
Chapter 2

Finite Automata

and Regular Languages

In this chapter we introduce the notion of a deterministic finite automaton, of a non-
deterministic finite automaton with silent steps and of a regular expression. We will
show that the class of associated languages, the class of regular languages, is the same
for all these three concepts. We study closure properties of the class of regular languages
and provide a means to prove that a language is not regular.

2.1 Deterministic finite automata

We start off with the simplest yet most rigid concept of the three main notions mentioned.

Definition 2.1 (Deterministic finite automaton). A deterministic finite automaton
(DFA) is a tuple D = (Q, Σ, δ, q0, F ) with Q a finite non-empty set, the set of states,
Σ a finite set, the alphabet, δ : Q × Σ → Q the transition function, q0 ∈ Q the initial
state, and F ⊆ Q the set of final states.

We sometimes write q
a
−→D q′ instead of δ(q, a) = q′, and call it a transition of D from

state q to state q′ on input or symbol a. We may write q
a
−→ q′ if the automaton D is

clear from the context. Intuitively, when automaton D is in state q and the symbol a
is the first symbol on input, the automaton D moves to state q′ while consuming the
symbol a. Unlike for non-deterministic finite automata or NFA that we encounter in the
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Figure 2.1: Finite automaton of Example 2.2
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next section, for a DFA in each state q ∈ Q and for every symbol a ∈ Σ the next state,
which is the state δ(q, a), is determined by the transition function δ.

Example 2.2. Figure 2.1 gives a visual representation of a deterministic finite automa-
ton, D say. The set of states is {q0, q1, q2, q3} with q0 the initial state as indicated by the
small incoming arrow. The alphabet Σ consists of the symbols a and b. The δ-function
is indicated by the arrows between states. E.g., for q0 there is an arrow labeled a to q1,
thus δ(q0, a) = q1. There is also an arrow labeled b from q0 to itself, so δ(q0, b) = q0.
The self-loop of q3 labeled a, b represents two transitions, one for a and one for b. Thus
δ(q3, a) = q3 and δ(q3, b) = q3. There is one final state, viz. q3, as indicated by the
double boundary of the state. Thus, the set of final states is {q3}.

Formally, D = (Q, Σ, δ, q0, F ) where Q = {q0, q1, q2, q3}, Σ = {a, b}, F = {q3} and
δ : Q× Σ → Q is given by the table below.

a b

q0 q1 q0
q1 q2 q0
q2 q2 q3
q3 q3 q3

Note, since δ : Q× Σ → Q is a function, for each state q ∈ Q there is exactly one state,
viz. the state δ(q, a) ∈ Q, for each symbol a ∈ Σ.

A configuration of a finite automatonD = (Q, Σ, δ, q0, F ) is a pair (q, w) of a state q ∈ Q
and a string w ∈ Σ∗. The configuration (q, w) indicates that D is in state q with the
word w on input. We write (q, w) ⊢D (q′, w′) if automaton D in state q moves to
state q′ when reading the first, i.e. leftmost, symbol of w. More specifically, the relation
⊢D ⊆ (Q× Σ∗)× (Q× Σ∗) is defined by

(q, w) ⊢D (q′, w′) iff w = aw′ and δ(q, a) = q′, for some a ∈ Σ

We say that (q, aw′) yields (q′, w′) with respect to D, or that D derives configura-
tion (q′, w′) from configuration (q, aw′) in one step. By definition, for each q ∈ Q there
exist no q′ ∈ Q and w′ ∈ Σ∗ such that (q, ε) ⊢D (q′, w′).

Note ⊢D ⊆ (Q × Σ∗) × (Q × Σ∗) is a relation on Q × Σ∗. We denote by ⊢∗
D the

reflexive and transitive closure of ⊢D . Thus

(q, w) ⊢∗
D (q′, w′) iff

∃n > 0 ∃w0, . . . , wn ∈ Σ∗ ∃q0, . . . , qn ∈ Q :

(q, w) = (q0, w0), (qi−1, wi−1) ⊢D (qi, wi), for 1 6 i 6 n,

and (qn, wn) = (q′, w′)

In the above situation we say that (q, w) yields (q′, w′) with respect to D, or that D
derives configuration (q′, w′) from configuration (q, w) in a number –zero, one, or more–
steps.
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Example 2.3. Continuing Example 2.2 involving the DFA D given by Figure 2.1,
we have for the relation ⊢D that (q1, aaaba) ⊢D (q2, aaba), (q2, aaba) ⊢D (q2, aba),
(q2, aba) ⊢D (q2, ba), (q2, ba) ⊢D (q3, a), and, (q3, a) ⊢D (q3, ε). For the relation ⊢∗

D

we have (q1, aaaba) ⊢∗
D (q3, ε), but also (q1, aaaba) ⊢∗

D (q1, aaaba), (q2, aaba) ⊢∗
D

(q2, aba), (q2, aaba) ⊢∗
D (q3, ε), and (q2, aaba) ⊢∗

D (q3, a).

To facilitate inductive reasoning it is technically advantageous to have a slightly more
precise formulation of the ‘derives’ relation ⊢∗

D . Assume D = (Q, Σ, δ, q0, F ). We
define, for n > 0, the relation ⊢n

D ⊆ (Q × Σ∗) × (Q × Σ∗) as follows: For q, q′ ∈ Q,
w,w′ ∈ Σ∗ we put (q, w) ⊢ 0

D (q′, w′) iff q = q′ and w = w′, and (q, w) ⊢ n+1
D (q′, w′)

iff (q, w) ⊢ n
D (q̄, w̄) and (q̄, w̄) ⊢D (q′, w′) for some state q̄ ∈ Q and string w̄ ∈ Σ∗.

If (q, w) ⊢ n
D (q′, w′) then there are n input symbols processed. So we expected the

following property to hold.

Lemma 2.4. Let D = (Q, Σ, δ, q0, F ) be a DFA. For all q, q′ ∈ Q, w,w′ ∈ Σ∗ it holds
that

(q, w) ⊢∗
D (q′, w′) ⇐⇒ (q, w) ⊢n

D (q′, w′) for n = |w|−|w′|

Proof. (⇒) By definition of ⊢∗
D we have (q, w) ⊢∗

D (q′, w′) iff

(q, w) = (q0, w0), (qi−1, wi−1) ⊢D (qi, wi), for 1 6 i 6 n, and (qn, wn) = (q′, w′)

for suitable n > 0, q0, . . . , qn ∈ Q, and w0, . . . , wn ∈ Σ∗. By definition of ⊢D we have
wi−1 = aiwi for some ai ∈ Σ, 1 6 i 6 n. Therefore,

(q, w) = (q0, w0) ⊢D (q1, w1) ⊢D · · · ⊢D (qn, wn) = (q′, w′)

and w = w0 = a1 · · · anwn = a1 · · · anw
′. Thus, |w| = n+ |w′|.

(⇐) One can show by induction on n: if (q, w) ⊢n
D (q′, w′) then (q, w) ⊢∗

D (q′, w′),
the details of which are omitted here.

A special case of the lemma above is when w′ = ε. Since |ε| = 0, we have n = |w| and

obtain (q, w) ⊢∗
D (q′, ε) ⇐⇒ (q, w) ⊢

|w|
D (q′, ε).

For a DFA, given a state q and an symbol a on input, the next state is determined.
It is the state δ(q, a). Also, if it takes the string w to be read off from input to get from
state q to some state q′ while leaving a string w′ on input, then extending the input with
a string v doesn’t influence this derivation of the DFA from q to q′. Thus, we have the
following two properties for the ‘derives’ relation ⊢∗

D .

Lemma 2.5. Let D = (Q, Σ, δ, q0, F ) be a DFA.

(a) For all states q, q′, q′′ ∈ Q and words w,w′ ∈ Σ∗ it holds that

(q, w) ⊢∗
D (q′, w′) ∧ (q, w) ⊢∗

D (q′′, w′) =⇒ q′ = q′′
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(b) For states q, q′ ∈ Q and all words w,w′, v ∈ Σ∗ it holds that

(q, w) ⊢∗
D (q′, w′) ⇐⇒ (q, wv) ⊢∗

D (q′, w′v)

Proof. For the proof we first prove a stronger property. Claim: for all q, q′ ∈ Q and
w,w′ ∈ Σ∗ it holds that

(q, w) ⊢∗
D (q′, w′) iff

∃n > 0 ∃q0, . . . , qn ∈ Q ∃a1, . . . , an ∈ Σ:

q0 = q, δ(qi−1, ai) = qi for 1 6 i 6 n, qn = q′

and w = a1 · · · anw
′

(2.1)

Proof of the claim. (⇒) If (q, w) ⊢∗
D (q′, w′), then exist n > 0, q0, . . . , qn ∈ Q,

w0, . . . , wn ∈ Σ∗ such that (q, w) = (w0, q0), (qi−1, wi−1) ⊢D (qi, wi) for 1 6 i 6 n,
and (qn, wn) = (q′, w′). Since (qi−1, wi−1) ⊢D (qi, wi) we can pick ai ∈ Σ such that
wi−1 = aiwi and δ(qi−1, ai) = qi for 1 6 i 6 n, by definition of ⊢D . It follows that
w = a1 · · · anw

′, which proves the implication.
(⇐) Suppose q0, . . . , qn ∈ Q, a1, . . . , an ∈ Σ are such that q0 = q, δ(qi−1, ai) = qi for

1 6 i 6 n, and qn = q′. Put wi = ai+1ai+2 · · · anw
′ for 0 6 i 6 n. Note wi−1 = aiwi for

1 6 i 6 n. Then (q0, w0) = (q, w), (qi−1, wi−1) = (qi−1, aiwi) ⊢D (wi, qi) for 1 6 i 6 n,
since δ(qi−1, ai) = qi, and (qn, wn) = (q′, w′). But this means (q, w) ⊢∗

D (q′, w′), and
proves the other implication.

As to prove item (a) of the lemma, suppose (q, w) ⊢∗
D (q′, w′) and (q, w) ⊢∗

D (q′′, w′).
By the claim, we can find n > 0, q0, . . . , qn ∈ Q, a1, . . . , an ∈ Σ such that q0 = q,
δ(qi−1, ai) = qi for 1 6 i 6 n, qn = q′ and w = a1 · · · anw

′. We can also find m > 0,
q′0, . . . , q

′
m ∈ Q, a′1, . . . , a

′
m ∈ Σ such that q′0 = q, δ(q′i−1, a

′
i) = q′i for 1 6 i 6 m, q′m = q′′

and w = a′1 · · · a
′
mw′. Since a1 · · · anw

′ = w = a′1 · · · a
′
mw′, we have n = m and ai = a′i

for 1 6 i 6 n. Since q0 = q = q′0 it follows that qi = q′i for 0 6 i 6 n. In particular
q′ = qn = q′m = q′′ since n = m.

Item (b) follows from the claim too. If (q, w) ⊢∗
D (q′, w′) then applying Equa-

tion (2.1) from left to right, we can pick n > 0, q0, . . . , qn ∈ Q, a1, . . . , an ∈ Σ such
that q0 = q, δ(qi−1, ai) = qi for 1 6 i 6 n, qn = q′ and w = a1 · · · anw

′. Since
w = a1 · · · anw

′ implies wv = a1 · · · anw
′v, we conclude, applying Equation (2.1) right

to left, that (q, wv) ⊢∗
D (q′, w′v).

The first item expresses the determinacy of the DFA D : the state q and the input
string w (together with the number of symbols to be processed) determine the resulting
state. The second item expresses that a computation (q, w) ⊢∗

D (q′, w′) of a DFA is only
influenced by the input that is read, i.e. the prefix u of w such that w = uw′.

We next introduce the important concept of the language accepted by a DFA.

Definition 2.6 (Language accepted by DFA). Let D = (Q, Σ, δ, q0, F ) be a determin-
istic finite automaton. The set L(D) ⊆ Σ∗, called the language accepted by D, is defined
by

L(D) = { w ∈ Σ∗ | ∃q ∈ F : (q0, w) ⊢∗
D (q, ε) }
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Thus, a string w ∈ Σ∗ is in L(D) when starting from the initial state q0 the DFA D
reaches a final state when all of w is processed as input.

In view of the proof of Lemma 2.5, we can reformulate the condition for a string w
being included in L(D). Suppose w = a1 · · · an. Put q′0 = q0 and q′i = δ(q′i−1, ai) for
1 6 i 6 n. Then it holds that

w ∈ L(D) ⇐⇒ q′n ∈ F

The point is that for the DFA D, the string w = a1 · · · an is accepted if a final state is
reached from the start state q0 while processing a1, . . . , an successively.

Example 2.7. For a DFA D we always have ∅ ⊆ L(D) ⊆ Σ∗. Extreme cases occur
when D has no (reachable) final states at all, or when each (reachable) state of D is a
final state. In these situation we have L(D) = ∅, and L(D) = Σ∗, respectively.

For a DFA D, a state q is called reachable in D if (q0, w) ⊢∗
D (q, ε) for some string

w ∈ Σ∗. Thus, when suitable input w is provided, D will move from the initial state q0
to the state q when processing the string w. Note, non-reachable states do not contribute
to the language of the DFA.

In most other cases than those of Example 2.7 we need to look more closely to
determine L(D). A useful notion when analyzing a DFA is that of a path set. We say
that a set L ⊆ Σ∗ is the path set of q with respect to D when L consists of all words w
that bring, when starting from the initial state, the automaton to state q, notation
pathsetD(q). Formally,

pathsetD(q) = { w ∈ Σ∗ | (q0, w) ⊢∗
D (q, ε) }

Comparing the definition of a pathset and the definition of the language accepted by a
DFA, we observe, in the context of a DFA D = (Q, Σ, δ, q0, F ),

L(D) =
⋃

q∈F pathsetD(q)

Clearly, by definition, when a state q ∈ Q is not reachable in D then pathsetD(q) = ∅.

Example 2.8. We claim that for the automaton D of Example 2.2, depicted in Fig-
ure 2.1, we have

L(D) = { w ∈ {a, b}∗ | w has a substring aab }

To see this we make an inventory of the path sets. We have

state path set

q0 no substring aab, not ending in a

q1 no substring aab, ending in a, not in aa

q2 no substring aab, ending in aa

q3 substring aab
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Figure 2.2: DFAs of Example 2.9

Since q3 is the only final state of D it follows that a string w ∈ {a, b}∗ is accepted by D
iff w has a substring aab, as claimed above.

Example 2.9. Consider the deterministic finite automaton D1 depicted in the left part
of Figure 2.2. We argue that the language L(D1) of D1 is the set

L(D1) = { w ∈ {a, b}∗ | #a(w) odd, or #b(w) odd, but not both }

For D1 we have the following characterization of the path sets:

state path set

qee #a(w) is even, #b(w) is even

qoe #a(w) is odd, #b(w) is even

qeo #a(w) is even, #b(w) is odd

qoo #a(w) is odd, #b(w) is odd

Only qoe and qeo are final states, thus w is accepted iff #a(w) is odd and #b(w) is even
for reaching qoe, or #a(w) is even and #b(w) is odd for reaching qeo.

Now consider the deterministic finite automaton D2 given by the right part of Fig-
ure 2.2. The state qe is the initial state, the state qo the only final state. We claim that
the language L(D2) of strings that are accepted by D2 is the set of strings of odd length,
i.e.

L(D2) = { w ∈ {a, b}∗ | |w| odd }

as can be seen by computing the path sets for qe and qo:

state path set

qe |w| even

qo |w| odd

Since qo is the only final state of D2 the claim follows.
Notice, for arbitrary w ∈ {a, b}∗ we have |w| = #a(w) +#b(w), and #a(w) +#b(w)

is odd iff #a(w) odd and #b(w) even, or #a(w) even and #b(w) odd. It follows that D1

and D2 accept the same language, i.e. L(D1) = L(D2).
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Exercises for Section 2.1

Exercise 2.1.1.

(a) Construct a DFA D1 with alphabet {a, b} (with no more than three states) for
the language L1 = { anb | n > 0 } and establish with the help of path sets that
L(D1) = L1.

(b) Also construct a DFA D′
1 over {a, b} (now with no more than four states) for the

language L′
1 = { anb | n > 0 } and again establish with the help of path sets that

L(D′
1) = L′

1.

Answer to Exercise 2.1.1

(a) D′

1

0 1 2

a

b a,b

a,b
q0 an n > 0
q1 anb n > 0
q2 anbw n > 0, w 6= ε string anb followed

by extra symbols

(b)

D′

1

0 1 2

3

a

b

a

b

a,b

a,b

q0 ε forced to leave, no return
q1 an n > 0
q2 anb n > 0
q3 b, anbw n > 0, w 6= ε string b, and strings anb

with trailing symbols

State q2 of D1 and state q3 of D′
1 are so-called sink states.

Exercise 2.1.2. (a) Construct a DFA D2 with alphabet {0,1} (with no more than
four states) for the language L2 = { w ∈ {0,1}∗ | the second element of w is 0 }
and establish with the help of path sets that L(D2) = L2. For example, 10111 ∈ L2

while 01000 /∈ L2.

(b) Construct a DFA D′
2 with alphabet {0,1} (with no more than seven states) for the

language L′
2 = {w ∈ {0, 1}∗ | the second last element of w is 0} and establish with

the help of path sets that L(D′
2) = L′

2. For example, 11101 ∈ L′
2 while 00010 /∈ L′

2.

Answer to Exercise 2.1.2

(a) D2

0 1

2

3

0,1
0

1

0,1

0,1

q0 ε forced to leave, no return
q1 0, 1
q2 00w, 01w w ∈ {0,1}∗ second symbol 0
q3 10w, 11w w ∈ {0,1}∗ second symbol 1
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(b) D′

2

0

1 2

3 4 5 6

0 1

0 1 0 1

0
1

0

10

1 0
1

q0 ε
q1 0
q2 1
q3 w00 w ∈ {0,1}∗ string with suffix 00
q4 w01 w ∈ {0,1}∗ string with suffix 01
q5 w10 w ∈ {0,1}∗ string with suffix 10
q6 w11 w ∈ {0,1}∗ string with suffix 11

Exercise 2.1.3.

(a) Construct a DFA D3 for the finite language L3 = {aba, abc, bc, b} over the alpha-
bet {a, b, c}.

(b) If a language L ⊆ {a, b, c}∗ is finite, does there exists a DFAD such that L(D) = L?

Answer to Exercise 2.1.3

(a)

D3

0

1 2

3

4

5

a

b

c

a,c

b

a,c
b

a,b

a,b,c

c

a,b,c

D

0

1 2 3

4 5 6 7 8 9

10 11 12 X

a b c

a b c a b c

a b c x

x x x xx

x
x

x

a,b,c

x short for a, b, c

(b) Yes. If Σ has α symbols and the maximal length of accepted strings in L is ℓ,
then a tree-like finite automaton with at most 1 +

∑ℓ
k=1 αk can accept the finite

language L. The extra summand 1 is for the sink state that catching strings longer
than ℓ and, if applicable, strings of length at most ℓ not in L.
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Exercise 2.1.4.

(a) Construct a DFA D4 with alphabet {0, 1} (with no more than five states) for the
language L4 = { w ∈ {0, 1}∗ | w has a substring 00 or a substring 11 (or both) }
and verify that L(D4) = L4.

(b) Construct a DFA D′
4 with alphabet {0, 1} (with no more than eight states) for

the language L′
4 = { w ∈ {0, 1}∗ | w has a substring 00 and a substring 11 }. (No

verification with path sets asked.)

