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Chapter 1

Introduction

The last half-century has seen a drastic advance in the application of operations research
for solving real-life problems. Similarly, the development of operations-research tech-
niques has followed. Nowadays, very efficient algorithms are available for solving basic
problems; including simplex algorithms (Bertsimas and Tsitsiklis, 1997; Chvétal, 1983)
and interior-point methods (Roos et al., 2006; Wright, 1997) for linear optimization
problems; branch-and-bound, branch-and-cut, column-generation and dynamic pro-
gramming algorithms for mixed-integer programming problems (Wolsey, 1998); back-
tracking algorithms for constraint satisfaction problems (Alsuwaiyel, 1999), depth-first
search and breadth-first search algorithms for problems defined on graphs (Cormen
et al., 2001), to name but just a few. Based on these algorithms, researchers are daily
building new algorithms to deal with more difficult and complex problems arising in
real-life.

One key feature of operations-research techniques is their multi-disciplinary nature.
Hence, they are successfully applied in several fields including: computer sciences (Deo,
1974), electrical engineering (Mazer, 2007; Zhu, 2009), industrial engineering (Chan
and Ao, 2008; Pochet and Wolsey, 2006), finance (Cornuejols and Tutuncu, 2007),
marketing (Baker, 2003), health care (Brandeau et al., 2004) and biology (Aluru, 2006).

This thesis applies operations-research techniques in direct marketing, in production
management, and in micro-economics. In addition to the modelling aspect of the
encountered problems, we study in detail the mathematical programs obtained; thereby
adding our (modest) contribution to the field of operations research. This contribution
includes some complexity and non-approximability results, the extension of some well-

known algorithms, and the development of new algorithms.
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2 Introduction

This thesis is organized into two parts. The first part deals with two selection
problems, namely the direct marketing problem of selecting clients for a promotion
campaign and a generalization of the order acceptance and scheduling problem in a
single-machine environment encountered in production management. Variants of the
former problem have been studied by Cohen (2004) for application in a retail bank and
by De Reyck and Degraeve (2003) for application in an advertisement company. Two
special cases of the latter problem have been intensively studied in the literature; these
are a scheduling problem in a single-machine environment (Potts and Van Wassenhove,
1985; Tanaka et al., 2009) and an order acceptance problem (Rom and Slotnick, 2009;
Slotnick and Morton, 2007). The second part of this thesis investigates the use of
graph-coloring models to solve the micro-economic problem of testing the Collective
Axiom of Revealed Preference. The latter is a testable, nonparametric, necessary and
sufficient condition for a collective rationalization of the consumption data of multiple-
member households (Cherchye et al., 2007). We first provide a graph interpretation
of the Collective Axiom of Revealed Preference, which allows to formulate a sufficient
condition as an acyclic graph-coloring problem. Next, we devise heuristics and exact
algorithms for solving the obtained graph-coloring problem. Subsequently, we prove
that the problem of testing the Collective Axiom of Revealed Preference is an NP-
complete problem. Each chapter of this thesis has been made as self-contained as

possible, in an attempt to make the reading independent of the other chapters.

The title of this thesis combines five keywords, which are: algorithm, selection,
graph-coloring, marketing and micro-economic. The first keyword, algorithm, is de-
fined as a sequence of computational steps that transform the input (some value or
set of values) of a well-specified computational problem into the output (some value
or set of values); see Cormen et al. (2001). Defined as such, several algorithms are
proposed throughout this thesis. They are either exact or heuristic. In the former case,
they either always find an optimal solution to the considered optimization problem or
always output the correct answer to the decision problem at hand. Heuristics, on the
other hand, are derived either to find good-quality feasible solutions to an optimization
problem or to output an answer which is usually (but not always) a correct answer to
a decision problem. The second keyword, selection, refers to the set of people or things
that have been selected from a group (Collins, 1987). In Chapter 2, a set of clients is
known and we wish to select for each product (within a finite set) a subset (possibly

empty) of clients who should receive an offer of that product. In Chapter 3, our goal
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management 3

is to select a subset of jobs (among a given finite set of jobs) that are to be executed
on a single machine.

