens response time

I1-FFL vs. simple regulation speed-up of initial reduction with equal steady state value

I1-FFL shortens response time (cont.)

response time $T_{1/2}$ vs. repression factor Fsolving $\frac{\beta_Z}{\alpha_Z}(1 - e^{-\alpha_Z T_{1/2}}) = \frac{1}{2} \frac{\beta'_Z}{\alpha_z}$ yields $T_{1/2} = \log(\frac{2F}{2F-1})$

experimental I1-FFL study

I1-FFL dynamics in E. coli galactose system