Answer to Exercise 2.1.4

(a)
D4

0 1 2

3

4

0

1

0

1

0,1

0

1

0,1

q0 ε
q1 0(10)n, 10(10)n n > 0
q2 0(10)n0w, 10(10)n0w n > 0, w ∈ {0,1}∗

q3 1(01)n, 01(01)n n > 0
q4 1(01)n1w, 01(01)nw n > 0, w ∈ {0,1}∗

(b)
D′

4

0 1 2

3 4

5 6 7

0

1

0

1

0

1
0

1

0

1

1

0

0
1

0,1

q0 ε
q1 (0 + 10)(10)∗

q2 (0 + 10)(10)∗0+

q3 (1 + 01)(01)∗

q4 (0 + 10)(10)∗0+1(0+1)∗

q5 (1 + 01)(01)∗1+

q6 (1 + 01)(01)∗1+0(1+0)∗

q7 (1 + 01)(01)∗1+0(1+0)∗0(0 + 1)∗ +
(0 + 10)(10)∗0+1)(0+1)∗1(0 + 1)∗

For item (a) we use that, for n > 0, 0(10)n0 = (01)n00, 10(10)n0 = 1(01)n00, and
1(01)n1 = (10)n11, 01(01)n1 = 0(10)n11. From this it follows that accepted strings
contain the substring 00, if accepted by state q2, or contain the substring 11, if accepted
by state q4. For item (b), for which verification with the help of path sets was not asked,
we have employed so-called regular expressions (discussed in Section 2.3) to describe the
path sets. Here we use

(1 + 01)(01)∗1+ = (ε+ 0)1(01)∗1+ = (ε+ 0)(10)∗111∗

0(1+0)∗0(0 + 1)∗ = (01+)∗00(0 + 1)∗

and
(0 + 10)(10)∗0+ = (ε+ 1)0(10)∗0+ = (ε+ 1)(01)∗000∗

1(0+1)∗1(1 + 0)∗ = (10+)∗11(1 + 0)∗
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to see that strings accepted by the DFA D′
4 have both a substring 00 and a substring 11.

Exercise 2.1.5. Suppose a language L ⊆ Σ∗ is accepted by a DFA D. Construct a
DFA DC that accepts the language LC = { w ∈ Σ∗ | w /∈ L }.

Answer to Exercise 2.1.5 Suppose D = (Q, Σ, δ, q0, F ). Define the DFA DC =
(Q, Σ, δ, q0, Q \ F ). Thus D and DC are the same except that a state q is a final state
of DC iff q is not a final state of D.

Now suppose w = a1 · · · an ∈ L. Since L = L(D). Let the states q′0, . . . , q
′
n be such

that

q′0 = q0, δ(q′i−1, ai) = q′i for 1 6 i 6 n, and q′n ∈ F

In particular, q′n is a final state of D. Since q′n /∈ Q \ F , q′n is not a final state of DC .
Therefore, w /∈ L(DC).

Reversely, if w = a1 · · · an /∈ L and q′0, . . . , q
′
n are such that q′0 = q0 and q′i = δ(q′i−1, ai)

for 1 6 i 6 n, then q′n /∈ F . But then q′n ∈ Q \ F , and therefore w ∈ L(DC).

We conclude w ∈ L(D) iff w /∈ L(DC). Put differently, L = Σ∗ \ L(DC) or LC =
L(DC).

Exercise 2.1.6. LetD1 andD2 be two DFAs, sayDi = (Qi, Σ, δi, q
i
0, Fi ) for 1 6 i 6 2.

(a) Give a DFA D with set of states Q1 × Q2 and alphabet Σ such that L(D) =
L(D1) ∩ L(D2).

(b) Prove, by induction on the length of a string w, that

((q1, q2), w) ⊢ n
D ((q′1, q

′
2), w

′) ⇐⇒ (q1, w) ⊢ n
D (q′1, w

′) ∧ (q2, w) ⊢ n
D (q′2, w

′)

(c) Conclude that indeed L(D) = L(D1) ∩ L(D2).

Answer to Exercise 2.1.6

(a) Put D = (Q, Σ, δ, q0, F ) where Q = Q1 × Q2, δ : Q × Σ → Q is such that
δ((q1, q2), a) = (δ1(q1, a), δ(q2, a)), q0 = (q10, q

2
0) and F = F1 × F2.

(b) Basis, n = 0: Clear. It holds that

((q1, q2), w) ⊢ 0
D ((q′1, q

′
2), w

′)

⇐⇒ q′1 = q1 ∧ q′2 = q2 ∧ w′ = w

⇐⇒ (q1, w) ⊢ 0
D (q′1, w

′) ∧ (q2, w) ⊢ 0
D (q′2, w

′)
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Induction step, n > 0: It holds that

((q1, q2), w) ⊢ n+1
D ((q′1, q

′
2), w

′)

⇐⇒ ∃q̄1 ∈ Q1, ∃q̄2 ∈ Q2, ∃w̄ ∈ Σ∗ :

((q1, q2), w) ⊢ n
D ((q̄1, q̄2), w̄) ⊢ D ((q′1, q

′
2), w

′)

⇐⇒ ∃q̄1 ∈ Q1, ∃q̄2 ∈ Q2, ∃a ∈ Σ:

((q1, q2), w) ⊢ n
D ((q̄1, q̄2), w̄) ∧ w̄ = aw′ ∧ δ((q̄1, q̄2), a) = (q′1, q

′
2)

IH
⇐⇒ ∃q̄1 ∈ Q1, ∃q̄2 ∈ Q2, ∃a ∈ Σ:

(q1, w) ⊢ n
D (q̄1, w̄) ∧ (q2, w) ⊢ n

D (q̄2, w̄) ∧

w̄ = aw′ ∧ δ1(q̄1, a) = q′1 ∧ δ2(q̄2, a) = q′2

⇐⇒ ∃q̄1 ∈ Q1, ∃q̄2 ∈ Q2, ∃w̄ ∈ Σ∗ :

(q1, w) ⊢ n
D (q̄1, w̄) ∧ (q̄1, w̄) ⊢ D (q′1, w

′) ∧

(q2, w) ⊢ n
D (q̄2, w̄) ∧ (q̄2, w̄) ⊢ D (q′2, w

′)

⇐⇒ (q1, w) ⊢ n+1
D (q′1, w

′) ∧ (q2, w) ⊢ n+1
D (q′2, w

′)

where the induction hypothesis is used at the third equivalence.

(c) We have

L(D) = { w ∈ Σ∗ | ∃(q1, q2) ∈ F : ((q10, q
2
0), w) ⊢∗

D ((q1, q2), ε) }

(by Definition 2.6)

= { w ∈ Σ∗ | ∃(q1, q2) ∈ F : ((q10, q
2
0), w) ⊢

|w|
D ((q1, q2), ε) }

(by Lemma 2.4)

= { w ∈ Σ∗ | ∃q1 ∈ F1 : (q
1
0, w) ⊢

|w|
D1

(q1, ε) ∧ ∃q2 ∈ F2 : (q
2
0, w) ⊢

|w|
D2

(q2, ε) }

(by construction of D)

= { w ∈ Σ∗ | ∃q1 ∈ F1 : (q
1
0, w) ⊢

|w|
D1

(q1, ε) } ∩

{ w ∈ Σ∗ | ∃q2 ∈ F2 : (q
2
0, w) ⊢

|w|
D2

(q2, ε) }

(trading conjunction for intersection)

= { w ∈ Σ∗ | ∃q1 ∈ F1 : (q
1
0, w) ⊢ ∗

D1
(q1, ε) } ∩

{ w ∈ Σ∗ | ∃q2 ∈ F2 : (q
2
0, w) ⊢ ∗

D2
(q2, ε) }

(by Lemma 2.4 again)

= L(D1) ∩ L(D2)

(by Definition 2.6 twice)

2.2 Finite automata

A DFA has a transition function. Thus, each state has exactly one outgoing transition for
each symbol. In this section we consider a less strict type of automata. These automata
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Figure 2.3: Example NFA

may exibit non-determinism as they can have any number of outgoing transitions for
a given symbol, including no transitions. Additionally, transitions are allowed that do
not consume input. These are silent referred to as silent steps. So, we consider non-
deterministic finite automata with silent steps, NFA for short.

Definition 2.10 (Non-deterministic finite automaton with silent steps). A non-deter-
ministic finite automaton with silent steps, or NFA, is a quintupleN = (Q, Σ, →N , q0, F )
with Q a finite set of states, Σ a finite alphabet, →N ⊆ Q× Στ ×Q the transition rela-

tion, q0 ∈ Q the initial state, and F ⊆ Q the set of final states.

Instead of a function δ : Q × Σ → Q as we have for a DFA, we consider for an NFA
a relation →N ⊆ Q× Στ ×Q. This relation may include triples (q, a, q′) for states
q, q′ ∈ Q and a symbol a ∈ Σ, but also triples (q, τ, q′) for states q, q′ ∈ Q and the
special symbol τ . The symbol τ denotes a so-called silent step. We write Στ for Σ∪{τ}.
It is assumed that τ /∈ Σ. We often use α to range over Στ . We write q

α
−→N q′ if

(q, α, q′) ∈ →N , thus with α ∈ Στ . In case q
τ
−→N q′ we say that there is a silent step

or τ -transition in N from q to q′. As we will make explicit below, a silent step does not
affect the input of an NFA. We often omit the subcript N when clear from the context.

The concepts of an NFA and of a DFA are very similar, but differ in three aspects:

• in an NFA states can have τ -transitions;

• in an NFA states can have multiple transitions for the same symbol;

• in an NFA states can have no transitions for a symbol.

Figure 2.3 gives a visual representation of a non-deterministic finite automaton, N say.
Initial state q0 has a τ -transition to state q2, has two transitions on symbol a (one going
to q1, and one going to q2) and has no transition on symbol b. The transition relation→N

of N contains the triples

(q0, τ, q2) (q0, a, q1) (q0, a, q2) (q1, a, q2) (q2, b, q2)

Still we can interpret →N as a functionδ̂N , but now δ̂N : Q × Στ → P(Q), with P(Q)
the powerset of Q, the collection of all the subsets of Q. Here we have

δ̂N (q0, a)= {q1, q2} δ̂N (q1, a)= {q2} δ̂N (q2, a)= ∅

δ̂N (q0, b)= {q2} δ̂N (q1, b)= ∅ δ̂N (q2, b)= {q2}

δ̂N (q0, τ)= {q2} δ̂N (q1, τ)= ∅ δ̂N (q2, τ)= ∅
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Note δ̂N (q0, b) = {q2}. The idea is to combine the τ -transition q0
τ
−→N q2 with the

b-transition q2
b
−→N q2. We come back to this idea for the general situation at a later

stage.
As for deterministic finite automata we have the notion of a configuration (q, w) for

q ∈ Q and w ∈ Σ∗ for an NFA N = (Q, Σ, →N , q0, F ). Also here we have the yield or
derives relation among configurations. We put

(q, w) ⊢N (q′, w′) iff ∃a ∈ Σ: q
a
−→N q′ ∧ w = aw′ or q

τ
−→N q′ ∧ w = w′

Note, if q
τ
−→N q′ then we have (q, w) ⊢N (q′, w) without change of the input w.

With ⊢∗
N we denote the reflexive-transitive closure of ⊢N . More precisely, we put

(q, w) ⊢ 0
N (q′, w′) if q = q′ and w = w′, and (q, w) ⊢ n+1

N (q′, w′) if (q, w) ⊢ n
N (q̄, w̄),

for some q̄ ∈ Q, w̄ ∈ Σ∗, and (q̄, w̄) ⊢N (q′, w′). Then (q, w) ⊢∗
N (q′, w′) if (q, w) ⊢ n

N

(q′, w′) for some n > 0.

Example 2.11. With respect to finite automaton of Figure 2.3 we have, e.g., (q0, abb) ⊢∗
N

(q2, ε) and (q0, abb) ⊢∗
N (q1, bb). Also (q0, abb) ⊢∗

N (q2, bb), (q2, bb) ⊢∗
N (q2, b), and

(q2, b) ⊢∗
N (q2, ε). In configuration (q1, bb) the automaton N cannot process the (first)

input b; the automaton N is stuck in that configuration. In contrast (q0, bb) ⊢∗
N (q2, ε),

since (q0, bb) ⊢N (q2, bb) via the silent step q0
τ
−→N q2, and (q2, bb) ⊢N (q2, b), (q2, b) ⊢N

(q2, ε).

For NFA we have the followng counterpart to Lemma 2.5 for DFA.

Lemma 2.12. For an NFA N = (Q, Σ, →N , q0, F ). it holds that

(q, w) ⊢∗
N (q′, w′) iff (q, wv) ⊢∗

N (q′, w′v)

for all words w,w′, v and states q, q′.

Proof. We prove, by induction on n, (q, w) ⊢ n
N (q′, w′) iff (q, wv) ⊢ n

N (q′, w′v) for
q, q′ ∈ Q, w,w′, v ∈ Σ∗.

Basis, n = 0: If (q, w) ⊢ 0
N (q′, w′), then q = q′ and w = w′. Hence q = q′ and

wv = w′v. So, (q, wv) ⊢ 0
N (q′, w′v). If (q, wv) ⊢ 0

N (q′, w′v), then q = q′ and wv = w′v.
Hence, q = q′ and w = w′. So, (q, w) ⊢ 0

N (q′, w′).
Induction step, n+ 1: If (q, w) ⊢ n+1

N (q′, w′), then (q, w) ⊢ n
N (q̄, w̄) and (q̄, w̄) ⊢N

(q′, w′) for some q̄ ∈ Q, w̄ ∈ Σ∗. By induction hypothesis, (q, wv) ⊢ n
N (q̄, w̄v). By

definition of ⊢N , for suitable α ∈ Στ , q̄
α
−→N q′ and w̄ = αw′ if α ∈ Σ, w̄ = w′ if α = τ .

Then q̄
α
−→N q′ and w̄v = αw′v if α ∈ Σ, w̄v = w′v if α = τ . Thus, (q̄, w̄v) ⊢N (q′, w′v).

Since we already observed (q, wv) ⊢ n
N (q̄, w̄v), we conclude (q, wv) ⊢ n+1

N (q′, w′v).
If (q, wv) ⊢ n+1

N (q′, w′v), then (q, wv) ⊢ n
N (q̄, u) and (q̄, u) ⊢N (q′, w′v) for some

q̄ ∈ Q, u ∈ Σ∗. By definition of ⊢N we have, for suitable α ∈ Στ , q̄
α
−→N q′ and u = αw′v

if α ∈ Σ, u = w′v if α = τ . Put w̄ = αw′ if α ∈ Σ, put w̄ = w′ if α = τ . It follows that
u = w̄v, q̄

α
−→N q′ and w̄ = αw′ if α ∈ Σ, w̄ = w′ if α = τ . So, (q, w) ⊢ n

N (q̄, w̄) and
(q̄, w̄) ⊢N (q′, w′), which together give (q, w) ⊢ n+1

N (q′, w′).
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Figure 2.4: NFA of Example 2.14

In the non-deterministic setting of NFAs there is no counterpart of Lemma 2.5, part (a).
E.g., for the NFA of Figure 2.3 we have (q0, abb) ⊢∗

N (q1, bb) and (q0, abb) ⊢∗
N (q2, bb)

while q1 6= q2.

Definition 2.13 (Language accepted by an NFA). Let N = (Q, Σ, →N , q0, F ) be a
finite automaton. The language L(N) accepted by N is defined by

L(N) = { w ∈ Σ∗ | ∃q ∈ F : (q0, w) ⊢∗
N (q, ε) }

A language accepted by a finite automaton is called a regular language.

Note the similarity of Definition 2.13 for the language of an NFA and the corresponding
definition, Definition 2.6, for a DFA. Also note that L(N) for an NFA N is considered a
language over the alphabet Σ, rather than the alphabet Στ . Thus τ -transitions do not
contribute (directly) to the word that is accepted.

Example 2.14. Figure 2.4 defines an NFAN = (Q, Σ, →N , q0, F ) withQ = {q0, q1, q2, q3, q4},
Σ = {a, b}, q0 as the inital state, set of final states { q3, q4 }, and transition relation −→N

such that
q0

a
−→N q0 q0

τ
−→N q1 q0

a
−→N q4 q0

τ
−→N q4

q1
b
−→N q2 q1

τ
−→N q3 q2

b
−→N q3 q4

b
−→N q3

The accepted language L(N) of N is given by

{ anb, an(bb)m | n > 0, m > 0 }

Strings of the format anb, for n > 0, are accepted via a path of N from the initial state q0
to the final state q3 via state q4. We have

(q0, a
nb) ⊢N (q0, a

n−1b) ⊢N · · · ⊢N (q0, b) ⊢N (q4, b) ⊢N (q3, ε)

Note, the τ -transition q0
τ
−→N q4 involved in (q0, b) ⊢N (q4, b). The a-transition from q0

to q4 is superfluous.
Strings of the form an(bb)m are accepted by first processing all a’s in state q0 and

next, after reaching state q1 via the τ -transition, cycling the loop of q1 to itself via q2
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Figure 2.5: An NFA accepting decimal numbers
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Figure 2.6: NFA of Example 2.16

m times, yielding the substring bb for each time the loop is taken, before moving to q3
via the second τ -transition. More formally,

(q0, a
n(bb)m) ⊢N (q0, a

n−1(bb)m) ⊢N · · · ⊢N (q0, (bb)
m) ⊢N

(q1, (bb)
m) ⊢N (q2, b(bb)

m−1) ⊢N (q1, (bb)
m−1) ⊢N · · · ⊢N (q1, ε) ⊢N

(q3, ε)

No other computations of N lead to q3, while at q3 the automaton is stuck allowing no
transitions once q3 is reached.

Example 2.15. Figure 2.5 provides an NFA that accepts decimal numbers. The three
transitions from q0 to q1, with labels +, − and τ , express that the sign is optional; it can
be a +-sign, a −-sign, or it can be omitted. In state q1, on reading a digit from input,
the automaton can move to state q4 or stay in state q1. In state q4 the τ -transition to
state q5 can always be taken, leading to acceptance. Clearly, this latter transition is
redundant, we could have left it out and could have made state q4 final, instead. For
the τ -transition leaving state q0 it may not be obvious if and how it can be eliminated.
However, we shall prove that if a language is accepted by an NFA, then there is a DFA
accepting it too.
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Example 2.16. Consider the NFA N depicted in Figure 2.6. The language L(N), the
language accepted by N , is given by

L(N) = { w1 · · ·wn | n > 0, ∀i, 1 6 i 6 n :

∃ni > 0∃vi,1, . . . , vi,ni
:

wi = avi,1 · · · vi,ni
b ∧ ∀j, 1 6 j 6 ni∃mi,j > 0: vi,j = cmi,j ∨

∃ni > 0∃vi,1, . . . , vi,ni
:

wi = vi,1 · · · vi,ni
∧ ∀j, 1 6 j 6 ni∃mi,j > 0: vi,j = cmi,j }

as can be seen as follows: a string w is accepted if it brings N from the initial state q0
back to q0 again, since q0 is the only final state. Such a string w has the form w1 · · ·wn

for some n > 0, where each wi is the labeling of a path from q0 to itself but not through q0
in between. So, we need to identify the loops of q0, going through q1 and/or q2, as this
determines what strings wi are allowed.

A loop of q0 may leave via the a-transition to q1 and return via the b-transition
from q1 to q0. In between N may pass through q1 and q2 any number of times. This
explains the first of the possible string formats wi = avi,1 · · · vi,ni

b. The paths through
q1 and q2, leaving from and returning to q1, are relatively simple. Since the b-transition
to q0 is excluded, N can only move from q1 to q2 via a silent step, iterate through the
c-loop of q2, and return via the τ -transition of q2 back to q1. This explains the format
for the strings vi,j , viz. vi,j = cmi,j for some mi,j > 0.

Alternatively, a loop of q0 may leave via the τ -transition to q2, but will also now
return via the b-transition from q1 to q0. This is why the second of the two string
formats looks like wi = vi,1 · · · vi,ni

b. Getting to q1 may take a number of c’s, via the
loop of q2, followed by a silent step from q2 to q1, i.e. a string cm in total, where m > 0.
From there the analysis above for the loops from q1 to itself applies. This gives strings
of the same format, i.e. cm, as we have seen. Thus also here vi,j = cmi,j .