The third keyword, graph-coloring, is defined as an assignment of colors to elements
of a graph subject to certain constraints. These elements might be vertices, edges/arcs
or faces. In literature, graph coloring usually refers the a proper coloring of vertices of
undirected graphs (Golumbic, 2004); that is a coloring of vertices of a given undirected
graph such that no two adjacent vertices have the same color. In this thesis, we consider
a graph-coloring problem defined on directed graphs where the constraint is that all the
vertices of a cycle cannot have the same color. We investigate heuristics for solving this
problem in Chapter 4 while exact algorithms are developed in Chapter 5. The fourth
keyword, marketing, is defined as “the management process responsible for identify-
ing, anticipating, and satisfying customer requirements profitably” (Brassington and
Pettitt, 2003). The promotion campaign problems studied in Chapter 2 of this thesis
are marketing problems. The last keyword, micro-economic, is defined as “the branch
of economics that analyzes the market behavior of individual consumers and firms in
an attempt to understand the decision-making process of firms and households” (see
Downes and Goodman, 1995). The presence of this word in the title is related to the
problem of testing the Collective Axiom of Revealed Preference studied in more details
in Chapter 4 and Chapter 6. Broadly speaking, this test is used to check whether the
consumption data of a multiple-members household is consistent with the collective
consumption model.

The rest of this chapter unfolds as follows. Section 1.1 formally introduces the
two selection problems; the promotion campaign problem is described in more details
in Section 1.1.1 followed by a generalization of the order acceptance and scheduling
problem on a single-machine environment in Section 1.1.2. Section 1.2 introduces the
micro-economic problem of testing the Collective Axiom of Revealed Preference and
the associated acyclic graph-coloring problem obtained as a sufficient condition. In Sec-
tion 1.2.1, we describe the rules that define the Collective Axiom of Revealed Preference

and we present the acyclic graph-coloring problem in Section 1.2.2.

1.1 Selection problems with applications in marketing
and production management
In this section, we describe in more detail the two selection problems studied in the

first part of this thesis. We first present direct marketing promotion campaign problems

that financial institutions are facing. Subsequently, we present a generalization of the
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order acceptance and scheduling problem in a single-machine environment encountered

in production management.

1.1.1 Promotion campaign problems

We describe the promotion campaign problems encountered by financial institutions
and studied in more details in Chapter 2 of this thesis. These problems, also called
optimal product targeting problems, examine “which products should be targeted to
which customers to maximize profits, under the constraints that only a limited number
can be targeted to each customer, and each product has a minimum sales target” (see
Knott et al., 2002). The objective is to find a way to achieve a maximum profit by
offering n different products to m customers in the context of retention while taking
into account various business constraints. We incorporate the following restrictions: the
return on investment hurdle rate must be met for the campaign, the budget allocated
to each product is limited, an upper bound is imposed on the number of products that
can be offered to each client and there is also a minimum number of offers to be made
for each product considered for the campaign. Let p;; be the expected return to the
firm when client 7 accepts the offer of product j and ¢;; a variable cost associated with
the offer of product j to client i. Further, let M; be the maximum number of offers
that can be made to a client 7, B; be the budget allocated to product j, f; a fixed
cost needed if product j is used for the campaign, O; the minimum number of clients
who must receive an offer of product j if used for the campaign, and finally R be the
corporate hurdle rate. Using the decision variables y; € {0, 1}, equal to 1 if product j is
used during the campaign, 0 otherwise, and z;; € {0, 1}, which is equal to 1 if product
j is offered to client ¢ and 0 otherwise, a mathematical formulation for the promotion

campaign problem is:

maximize ZZ (pij — cij) xij — Zf]yj (1.1)

i=1 j=1
subject to Z szgng 1+ R) Z chzm + Z [iYj (1.2)
i=1 j=1 =1 j=1
m
ZCUJEU SB] jzl,...,n, (13)

=1
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n
> wy <M, i=1,...,m, (1.4)
j=1
m
injgmyj ji=1,...,n, (1.5)
i=1
m
> x> Oy j=1...,n, (1.6)
i=1
yj, xi; € {0,1} 1=1...,m,j=1,...,n. (1.7)

The objective function (1.1) is the maximization of the total net benefit received
from the offer of products to clients minus the fixed cost of using the products for the
campaign. Constraint (1.2) makes sure that the campaign’s return on investment is at
least R. The set of constraints (1.3) enforces that we should not exceed the budget B;
allocated to the product j. The set of constraints (1.4) states that we cannot propose
more than M; products to client ¢; the sets of constraints (1.5) and (1.6) specify that
when a product j is not part of the campaign, no clients will receive an offer, while if
product j takes part in the campaign then at least O; > 0 clients receive an offer, and
finally the last set of constraints (1.7) is the integrality constraint.

In Chapter 2, we prove that this problem is strongly NP-hard and that it is unlikely
to derive a polynomial-time algorithm which always achieves a certain proportion of the
optimal profit. By applying the Dantzig-Wolfe decomposition to the formulation (1.1)-
(1.7), we derive a new formulation called the set-covering formulation. We solve the
latter formulation using a branch-and-price algorithm; a special cardinality constrained
knapsack problem is obtained as a pricing problem, which we solve by adapting well-
known results concerning the knapsack problem. We also develop efficient heuristics
and a tabu-search algorithm that outperform methods used in practice on a benchmark

of randomly generated instances.