In Section 2.3 we introduce so-called regular expressions, which allow to describe the
language of Example 2.16 more concisely, namely by L(N) =

(

ac∗b + c∗b
)∗
. However,

it is clear that in the case of NFA behaviour of the automaton may be more capricious
than for DFA, and therefore it may become more difficult to determine the language that
is accepted. Below we will present a technique of going from an NFA to an ‘equivalent’
DFA.

Two NFAs N1 and N2 are called language equivalent if they accept the same language,
i.e. L(N1) = L(N2). Likewise for two DFAs. We also call an NFA and a DFA language
equivalent if they accept the same language.

Example 2.17. The two finite automata depicted in Figure 2.7 are language equivalent,
i.e. they accept the same language. This is the language

{ab, aba}∗ = { w1 · · ·wn | n > 0, ∀i, 1 6 i 6 n : wi = ab ∨ qi = aba }
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Figure 2.7: Finite automata for Example 2.17

However, the right automaton N2 allows a τ -transition. The left automaton N1 can be
seen as both as a DFA and as an NFA. The transition relation →1 of N1 is in fact a
transition function δ1. The right automaton N2 can be seen as an NFA only.

Since a transition function δ : Q×Σ → Q of a DFA can be seen as a transition relation
→ ⊆ Q×Στ ×Q of an NFA, a DFA can be casted as an NFA with changing the language
that is accepted. Therefore, for each DFA there is an language equivalent NFA. Thus,
we have the following result.

Theorem 2.18. If a language L ⊆ Σ∗ is accepted by a DFA, then L is also accepted by
an NFA.

Proof. Given a DFA D = (Q, Σ, δ, q0, F ) such that L(D) = L, define the NFA N =
(Q, Σ, →N , q0, F ) by q

a
−→N q′ iff δ(q, a) = q′, for q, q′ ∈ Q, a ∈ Σ. Then it holds that

(q, w) ⊢D (q′, w′) iff (q, w) ⊢N (q′, w′). Therefore we have, by Definition 2.6 and
Definition 2.13, respectively,

w ∈ L(D) ⇐⇒ ∃q∈F : (q0, w) ⊢∗
D (q, ε) ⇐⇒ ∃q∈F : (q0, w) ⊢∗

N (q, ε) ⇐⇒ w ∈ L(N)

Thus L = L(D) = L(N) and L is accepted by the NFA N .

Note, the NFA N constructed in the proof above does not involve any silent step. The
more interesting reverse of Theorem 2.18 holds as well: for each NFA exists an language
equivalent DFA.

Theorem 2.19. If a language L ⊆ Σ∗ is accepted by an NFA, then L is also accepted
by a DFA.

Proof. Suppose L = L(N) for an NFA N = (QN , Σ, →N , q0N , FN ). The so-called ε-
closure E(q̄) of a state q̄ of N is given by

E(q̄) = { q′ ∈ QN | (q̄, ε) ⊢∗
N (q′, ε) }

Thus q′ ∈ E(q̄) if there is a sequence of zero, one ore more τ -transitions from q̄ to q′.
We construct a DFA D = (QD, Σ, δ, Q

0
D, FD) such that L(D) = L(N) as follows.
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• QD = P(QN ), i.e. states of D are sets of states of N

• δ(Q, a) =
⋃

{ E(q̄) | q ∈ Q, q
a
−→N q̄ } for Q ⊆ QN

• Q0
D = E(q0N ), the ε-closure of the initial state of N

• FD = {Q ⊆ QN | Q ∩ FN 6= ∅ }

Put differently, δ(Q, a) = { q′ ∈ QN | ∃q ∈ Q : (q, a) ⊢∗
N (q′, ε) }, and Q0

D = { q′ ∈ QN |
(q0N , ε) ⊢∗

N (q′, ε) }. We claim

(q, w) ⊢∗
N (q′, ε) iff ∃Q′ ⊆ QN : (E(q), w) ⊢∗

D (Q′, ε) and q′ ∈ Q′

Proof of the claim: (⇒) By induction on |w|. Basis, |w| = 0: Then we have w = ε.
Thus (q, ε) ⊢∗

N (q′, ε), hence q′ ∈ E(q) by definition of E(q). So, for Q′ = E(q), we have
(E(q), w) ⊢∗

D (Q′, ε) and q′ ∈ Q′. Induction step, |w| > 0: Then we have w = va for
suitable v and a. Thus, for some q̄, q̄′ ∈ QN ,

(q, w) ⊢∗
N (q̄, a) ⊢N (q̄′, ε) ⊢∗

N (q′, ε)

By Lemma 2.12, (q, v) ⊢N (q̄, ε). Hence, by induction hypothesis, we can find Q̄ ⊆ QN

such that (E(q), v) ⊢∗
D (Q̄, ε) and q̄ ∈ Q̄. By Lemma 2.5 we obtain (E(q), w) ⊢∗

D (q̄, a).

Since (q̄′, ε) ⊢∗
N (q′, ε), we have q′ ∈ E(q̄′). Put Q′ =

⋃

{ E(q̂′) | q̂ ∈ Q̄, q̂
a
−→N q̂′ }.

Then Q̄
a
−→D Q′. Note q̄ ∈ Q̄ and q ∈ Q′. Combination of all this yields

(E(q), w) ⊢∗
D (Q̄, a) ⊢D (Q′, ε) and q′ ∈ Q′

Hence, (E(q), w) ⊢∗
D (Q′, ε) and q′ ∈ Q′ as was to be shown.

(⇐) By induction on |w|. Basis, |w| = 0: Then we have w = ε and Q′ = E(q), since
D has no τ -transitions. By definition, if q′ ∈ E(q), then (q, ε) ⊢∗

N (q′, ε). Induction
step, |w| > 0: Then w = va for suitable v and a. It holds that

(E(q), w) ⊢∗
D (Q̄, a) ⊢D (Q′, ε)

for some Q̄ ⊆ QN . Thus, again by Lemma 2.5, (E(q), v) ⊢∗
D (Q̄, ε). Since (Q̄, a) ⊢D

(Q′, ε) and q′ ∈ Q′, we have q̄
a
−→N q̄′ for some q̄ ∈ Q̄ and q̄′ ∈ QN such that q′ ∈

E(q̄′). By induction hypothesis, (q, v) ⊢∗
N (q̄, ε) and (q, w) ⊢∗

N (q̄, a) by Lemma 2.12.
Moverover, (q̄, a) ⊢N (q̄′, ε) and (q̄′, ε) ⊢∗

N (q′, ε). Combining all this yields

(q, w) ⊢∗
N (q̄, a) ⊢N (q̄′, ε) ⊢∗

N (q′, ε)

Thus (q, w) ⊢∗
N (q′, ε) which proves the claim.

Now, to show that L(N) = L(D) we reason as follows:

w ∈ L(N)

⇐⇒ ∃q′ ∈ FN : (q0N , w) ⊢∗
N (q′, ε)

⇐⇒ ∃q′ ∈ FN ∃Q′ ⊆ QN : (E(q0N ), w) ⊢∗
D (Q′, ε) ∧ q′ ∈ Q′

(by the claim)

⇐⇒ ∃Q′ ∈ FD : (E(q0N ), w) ⊢∗
D (Q′, ε) (if Q′ ∈ FD, then Q′ 6= ∅)

⇐⇒ w ∈ L(D)
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b

c

a, b, c

Figure 2.8: An NFA and a language equivalent DFA

This proves the theorem.

The construction above, in the proof of Theorem 2.19, takes for D the complete power-
set P(QN ) as set of states. Usually this leads to superfluous states, unreachable from
the inital state. To end up with a smaller number of states in D, one can do this more
cautiously.

Example 2.20. Consider the automaton N depicted in Figure 2.8 for which we will
construct a DFA D accepting the same language. The set of states of D will be built up
lazily. Following the construction of Theorem 2.19 we need to include the starting state
E(q0) = {q0, q1, q2}, the ε-closure of the starting state q0 of N .

We calculate possible transitions for {q0, q1, q2} for all symbols a, b, and c.

q0
a
−→N q0 E(q0) = {q0, q1, q2}

q2
a
−→N q0 E(q0) = {q0, q1, q2}

q2
a
−→N q1 E(q1) = {q1, q2}

thus {q0, q1, q2}
a
−→D {q0, q1, q2} i.e. δ({q0, q1, q2}, a) = {q0, q1, q2}

q1
b
−→N q1 E(q1) = {q1, q2}

thus {q0, q1, q2}
b
−→D {q1, q2} i.e. δ({q0, q1, q2}, b) = {q1, q2}

q2
c
−→N q2 E(q2) = {q2}

thus {q0, q1, q2}
c
−→D {q2} i.e. δ({q0, q1, q2}, c) = {q2}

Note, apart from the initial state {q0, q1, q2} we have encountered two other states, viz.
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{q1, q2} and {q2}. We will first calculate the transitions for {q1, q2}.

q2
a
−→N q0 E(q0) = {q0, q1, q2}

q2
a
−→N q1 E(q1) = {q1, q2}

thus {q1, q2}
a
−→D {q0, q1, q2} i.e. δ({q1, q2}, a) = {q0, q1, q2}

q1
b
−→N q1 E(q1) = {q1, q2}

thus {q1, q2}
b
−→D {q1, q2} i.e. δ({q1, q2}, b) = {q1, q2}

q2
c
−→N q2 E(q2) = {q2}

thus {q1, q2}
c
−→D {q2} i.e. δ({q1, q2}, c) = {q2}

No new states have been introduced; we continue with calculating the transitions for
state {q2}.

q2
a
−→N q0 E(q0) = {q0, q1, q2}

q2
a
−→N q1 E(q1) = {q1, q2}

thus {q2}
a
−→D {q0, q1, q2} i.e. δ({q2}, a) = {q0, q1, q2}

q2
c
−→N q2 E(q2) = {q2}

thus {q2}
c
−→D {q2} i.e. δ({q2}, c) = {q2}

q2 has no outgoing b-transition in N

thus {q2}
b
−→D ∅ i.e. δ({q2}, b) = ∅

We choose as set of states QD the states that have been introduced up to here. Thus,

QD = { {q0, q1, q2}, {q1, q2}, {q2}, ∅ }

This state is needed to obtain a complete transition function for D. Although the non-
determinism of transitions has been resolved now, state {q2} is lacking a transition for b.

So, we add {q2}
b
−→D ∅ together with ∅

a
−→D ∅, ∅

b
−→D ∅, and ∅

c
−→D ∅. Put differently, we

have δ({q2}, b) = ∅, δ(∅, a) = ∅, δ(∅, b) = ∅, and δ(∅, c) = ∅. The state ∅ is called a trap
state. Once in, the automaton can’t get out from there.

The final states of D are those states in QD that, as subsets of QN , contain q1, the
single final state of QN . These are {q0, q1, q2} and {q1, q2}. The resulting DFA D is
depicted at the right of Figure 2.8.

Example 2.21. We illustrate the construction of Theorem 2.19 of a DFA D for the
NFA N given in Figure 2.4 with accepted language

{ anb, an(bb)m | n > 0, m > 0 }

as discussed in Example 2.14.

Say, N = (Q, Σ, →N , q0, F ). We put D = (QD, Σ, δ, Q
0, FD). By construction,

the initial state Q0 of D is the ε-closure E(q0) of the initial state q0 of N . Thus Q0 =
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E(q0) = {q0, q1, q3, q4}, since each state, except q2 can be reached from q0 by a sequence
of τ -transitions. The alphabet Σ is the same for N and for D.

The theorem proposes to take the complete powerset of N ’s set of states Q. However,
here we do not decide on the set of states yet. Instead, we construct a table encoding the
transition function, including states when needed. We start off with state {q0, q1, q3, q4}.
The a-transitions ofN reach q0 and q4 from q0, yielding {q0, q4}. The ε-closure of {q0, q4}
is { q0, q1, q3, q4 } itself. Thus, δ({ q0, q1, q3, q4 }, a) = { q0, q1, q3, q4 }. Starting from
{q0, q1, q3, q4 } the b-transitions of N reach q2 from q1 and q3 from q4, yielding {q2, q3 }.
The ε-closure of { q2, q3 } is { q2, q3 }, adding no states. Thus δ({ q0, q1, q3, q4 }, b) =
{ q2, q3 }.

Starting with the inital state { q0, q1, q3, q4 }, we have need of a new state, viz.
{ q2, q3 }. We compute the a-transitions and b-transitions for this state. Both q2 and q3
have no a-transition in N . Thus, δ({ q2, q3 }, a) = ∅, which introduces the empty set as
a new state of D. Note, the ε-closure of ∅ is ∅. The b-transitions for q2 and q3 get to q1
and q3, respectively, yielding { q1, q3 } with ε-closure { q1, q3 }. Thus δ({ q2, q3 }, a) = ∅
and δ({ q2, q3 }, b) = { q1, q3 }.

The empty set will have a transition to itself, for each symbol in the alphabet. Thus,
δ(∅, a) = ∅, and δ(∅, b) = ∅. Therefore, we first consider the newly introduced state
{ q1, q3 } of D. Both q1 and q3 have no a-transition in N , thus δ({ q1, q3 }, a) = ∅. As to
b-transitions, q1 has one, to q2, q3 has no. This yields {q2}. This set of states is ε closed.
Thus, we have a new state {q2} of D, and δ({ q1, q3 }, b) = {q2}.

For state q2 of N there is no a-transition, thus the state {q2} of D has an a-transition
to ∅. The state q2 has a b-transition in N , though. We have b-transition from q2 to q1
which can be extended by the τ -transition to q3. This gives in D a b-transition to {q1, q3.
Hence δ({q2}, b) = { q1, q3 }.

Summarizing the above, we have for D the set QD of states consisting of the subsets
{ q0, q1, q3, q4 }, { q2, q3 }, { q1, q3 }, {q2} and ∅, and the transition function δ : QD ×
{a, b} → QD such that

a b

{q0, q1, q3, q4} {q0, q1, q3, q4} {q2, q3}
{q2, q3} ∅ {q1, q3}
{q1, q3} ∅ {q2, q3}

{q2} ∅ {q1, q3}
∅ ∅ ∅

Finally, we have to define the set of final states FD of D. This are all states
in QD containing at least one final state of N , i.e. all states containing q3. Thus,
FD = { {q0, q1, q3, q4}, {q2, q3}, {q1, q3} }.

The resulting graphical representation of D is given in Figure 2.9. Now, it is more
easy to read off the language accepted, viz.

L(D) = { an, anb, anbb(bb)m | n > 0, m > 0 }

which equals L(N) = { anb, an(bb)m | n > 0, m > 0 }, with NFA N given by Figure 2.4.



28 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

{0, 1, 3, 4} {2, 3} {1, 3} {1, 2}

∅

a

b b
b

b

a a a

a,b

Figure 2.9: A DFA language equivalent to the NFA of Figure 2.4

Exercise 2.2.7. Consider the alphabet Σ = {a, b, c}.

(a) Construct an NFA N1 that accepts the language

L = { anbmcℓ | n,m, ℓ > 0 }

and has no more than three states.

(b) Derive a DFA D1 from the NFA N1 that accepts L.

Answer to Exercise 2.2.7

(a)

N1

0 1 2

a

τ

b

τ

c

(b) The ε-closure of q0 is { q0, q1, q2 }, which is the initial state of the DFA. The
alphabet is the same as for N1, hence the alphabet of D1 is {a, b, c}. We construct
a table of for the transition function of D1, introducing new states when needed
(and writing sequences of numbers to abbreviate sets of states of N1):

a b c

0, 1, 2 0, 1, 2 1, 2 2

1, 2 ∅ 1, 2 2

2 ∅ ∅ 2

∅ ∅ ∅ ∅

The final states of D1 are the sets of states containing a final state of N1, i.e. the
sets of states containing q2. These are {q0, q1, q2}, {q1, q2} and {q2}. In summary,
the DFA D1 looks as follows.
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D1

0 1 2

∅

a

b

c
a

b

c

c

a,b

Exercise 2.2.8. Consider the alphabet Σ = {a, b, c}.

(a) Construct a single NFA N2 that accepts a string w ∈ Σ∗ iff

(i) w is of the form acnb for some n > 0, or

(ii) w is of the form abmc for some m > 0, or

(iii) w is of the form bcℓ for some ℓ > 0

(b) Derive a DFA D2 accepting L from the NFA N2 of part (a).

Answer to Exercise 2.2.8

(a)

N2

0

1 2

3 4

5

c

b

c

a

a

b

b

c
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(b)
a b c

0 1, 3 5 ∅

1, 3 ∅ 2, 3 1, 4

5 ∅ ∅ 5

2, 3 ∅ 3 4

1, 4 ∅ 2 1

a b c

3 ∅ 3 4

4 ∅ ∅ ∅

2 ∅ ∅ ∅

1 ∅ 2 1

∅ ∅ ∅ ∅

D2

0

1,3

2,3

3 4

1,4

2 1

5

∅

a

b

c

a bc

a

b
c

a

b

c

a,b,c

a,b

c

a

b
c

b

c

a,b

a,b,c
a,b,c

Exercise 2.2.9. Give an automaton over the alphabet {a, b, c}, with no more than
4 states, that accepts all strings in which at least one symbol of the alphabet does not
occur.

Answer to Exercise 2.2.9

N3

0

1

2

3

b,c

a,c

a,b

τ

τ

τ

Exercise 2.2.10.

(a) The NFA N4 below accepts the language

{ cn, cnamb, cnbma, cn | n,m > 0 }

Note the empty string ε ∈ L(N4).
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N4

0

1 2

3 4

a

c

τ

τ

b

b

a

Adapt N4 to an NFA N ′
4 that accepts

{ cn, cnamb, cnbma | n,m > 0 }

Thus L(N ′
4) = L(N4) \ {ε}.

(b) Consider the NFA N̂4 given by

N̂4

0

1

2

a

b

d

τ

τ

τ

Note ε ∈ N̂4. Modify N̂4 into an NFA N̂ ′
4 such that L(N̂ ′

4) = L(N̂4) \ {ε}.

(c) Suppose the language L ⊆ Σ∗ is regular and ε ∈ L. Show that L \ {ε} is regular
too.

Answer to Exercise 2.2.10

(a) Introduce a new state q′0. This state has the same transitions as q0 and is reachable
from q0 by a c-transition, since q0 has a c-loop. The new state q′0 is accepting, but
state q0 isn’t anymore.

N ′

4

00′

1 2

3 4

a

c
c

τ
τ

τ
τ

b

b

a

(b) We introduce a new final state q′0, while the initial state q0 is not accepting anymore.
Transitions for q′0 are the same as for q0 in N̂4. Transitions for q′0 are the non-τ
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transitions of E(q0), the ε-closure of q0. Transitions into q0 are now redirected
to q′0. In particular, an a-transition from q0 to q′0 is added because of the a-loop
of q0 in N̂4.

N̂ ′

4

00′

1

2

a

b

d

a

b

c

τ

τ

τ

(c) It is easier to do this for a DFA. The language L is regular. So, by definition,
there exists an NFA N accepting L. By Theorem 2.19 we can find a language-
equivalent DFA D. Thus, L(D) = L. Since ε ∈ L the initial state, q0 say, of D
is accepting. Define the DFA D′ = (Q′, Σ, δ′, q0, F

′ ) by (i) Q′ = Q ∪ {q′0} for
a new state q′0; (ii) δ′ is the same as δ, except δ′(q, a) = q′0 if δ(q, a) = q0 and
δ′(q′0, a) = δ(q0, a) for q ∈ Q, a ∈ Σ; (iii) F ′ = (F \{q0})∪{q′0}. Then it holds that
L(D′) = L(D)\{ε} = L\{ε}. By Theorem 2.18 there exists a language-equivalent
NFA N ′ for D′. It follows that L \ {ε} = L(D′) = L(N ′) is accepted by an NFA,
viz. N ′, and, hence, that L \ {ε} is regular.

Exercise 2.2.11.

(a) Prove that the language L = {abc, abbc, ab, c} is regular.

(b) Construct a DFA accepting L.

(c)6∗ Prove that every finite language over some alphabet Σ is regular.

Answer to Exercise 2.2.11

(a) The language L is regular if it is accepted by an NFA. Consider the NFA N5 below.

N5

0 1 2 3

4 56

a b c

b
c

c

Since it accepts L, L is regular.

(b) The following DFA accepts L.
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N5

0 1 2 3

4

5

6

∅
a b b

c

c

c

b

a,c

a

a,b

a,b,c

a,b,c

a,b,c

a,b,c

(c)∗ Suppose L = { w1, w2, . . . , wn } ⊆ Σ∗ for some n > 0. Pick, for 1 6 i 6 n and
1 6 j 6 |wi|, symbols ai,j such that wi = ai,1ai,2 · · · ai,|wi |, for 1 6 i 6 n.

We construct an NFA N = (Q, Σ, →N , q0, F ) as follows: Choose pairwise differ-
ent states q0 and qi,j , for 1 6 i 6 n and 0 6 j 6 |wi|. Put

q0
τ
−→N qi,0 for 1 6 i 6 n

qi,j−1
ai,j
−−→N qi,j for 1 6 i 6 n, 1 6 j 6 |wi|

and define F = { qi,|wi | | 1 6 i 6 n }.

Clearly wi ∈ L(N) for 1 6 i 6 n. Moreover, it holds that w ∈ L(N) then
(q0, w) ⊢∗

N (qi,|wi |, ε) for some i, 1 6 i 6 n. Then it most hold that w =
ai,1ai,2 · · · ai,|wi |, i.e. w = wi. Therefore, L(N) = L and L is regular.

2.3 Regular expressions

DFAs and NFAs are computational descriptions that are equivalent from a language per-
spective; both types of automaton accept the same languages, viz. the regular languages.
In this section we introduce a syntactic alternative, the regular expressions, that are not
based on a computational notion. We will show that for each regular language there is a
regular expression that represents is. Reversely, the language associated with a regular
expression is always a regular language. It follows that all three notions, (i) language
accepted by a DFA, (ii) language accepted by an NFA, and (iii) language belonging to
a regular expression amount to the same. After introduction of regular expressions and
their associated languages we will prove that for each DFA there exists an equivalent
regular expression. Despite its intruiging proof the result is not always convenient in
constructing an languaage-equivalent regular expression, e.g. given a DFA. Therefore,
we present a procedure to go from a DFA to a regular expression using the notion of a
generalized finite automaton. Finally in the section, to complete the claim that regular
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expressions and regular languages correspond, we show how to obtain an equivalent NFA
from a given regular expression.

We start off by introducing the class of regular expressions over a given alphabet. It is
built from the constants 0 and 1 as well as constants for every letter from the alphabet
under consideration, and it is closed under sum or union, under concatenation and under
an operator called Kleene’s star or iteration.

Definition 2.22 (Regular expression). Let Σ be an alphabet. The class REΣ of regular
expressions over Σ is defined as follows.

(i) 1 and 0 are regular expressions;

(ii) each a ∈ Σ is a regular expression;

(iii) if r1, r2 and r are regular expressions, then (r1 + r2), (r1 · r2) and (r∗) are regular
expressions.

When clear from the context, the alphabet Σ may be omitted as subscript of REΣ.
For reasons to become clear in a minute, the regular expression (r1 + r2) called sum,
is also called the union of r1 and r2, and the regular expression (r1 · r2) is called the
concatenation of r1 and r2. The regular expression (r∗) is called the Kleene-closure or
iteration of r.

To reduce the number of parentheses we assume the ∗-construction to bind the most,
followed by concatenation ·, and with sum + having lowest priority. Typically, outermost
parentheses will be suppressed too.

Definition 2.23 (Language of a regular expression). Let REΣ be the class of regular
expressions over the alphabet Σ. The language L(r) ⊆ Σ of a regular expression r ∈ REΣ

is given by

(i) L(1) = {ε} and L(0) = ∅;

(ii) L(a) = {a} for a ∈ Σ;

(iii) L(r1 + r2) = L(r1) ∪ L(r2), L(r1 · r2) = L(r1)L(r2), L(r∗) = L(r)∗.

In clause (iii), L(r1)L(r2) denotes the concatenation of L(r1) and L(r2), while L(r)∗

denotes the Kleene-closure of L(r). Recall

L1L2 = { w1w2 | w1 ∈ L1, w2 ∈ L2 }

L∗ = { w1 · · · wk | k > 0, w1, . . . , wk ∈ L }

for languages L1, L2 and L.
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Example 2.24. Consider, with respect to the alphabet {a, b}, the regular expression
(a+ b)∗ · a. We have

L((a+ b)∗ · a)

= L((a+ b)∗)L(a)

= (L(a+ b))∗{a}

= (L(a) ∪ L(b))∗{a}

= ({a} ∪ {b})∗{a}

= {a, b}∗{a}

= { w ∈ {a, b}∗ | w ends with a }

Example 2.25. The set of strings over the alphabet {a, b, c} that contains at least one a
and at most one b can be represented by the regular expression

(

c∗ · a · (a+ c)∗ · (b+ 1) · (a+ c)∗
)

+
(

c∗ · b · c∗ · a · (a+ c)∗
)

The left part of the regular expression covers the situation where at least on symbol a
preceeds a possible appearance of b. Note, L(b+ 1) = {b}+ {ε} = {b, ε}. The right part
represents strings with a single occurrence of b followed by minimally one occurrence
of a, interspersed with occurrences of c.

The operators of sum and concatenation are associative with respect to their language
interpretation: L(r1+(r2+r3)) = L((r1+r2)+r3)) and L(r1 ·(r2 ·r3)) = L((r1 ·r2) ·r3)).
This allows to write, e.g. r1 + r2 + r3, instead of r1 + (r2 + r3) or (r1 + r2) + r3, and
r1 · r2 · r3, since order of bracketing does not matter for the language that is denoted.
Often, for notational convenience too, we write a1a2 · · · an for the regular expression
a1 · a2 · · · · · an using juxtaposition rather than concatenation.

It turns out that for every regular expression r there exists a DFA Dr such that L(r) =
L(Dr). We will show, see Theorem 2.33 below, that for a regular expression r a language-
equivalent NFA Nr exists. The result then follows by Theorem 2.19. The reverse is valid
as well: for every DFA D there exists a regular expression rD such that L(D) = L(rD).
There are various ways to prove this. We first give a conceptually elegant proof based
on specific regular expressions Rk

i,j .

Theorem 2.26. If a language L is accepted by a DFA, then L is the language of a
regular expression.

Proof. Suppose L = L(D) for a DFA D = (Q, Σ, δ, q1, F ) with Q = { q1, q2, . . . , qn }.
Note the initial state q1.

Let the regular expression Rk
i,j represent the set of strings w that label the paths

from state qi to state qj without passing through any state qℓ with ℓ > k in between.
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More precisely, we inductively define Rk
i,j , for i, j = 1, . . . , n, k = 0, . . . , n, by

R0
i,i = a1i,i + · · ·+ a

s(i,i)
i,i + 1

R0
i,j = a1i,j + · · ·+ a

s(i,j)
i,j for i 6= j

Rk+1
i,j = Rk

i,j + Rk
i,k+1 · (R

k
k+1,k+1 )

∗ ·Rk
k+1,j

where a1i,j , . . . , a
s(i,j)
i,j are all symbols in Σ such that δ(qi, a

1
i,j) = qj , . . . , δ(qi, a

s(i,j)
i,j ) = qj ,

for i, j = 1, . . . , n.
We verify that the regular expressions Rk

i,j are as intended: If k = 0 then the path
from qi to qi has no intermediate states. So, either the path has length 1 if δ(qi, a) = qi
yielding the subexpression a with meaning {a}, or the path has length 0, yielding the
subexpression 1 with meaning {ε}. This explains R0

i,i. The explanation of the regular

expression R0
i,j , for i 6= j is similar. However, in this case there is no empty path from qi

to qj , since qi and qj are different states, so no subexpression 1 either.
With respect to the regular expression Rk+1

i,j , a path from qi to qj which may pass
through intermediate states q1, . . . , qk+1, may or may not pass through state qk+1. If not,
the path is already represented by Rk

i,j . If the path passes through qk+1, there is an initial
part from qi to qk+1 and a final part from qk+1 to qj that both avoid qk+1. In between
the path can be split up in subpaths from qk+1 to qk+1 that do not pass through qk+1 as
intermediate state; it may pass through intermediate states q1 to qk only. The initial part
and final part are captured by the regular expressions Rk

i,k+1 and Rk
k+1,j , respectively.

The subpaths from qk+1 to qk+1 with intermediate states from q1 to qk are included
in Rk

k+1,k+1. Any repetition of such a path is allowed, which explains the Kleene star.
Since the DFA D has n-states, the regular expression Rn

i,j represents the labels of all
path through D from state qi to state qj . We have, for a string w over the alphabet Σ,
w ∈ L(D) iff there exists a path labeled w from the initial state q1 of D to a final
state qf ∈ F iff w ∈ L(Rn

1,f ) for a final state qf . Thus, if F = {qf1 , . . . , qfm}, then
w ∈ L(D) iff w ∈ L(Rn

1,qf1
+ · · ·Rn

1,qfm
). This proves the theorem, the language L, i.e.

L(D), is the language of the regular expression Rn
1,qf1

+ · · ·Rn
1,qfm

.

Although in principle it is possible to compute Rn
1,n from the inductive definition, with n

the number of states of the DFA, the method of Theorem 2.26 is not very appealing.
As a constructive alternative one can follow a graphical approach for which we need the
notion of a generalized finite automaton.

Definition 2.27. A generalized finite automaton G, GFA for short, is a five-tuple G =
(Q, Σ, δ, q0, qe) with (i) Q the set of states, (ii) Σ the alphabet, (iii) δ : Q×Q → REΣ

the transition function such that δ(qe, q) = 0, for all q ∈ Q, (iv) q0 ∈ Q the initial state,
and (iv) qe ∈ Q, qe 6= q0, the (only) final state. The language L(G) ⊆ Σ∗ accepted by
GFA G is given by

L(G) = { w1 · · ·wn ∈ Σ∗ | n > 1, q′0, . . . q
′
n ∈ Q :

q′0 = q0 ∧ q′n = qe ∧ ∀i, 1 6 i 6 n : wi ∈ δ(qi−1, qi) }
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Figure 2.10: GFA of Example 2.28

Note, since δ(qe, q
′) = 0 for each q′ ∈ Q, we have that q 6= qe if w ∈ δ(q, q′) for some

string w.

Example 2.28. An example GFA G is given in Figure 2.10. Here G = (Q, Σ, δ, q0, qe)
where set of states Q = {q0, q1, q2, q3, qe}, alphabet Σ = {a, b}, initial state q0 and
final state qe marked as usual, and with the transition function δ : Q×Q → REΣ given
by

q0 q1 q2 q3 qe

q0 a b 0 0 0

q1 0 a b 0 1

q2 0 0 a b 0

q3 0 0 0 a+ b 1

qe 0 0 0 0 0

In the figure we do not draw edges labeled 0. Note the edge from q3 to itself labeled
with the regular expression a + b, and the edges from q1 and q3 to qe labeled with the
regular expression 0. The language L(G) of G is the set of all strings over {a, b} with
one, three or more occurrences of the symbol b.

With the notion of a GFA in place, we describe our procedure of constructing a language-
equivalent regular expression rD for a DFA D. As a first step for D = (Q, Σ, δ, q0, F ),
we transform D into a language-equivalent GFA GD as follows: Let qe be a new state
not occurring in Q. Put Q′ = Q ∪ {qe}. We define δ′ : Q′ ×Q′ → REΣ such that

δ′(q, q′) = δ(q, q′) if q, q′ 6= qe

δ′(q, qe) = 1 if q ∈ F

δ′(q, qe) = 0 if q /∈ F

δ′(qe, q) = 0 for all q ∈ Q′

We call GD the GFA induced by D.
We argue that the DFA D and the GFA GD are language-equivalent indeed, i.e. that

L(D) = L(GD). For the inclusion L(D) ⊆ L(GD), pick w ∈ L(D), say w = a1 · · · an
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Figure 2.11: DFA of Example 2.29

for n > 0, a1, . . . , an ∈ Σ. Then we can choose q′0, . . . , q
′
n ∈ Q such that q′0 = q0,

δ(q′i−1, ai) = q′i for 1 6 i 6 n, and q′n ∈ F . Put q′n+1 = qe. Put wi = ai for 1 6 i 6 n and
wn+1 = ε. Then we have, for q′0, . . . , q

′
n+1 ∈ Q′ that q′0 = q0, δ

′(q′i−1, q
′
i) = ai ∋ ai = wi

for 1 6 i 6 n and δ′(q′n, q
′
n+1) = 1 ∋ ε = wn+1. Thus w = (a1 · · · an)ε = w1 · · ·wn+1 ∈

L(GD). For the inclusion L(GD) ⊆ L(D), pick w ∈ L(GD). Then w = (a1 · · · an)ε,
since all edges toward qe are labeled 1. In particular, there are q′0, . . . , q

′
n ∈ Q such that

δ′(q′i−1, q
′
i) = ai, for 1 6 i 6 n. Moreover, q′0 = q0 and q′n ∈ F . By construction it follows

that δ(q′i−1, ai) = qi, for 1 6 i 6 n, q′0 = 0 and q′n ∈ F . Thus w = a1 · · · an ∈ L(D), as
was to be shown.

Once we have a language-equivalent GFA GD for a given DFA D, we continue the
construction leading to a regular expression rD for D by successively eliminating inter-
mediate states from GD, i.e. states different from the inital state q0 and the final state qe,
one-by-one while updating the labels to ensure language equivalence. When only two
states remain, q0 and qe, the regular expression rD such that L(D) = L(rD) can be read
off, viz. rD = δ(q0, q0)

∗ · δ(q0, qe). Recall, the final state qe has no outgoing transitions.

Example 2.29. Consider the DFA D as given by Figure 2.11 accepting the language
{ w ∈ {a, b}∗ | #a(w) = 1 ∨ #a(w) > 3 }. The GFA GD, the GFA induced by D, is
the GFA of Example 2.28 depicted in Figure 2.10, repeated in the upper-left part of
Figure 2.12. The GFA GD\p3, depicted as upper-right part of Figure 2.12, is obtained
from GD by eliminating state q3. Since state q3 of GD has one incoming transition
labeled b, a loop labeled a+ b, and one outgoing transition labeled 1, the path from q2
to qe via q3 is replaced by a transition labeled b · (a+b)∗ ·1 = b · (a+b)∗. Then, removing
state q2 from GD\q3 yields (GD\q3)\q2 at the bottom-left part of Figure 2.12. The path
from q1 via q2 to qe is combined with the transition from q1 to qe in GD\p3 giving a
single transtion from q1 to qe labeled 1+ b · a∗ · b · (a+ b)∗. Finally, eliminating state q1
gives the GFA ((GD\q3)\q2)\q1, at the bottom-right of Figure 2.12. The path from q0
to qe via q1 is combined into a single transition from q0 to qe labeled by the regular
expression b · a∗ · (1+ b · a∗ · b · (a+b)∗). Because of its simple form, we can read off from
((GD\q3)\q2)\q1 the accepted language, viz. a∗ ·b·b·a∗ ·(1+b·a∗ ·b·(a+b)∗) = a∗ · b · a∗+
a∗ · b · a∗ · b · a∗ · b · (a+b)∗, i.e. the language of strings over {a, b} with one, three or
more b’s. The claim is that the DFA D of Figure 2.29 and the four GFA GD, GD\q3,
(GD\q3)\q2, and ((GD\q3)\q2)\q1 of Figure 2.12 are all language equivalent. Hence, the
regular expression a∗ · b · a∗ + a∗ · b · a∗ · b · a∗ · b · (a+b)∗ represents the language of the
DFA D too.
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Figure 2.12: GFA sequence GD, GD\q3, (GD\q3)\q2, ((GD\q3)\q2)\q1 of Example 2.28

The approach of successive elimination of states from a GFA, that is language equivalent
to a given DFA, to obtain a regular expression for the language of the DFA is justified
by the following theorem. Assuming the removal of the state p from a GFA G gives the
GFA G\p, the language of the two automata is the same.

Theorem 2.30. Let G = (Q, Σ, δ, q0, qe) be a GFA. Choose p ∈ Q, p 6= q0, qe. The GFA
G\p = (Q′, Σ, δ′, q0, qe) with Q′ = Q\{p} has transition function δ′ : Q′ × Q′ → REΣ

such that

δ′(q, q′) = δ(q, q′) + δ(q, p) ·
(

δ(p, p)
)∗

· δ(p, q′)

if q, q′ ∈ Q and δ′(q, q′) = 0 otherwise. Then it holds that L(G) = L(G\p).

Proof. (L(G) ⊆ L(G\p)) Pick w = w1 · · ·wn ∈ L(G). Choose q′0, . . . , q
′
n ∈ Q such that

q′0 = q0, q
′
n = qe, and wi ∈ δ(qi−1, qi) for i = 1 . . . n. Define strings v1, . . . , vm ∈ Σ∗ and

states q′′0 , . . . , q
′′
m as follows: m = n−#{k | q′k = p}, q′′j = q′i iff q′i 6= p and j = i−#{k 6

i | q′k = p }. Thus, m is the number of states among q′0, . . . , q
′
n different from p, taking

multiplicities into account. Similarly, q′′j is the j-th state in the sequence q′0, . . . , q
′
n when

skipping states q′k that are equal to p. Define ℓ(j), low of j, such that q′′j−1 = q′ℓ and h(j),
high of j, such that q′′j = q′h, for j = 1 . . .m. Note, q′k = p for ℓ(j) < k < h(j), ℓ(1) = 0
and h(m) = n. Now, define vj = wℓ(j)+1 · · ·wh(j). Since h(j−1) = ℓ(j), for j = 2 . . .m,
we have w = w1 · · ·wn = (wℓ(1)+1 · · ·wh(1)) (wℓ(2)+1 · · ·wh(2)) · · · (wℓ(m)+1 · · ·wh(m)) =
v1v2 · · · vm. Thus for v1, . . . , vm and q′′0 , . . . , q

′′
m it holds that w = v1 · · · vm, q′′0 = q′0 = q0,

q′′m = q′n = qe, and vj ∈ δ(qℓ(j), p) ·
(

δ(p, p)
)∗

· δ(p, qh(j)) ⊆ δ′(q′′j−1, q
′′
j ), for j = 1 . . .m.

Thus, w = v1 · · · vm ∈ L(G\p).
(L(G\p) ⊆ L(G)) Suppose v ∈ L(G\p). Pick q′′0 , . . . , q

′′
m ∈ Q\{p} and v1, . . . , vm ∈ Σ∗

such that q′′0 = q0, q
′′
m = qe, v = v1 · · · vm, and vj ∈ δ′(q′′j−1, q

′′
j ), for j = 1 . . .m. Since
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Figure 2.13: DFA of Example 2.32

δ′(q′′j−1, q
′′
j ) = δ(q′′j−1, q

′′
j ) + δ′(q′′j−1, p) ·

(

δ(p, p)
)∗

· δ(p, q′′j ) it follows that we can pick

m(j) > 0, and w0
j , . . . , w

m(j)
j ∈ Σ∗ such that vj = w0

j · · ·w
m(j)
j where w0

j ∈ δ(q′′j−1, q
′′
j ) if

m(j) = 0, and w0
j ∈ δ(q′′j−1, p), w

k
j ∈ δ(p, p), for 1 6 k < m(j), and w

m(j)
j ∈ δ(p, q′′j ) if

m(j) > 0. It follows, leaving the precise details to the industrious reader, that we can
choose q′0, . . . q

′
n ∈ Q and w1, . . . , wn ∈ Σ∗ such that q′0 = q0, q

′
n = qe, v = w1 . . . wn, and

wi ∈ δ(q′i−1, q
′
i). Thus, v ∈ L(G).