1.1.2 Order acceptance and scheduling problem in a single-machine

environment

We describe a generalization of the order acceptance and scheduling problem in a
single-machine environment studied in Chapter 3 of this thesis. Given is a pool N =
{1,2,...,n} of jobs consisting of two disjoint subsets F' and F, for which F' comprises
the firm-planned orders and its complement F contains the “optional” orders (the

ones that can still be rejected by the firm). Each order i is characterized by a known
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processing time p;, delivery date d;, revenue ); and a weight w; representing a penalty
per unit-time delay beyond the delivery date. Our objective is to maximize total net
profit, that is, the sum of the revenues of the selected jobs minus applicable total-
weighted-tardiness penalties incurred for those jobs.

A solution to this problem requires two decisions to be made: which jobs in F' to
accept, and in which order to process the selected subset. We call M the set of jobs
selected for processing, so FF C M C N. If we let m be the cardinality of M, the
sequencing decisions can be represented by a bijection 7 : {1,2,...,m} — M, where

m(t) is the job in position ¢ in the sequence. The objective is thus
_ _ +
mex ; Qr(t) — Wa(t)(Cr(ty — dr(r) ™ (1.8)

where C; = Z;_ll ® Pr(t) is the completion time of job i and sT = max{s, 0}.

When N = F, all jobs are mandatory and the problem reduces to the single-machine
total-weighted-tardiness scheduling problem 1|| > w;T; (Potts and Van Wassenhove,
1985; Tanaka et al., 2009). When N = F', on the other hand, the problem is equivalent
to the order acceptance problem with weighted-tardiness penalties discussed in (Rom
and Slotnick, 2009; Slotnick and Morton, 2007).

In Chapter 3, we prove that it is unlikely to derive a polynomial-time algorithm
which always achieves a certain proportion of the optimal value. Further, we propose
two mixed-integer linear formulations, which can be solved using any mixed-integer-
programming solver. We also develop two exact branch-and-bound algorithms that are

able to solve instances of considerable size.

1.2 Graph-coloring problems with applications in micro-

economics

This section investigates a solution to the micro-economic problem of testing the Col-
lective Axiom of Revealed Preference by means of graph coloring. We first describe the
rules defining this axiom and subsequently, we present the acyclic graph-coloring prob-
lem obtained as sufficient condition for the test of the Collective Axiom of Revealed

Preference.
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1.2.1 Collective Axiom of Revealed Preference

We define the Collective Axiom of Revealed Preference (CARP) studied in Chapter 4
and in Chapter 6 of this thesis. CARP provides a testable nonparametric necessary
and sufficient condition for a collective rationalization of the consumption data set of
two-member household. We refer to Cherchye et al. (2007) and references therein for
detailed discussions on CARP.

More concretely, consider a two-member household that operates in an economy
with IV goods. At times ¢t = 1,2,...,T, the household purchases a certain quantity
of each of the goods ¢; € Rﬂ\rf (also known as a bundle), at corresponding prices p; €
RY,. We refer to a pair of N-vectors (p,q;) as an observation, and we call the set of
observations S = {(p,¢;) : t € T={1...,T}} the data set.

CARP imposes empirical restrictions on hypothetical member-specific preference
relations H" and H™, m € {1,2}. In this case, the hypothetical relations Hj* and H™
represent feasible specifications of the true individual preference relations which are
consistent with the information which is revealed by the set of observations S. First,
qsH{"q: means that we “hypothesize” that member m (directly) prefers the quantities
qs over the quantities ¢;, m = 1,2. Next, gsH"™q: represents the transitive closure,
that is gsH"™q; means that there exists a (possibly empty) sequence wu, ...,z € T with
9 H qu, @uHy'qw, ..., and ¢;Hyq;. Thus given HJ" for m € {1,2}, the transitive
closures H™ follow. Given this notion of hypothetical preference relations, CARP is

defined as follows.

Definition 1.1 (CARP). Given is a data set S = {(pt,q) : t € T}. S satisfies CARP
if there exist hypothetical relations Hol and Hg that satisfy for all s,¢,t1,t9 € T:

Rule 1: if psgs > psq: then either (g5, q:) € H} or (¢s,q:) € HE;

Rule 2: if psqs > psqr and (q¢,qs) € H™ then (gs,q;) € Hg with £ # m;

Rule 3: if psqs > ps(qt, + @,) and (qi,,qs) € H™ then (gs,qi,) € Hé with £ # m;
Rule 4: if psqs > psq; then either (g, qs) ¢ H' or (qi,qs) ¢ H?;

Rule 5: if psgs > ps(qi, + qi,) then either (g4, qs) ¢ H' or (q,,qs) ¢ H?;

where psqs is the scalar product and represents the expenditure of observation (ps, gs).
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The problem of testing whether a given data set S satisfies CARP can be phrased

as the following decision problem.

INSTANCE: A data set S = {(p,q): t € T}.
QUESTION: Does the data set satisfy CARP? In other words, do there exist Hj and
Hg such that Rules 1-5 are satisfied?

In Chapter 4, we translate the rules defining CARP (Rules 1-5) into a directed graph
setting; and based on the graph obtained, we derive necessary and sufficient conditions.
We prove that the necessary condition can be verified in polynomial time while the
problem of verifying the sufficient condition is an NP-complete problem. We propose
and implement heuristics that quickly test our sufficient condition; these heuristics are
applied both to real-life instances and to random instances. Chapter 6 deals with the
complexity aspect of testing CARP. We prove that this problem is NP-complete via a
reduction from the Not-All-Equal-3Sat problem.

1.2.2 Acyclic 2-coloring problem

We briefly define the acyclic 2-coloring problem studied in Chapter 4 and in Chapter 5
of this thesis. The problem is the following. We are given a finite, directed graph
G = (V, A), where V is the set of vertices and A the set of arcs. The goal is to partition
the vertices of GG into two subsets such that each subset induces an acyclic subgraph.
In Chapter 4, we investigate the solution to a special case of this problem, obtained as
sufficient condition for CARP, by means of heuristics. In Chapter 5, we investigate exact
algorithms for solving the acyclic 2-coloring problem. We show that it is unlikely to
find a constant factor approximation algorithm for solving an optimization formulation
which maximizes the number of vertices that can be colored using two colors while
avoiding monochromatic cycles. We identify classes of graphs for which this problem
is easy. Further, we develop and implement three exact algorithms. These algorithms

are tested both on graphs obtained in Chapter 4 and on randomly generated graphs.
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Chapter 2

Promotion campaign problems

In this chapter, we study the optimization model defined in Section 1.1.1 for the se-
lection of sets of clients that will receive an offer for one or more products during a
promotion campaign. The complexity of the problem makes it very difficult to produce
optimal solutions using standard optimization methods. We propose an alternative
set-covering formulation and develop a branch-and-price algorithm to solve it. We also
describe seven heuristics and a tabu-search algorithm to approximate an optimal so-
lution. Two of the heuristics are algorithms based on restricted versions of the basic
formulation, the third is a successive exact k-item knapsack procedure. A heuristic in-
spired by the Next-Product-To-Buy model and a depth-first branch-and-price heuristic
are presented. We also explore the possibilities of truncation and linear programming
rounding in the mixed-integer-programming solver. We perform extensive computa-
tional experiments for the two formulations as well as for the seven heuristics and the

tabu-search algorithm.

2.1 Introduction

Promotion campaigns are fundamental direct marketing tools for improving the eco-

nomic profit of a firm, either by acquiring new customers or by generating additional

This chapter is the result of a collaboration with Roel Leus and Frits Spieksma. A preliminary version
is available as: F. Talla Nobibon, R. Leus and F.C.R. Spieksma, 2008. Models for the optimization
of promotion campaigns: exact and heuristic algorithms. Research report KBI_0814, Department of
Quantitative Methods and Information Management, Faculty of Business and Economics, KULeuven

(Leuven, Belgium).

11
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revenue from existing customers (Kotler and Armstrong, 2006). The former action
is called “acquisition” while the latter is “retention” (Reinartz et al., 2005). In this
chapter we are concerned with the latter case: campaigns that generate additional
revenue by offering new products to existing customers. This study is justified by at
least two practical facts. Reinartz et al. (2005) point out that “when firms trade off
between expenditures for acquisition and those for retention, a suboptimal allocation
of retention expenditures will have a greater impact on long-term customer profitabil-
ity than will suboptimal acquisition expenditures”. Moreover, models and methods
used for data analysis are more suited for retention (Knott et al., 2002) since more
information is available. Retention boosts the customer lifetime value, which is defined
by Kumar et al. (2004) to be “the sum of cumulated cash flows — discounted using the
weighted average cost of capital — of a customer over his or her entire lifetime with the
firm”. Customer lifetime value usually serves as a metric for a ranking or segmentation
of the firm’s customers (Ryals, 2005). During the last decades, the advances in data
analysis coupled with the availability of customer data have pushed firms to develop a
more customer-oriented strategy. Nowadays, such a strategy is globally accepted, but
its practical implementation is far from being accomplished. This implementation de-
lay is observed both in business-to-business and business-to-consumer settings, and is
particularly pronounced in financial institutions such as large banks and insurance com-
panies, which often have a large number of customers with full data available but may
lack sophisticated tools that efficiently take into account these advantages in decision
making (Dwyer, 1997).