From the theorem we obtain again the result that a language represented by a DFA can
also be represented by a regular expression. However, by now we also have a procedure
as how to construct the regular expression rD for the DFA D.

Theorem 2.31. If a language L is accepted by a DFA D, then L is the language of a
regular expression rD.

Proof. We first claim that for an arbitrary GFA G there exists a regular expression r
such that L(r) = L(G). We prove the claim by induction on the number of states n of
Note, the GFA G has at least two states, viz. the inital state q0 and the end state qe.

Basis, n = 2: We have L(G) = δ(q0, q0)
∗ · δ(q0, qe), or more precisely, L(GD) =

L
(

δ(q0, q0)
∗ · δ(q0, qe)

)

. So, put r = δ(q0, q0)
∗ · δ(q0, qe).

Induction step, n > 2: Choose a state p different from q0 and qe. Consider the GFA
G\p with n − 1 states. By induction hypothesis, we can choose a regular expression r
such that L(r) = L(G\p). By Theorem 2.30, we have L(G) = L(G\p). Therefore,
L(r) = L(G).

Now, let GD be the GFA obtained from the DFA D. Then L(GD) = L(D). By the
claim we can find a regular expression that we call rD such that L(rD) = L(GD). From
this we obtain L(rD) = L(D), which proves the theorem.

In general, there are several ways to reduce the GFA GD to a two-state GFA. Therefore,
there may be several regular expressions that represent the same language.

Example 2.32. As another illustration of the elmination approach to find a regular
expression for a DFA, consider the DFA D depicted in Figure 2.13. We start off with
the GFA G3 induced by D, with states q0 up to q3 given in the upper-left part of
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Figure 2.14: GFA sequence of Example 2.32

Figure 2.14. GFA GD has a single final state, viz. qe, with incoming edges with label 1
from the final states of D. Multiple transitions in D, e.g. from q0 to q2, combined into
a single edge labeled with a composed regular expression.

We start by eliminating state q3 from the GFA G3. In line with the proof of Theo-
rem 2.30, we connect incoming edges of state q3 with outgoing edges, combined with the
self loop of q3. E.g., since δ3(q1, q3) = b, δ3(q3, q3) = c, and δ3(q3, q0) = a we create an
edge from state q1 to state q0 labeled with the regular expression b · c∗ ·a in the GFA G2,
i.e. δ2(q1, q0) = b · c∗ · a. The label of the edge from q1 to qe gets strengthened. Since
δ3(q1, q3) = b, δ3(q3, q3) = c, and δ3(q3, qe) = 1 and δ3(q1, qe) = 1, we relabel the edge
from q1 to qe for G2 with 1 + b · c∗ · 1 = 1 + b · c∗. Likewise, the edge from q1 to q3,
combined with the self loop of q3, and the edge from q3 to q1 add the regular expression
b · c∗ · b to the self loop of q1, obtaining c+ b · c∗ · b for G2. Furthermore, the label of the
edge from q2 to q0 is updated to (b + c) + a · c∗ · a, a new edge from q2 to q1 is added
labeled a · c∗ · b, as well as another edge from q2 to qe labeled a · c∗ · 1 = a · c∗.

The reverse of Theorem 2.31 also holds true: for every regular expression r there exists
a DFA accepting the language of r. We will establish this result directly. Instead we
show that for every regular expression a corresonding NFA exists. Since for every NFA
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Figure 2.15: NFAs for regular expressions 0, 1 and a

there exists a language-equivalent DFA, Theorem 2.19, the counterpart of Theorem 2.31
follows.

Theorem 2.33. If a language L equals L(r) for some regular expression r, then L equals
L(N) for some NFA N .

Proof. Suppose L ⊆ Σ∗. We prove the theorem by structural induction on the ex-
pression r. For each regular expression r we will construct an NFA Nr such that
L(Nr) = L(r). Moreover, we take care that

(i) Nr has exactly one final state;

(ii) the inital state of Nr has only outgoing transitions (if any);

(iii) the final state of Nr has only incoming transitions.

We need to distinguish three base cases and three successor cases.
Basis, r = 0: We have L(0) = ∅. Clearly, L(0) = L(N0) for N0 depicted at the left

of Figure 2.15.
Basis, r = 1: We have L(1) = {ε}. Clearly, L(1) = L(N1) for N1 depicted in the

center of Figure 2.15.
Basis, r = a for a ∈ Σ: We have L(a) = {a}. Clearly, L(a) = L(Na) for Na depicted

at the right of Figure 2.15.
Induction step, r = r1 + r2: Suppose NFA Ni accepts the language L(ri), say Ni =

(Qi, Σ, δi, q
i
0, {q

i
f}), for i = 1, 2. Moverover, we assume Q1 ∩Q2 = ∅. Let q0 and qf be

two fresh states. Then we put Nr = (Q, Σ, δ, q0, {qf}) where Q = Q1 ∪ Q2 ∪ {q0, qf}

and δ extends δ1 and δ2 with q0
τ
−→ q10, q0

τ
−→ q20 and q1f

τ
−→ qf , q

2
f

τ
−→ qf . Clearly, by

construction, L(Nr) = L(N1) ∪ L(N2) = L(r1) ∪ L(r2) = L(r1 + r2). See the left-upper
part of Figure 2.16.

Induction step, r = r1 · r2: Suppose NFA Ni accepts the language L(ri), say Ni =
(Qi, Σ, δi, q

i
0, {q

i
f}), for i = 1, 2. Again, we assume Q1 ∩ Q2 = ∅. We put Nr = (Q1 ∪

Q2, Σ, δ, q
1
0, {q

2
f}) where δ extends δ1 and δ2 with q1f

ε
−→ q20. Clearly, by construction,

L(Nr) = L(N1)·L(N2) = L(r1)·L(r2) = L(r1·r2). See the right-upper part of Figure 2.16.
Induction step, r = r∗0: Suppose NFA N0 accepts the language L(r0), say N0 =

(Q0, Σ, δ0, q
0
0, {q

0
f}). Let q0 and qf be two fresh states. Then we put Nr = (Q0 ∪

{q0, qf}, Σ, δ, q0, {qf}) where δ extends δ0 with q0
τ
−→ q00, q0

τ
−→ qf , and q0f

τ
−→ q00.

Clearly, by construction, L(Nr) = L(N0)
∗ = L(r0)

∗ = L(r∗0). See the lower part of
Figure 2.16.
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Figure 2.17: NFA of Example 2.34

Example 2.34. Figure 2.17 depicts the NFA obtained by the construction described in
the proof of Theorem 2.33 for the regular expression (a+ b)∗ · b · (a+ b). The resulting
NFA consists of three sequential components, viz. for the iteration (a+b)∗ on the left, for
the basic regular expression b in the middle, and for the alternative composition (a+ b)
on the right.

Exercises for Section 2.3

Exercise 2.3.12. Give for each regular expression r below two strings in L(r) and two
strings not in L(r), if possible.

(i) a∗ · b
(ii) a · b∗ · a
(iii) (1+ a) · b∗ · (1+ a)
(iv) (ab)∗ · (ba)∗

(v) a∗ + b∗

(vi) (a+ b) · (a+ b)∗

(vii) (a+ b) · (a∗ + b∗)
(viii) (a∗ + b∗) · (a∗ + b∗)

Answer to Exercise 2.3.12 Possible answers include: (i) b and ab in, ba and aba out;
(ii) aa and aba in, ε and ab out; (iii) ε and ab in, bab and aab out; (iv) ε and abba in, a
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and aa out; (v) ε and a in, ab and ba out; (vi) a and b in, ε the ony string out; (vii) a
and b in, ε and aab out; (viii) ε and a in, aba and bab out.

Exercise 2.3.13. Provide a regular expression for each of the following languages.

(i) { w ∈ {a, b}∗ | w starts with a and ends in b }

(ii) { w ∈ {a, b, c}∗ | w contains at most two a’s and at least one b }

(iii) { w ∈ {a, b}∗ | |w| 6 3 }

Answer to Exercise 2.3.13

(i) a · (a+ b)∗ · b;

(ii) c∗ ·b·(b+c)∗ ·a·(b+c)∗ ·a·(b+c)∗+c∗ ·a·c∗ ·b·(b+c)∗ ·a·(b+c)∗+c∗ ·a·c∗ ·a·c∗ ·b·(b+c)∗;

(iii) 1+ (a+ b) + (a+ b) · (a+ b) + (a+ b) · (a+ b) · (a+ b).

Exercise 2.3.14. Let the GFA G have two states, q0 and qe. Show that it holds that
L(G) = δ(q0, q0)

∗ · δ(q0, qe).

Answer to Exercise 2.3.14 (L(G) ⊆ δ(q0, q0)
∗ ·δ(q0, qe)) Let w ∈ L(G). Pick q′0, . . . , q

′
n ∈

Q and w1, . . . , wn ∈ Σ∗ such that w = w1 · · ·wn, q
′
0 = q0, wi ∈ δ(q′i−1, q

′
i) for 1 6 i 6 n,

and q′n = qe. Since δ(qe, q0) = δ(qe, q0) = 0 and L(0) = ∅, we have q′0, . . . , q
′
n−1 = q0.

Thus w1, . . . , wn−1 ∈ δ(q0, q0) and wn ∈ δ(q0, qe). Hence w = w1 · · ·wn ∈ δ(q0, q0)
∗ ·

δ(q0, qe).
(δ(q0, q0)

∗ · δ(q0, qe) ⊆ L(G)) Let w ∈ δ(q0, q0)
∗ · δ(q0, qe). Choose w1, . . . , wn ∈

δ(q0, q0), w
′ ∈ δ(q0, qe) such that w = w1 · · ·wnw

′. Put q′i = q0 for 0 6 i 6 n and q′n+1 =
qe. Since wi ∈ δ(q0, q0) = δ(qi−1, qi) for 1 6 i 6 n, and w′ ∈ δ(q0, qe) = δ(q′n, q

′
n+1), it

follows that w = w1 · · ·wnw
′ ∈ L(G).

Exercise 2.3.15. Construct a four-state GFA G, with intermediate states p and q, such
that the regular expression belonging to (G\p)\q is different from the regular expression
belonging to (G\q)\p.

Answer to Exercise 2.3.15 A possible solution is the GFA G:

e 0

1

2

a

b

c

d

f
1
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Elimination of state q2 first, followed by elimination of state q1 yields the GFA sequence

G\q2

e 0

1

c·d

a

b+ f ·d1

(G\q2)\q1

e 0

c·d+ a·(b+ f ·d)

1

yielding the regular expression r2,1 =
(

c·d + a·(b+ f ·d)
)∗
. However, elimination of

state q1 first, followed by elimination of state q2 yields the following two GFA:

G\q1

e 0

2

a·b

c+ a·f

d

1

(G\q1)\q2

e 0

a·b+ (c+ a·f)·d

1

yielding the regular expression r1,2 =
(

a·b + (c+ a·f)·d
)∗
. In line with the proof of

Theorem 2.31, both regular expressions represent the same language. It holds that
L(r1,2) = L(r2,1) = { ab, afd , cd }∗.

Exercise 2.3.16. Give a language-equivalent GFA G for the DFA D below, successively
eliminate the intermediate states of G, and derive a regular expression rD that represents
the language of D.

0 1

2

a

b
a

b

a,b

Answer to Exercise 2.3.16 We have the following GFA sequence of G, G\q2 and
(G\q2)\q1.
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G

0 1

2e

a

b a

b

a+ b

1

G\q2

0 1

e

b·(a+ b)

a

b+ a·(a+ b)

b

a

(G\q2)\q1

0

e

b·(a+ b) +
a·(b+ a·(a+ b))

b+ aa

From (G\q2)\q1 we obtain rD =
(

b · (a+ b) + a · (b+ a · (a+ b))
)∗

· (b+ aa).

Exercise 2.3.17. (a) Give a language-equivalent GFA G for the DFA D below, suc-
cessively eliminate the intermediate states of G, and derive a regular expression rD
that represents the language of D.

0 1

b b

a

a

(b) Give a simple regular expression for L(D).

Answer to Exercise 2.3.17 (a) The GFA G and G\q1 look as follows

G

0 1

e

b b

a

1 1

a

G\q1

0

e

b+ a·b∗·a

1+ a·1

From G\q1 we obtain rD =
(

b+ a · b∗ · a
)∗

· (1+ a · 1).

(b) Since D accepts all strings over {a, b}, hence L(D) = {a, b}∗, the regular expres-
sion (a+ b)∗ represents D, i.e. L((a+ b)∗) = L(D).

Exercise 2.3.18. Give a language-equivalent GFA G for the DFA D below, successively
eliminate the intermediate states of G, and derive a regular expression rD that represents
the language of D.
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0 1

2

c

a

b

a

b

c

b

a

c

Answer to Exercise 2.3.18 We have the following GFA sequence of G, G\q2 and
(G\q2)\q1.

G

0 1

2 e

c
a

b

a

b

c

1

b

a
c

1

G\q2

0 1

e

c+ b·b∗·c

a+ b·b∗·a

b·b∗

a+ b·b∗·b

c+ b·b∗·b

1

(G\q2)\q1

0

e

c+ b·b∗·c+
(a+ b·b∗·a) · (a+ b·b∗·a)∗ · (c+ b·b∗·b)

b·b∗ + (a+ b·b∗·a) · (a+ b·b∗·a)∗ · (1+ b·b∗)

From (G\q2)\q1 we obtain rD =
(

c+ b·b∗·c+ (a+ b·b∗·a) · (a+ b·b∗·a)∗ · (c+ b·b∗·b)
)∗

·
(

b·b∗ + (a+ b·b∗·a) · (a+ b·b∗·a)∗ · (1+ b·b∗)
)

.

Exercise 2.3.19. Guess a regular expression for each of the following languages. Next
provide a DFA for each language and construct a regular expression via elimination of
states.

(a) { w ∈ {a, b}∗ | in w, each maximal substring of a’s
of length 2 or more is followed by a symbol b }

(b) { w ∈ {a, b}∗ | w has no substring bab }
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(c) { w ∈ {a, b}∗ | #a(w) = #b(w) ∧ v 4 w =⇒ −2 6 #a(v)−#b(v) 6 2 }

Answer to Exercise 2.3.19 (a) The DFA D, given by

0 1 2

b

b a
b

a
b

yields the GFA sequence

G

0 1 2

e

b

b a

1

b

a
b

1

G\q2

0 1

e

b

b

b+ a·a∗·b

1

(G\q2)\q1

0

e

b++a·(b+ a·a∗·b)

1+ a

and the regular expression
(

b+ a · (b+ a · a∗ · b)
)∗
(1+ a).

(b) The DFA D, given by

0 1 2 3

a

b

a
b

a

b

a,b

yields the GFA sequence

G

0 1 2 3

e

a

b

a
b

a

b

a,b

1 1 1

G\q3

0 1 2

e

a

b

a
b

a

1 1 1

(G\q3)\q2

0 1

e

a

b

b+ aa

1 1+ a

((G\q3)\q2)\q1

0

e

a+ b·(b+ aa)

1+ b+ ba
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and the regular expression
(

a+ b · (b+ aa)
)∗

· (1+ b+ ba).

(c) The DFA D, given by

0 1

2

3

4 5

ab

a

b

a

b

a

b a

b

a,b

yields the GFA sequence

G

0 1

2

3

4 5

e

ab

a

b

a

b

a

b a

b

a,b

1

G\q5

0 1

2

3

4

e

ab

a

b

b

a

b a

1

(G\q5)\q4

0 1

2

3

e

ab

a

b

b

a

ba
1

((G\q5)\q4)\q3

0 1

2

e

a

a

b

b

b·(ba)∗·a

1

(((G\q5)\q4)\q3)\q2

0 1

e

a

b

b·(ba)∗·a

ab
1

((((G\q5)\q4)\q3)\q2)\q1

0

e

b·(ba)∗·a+ a·(ab)∗·b

1
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and the regular expression
(

(b · (ba)∗ · a) + (a · (ab)∗ · b)
)∗
.

Exercise 2.3.20. Construct for each of the following regular expressions a language-
equivalent NFA.

(a) a · (b+ c) · d∗

(b) (a+ b) · c∗ · d

(c) (a+ b)∗ · c · (d+ e)∗

(d)
(

(a+ b)∗ + c
)∗

+ d

Answer to Exercise 2.3.20

(a)

a

b

c

dτ
τ

τ

τ

τ

τ τ τ

τ

τ

(b)

a

b

c d
τ

τ

τ

τ

τ τ τ τ

τ

τ

(c)

a

b

c

d

e

τ
τ

τ

τ

τ

τ τ τ τ
τ

τ

τ

τ

τ

τ

τ

τ

τ
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(d)

a

b

c

d

τ

τ
τ

τ

τ
τ τ

τ τ

τ

τ

τ

τ

τ

τ

τ

τ

τ
τ
τ

2.4 Properties of the class of regular languages

In this section we formally relate the concepts of a DFA, an NFA and a regular expression.
We prove that they accept the same class of languages, the class of regular languages.
We also provide a means to prove that a language is not in this class, i.e. that it is not
regular. Moreover, we look at closure properties and decision procedures for the class of
regular languages.

Definition 2.35. A language L ⊆ Σ∗ over an alphabet Σ is called a regular language if
there exists an NFA N such that L = L(N).

The next theorem states that NFAs, DFAs and regular expressions define the same class
of languages, viz. the class of regular languages. The theorem, or rather the theorems
its proof refers to, also provides flexibility in the representation of a regular language.
Given a regular language L as either the language accepted by an NFA or by a DFA
or as the language of a regular expression, we can construct an NFA or a DFA that
accepts L or a regular expression who’s language is L.

Theorem 2.36. Let L be a language. The following three statements are equivalent:

(i) L is a regular language

(ii) There exists a DFA D such that L = L(D).

(iii) There exists a regular expression r such that L = L(r).

Proof. [(i) ⇒ (ii)] By definition there exists an NFA N such that L = L(N). By
Theorem 2.19 there exists a DFA D such that L(N) = L(D). Then, clearly, L = L(D)
for the DFA D.

[(ii) ⇒ (iii)] Suppose L = L(D) for a DFA D. By Theorem 2.31 there exists a
regular expresion r such that L(D) = L(r). Thus clearly, L = L(r) for the regular
expression r.
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[(iii) ⇒ (i)] Suppose L = L(r) for a regular expression r. By Theorem 2.33 there
exists an NFA N such that L(N) = L(r). Therefore L = L(N) and L is a regular
language.

Next we investigate closure properties of the class of regular languages. The following
theorem states that the class of regular languages is closed under union, complement
and intersection. We use the flexibility provided by Theorem 2.36 to choose or use the
representation of a regular language that suits best.

Theorem 2.37.

(a) If L1, L2 are regular languages, then L1 ∪ L2 is a regular language too.

(b) If the language L ⊆ Σ∗ is regular, then so is LC = Σ∗ \ L.

(c) If L1, L2 are regular languages, then L1 ∩ L2 is a regular language too.

Proof. (a) By Theorem 2.36 we can find regular expressions r1 and r2 such that L1 =
L(r1) and L2 = L(r2). Then we have L1 ∪ L2 = L(r1) ∪ L(r2) = L(r1 + r2). Thus, by
Theorem 2.36 again, L1 ∪ L2 is a regular language.

(b) Let, applying Theorem 2.36, D = (Q, Σ, δ, q0, F ) be a DFA such that L(D) = L.
Define the DFA D′ = (Q, Σ, δ, q0, F

′) by putting F ′ = Q \ F . Thus q ∈ Q is a final
state in D′ iff q is not a final state in D. By definition we have w ∈ L(D′) if both
(q0, w) ⊢∗

D′ (q, ε) and q ∈ F ′. This is equivalent to (q0, w) ⊢∗
D (q, ε) and q /∈ F , by

definition of F ′. But, this is exactly when w /∈ L(D), since D is deterministic. (See
Lemma 2.5.)

(c) By the laws of De Morgan, L1∩L2 = (LC
1 ∪LC

2 )C . The languages LC
1 and LC

2 are
regular, by regularity of L1 and L2 and part (b). Thus LC

1 ∪ LC
2 is regular, by part (a).

Therefore, (LC
1 ∪ LC

2 )C is regular, again by part (b).

Note, for item (b), it is important that the automaton we consider is deterministic.
Changing acceptance and non-acceptance in an NFA does not lead in general to the
complement of the accepted language.

A proof for part (a) and (c) of the theorem based on the construction of an automaton,
as the proof for part (b), is possible as well. For this we make use of the so-called product
automaton of two DFA. We first consider the case of the union L1 ∪ L2 of two regular
languages L1 and L2 over some alphabet Σ.

Suppose the DFA D1 and D2, with Di = (Qi, Σ, δi, q
i
0, Fi ) for i = 1, 2, accept L1

and L2, respectively. We define the product DFA D = (Q, Σ, δ, q0, F ) as follows:

(i) The set of states Q is the Cartesian product Q1 ×Q2 of Q1 and Q2. Thus a state
of Q is a pair of states 〈q1, q2〉 with q1 ∈ Q1, q2 ∈ Q2.

(ii) The initial state of Q is therefore also a pair, viz. 〈q10, q
2
0〉, consisting of the initial

state q10 of Q1, and the initial state q20 of Q2.
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(iii) The transition function δ : (Q1 × Q2) × Σ → Q1 × Q2 is the ‘product’ of the
transition functions of D1 and D2. We put

δ(〈q1, q2〉, a) = 〈q′1, q
′
2〉 ⇐⇒ δ1(q1, a) = q′1 ∧ δ2(q2, a) = q′2

(iv) The set of final states F comprises, in the case of the union, all pairs in Q of
which at least one component is a final state, for D1, for D2, or for both. Thus
F = F1 ×Q2 ∪Q1 × F2. Put differently,

F = { 〈q1, q2〉 ∈ Q | q1 ∈ F1 ∨ q2 ∈ F2 }

Next, we verify that D accepts L1∪L2. For this we make the following claim, which can
be proven by induction on the length of w. Claim: for q1, q

′
1 ∈ Q1, q2, q

′
2 ∈ Q2, w ∈ Σ∗

it holds that

(q1, w) ⊢∗
1 (q′1, ε) ∧ (q2, w) ⊢∗

1 (q′2, ε) ⇐⇒ (〈q1, q2〉, w) ⊢∗
D (〈q′1, q

′
2〉, w

′) (2.2)

Using the claim we derive, for w ∈ Σ∗,

w ∈ L(D1) ∪ L(D2)

⇔ ∃q1 ∈ F1 : (q
1
0, w) ⊢∗

1 (q1, ε) ∨ ∃q2 ∈ F2 : (q
2
0, w) ⊢∗

2 (q2, ε)

⇔ ∃q1 ∈ F1, q2 ∈ Q2 : (q
1
0, w) ⊢∗

1 (q1, ε) ∧ (q20, w) ⊢∗
2 (q2, ε) ∨

∃q1 ∈ Q1, q2 ∈ F2 : (q
1
0, w) ⊢∗

1 (q1, ε) ∧ (q20, w) ⊢∗
2 (q2, ε)

⇔ ∃q1 ∈ F1, q2 ∈ Q2 : (〈q
1
0, q

2
0〉, w) ⊢∗

D (〈q1, q2〉, ε) ∨

∃q1 ∈ Q1, q2 ∈ F2 : (〈q10, q
2
0〉, w) ⊢∗

D (〈q1, q2〉, ε)

⇔ ∃q ∈ F : (q0, w) ⊢∗
D (q, ε) (by definition of F )

⇔ w ∈ L(D)

Thus L1∪L2 = L(D1)∪L(D2) = L(D). Since L1∪L2 is a language accepted by a DFA,
it is a language accepted by an NFA by Theorem 2.36. Hence, L1 ∪ L2 is regular.

In order to show that the intersection L1 ∩ L2 of two regular langauges is regular
too, we can exploit the product automaton again without only a slight adaptation of its
set of final states. Assume that the DFA D1 and D2, with Di = (Qi, Σ, δi, q

i
0, Fi ) for

i = 1, 2, accept L1 and L2, respectively. Define the product DFA D = (Q, Σ, δ, q0, F )
where Q, δ, and q0 are as before, and now F = F1×F2. Thus, a state 〈q1, q2〉 ∈ Q1×Q2

is final iff both q1 ∈ Q1 and q2 ∈ Q2 are final, i.e. q1 ∈ F1 and q2 ∈ F2.
The proof that L(D) = L(D1)∩L(D2) makes use of the claim of Equation (2.2) too.

Now we argue

w ∈ L(D1) ∩ L(D2)

⇔ ∃q1 ∈ F1 : (q
1
0, w) ⊢∗

1 (q1, ε) ∧ ∃q2 ∈ F2 : (q
2
0, w) ⊢∗

2 (q2, ε)

⇔ ∃q1 ∈ F1, q2 ∈ F2 : (〈q
1
0, q

2
0〉, w) ⊢∗

D (〈q1, q2〉, ε)

⇔ ∃q ∈ F : (q0, w) ⊢∗
D (q, ε) (by the current definition of F )

⇔ w ∈ L(D)
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We see that L1 ∩ L2 = L(D1) ∩ L(D2) = L(D). Since L1 ∩ L2 is a language accepted
by a DFA, it is a language accepted by an NFA because of Theorem 2.36. Therefore we
conclude that L1 ∩ L2 is a regular language.

In order to show that a language is a regular language, we can either show that it is the
language of a regular expression, that is the language accepted by a DFA, or that it it
the language accepted by an NFA. However, not every language is a regular language.
But, so far we do not have means to acutally show that a language isn’t regular. The
next theorem, aptly called the Pumping Lemma, provides a tool to do so.

Theorem 2.38 (Pumping Lemma for regular languages). Let L be a regular language
over an alphabet Σ. There exists a constant m > 0 such that each w ∈ L with |w| > m
can be written as w = xyz where x, y, z ∈ Σ∗ are strings such that y 6= ε, |xy| 6 m, and
for all k > 0: xykz ∈ L.

Proof. Suppose, with appeal to Theorem 2.36, L = L(D) for a DFA D. Choose m to
be the number of states of D. Suppose w ∈ L and |w| > m. Say w = a1 · · · an, thus
n > m. Pick n + 1 states q0, . . . , qn with q0 the initial state of D, δD(qi−1, ai) = qi, for
1 6 i 6 n, and qn a final state. Thus (qi−1, aiai+1 · · · an) ⊢D (qi, ai+1 · · · an). Since D
has m states, the first m+1 states q0, . . . , qm cannot all be different. Pick m1,m2 such
that 0 6 m1 < m2 6 m and qm1

= qm2
. Put

x = a1 · · · am1
, y = am1+1 · · · am2

, and z = am2+1 · · · an

We have xyz = a1 · · · am1
am1+1 · · · am2

am2+1 · · · an = w, y 6= ε since m1 < m2, and
|xy| 6 m since m2 6 m.

We verify that xykz ∈ L for all k > 0: It holds that

(q0, x) ⊢∗
D (qm1

, ε), (qm1
, y) ⊢∗

D (qm2
, ε), and (qm2

, z) ⊢∗
D (qn, ε)

Since qm1
= qm2

, it follows that (qm1
, y) ⊢∗

D (qm1
, ε). Thus (qm1

, yk) ⊢∗
D (qm1

, ε) (by
Lemma 2.5 and an inductive argument), and (qm1

, yk) ⊢∗
D (qm2

, ε) for arbitrary k > 0.
Therefore

(q0, x) ⊢∗
D (qm1

, ε), (qm1
, yk) ⊢∗

D (qm2
, ε), and (qm2

, z) ⊢∗
D (qn, ε)

for arbitrary k > 0, and hence (q0, xy
kz) ⊢∗

D (qn, ε). Thus w = xykz ∈ L(D) = L for
all k > 0, since qn is a final state.

Essential use is made of the fact that the DFA has finitely many states only: m+1 states
are chosen, viz. q0, . . . , qm, of which there are at most m states different. So, at least
one state is doubled. This state is the begin and end point of the loop y that can be
taken any number of times –zero, one ore more– depending on the input string.

Consider the DFA D given by Figure 2.18. We claim that a choice for m = 3 will satisfy
the claim of the Pumping Lemma. A string w of 3 symbols or more symbols that is
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0 1 2

X

a

b

a

b a,b

a,b

Figure 2.18: DFA hits the b -loop for input of sufficient length

accepted by D follows a path from the initial state q0 to the final state q2 visiting 4 or
more states. There only 3 different states to consider as qx is a sink state. So, one or
more states are visited more often. In this particular case this is state q1. It follows that
the b -loop is done mulitple times, in fact ℓ = |w| − 2 times. If we split up w in x, y
and z, i.e. w = xyz, with x = a, y = b, and z = bℓ−1a, we have |xy| 6 3, y 6= ε and
xykz = abkbℓ−1a = abk+ℓ−1a is accepted by D.

The Pumping Lemma for regular languages is mainly used to prove negative results,
i.e. it is used to prove that a language is not regular. One can do so by exploiting the
‘reverse’ of the Pumping Lemma: for each m > 0 a string w ∈ L is given for which
no split up in x, y and z meeting the extra requirements in possible. In particular, a
split-up of w as w = xyz with |xy| 6 m and y 6= ε will give rise to a string w′ = xykz,
for some k > 0, which is not in L. By Theorem 2.38 it then follows that the language
cannot be regular. We provide two examples of this technique.

Example 2.39. The language L = {anbn | n > 0} is not a regular language. Let m > 0
be arbitrary. Consider the string w = ambm. We have that w ∈ L. Suppose we split
w = xyz such that |xy| 6 m, and y 6= ε. Then the string y is a non-empty string of a’s,
say y = aℓ. Thus the string w′ = xy2z = am+ℓbm, hence w′ /∈ L. We conclude that
there is no constant m as mentioned by the Pumping Lemma, and therefore L is not a
regular language.

Example 2.40. The language L = { an
2

| n > 0 } is not a regular language. Choose
any m > 0. Consider w = am

2

∈ L. Suppose we can split w = xyz such that |xy| 6 m,
and y 6= ε. Then the string y is a non-empty string of a’s, say y = aℓ with 1 6 ℓ 6 m.
Put w′ = xy2z, then we have w′ = am

2+ℓ. But m2 < m2+ ℓ 6 m2+m < m2+2m+1 =
(m + 1)2, thus m2 + ℓ isn’t a square. So, w′ /∈ L. Thus, we conclude that there is
no constant m as mentioned by the Pumping Lemma, and therefore L is not a regular
language.

We close the chapter by looking into two decision algorithms for regular languages. The
first decision algorithm needs to determine whether given a regular language L as input,
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L is or is not the empty language. We first solve the question if L is given by a regular
expression. With appeal to Theorem 2.36 we can conclude that the theorem holds as
well if L is given as the language accepted by an NFA.

Theorem 2.41. Let L be a regular language over an alphabet Σ represented by an
NFA N accepting L. Then it can be decided if L = ∅ or not.

Proof. We decide, for a regular expression r, emptiness of L(r) as follows:

• L = ∅ if r = 0;

• L 6= ∅ if r = 1;

• L 6= ∅ if r = a for some a ∈ Σ;

• L = ∅ if r = r1+r2 for two regular expressions r1 and r2 and both L(r1) and L(r2)
are empty, L 6= ∅ if L(r1) or L(r2) is non-empty;

• L = ∅ if r = r1 · r2 for two regular expressions r1 and r2 and either L(r1) or L(r2)
is empty, L 6= ∅ if both L(r1) and L(r2) are non-empty;

• L 6= ∅ if r = (r′)∗ for some regular expression r′ (since ε ∈ (r′)∗ for every r′).

Note that the decision procedure terminates since the recusive calls for r1, r2 and r′

above involve a structurally simpler argument.

Now, suppose L = L(N) for an NFA N . Construct, using the algorithms given in
the proofs of Theorem 2.19 and Theorem 2.31, a regular expression r such that L = L(r)
and decide whether L(r) = ∅.

Finally we consider a decision algorithm for membership. Given an arbitrary regular
language L ⊆ Σ∗ and a string w ∈ Σ∗, is it the case or not that w ∈ L?

Theorem 2.42. Let L ⊆ Σ∗ be a regular language over the alphabet Σ, represented by
an NFA N accepting L, and let w ∈ Σ∗ be a string over Σ. Then it can be decided if
w ∈ L or not.

Proof. Construct, using the algorithm given in the proof of Theorem 2.19, a DFA D
such that L(D) = L(N). Simulate D starting from its initial state on input w, say
(q0, w) ⊢∗

D (q′, ε) for some state q′ of D. Decide w ∈ L if q′ is a final state of D; decide
w /∈ L otherwise.

Exercises for Section 2.4

Exercise 2.4.21. Prove using the Pumping Lemma, Theorem 2.38, that the following
languages are not regular.

(a) L1 = { akbak | k > 0 }
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(b) L2 = { akbℓ | k > ℓ > 0 }

(c) L3 = { akbℓck+ℓ | k, ℓ > 0 }

Answer to Exercise 2.4.21

(a) Let m > 0 be arbitrary. Consider the string w = ambam. We have w ∈ L1.
Suppose w = xyz is a split-up of w with |xy| 6 m and y 6= ε. Then x is an
arbitrary string of a’s, say x = aℓ1 with 0 6 ℓ1 < m, y is a non-empty string
of a’s, say y = aℓ2 with 0 < ℓ2 6 m, and z = am−ℓ1−ℓ2bam. Thus the string
w′ = xy2z looks like aℓ1aℓ2aℓ2am−ℓ1−ℓ2bam = aℓ1+ℓ2+ℓ2am−ℓ1−ℓ2bam = am+ℓ2bam.
Hence w′ /∈ L1 since m + ℓ2 6= m because ℓ2 6= 0. We conclude that there is
no constant m as mentioned by the Pumping Lemma, and therefore L1 is not a
regular language.

(b) This is a variant. Pick any m > 0. Consider the string w = ambm−1. We have
w ∈ L2. Assume we can write w = xyz for strings x, y and z such that |xy| 6 m
and y 6= ε. Then we have x = aℓ1 with 0 6 ℓ1 < m, y = aℓ2 with 0 < ℓ2 6 m,
and z = am−(ℓ1+ℓ2)bm−1. Consider the string w′ = xy0z, i.e. w′ = xz since y0 = ε.
Then we have w′ = aℓ1am−(ℓ1+ℓ2). But, since ℓ1 +m − (ℓ1+ℓ2) 6 m−1, w′ /∈ L2.
We conclude that, since no m > 0 exists meeting the requirements of the Pumping
Lemma, L2 is not a regular language.

(c) Let m > 0. Consider the string w = ambmc2m. Then w ∈ L3. As usually, assume
we can write w = xyz for strings x, y and z such that |xy| 6 m and y 6= ε. Then
it must be the case that x = aℓ1 with 0 6 ℓ1 < m, y = aℓ2 with 0 < ℓ2 6 m,
and z = am−(ℓ1+ℓ2)bmc2m. Consider the string w′ = xy2z. Then it holds that
w′ = aℓ1aℓ2aℓ2am−(ℓ1+ℓ2)bmc2m = am+ℓ2bmc2m. But, then w′ /∈ L3 since ℓ2 > 0
and therefore m+ ℓ2 +m 6= 2m.

Exercise 2.4.22. Prove that the language L4 = { vvR | v ∈ {a, b}∗ } is not regular.

Answer to Exercise 2.4.22 Let m > 0 be arbitrary. Consider the string w = ambbam.
We have w ∈ L4. Suppose w = xyz is a split-up of w with |xy| 6 m and y 6= ε. Then x =
aℓ1 with 0 6 ℓ1 < m, y = aℓ2 with 0 < ℓ2 6 m, and z = am−ℓ1−ℓ2bbam. Now consider the
string w′ = xy2z. It holds that w′ = aℓ1aℓ2aℓ2am−ℓ1−ℓ2bbam = aℓ1+ℓ2+ℓ2am−ℓ1−ℓ2bbam =
am+ℓ2bam. Since ℓ2 6= 0 we have m+ℓ2 6= m. So, bb is not in the middle of the string w′,
hence w′ is not of the form vvR. We conclude that there is no constant m as mentioned
by the Pumping Lemma, and therefore L4 is not a regular language.

Exercise 2.4.23. Prove that the language L5 = { an | n is prime } is not regular.

Answer to Exercise 2.4.23 Let m > 0 be arbitrary. Pick a prime number p such that
p > m. Consider the string w = ap. We have w ∈ L5. Suppose w = xyz is a split-
up of w with |xy| 6 m and y 6= ε. Then x = aℓ1 with 0 6 ℓ1 < m, y = aℓ2 with
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0 < ℓ2 6 m, and z = ap−(ℓ1+ℓ2). Now consider the string w′ = xyp+1z. It holds that
w′ = aℓ1+(p+1)·ℓ2+p−(ℓ1+ℓ2) = ap+p·ℓ2 . Since ℓ2 6= 0, the number p+ p·ℓ2 is not prime, for
p+ p·ℓ2 = p·(1 + ℓ2). So, there is no constant m as mentioned by the Pumping Lemma,
and therefore L5 is not a regular language.

Exercise 2.4.24.

(a) Prove, by induction on m, that m < 2m for m > 0.

(b) Prove that the language L6 = { an | n = 2k for some k > 0 } is not regular.

Answer to Exercise 2.4.24

(a) Basis, m = 0: Clear, we have 20 = 1 and 0 < 1. Induction step, m + 1: By
induction hypothesis m < 2m. Thus m+ 1 6 m+m < 2m + 2m = 2m+1.

(b) Choose any m > 0. Consider the string w = a2
m
. Then w ∈ L6. Assume that there

is a split-up w = xyz with |xy| 6 m and y 6= ε. Then x = aℓ1 with 0 6 ℓ1 < m,
y = aℓ2 with 0 < ℓ2 6 m, and z = am−(ℓ1+ℓ2). Put w′ = xy2z. Then w′ = a2

m+ℓ2 .
However, 2m < 2m + ℓ2 since ℓ2 > 0, while 2m + ℓ2 6 2m +m < 2m + 2m = 2m+1

by part (a). Therefore, 2m + ℓ2 is not a power of 2 and w′ /∈ L6. So, we cannot
find m > 0 that satisfies the conditions of the Pumping Lemma, and therefore L6

is not regular.

Exercise 2.4.25. Prove that the following languages are not regular.

(a) L7 = { w ∈ {a, b}∗ | #a(w) = #b(w) }

(b) L8 = { w ∈ {a, b}∗ | #a(w) 6= #b(w) }

Answer to Exercise 2.4.25

(a) Choose any m > 0. Consider the string w = ambm. Clearly #a(w) = #b(w), thus
w ∈ L7. Assume w = xyz for strings x, y and z with |xy| 6 m and y 6= ε. Then
x = aℓ1 with 0 6 ℓ1 < m, y = aℓ2 with 0 < ℓ2 6 m, and z = am−(ℓ1+ℓ2)bm. Put
w′ = xy2z. Then w′ = am+ℓ2bm. Since #a(w

′) = #b(w
′), we have w′ /∈ L7. So,

no m > 0 has the properties as guaranteed by the Pumping Lemma for a regular
language. Therefore L7 is not regular.