In literature, promotion campaign models are also frequently referred to as optimal
product targeting models (Knott et al., 2002). The latter examine “which products
should be targeted to which customers to maximize profits, under the constraints that
only a limited number can be targeted to each customer, and each product has a
minimum sales target”, which is mentioned by Knott et al. (2002) as an interesting issue
for future research. A promotion campaign problem is essentially characterized by two
steps, which are “data analysis” and “problem formulation and solution”. The first step,
which is mainly statistical, has received increasing attention with the advances in data
analysis. Recently, numerous models that carry the name “response models” have been
developed and are currently being used in practice (Cohen, 2004; Knott et al., 2002).
Although this step is necessary for an application in financial institutions (as its outputs

are used as inputs for the second step), its use can be less important for an application
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in other areas. De Reyck and Degraeve (2003), for example, have developed a model
mainly based on the second step for an advertisement company. Recently, Bhaskar
et al. (2009) have proposed a fuzzy mathematical programming approach where fuzzy
numbers are used to represent the output of the first step, allowing to take into account
uncertainty. Their model, however, incorporates only a budget constraint and volume

target constraints.

In this chapter, we investigate the development of optimization models for promo-
tion campaigns based on integer programming. Motivation for studying this problem
comes from a case occurring at FORTIS (Hellinckx, 2004), one of the former leading
banks in Belgium. We aim to maximize the profit (return on investment) subject to
business constraints such as the campaign’s return on investment hurdle rate that must
be met (the hurdle rate is the minimum acceptable rate of return that management
will accept for the campaign), a limitation on the funding available for each product,
a restriction on the maximum number of possible offers to a client, and a minimum
quantity commitment (MQC) on the number of units of a product to be offered in
order for that product to be part of the campaign. This constraint has been briefly
mentioned by Cohen (2004) as a technical issue for an application in a bank. However,
he did not explicitly incorporate it into his model. Our model takes into account this
constraint, making it an extension of the model used by Cohen. In our formulation, we
also impose a more general version of the MQC constraint, allowing the fixed minimum
quantity to depend on the product, which distinguishes the constraint from comparable
MQC restrictions studied in the analysis of transportation problems (Lim et al., 2006),
bottleneck problems (Lim and Xu, 2006), and assignment problems (Lim et al., 2004).

We present a basic integer-programming formulation for the optimization of pro-
motion campaigns. We show the non-approximability of the problem, which makes the
existence of an algorithm that will always provide a feasible solution and guarantee
a specified proportion of optimal profit in polynomial time, highly unlikely. We next
derive a set-covering formulation and develop a branch-and-price algorithm for solving
it. A dynamic programming algorithm and a 2-approximation algorithm are presented
for solving the pricing problem, which is closely related to the k-item knapsack prob-
lem. The size of instances that can be solved optimally using this algorithm allows
its efficient use for business-to-business promotion campaigns (which have moderate
size and high variable and fixed costs) and for sampling approaches in financial insti-

tutions (Cohen, 2004). We then present seven heuristics and a tabu-search algorithm
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to approximate an optimal solution, which can be used for large instances and hence
for business-to-consumer promotion campaigns. The heuristics are either variants of
the algorithms used in practice for application in a bank (Hellinckx, 2004; Knott et al.,
2002) or developed based on the structure of the problem.

This chapter is organized as follows. Section 2.2 describes the basic integer-
programming formulation for deciding on the composition of promotion campaigns.
The complexity of the problem makes it very difficult to produce optimal solutions
by straightforward use of a MIP-solver. We propose an alternative formulation called
the set-covering formulation in Section 2.3 and develop a branch-and-price algorithm
to solve it. In Section 2.4, we describe seven heuristics to approximate an optimal
solution. The first two are algorithms based on restricted versions of the basic formu-
lation, while the third is a successive exact k-item knapsack procedure, the fourth is a
heuristic inspired by the Next-Product-To-Buy model used by Knott et al. (2002) and
the fifth heuristic is a depth-first branch-and-price heuristic. The sixth heuristic is a
truncated call to the MIP-solver CPLEX and the last one is an LP rounding heuristic.
In Section 2.5, we develop a tabu-search algorithm for finding a nearly optimal solution
to the promotion campaign problem. The experimental results for the two formulations
(basic formulation and set-covering formulation) as well as for the seven heuristics and
the tabu search are presented in Section 2.6. Finally, two extensions of the studied

model are presented in Section 2.7, followed by some conclusions in Section 2.8.