(b) Applying the Pumping Lemma directly doesn’t work. Instead we make use of a
closure property of the class of regular languages. According to Theorem 2.37b the
complement of a regular language is a regular language itself. Now, the complement
of the language L8 is precisely the language L7. But, according to part (a), L7

isn’t a regular language. So, L8 is neither.
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Exercise 2.4.26. For a string w ∈ Σ∗ for some alphabet Σ, the reversal wR ∈ Σ∗ of w
is defined as follows: (i) εR = ε, (ii) (av)R = vRa.

(a) Consider the DFA D that accepts the language L9 = { abcw | w ∈ {a, b, c}∗ }.

D

0 1 2 3

X

a b c
a, b,c

b,c

a,c

a,b

a,b,c

Construct, using the the DFA D, an NFA N that accepts

LR = { wcba | w ∈ {a, b, c}∗ }

(b) Prove that the class of regular languages is closed under reversal, i.e. if a language L
is regular, then so is LR = { wR | w ∈ L }.

Answer to Exercise 2.4.26

(a) We add a new initial state q′0 that is connected to the final state q3 of D, which
is not final in N . The only final state of N is q0. All arrows of D are reversed
in N . Note multiple outgoing transitions for various states on various symbols.
Also note, the trap state qx of D is not reachable in N , and can be left out.

N

0 1 2 3

0′x

a b c

τ

a, b,c

b,c

a,c

a,b

a,b,c

(b) Suppose, in view of Theorem 2.36, that L is the language accepted by the DFAD =
(Q, Σ, δD, q0, F ). Define the NFA N = (Q′, Σ, →N , q′0, {q0} ) as follows: Let q

′
0

be a fresh state not in Q. We put Q′ = Q ∪ {q′0}. The transition relation →N

satisfies
∀q ∈ Q : q′0

τ
−→N q if q ∈ F

∀q, q′ ∈ Q ∀a ∈ Σ: q′
a
−→N q if δD(q, a) = q′
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One can prove, exploiting the fact that N has no τ -transitions for states q ∈ Q,
that

(q, w) ⊢∗
D (q′, ε) ⇐⇒ (q′, wR ) ⊢∗

N (q, ε) (2.3)

From this it follows that

w ∈ L(D) ⇔ ∃q ∈ F : (q0, w) ⊢∗
D (q, ε)

⇔ ∃q ∈ F : (q, wR) ⊢∗
N (q0, ε) ⇔ wR ∈ L(N)

Thus L(N) = L(D)R = LR and LR is a regular language.

Exercise 2.4.27. The symmetric difference X △Y of two sets X and Y is given by

X △Y = { x ∈ X | x /∈ Y } ∪ { y ∈ Y | y /∈ X }

Prove that the class of regular languages is closed under symmetric difference, i.e. if the
languages L1 and L2 are regular, then so is L1△L2.

Answer to Exercise 2.4.27 We construct variant of the product automaton that accepts
L1△L2. Suppose the DFAD1 andD2 over the alphabet Σ, withDi = (Qi, Σ, δi, q

i
0, Fi )

for i = 1, 2, accept L1 and L2, respectively. Define the product DFAD = (Q, Σ, δ, q0, F )
where Q, δ, and q0 are as before:

(i) Q = Q1 ×Q2;

(ii) δ(〈q1, q2〉, a) = 〈q′1, q
′
2〉 if δ1(q1, a) = q′1 and δ2(q2, a) = q′2;

(iii) q0 = 〈q10, q
2
0〉

Now we define the set of states F = (F1 × (Q2 \ F2)) ∪ (Q1 \ F1)× F2, i.e.

F = { 〈q1, q2〉 ∈ Q1 ×Q2 | (q1 ∈ F1 ∧ q2 /∈ F2) ∨ (q1 /∈ F1 ∧ q2 ∈ F2) }

To prove that L(D) = L1△L2 we first argue

w ∈ L(D1)△L(D2)

⇔ w ∈ L(D1) \ L(D2) ∨ w ∈ L(D2) \ L(D1)

⇔ ∃q1 ∈ Q1, q2 ∈ Q2 : (q
1
0, w) ⊢∗

1 (q1, ε) ∧ (q20, w) ⊢∗
2 (q2, ε) ∧

(

(q1 ∈ F1 ∧ q2 /∈ F2) ∨ (q1 /∈ F1 ∧ q2 ∈ F2)
)

⇔ ∃q1 ∈ Q1, q2 ∈ Q2 : (〈q
1
0, q

2
0〉, w) ⊢∗

D (〈q1, q2〉, ε) ∧ 〈q1, q2〉 ∈ F

⇔ ∃q ∈ F : (q0, w) ⊢∗
D (q, ε)

⇔ w ∈ L(D)

Thus L1△L2 = L(D1)△L(D2) = L(D) is accepted by a DFA. By Theorem 2.36 is
follows that L1△L2 is regular.
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2.5 Constructing a minimal DFA

For a regular language L there are many DFA that accept L. In this section we look
for a minimal DFA, i.e. a DFA that accepts L while no other DFA with fewer states
that does this. We first introduce the notion of L-equivalence to identify or distinguish
states in a DFA, initial or not, that accept the same part of L. States that are identified
by L-equivalence can be taken together. Starting from the assumption that it is known
which states of the given DFA are L-equivalent, the minimal DFA can be obtained via a
quotient construction. We will proves that this gives a minimal DFA indeed. In addition,
we give an algorithm, and a proof of its correctness, to find L-equivalent states of the
DFA started from.

We start off with the central notion of this section, viz. L-equivalence for the states of a
DFA accepting the language L.

Definition 2.43. LetD be a DFA with set of states Q, set of final states F , and accepted
language L. Two states q1, q2 of D are called L-equivalent, notation q1 ≈L q2, if

δ(q1, w) ∈ F ⇐⇒ δ(q2, w) ∈ F

for all strings w ∈ Σ∗.

From the definition it follows that δ(q1, a) ≈L δ(q2, a) if q1 ≈L q2, for all a ∈ Σ. This can
be seen as follows: Put q′1 = δ(q1, a) and q′2 = δ(q2, a). Then, for all w ∈ Σ∗, δ(q′1, w) ∈ F
iff δ(q1, aw) ∈ F iff δ(q2, aw) ∈ F iff δ(q′2, w) ∈ F .

Example 2.44. Consider the DFAD given by Figure 2.19. Put L = L(D). The states q0
and q2 of this automaton are L-equivalent: δ(q0, w) ∈ F iff w ∈ (bb)∗+(bb)∗·aa·(aa+bb)∗

iff w ∈ (aa+ bb)∗, and δ(q2, w) ∈ F iff w ∈ (aa+ bb)∗.

It follows that the states q4 and q6 are L-equivalent too, since (i) q4, q6 /∈ F ,
(ii) δ(q4, aw) ∈ F iff δ(q5, w) ∈ F iff δ(q6, aw) ∈ L, and (iii) δ(q4, bw) ∈ F iff δ(q0, w) ∈ F
iff δ(q2 , w) ∈ F iff δ(q6, bw) ∈ F .

The state q1 is not L-equivalent to the states q0 and q2. The latter are final states,
thus δ(q0, ε), δ(q2, ε) ∈ F , but the former is not a final state, thus δ(q1, ε) /∈ F . Also,
q1 is not L-equivalent to any of q4, q5 and q7. For example δ(q1, a) ∈ F , which does not
hold for the other states mentioned.

Finally, since state q5 is a trap state, we have δ(q5, w) /∈ F , for all w ∈ Σ∗. For state q3
is holds that δ(q3, w) ∈ F iff w ∈ b∗·a, and for state q7, δ(q7, w) ∈ F iff w ∈ a·b∗·a. It
follows that q3 is not equivalent to any other state, and so are q5 and q7. Note, states
q3 and q7 are not reachable from the initial state q0.

It is straightforward to verify that for a DFA D, the relation ≈L, for L = L(D), is an
equivalence relation. We write [q ]L = { q′ ∈ Q | q ≈L q′ } to denote the equivalence class
of ≈L containing the state q ∈ Q. Similarly, we put [Q′ ]L =

⋃

q′∈Q′ [q′ ]L for the union of
the equivalence classes of elements of a subset of states Q′ ⊆ Q.
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Figure 2.19: L-equivalent states q0, q2 and q4, q6

Definition 2.45. Let D = (Q, Σ, δ, q0, F ) be a DFA with accepted language L. The
DFA DL = (QL, Σ, δL, C0, FL), called the quotient DFA of D, has equivalence classes
of ≈L as its states, i.e. QL = Q/≈L, the same alphabet Σ as D has, the equivalence
class [q0 ]L of the initial state of D as its own initial state, i.e. C0 = [q0 ]L, the equivalence
classes of D’s final states as its own final states, i.e. FL = { [q ]L | q ∈ F }, and has a
transition function δL defined by δL([q ]L, a) = [δ(q, a)]L, for q ∈ Q, a ∈ Σ.

We need to verify that the function δL : QL × Σ → QL is well-defined: if q1 ≈L q2, then
δ(q1, a) ≈L δ(q2, a). Because then [δ(q1, a)]L = [δ(q2, a)]L, and in Definition 2.45 above,
the outcome of δL([q ]L, a) is independent of the representative q. So, choose q1, q2 ∈ Q
such that q1 ≈L q2, and pick a symbol a ∈ Σ. Put q′1 = δ(q1, a), q

′
2 = δ(q2, a). We

claim that q′1 ≈L q′2: for any w ∈ Σ∗ it holds that δ(q′1, w) ∈ F iff δ(q1, aw) ∈ F iff
δ(q2, aw) ∈ F iff δ(q′2, w) ∈ F . Thus q′1 ≈L q′2, i.e. δ(q1, a) ≈L δ(q2, a), as was to be
shown.

Example 2.46. Returning to the DFAD of Figure 2.19, we distinguish the L-equivalence
classes {q0, q2}, {q1}, {q4, q6} and {q5}, as well as {q3} and {q7}. Following Defini-
tion 2.45, we obtain a DFA DL as depicted in Figure 2.20: the states are the equivalence
classes of ≈L, the equivalence class {q0, q2} which contains q0 is the initial state, fi-
nal state is the equivalence class {q0, q2} too. The transitions are inherited from the
DFA D. E.g., δL({q0, q2}, a) = {q1} since both δ(q0, a) = q1, and δ(q2, a) = q1. Likewise,
δL({q0, q2}) = {q4, q6} since δ(q0, a) = q4 and δ(q2, a) = q6. Also, δL({q3}) = {q0, q2}
since δ(q3, a) = q2. Note, we do not have δ(q3, a) = q0.

If we remove from the quotient DFA DL of Figure 2.20 the non-reachable states {q3}
and {q7} we obtain a minimal representation of the DFA D of Figure 2.19. See Fig-
ure 2.21. Off course, we could have better started from a DFA, smaller than D, having
reachable states only, since this reduces the number of L-equivalences to check. Intu-
itively, after the superfluous states q3 and q7 are dispensed with, the states q2 and q6 are
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Figure 2.20: The quotient DFA DL
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Figure 2.21: A minimized DFA

folded along the line through states q1 and q5 onto the states q0 and q4, respectively. Note
that this way the transitions involved, as well states being final or not, are preserved.

Clearly, the DFA of Figure 2.21 also accepts the language (aa+ bb)∗ and has 4 states
only. The construction of (i) restricting to reachable states, and (ii) taking a quotient
modulo ≈L, indeed provides a DFA accepting the same language as the original DFA.
Theorem 2.48 below claims that this is the case generally. In addition, the theorem
states that the DFA obtained this way is of minimal size. For the proof of the theorem
we need an auxiliary result.

Lemma 2.47. Let the DFAD andDL be as given by Definition 2.45. For all states q ∈ Q
and all states C ∈ QL such that q ∈ C, it holds that

δ(q, w) ∈ F ⇐⇒ δL(C,w) ∈ FL

for all strings w ∈ Σ∗.

Proof. Assume q ∈ C for a state q of D and a state C of DL.

(⇒) Induction on w. Basis, w = ε: Suppose δ(q, ε) ∈ F . Then q ∈ F . So,
C ∈ FL by definition of FL. Thus, δL(C, ε) ∈ FL. Induction step, w = aw′: Suppose
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δ(q, a) = q′. Put C ′ = [q′ ]L. Then δL(C, a) = C ′ by definition of δL. Also q′ ∈ C ′. By
induction hypothesis, δ(q′, w′) ∈ F implies δL(C

′, w′) ∈ FL. Suppose, δ(q, w) ∈ F . Then
δ(q′, w′) ∈ F . Thus δL(C

′, w′) ∈ FL, and δL(C,w) ∈ FL.

(⇐) Induction on w. Basis, w = ε: Suppose δL(C, ε) ∈ FL, i.e. C ∈ FL. Choose
q̄ ∈ C ∩ F . Since q, q̄ ∈ C, we have q ≈L q̄. In particular, δ(q, ε) ∈ F iff δ(q̄, ε) ∈ F .
Since q̄ ∈ F , it follows that q ∈ F . Induction step, w = aw′: Put C ′ = δL(C, a). So,
we can pick q̄ ∈ C, q̄′ ∈ C ′ such that δ(q̄, a) = q̄′. Put q′ = δ(q, a). Since q, q̄ ∈ C, we
have q ≈L q̄. Therefore, δ(q, a) ≈L δ(q̄, a), i.e. q′ ≈L q̄′. Since q̄′ ∈ C ′, and C ′ is an
equivalence class of ≈L, it follows that q

′ ∈ C ′. By induction hypothesis, δL(C
′, w′) ∈ FL

iff δ(q′, w′) ∈ F . Suppose, δL(C,w) ∈ FL. Then δL(C
′, w′) ∈ FL. Thus δ(q′, w′) ∈ F ,

and δ(q, w) ∈ F .

Next we show the correctness of the quotient construction to find a minimal DFA DL

accepting the same language as a given DFA D. Initially we assume that D has only
reachable states.

Theorem 2.48. Let D be a DFA with accepted language L. Assume that all states
of D are reachable. Let DL be the quotient DFA of D with set of states QL. Then
L(DL) = L. Moreover, if for a DFA D ′ with set of states Q′ it holds that L(D ′) = L,
then |QL| 6 |Q′|.

Proof. Let D = (Q, Σ, δ, q0, F ), and DL = (QL, Σ, δL, C0, FL).

For the initial state q0 of D and the initial state C0 of DL it holds that q0 ∈ C0.
Application of Lemma 2.47 yields δ(q0, w) ∈ F iff δL(C0, w) ∈ FL, for all w ∈ Σ∗. In
other words L(D) = L(DL).

Suppose D ′ = (Q′, Σ, δ′, q′0, F
′) accepts L. We claim

∀C ∈ QL ∃q′ ∈ Q′ ∀w ∈ Σ∗ : δL(C,w) ∈ FL ⇐⇒ δ′(q′, w′) ∈ F ′

Informally, for each state of DL we can find an ‘equivalent’ state of D ′. We want to
prove the claim by induction. To this end we define the notion of the minimal path
length mpℓ(C) of a state C of DL:

mpℓ(C) = min{ n ∈ N | ∃w ∈ Σn : δL(C0, w) = C }

Since all states of DL are reachable, this notion is well-defined. With this notion in
place, we proceed proving the claim, by induction on the minimal path length mpℓ(C)
of a state C of DL.

Basis, mpℓ(C) = 0: It holds that C = C0. Since L(DL) = L(D), as shown above,
and, by assumption L(D ′) = L(D), we have L(DL) = L(D ′). Thus δL(C0, w) ∈ FL iff
δ′(q′0, w) ∈ F ′. So, we can pick q′0 to correspond to C0. Induction step, mpℓ(C) = n+1:
Suppose C = δL(C0, va) for a string v ∈ Σn and a symbol a ∈ Σ. Put C = δL(C0, v).
Then mpℓ(C) = n and δL(C, a) = C. By induction hypothesis we can choose a state q̄ ′ ∈
Q′ such that δL(C,w) ∈ FL iff δ′(q̄ ′, w) ∈ F ′, for all w ∈ Σ∗. In particular, δL(C, aw′) ∈
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FL iff δ′(q̄ ′, aw′) ∈ F ′, for all w′ ∈ Σ∗. Consider q′ = δ(q̄ ′, a). We have, for each string
w ∈ Σ∗,

δL(C,w) ∈ FL

⇐⇒ δL(C, aw) ∈ FL (since δL(C, a) = C)

⇐⇒ δ′(q̄ ′, aw) ∈ F ′ (induction hypothesis)

⇐⇒ δ′(q′, w) ∈ F ′ (since δ′(q̄ ′, a) = q′)

This proves the claim.
Now, choose for each state C of DL, with the help of the claim, a state q′C of D ′

such that δL(C,w) ∈ FL iff δ′(q′C , w) ∈ F ′, for all w ∈ Σ∗. Then it holds that q′C1
6= q′C2

if C1 6= C2, for all C1, C2 ∈ QL. For, suppose q′C1
= q′C2

for some C1, C2 ∈ QL. Then
we have δL(C1, w) ∈ FL iff δL(C2, w) ∈ FL, for all w ∈ Σ∗. Now pick, q1 ∈ C1, q2 ∈ C2.
Then, by Lemma 2.47, we have δ(q1, w) ∈ F iff δL(C1, w) ∈ FL, and δ(q2, w) ∈ F iff
δL(C2, w) ∈ FL, for all w ∈ Σ∗. Thus δ(q1, w) ∈ F iff δ(q2, w) ∈ F , for all w ∈ Σ∗.
Hence, q1 ≈L q2 and C1 = C2, since C1 and C2 as states of QL are equivalence classes
of ≈L.

We conclude that all states q′C ∈ Q′, for C ∈ QL, are different, i.e. the mapping
C 7→ q′C from QL to Q′ is an injection. Hence D ′ has at least as many states as DL.

To smoothen the proof, the theorem above assumes that the DFA D started from has
reachable states only. This is by no means essential. Given any DFA D having or not
having non-reachable states, we can first restrict to its reachable states, and next take
the quotient automaton. This leads to a minimal representation of D, i.e. to a DFA Dmin

that accepts the same language and is minimal in the number of states.

Corollary 2.49. Let D be a DFA with accepted language L, let D◦ be its restriction
to reachable states, and D◦

L be the quotient DFA of D◦. Then there exists no DFA that
accepts L and has fewer states than D◦

L.

Proof. Since L(D◦) = L, the quotient DFA D◦
L is well-defined. According to Theo-

rem 2.48, every DFA accepting L has as least as many states as D◦
L.

With the above results in available, we can construct a minimal DFA representation for a
regular language L given by a DFA accepting it, if we can find the L-equivalence classes
of the set of states. Rather than checking each pair of states against the Definition 2.43
which involves strings of arbitrary length, we can identify the equivalence classes by
stepwise refinement. We start from two so-called blocks, one block holding all non-final
reachable states and another block holding all final states, and split blocks into smaller
subblocks by checking single transitions, thus involving one-letter words only. Before we
describe the general algorithm, we first discuss an example.

Example 2.50. Consider the DFA of Figure 2.22, accepting the set of strings over {a, b}
containing a substring baa. The DFA has set of states Q = {q0, q1, q2, q3, q4, q5, q6, q7}.
Initially, we consider two blocks of states, viz.B012456 = {q0, q1, q2, q4, q5, q6} and B37 =
{q3, q7}, the one containing all non-final reachable states, the other containing all final
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Figure 2.22: A DFA accepting (a+ b)∗·baa·(a+ b)∗

reachable states. Note, the non-reachable states q8, q9, q10 and q11 are not considered.
Next we determine for each state in the blocks to what blocks, rather than states, an
a-transition and a b-transition is possible. E.g., state q0 has an a-transition to state q4 of
block B012456, and a b-transition to state q1 also of block B012456. State q2 however, has
an a-transition to state q3 of block B37, and a b-transition to state q5 of block B012456.
This leads to the following table, with two columns for the blocks B012456 and B37, eight
rows for each individual reachable state.

012456 37

0 a,b
1 a,b
2 b a
4 a,b
5 a,b
6 b a

3 a,b
7 a,b

We conclude that states q0, q1, q4 and q5 cannot be L-equivalent to states q3 and q7,
δ(q, a) ∈ B012456 ⊆ Q\F for q = q0, q1, q4, q5, while δ(q, a) ∈ B37 ⊆ F for q = q3, q7.
Therefore, we split the block B012456 into two parts, viz. block B0145 = {q0, q1, q4, q5}
and block B26 = {q3, q7}. Then, we determine again for each state to what blocks an
a-transition and a b-transition is possible. We get the following table, now with three
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columns corresponding to the three blocks B0145, B26 and B37.

0145 26 37

0 a,b
1 b a
4 a,b
5 b a

2 b a
6 b a

3 a,b
7 a,b

We see that states q0 and q4 on the one hand, and states q1 and q5 on the other hand,
show different rows. We have δ(q, a) ∈ B0145 ⊆ Q\F for q = q0, q4, but δ(q, a) ∈ B37 ⊆ F
for q = q1, q5. Therefore, we split block B0145 into B04 = {q0, q4} and B15 = {q1, q5}.
The other blocks don’t need to be split; the rows are identical for each of these blocks.
Adding another column, now distinguishing B04, B15, B26, and B37, we obtain the
following transition table.

04 15 26 37

0 a b
4 a b

1 b a
5 b a

2 b a
6 b a

3 a,b
7 a,b

Now, there is within each block no distinguishing row: we have found the L-equivalence
classes of the set of states Q. These are the blocks we have now, viz. {q0, q4}, {q1, q5},
{q2, q6}, and {q3, q7}. Note, in the analysis above we have only considered single sym-
bols to establish the L-equivalence classes, rather than strings of arbitrary length.

Completing the quotient construction, (i) we take the equivalence class {q0, q4}
as initial state C0, because its contains the original initial state q0, (ii) we have the
equivalence class {q3, q7} as the only final states, since it is the only equivalence class
containing final states, thus QF = {{q3, q7}}, (iii) we have inherited transitions, e.g.
δL({q0, q4}, a) = {q0, q4} since δ(q0, a) = q4 ∈ {q0, q4} (as well as δ(q4, a) = q0 ∈
{q0, q4}) and δL({q0, q4}, b) = {q1, q5} since δ(q0, b) = q5 ∈ {q1, q5}. The resulting
quotient DFA is the smallest DFA in number of states which accepts the regular lan-
guage (a+ b)∗·baa·(a+ b)∗, and is depicted in Figure 2.23.

Pseudo-code for the general DFA minimization algorithm is given in Figure 2.24. We
assume that the given DFA D = (Q, Σ, δ, q0, F ) has reachable states only. Otherwise,
a reachability algorithm should be run first.
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Figure 2.23: Minimal DFA accepting (a+ b)∗·baa·(a+ b)∗

1 // Q contains reachable states only

2 // F non-empty

3 P = {Q\F, F }, continue = true

4 while continue do

5 P ′ = ∅, continue = false

6 for all B in P do

7 for all q ∈ B do

8 for all a ∈ Σ compute and store δP (q, a)
9 end for

10 split B into non-empty B1, . . . , Bk such that

11 ∀q, q′ ∈ B ∃i, 1 6 i 6 k: q, q′ ∈ Bi ⇐⇒ δP (q, a) = δP (q
′, a)

12 P ′ = P ′ ∪ {B1, . . . , Bk }
13 if k > 1 then continue = true

14 end for

15 P = P ′

16 end while

Figure 2.24: DFA minimization algorithm
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We maintain a partitioning P of the set of states Q into non-empty and pairwise
disjoint subsets. Initially, P consists of two blocks, viz. Q\F and F . Note, this requires
the set F to be non-empty. However, the minimal equivalent of a DFA without final
states is a one-state DFA where the initial state is non-final. We try to refine the
partitioning until no more blocks are split. To keep track of this, the progress variable
continue is maintained, and initially set to true.

In the body of the loop, we build a new partitioning P ′. We start from the empty
set of blocks. For each block B of P we will add one or more blocks B1, . . . , Bk to P ′

covering the same states as B does. We set the progress variable to false at the
beginning of the body; we only need to go into another iteration if a block was split into
two or more subblocks. If a block is non-trivially split, we set with this aim the progress
variable continue to true.

We check for each block B of the current partitioning P whether it should be split
or not. To this end we first determine, for each state q in B, to which blocks of P its
transitions lead. The function δP : Q× Σ → P is given by δP (q, a) = B iff δ(q, a) ∈ B,
for q ∈ Q, a ∈ Σ, B ∈ P . Since P is a partitioning with non-overlapping blocks, the
block δP (q, a) is always well-defined. We store the values δP (q, a) as we need them when
splitting the block B.

Next, we group the states of B in subblocks with equal values δ(·, a), for a ∈ Σ.
We can do so, by taking a state q ∈ B and put it aside along with all states q′ ∈ B
such that δP (q, a) = δP (q

′, a), for all a ∈ Σ. From the rest of B, if non-empty, we pick
a state again, say q′′ ∈ B, and put it aside along with all states q′′′ ∈ B such that
δP (q

′′′, a) = δP (q
′′′′, a), etc. If we are done after k steps, we have our blocks B1, . . . , Bk.

Note, all states of B occur in these blocks, and no block contains other states. Moreover,
by construction, the blocks B1, . . . , Bk are non-empty and pairwise disjoint. We add the
blocks B1, . . . , Bk to the new growing partitioning P ′. If the split up was non-trivial, i.e.
B is split into more than one subblock, we set the progress variable continue to true,
since if k > 1, the new blocks B1, B2, . . . , Bk, may lead to a split up elsewhere. Then
we are done with block B, and continue the for-loop of line 6. with the next block, if
applicable.

After all blocks have been checked on splitting, we overwrite the partitioning P
with the partitioning P ′. If P ′ is strictly finer than P , the progress variable was set
to true underway, and we iterate the outer while-loop. If not, the algorithm terminates.
Note that we cannot refine the initial partitioning ad infinitum. Finer grained that the
partitioning of singletons we cannot go. Likely, the algorithm will stop earlier.

The correctness of the algorithm follows from the following theorem.

Theorem 2.51. Let D = (Q, Σ, δ, q0, F ) be a DFA with reachable states only. Define
the relations ≡n ⊆ Q×Q, for n > 0, by

q ≡0 q
′ ⇐⇒ q, q′ ∈ Q\F ∨ q, q′ ∈ F

q ≡n+1 q
′ ⇐⇒ q ≡n q′ ∧ ∀a ∈ Σ: δ(q, a) ≡n δ(q′, a)

Then the following statements hold true.
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(a) Each relation ≡n, for n > 0, is an equivalence relation on Q.

(b) For all q, q′ ∈ Q: q ≡n q′ iff ∀w ∈ Σ∗, |w| 6 n : δ(q, w) ∈ F ⇐⇒ δ(q′, w) ∈ F.

(c) Let Pn be the partitioning P after n iterations of the algorithm. Then for all
q, q′ ∈ Q: q ≡n q′ iff ∃B ∈ Pn : q, q

′ ∈ B.

(d) If ≡n+1 = ≡n for some n > 0, then ≡n+k = ≡n, for all k > 0.

(e) If q, q′ ∈ B for a block B of the final partitioning Pn of the algorithm, then it holds
that q ≈L q′.

Proof. We leave part (a) as an exercise. We prove part (b) by induction on n. Basis,
n = 0: Clear, since δ(q, ε) = q, δ(q′, ε) = q′, and q ≡0 q

′ iff both q, q′ ∈ Q\F or q, q′ ∈ F .
Induction step, n+ 1: For q, q′ ∈ Q we have

q ≡n+1 q
′

⇐⇒ q ≡n q′ ∧ ∀a ∈ Σ: δ(q, a) ≡n δ(q′, a) (by definition of ≡n+1)

⇐⇒ ∀w ∈ Σ∗, |w| 6 n : δ(q, w) ∈ F ⇔ δ(q′, w) ∈ F ∧

∀a ∈ Σ ∀w ∈ Σ∗, |w| 6 n : δ(δ(q, a), w) ∈ F ⇔ δ(δ(q′, a), w) ∈ F

(by definition of ≡n twice)

⇐⇒ ∀w ∈ Σ∗, |w| 6 n : δ(q, w) ∈ F ⇔ δ(q′, w) ∈ F ∧

∀w ∈ Σ∗, 1 6 |w| 6 n+1: δ(q, w) ∈ F ⇔ δ(q′, w) ∈ F

(by definition of δ(q, aw) and δ(q′, aw))

⇐⇒ ∀w ∈ Σ∗, |w| 6 n+1: δ(q, w) ∈ F ⇔ δ(q′, w) ∈ F

Part (c) is proven by induction on n. Basis, n = 0: Clear by definition of ≡0 and
initialization of P . Induction step, n+ 1: For q, q′ ∈ Q we have

q ≡n+1 q
′

⇐⇒ q ≡n q′ ∧ ∀a ∈ Σ: δ(q, a) ≡n δ(q′, a) (definition ≡n+1)

⇐⇒ ∃Bn ∈ Pn : q, q
′ ∈ Bn ∧ ∀a ∈ Σ ∃Ba ∈ Pn : δ(q, a), δ(q

′, a) ∈ Ba

(induction hypothesis twice)

⇐⇒ ∃Bn ∈ Pn : q, q
′ ∈ Bn ∧ ∀a ∈ Σ: δPn(q, a) = δPn(q

′, a)

(definition δPn)

⇐⇒ ∃Bn+1 ∈ Pn+1 : q, q
′ ∈ Bn+1 (definition of the algorithm)

Part (d) is shown by induction on k. Assume ≡n+1 = ≡n. Basis, k = 0: Clear. Induction
step, k + 1: We have, for q, q′ ∈ Q,

q ≡n+k+1 q
′

⇐⇒ q ≡n+k q′ ∧ ∀a ∈ Σ: δ(q, a) ≡n+k δ(q′, a) (definition ≡n+k+1)

⇐⇒ q ≡n q′ ∧ ∀a ∈ Σ: δ(q, a) ≡n δ(q′, a) (induction hypothesis)

⇐⇒ q ≡n+1 q
′ (definition ≡n+1)

⇐⇒ q ≡n q′ (by assumption)
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Figure 2.25: A DFA accepting (a+ b)∗·(ab+ ba)·(a+ b)∗

For the proof of part (e) we reason as follows: Pick q, q′ ∈ B for some block B of the final
partitioning Pn. For Pn it holds that Pn−1, since only if all blocks remain unaltered, the
progress variable continue is not set to true. Thus, by part (c), ≡n = ≡n−1. Hence,
by part (d), ≡n−1+k = ≡n−1, for k > 0, and hence ≡n+k = ≡n, for k > 0. By part (b)
we obtain

q ≡n q′ iff ∀w ∈ Σ∗ : δ(q, a) ∈ F ⇐⇒ δ(q′, a) ∈ F

Since, by assumption q, q′ ∈ B for some block B of Pn, we have q ≡n q′, by part (c). It
follows that q ≈L q′, by definition of ≈L.

Example 2.52. As another example of our minimization technique, consider the DFA
depicted in Figure 2.25 having Q = {q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10} as its set of
states. Note, all states are reachable. Again we start with two blocks, the non-final states
B014589 = {q0, q1, q4, q5, q8, q9} and the final states B236710 = {q2, q3, q6, q7, q10}. Next
we determine for each individual state, q0 to q10, to which blocks their transitions for a
and b lead. This is recorded in the left part of the table below.

014589 236710 0 159 48 236710

0 a,b 0 a b

1 a b 1 a b
4 b a 5 a b
5 a b 9 a b

8 b a 4 b a
9 a b 8 b a

2 a,b 2 a,b
3 a,b 3 a,b
6 a,b 6 a,b
7 a,b 7 a,b
10 a,b 10 a,b
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Figure 2.26: Minimal DFA accepting (a+ b)∗·(ab+ ba)·(a+ b)∗
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Figure 2.27: An NFA for which quotienting does not work

We see that blockB014589 splits in three subblocks, B0, B159 andB48, while the blockB236710

remains as is. The next iteration does not lead to further refinement. The resulting quo-
tient DFA, with a minimal number of states, is given in Figure 2.26. The insight is that
a word with first symbol a will be accepted if a symbol b follows at some point, and
likewise, a word starting with b will be accepted if an a occurs after zero or more b’s.

Concluding the section we show that the quotient construction of dividing out by L-
equivalence does not work for minimization of NFA. Consider the NFA N of Figure 2.27
accepting the language L = (a+b)∗·a. We adapt Definition 2.43 forN = (Q, Σ, δ, q0, F )
as follows: q ≈L q′ iff ∀w ∈ Σ∗: δ(q, w) ∩ F = ∅ ⇐⇒ δ(q′, w) ∩ F = ∅. Using this
definition we see that the states q0 and q1 are not L-equivalent: δ(q0, a) = {q0, q2} thus
δ(q0, a) ∩ F 6= ∅, but δ(q1, a) = {q0} thus δ(q1, a) ∩ F = ∅. Also, both q0 and q1 are not
L-equivalent to q2: δ(q0, ε), δ(q1, ε) ∩ F = ∅, but δ(q2, ε) ∩ F 6= ∅. Thus, all three states
q0, q1 and q2 are pairwise not L-equivalent. However, N is not minimal in the number
of states. The NFA obtained from N by deleting the state q1 consists of two states, i.e.
one less, and also accepts L.

2.5.1 Exercises for Section 2.5

Exercise 2.5.28. Let D be a DFA accepting the language L. Prove that the relation
≈L ⊆ Q×Q of L-equivalence for D is an equivalence relation.

Answer to Exercise 2.5.28 LetD = (Q, Σ, δ, q0, F ) be a DFA accepting the language L.
We check that ≈L is an equivalence relation, i.e. that ≈L is reflexive, symmetric and
transitive.

Reflexivity: For q ∈ Q, clearly δ(q, w) ∈ F iff δ(q, w), for all w ∈ Σ∗. Thus q ≈L q,
for all q ∈ Q.
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Figure 2.28: Two DFA for Exercise 2.5.30

Symmetry: Suppose q1, q2 ∈ Q such that q1 ≈L q2. By definition of ≈L we have
δ(q1, w) ∈ F iff δ(q2, w) ∈ F , for all w ∈ Σ∗. Thus, δ(q2, w) ∈ F iff δ(q1, w) ∈ F , for all
w ∈ Σ∗. Hence, q2 ≈L q1.

Transitivity: Suppose q1 ≈L q2 and q2 ≈L q3 for q1, q2, q3 ∈ Q. For arbitrary
w ∈ Σ∗ we have δ(q1, w) ∈ F iff δ(q2, w) ∈ F , and δ(q2, w) ∈ F iff δ(q3, w) ∈ F . Thus
δ(q1, w) ∈ F iff δ(q3, w) ∈ F , for all w ∈ Σ∗. Hence q1 ≈L q3.

Exercise 2.5.29. Give an example of a DFA accepting a language L with four states in
total, two reachable and two non-reachable, where each reachable state is L-equivalent
to a non-reachable state.

Answer to Exercise 2.5.29

0 1

2 3

a,b

a,b

a,b

a,b

Exercise 2.5.30. Consider the two DFA of Figure 2.28 with accepted languages Lℓ

and Lr. In the left automaton state q11 is accepting, in the right automaton it is not.

(a) For the automaton on the left, how many states are Lℓ-equivalent to state q0, to
state q5, to state q10, and to state q11, respectively.

(b) For the automaton on the right, how many states are Lr-equivalent to state q0, to
state q3, to state q9, and to state q11, respectively.

Answer to Exercise 2.5.30

(a) In the DFA on the left of Figure 2.28, state q0 is Lℓ-equivalent to itself only. The
same for state q5. All final states are Lℓ-equivalent to state q10 and state q11.
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(b) In the DFA on the right of Figure 2.28 each state is only Lr-equivalent to itself.

Exercise 2.5.31. Let D be a DFA accepting the language L. Obtain the DFA D◦

by deleting the non-reachable states from D. Clearly, D◦ accepts L too. Consider the
quotients DL and D◦

L, respectively.

(a) Suppose q ∈ C for a state q of D and a state C of DL. If the string w ∈ Σ∗ is such
that δ(q0, w) = q, then δL(C0, w) = C.

(b) Prove that a non-reachable state of DL, if present, consists of non-reachable states
of D only.

(c) Prove that each state of D◦
L is reachable.

(d) Conclude that is doesn’t make an essential difference for the construction of a
minimal DFA if the non-reachable states are removed before or after the quotient
construction.

Answer to Exercise 2.5.31

(a) Induction on the length of w. Basis, |w| = 0: Then w = ε. Thus q = q0, and
C = C0 since q0 = q ∈ C. Induction step, |w| > 0: Pick a ∈ Σ and v ∈ Σ∗ such
that w = va. Put q̄ = δ(q0, v). Then q = δ(q̄, a). Suppose q̄ ∈ C. By induction
hypothesis we have δ(C0, v) = C. Since q̄ ∈ C, q ∈ C, and q = δ(q̄, a) it follows
that C = δL(C, a). Therefore, δL(C0, w) = δL(C0, va) = δL(C, a) = C.

(b) By part (a), if q ∈ Q is reachable in D and q ∈ C, then C ∈ QL is reachable in DL.
Put differently, if C ∈ QL is not reachable in DL, then C contains no reachable
state of D.

(c) By construction of D◦
L each state C ∈ QL is non-empty and contains reachable

states of D◦ only. Thus, by part (a), each state C ∈ QL is reachable in D◦
L.

(d) On the one hand, D◦
L is the smallest DFA accepting L. On the other hand, by

parts (b) and (c), D◦
L can be seen as obtained from DL by removing non-reachable

states.

Exercise 2.5.32. Construct a DFA with three states that is language equivalent to the
DFA given in Figure 2.29.

Answer to Exercise 2.5.32

0123 4 0 123 4

0 a,b 1 a b
1 a b 2 a b
2 a b 3 a b
3 a b

0 123 5
a,b b

a a,b
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Figure 2.29: DFA for Exercise 2.5.32
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Figure 2.30: DFA for Exercise 2.5.33

Exercise 2.5.33. Construct a DFA with two states that is language equivalent to the
DFA given in Figure 2.30.

Answer to Exercise 2.5.33 First restrict to reachable states only, i.e. to q0, q3, q4,
and q5, and discarding q1 and q2. Next, compute L-equivalence classes.

03 45

0 a b
3 a b
4 a,b
5 a,b

No further split of the initial blocks {q0, q3} and {q4, q5}. This leads to the following
minimal DFA that is language equivalent to the DFA of Figure 2.30.

03 45
b

a a,b

Exercise 2.5.34. Construct a DFA with a minimal number of states that is language
equivalent to the DFA given in Figure 2.31.
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Figure 2.31: DFA for Exercise 2.5.34

Answer to Exercise 2.5.34

034 125 04 12 3 5 04 1 2 3 5

0 b a 0 a b 0 a b
3 a,b 4 a b 4 a b
4 b a 1 a,b
1 a,b 2 a b
2 a,b
5 b a

04 1 2

3 5

a

b

a

b

a

b a

a,b a

Exercise 2.5.35. Construct a DFA with a minimal number of states that is language
equivalent to the DFA given in Figure 2.32.

Answer to Exercise 2.5.35

0234 1 03 24 1 03 2 4 1

0 a b 0 a b 0 a b
2 a,b 3 a b 3 a b
3 a b 2 a,b
4 a,b 4 a b

The DFA of Figure 2.32 is minimal already.
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Figure 2.32: DFA for Exercise 2.5.35