2.2 Basic formulation

The objective of a promotion campaign is to find a way to achieve a maximum profit by
offering n different products to m customers while taking into account various business
constraints. We incorporate the following restrictions: the return on investment hurdle
rate must be met for the campaign, the budget allocated to each product is limited,
an upper bound is imposed on the number of products that can be offered to each
client and there is also an MQC constraint for each product. We define the parameter
ri; as the probability that client i reacts positively to an offer of product j (or the
probability that product j is the next product bought by client i (Knott et al., 2002)).
This parameter is computed using a four steps procedure where the first step deals with
compiling customers data, the second step selects a statistical model, the third step is

the estimation and the evaluation of the model, and the last step scores and targets
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customers; see (Knott et al., 2002) for more details. We also use the parameter DF'V;; to
denote the return to the firm when client ¢ responds positively to the offer of product j.
This latter parameter is termed the Delta Financial Value by FORTIS (Hellinckx,
2004). These two parameters are the basis for the computation of customer lifetime
value (Ryals, 2005). Practically, these parameters are estimated using response models
based on historical data (Cohen, 2004; Knott et al., 2002; Prinzie and Van Den Poel,
2007) and are assumed to be available within the firm. We denote by p;; the expected
return to the firm (revenue) when client i is offered product j, so p;j = 7; DFVj;. In
the remainder of this chapter, we will mostly use p;;. Further, there is a variable cost
cij associated with the offer of product j to client 7, the upper bound M; of offers
that can be made to a client ¢ (this quantity is related to the status of the client), the
minimum quantity commitment bound Oj; associated with product j, the budget B;
allocated to the product j, a fixed cost f; needed if product j is used for the campaign
and finally the corporate hurdle rate R. The value of R is dependent on the firm and
the riskiness of the investment. In practice, most firms use their weighted average cost
of capital (WACC) as an estimation of R (Bruner et al., 1998). We define the decision
variables y; € {0,1}, equal to 1 if product j is used during the campaign, 0 otherwise,
and x;; € {0,1}, which is equal to 1 if product j is offered to client ¢ and 0 otherwise.

A basic formulation for the promotion campaign problem can be expressed as:

(M1) max ZZ (pij — cij) xij — Zf]yj (2.1)

=1 j=1

s.t. Z ZP@J%J (1+R) Z Z CijTij + Z fiy; (2.2)
i=1 j=1 i=1j=1
m
> cijwi; < B; j=1,...,n, (2.3)
i=1
ZZL‘ZJSM 221, ,m, (24)
le] < my; J = 17 ) 1, (2 5)
m
=1

yj, xi; € {0,1} i=1....m,j=1,...,n. (2.7)
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The objective function (2.1) is the maximization of the total net benefit received from
the offer of products to clients minus the fixed cost of using the products for the
campaign. The first constraint (2.2) is the corporate hurdle rate constraint, which
makes sure that the campaign’s return on investment is at least R, and which was first
suggested by Cohen (2004) for an application in a bank. The set of constraints (2.3)
enforces that we should not exceed the budget B; allocated to the product j. Here,
the product dependency of the budget reflects the situation in large firms where an
individual business unit is responsible for the production and the sale of a product.
Hence, each business unit has its own budget. The set of constraints (2.4) states that
we cannot propose more than a certain number M; of products to client 7; the sets of
constraints (2.5) and (2.6) constitute the MQC constraint, which specifies that when a
product is not part of the campaign, no clients will receive an offer, while if product j
takes part in the campaign then at least O; > 0 clients receive an offer, and finally the
last set of constraints (2.7) is the integrality constraint.

The graph depicted in Figure 2.1 represents an artificial instance of the promotion
campaign problem with two products and three clients. The first client can receive
at most one product, the second at most two products and the third client at most
one. The first product (VISA) has an allocated budget of 4 and should be offered to
at least two clients if used for the campaign. On the other hand, the second product,
MasterCard, has a budget of five and should be offered to at least two clients. Notice
that in this example, both products have no fixed cost. An optimal solution to this
artificial example will offer the first product (VISA) to client 1 and client 2 to achieve

the optimal objective value of 1.

Example 2.1. An integer program corresponding to the example described by Figure 2.1

s given by:
max —2x11 + 3221 + 3231 + T12 — 2T90 + 2139
s.t i + 5 + > ! 5 + >0
.t ——x —x —I31 — —X12 — =T —x
31T 3%21 F 3T31 — gT12 — 3T+ oT32 2

2r11 + w21 +4x31 <4, 4xie + 2290 + 2232 <5
rintr12<1, xoa1+we2<2, w3+wx32<1
11 +T21 + 31 > 2y1, w12+ Tag + w32 > 2Y2
T+ 221 + w31 < 3y1, T2+ X2 + w32 < Y2
yj,$ij€{0,1} 1=1,2,3, 7=1,2.
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Product 1
UB2=2 i
Client 2
Budget =5
UBs = 1i: Mast@ {I;/Ilg%jf%st =0
Client 3 Product 2

Number clients =3
Number products =2
Hurdlerate =1/3

Figure 2.1: An example of a promotion campaign with two products and three clients.

An optimal solution offers Product 1 to client 1 and client 2. So, we have x11 = T91 =
y1 =1, x31 = 0 and x13 = x99 = x30 = Y2 = 0 for an optimal objective value of 1. On
the other hand, an optimal solution to the LP relaxation of this example is xo1 = 1,

T3] = %, rio =1, x30 = i, y1 = 0.583, y2 = 0.417 with optimal objective value 6.75.

Definition 2.2. A non-trivial feasible solution to the basic formulation (M1) is a

feasible solution which achieves a non-zero objective value.

The following result shows that there is little hope for finding a polynomial-time

algorithm for solving (M1).

Proposition 2.3. The promotion campaign problem defined by the formulation (M1)
is strongly NP-hard, even for O; =1 for all j.

Proof. This result follows directly from the fact that the basic formulation (M1) has the
generalized assignment problem (GAP) (Martello and Toth, 1990; Savelsbergh, 1997)
as a special case for R =0, M; = 1, Vi, and O; = 1, f; = 0, Vj and p;; > ¢;; for all 4
and j. The latter problem is known to be strongly NP-hard (Savelsbergh, 1997). [

Moreover, the basic formulation (M1) is difficult to solve even approximately. We
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prove this non-approximability result by showing that it is NP-hard to find a non-trivial
feasible solution to (M1).

Proposition 2.4. Finding a non-trivial feasible solution to the basic formulation (M1)
is NP-hard.

Proof. The proof uses the following variant of Partition (Garey and Johnson, 1979);
by adding |A| dummy elements of size 0 to an instance of the usual Partition problem,

one easily sees that this variant of Partition is as hard as the original problem:

INSTANCE: A finite set A = {1,2,...,2¢} (where ¢ is an integer greater than 0)
with size s(i) € ZT for each i € A and K = 1>, , s(i).
QUESTION: Does there exist a subset A’ C A with [A'| =g and } ;.4 s(i) = K?

For a given arbitrary instance of Partition, consider the following polynomial reduction
to an instance of (M1). Each i € A indicates a client with a unit upper bound, so
m = 2q and M; = 1 for all ¢ = 1,2,...,2¢. Suppose there is one product, n = 1.
Let 0 = 2K + 1. For each client i = 1,2,...,2q, the cost ¢;; = § + s(i), the revenue
pi1 = 05(i). Suppose also that for our product, product 1, the lower bound O = ¢,
the budget B; = ¢6 + K, and the fixed cost f; = 0. Finally, we set the hurdle rate
R = (Kq}q#. Now we prove that a non-trivial feasible solution to (M1) exists if and
only if there is a solution A’ to Partition.

On the one hand, if Partition has a solution A’, we offer the product to the clients

in A’. This is a non-trivial feasible solution to the instance of (M1) constructed since:

(i) the lower bound O; = ¢ is met,

(ii) the budget is met (g + ;. 4 5(i) = ¢d + K = Bi) and

(iii) the hurdle rate is achieved: Y . 4 pi1 = 6 ;cp 8(i) = 0K = qng (¢0+ K) =
(1 + %) (q6 + K) = (1+ R)(¢d + K).

On the other hand, if we have a non-trivial feasible solution, then consider the set
of clients A’ receiving the product. We have |[A’| = q and Y, 4 ci1 = D ;e p 0 + 85 <
B1 = ¢6 + K. Suppose that » .., ci1 < By, then ) .. 4 ci1 = ¢0 + Ky with K < K.
Thus

q5 + K, Ké

K

_ <1+(K—Q)5—K

P+ K > (g6 + K1) = (1+ R)(gd + K3),
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contradicting the fact that we have a non-trivial feasible solution because the corporate
hurdle rate constraint is not satisfied. Therefore |A'| = g and ), 4 ¢i1 = ¢0+ K, which

implies that A’ is a solution to the variant of Partition defined above. O

The results of Proposition 2.3 and Proposition 2.4 justify the intensive use of heuris-
tics in practice (Cohen, 2004; De Reyck and Degraeve, 2003; Knott et al., 2002).

The basic formulation (M1) can be strengthened by using the following disaggregate

version of constraints (2.5):
zij<y; i=1,....m, j=1,...,n. (2.8)

The following result allows the relaxation of the integrality constraint y; € {0,1} to
0<y; <1forallj.

Proposition 2.5. A feasible solution to the integer program (M1) is also feasible for
the set of constraints (2.2), (2.3), (2.4), (2.6), (2.8) and 0 < y; < 1, z;; € {0,1} for

all i, 7 and vice versa.

Proof. Clearly, any feasible solution to (M1) satisfies (2.2), (2.3), (2.4), (2.6), (2.8) and
0<vy; <1,z € {0,1}. Let (2°,1°) be feasible for the set of constraints (2.2), (2.3),
(2.4), (2.6), (2.8) and 0 < 39 <1, z; € {0,1} for all 4,j. Then (2°,1°) satisfies (2.2),

(2.3), (2.4), (2.6) and x;; € {0,1}. Next, (2%, y") satisfies (2.8) implies that (2°,y°)
satisfies (2.5). Furthermore y? € {0, 1} for all j because if there was a product jy such
that 0 < y?o < 1, then a:?jo = 0 for all ¢ and constraints (2.6) would be violated. We

then have y? € {0, 1} for all j and therefore (z°,y°) is a feasible solution to (M1). [

2.3 Branch-and-price

This section is devoted to the application of a branch-and-price algorithm for solving
the promotion campaign problem. In the first subsection, we present an appropriate
formulation, called a set-covering formulation. The next subsection studies the pricing

problem and the last subsection presents a branching strategy.



20 Chapter 2 - Promotion campaign

2.3.1 A set-covering formulation

Proposition 2.5 and the inequalities (2.8) lead to the following strengthened formulation

of our problem:

(MQ) max Z Z (pij - Cij) Tij — Z ijj (29)

i=1 j=1

s.t. Z Zpijxij > (1 + R) Z Z CijTi; + Z ijj (2-10)
j=1

=1 j=1 =1 j=1

n

> wy <M i=1,...,m, (2.11)
7=1

m

> i < B; j=1,...,n, (2.12)
=1

m

=1

zij <y; <1 i=1,...,m j=1,....n, (2.14)
ijO, l'ijE{O,l} t=1,....m, 3=1,...,n. (2.15)

We investigate a relaxation of (M2), in which we consider (2.10) and (2.11) to be
coupling constraints and for each product j = 1,...,n, we have the special con-
straints given by (2.12), (2.13), (2.14) and (2.15). For j = 1,...,n, we define
Aj = {(wg,95); 2ty cijeig < By, 3l @iy 2 Ojyj, wig < g0 = 1. ,my gy <
1,y; >0, z; € {0,1}"™}, where x ; is a vector with m entries x;;. Because (0,0) € A;,
Aj is nonempty. Furthermore, A; is bounded as 0 < y;,z;; < 1. For every product j,
Aj = {(% ), (], y5), (2%, 05), - -, (:ckjj,yf])} Explicitly, A; consists of (0,0) and
all the (2%,1) with Y77 cjjwij < Bj, Yo%) w5 > Oy, ij € {0,1}, that is the empty
set of clients coupled with 0 and any subset of clients of cardinality greater than or
equal to O; and total cost less than or equal to Bj, coupled with 1. We assume that
(xpj,y?) = (04,0) so that A; = {(0,0), (xlj, 1), (x2j, 1),..., (a:if, 1)}.

We relax (M2) by considering conv(A;) for each product j, where conv(A;) is the
convex hull of A;. Any element (zj,y;) € conv(A;) is a convex combination of its
extreme vertices and hence can be represented in the form (z j,y;) = ZI;J: 0 2pj (275, U5)
where the coefficients z,; are nonnegative and satisfy EI;J: 0%pj = L, j=1,...,n. A

Dantzig-Wolfe decomposition of the relaxation of (M2) is then given by the master
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problem (MP).

n ki T/ m
(MP) max Z (Z Dij — Cij)T ) ij]] (2.16)

n kj f/ m
s.t. (Z pij — (1 + R)cyj)ah ) L+ R)f7| 2 0(2.17)
j=1 [p=0 =1
n kj
SN ala < M; i=1,...,m, (2.18)
j=1p=0
j
zpj =1 j=1,...,n, (2.19)
p=0
Zpj >0 j=1,...,n,pe{0,1,... k;}. (2.20)

In what follows, we will consider the subset of extreme points without (0 ;,0), subse-
quently denoted as A; = {(:clj, 1), (xzj, 1),..., (x?, 1)}. This change requires that each
constraint in (2.19) becomes an inequality in order for the optimal value to remain
unaffected.

For every product j, we map each extreme point (m@,y;-’ ) € f_lj to Sp; where
Spj = {i € {1,...,m}|ay; = 1}. Using the equalities 321" pijaj; = > ;cq pij and
> cl-jx?j = ic s,; Cij» an integer programming version of (MP) is

ko

n J

(M3) max > D (pig —cij) = i | 2 (2.21)

i=1 | p=1 \i€Sy,

s.t. Z > (g — (14 R)eij) — (L+R)f; | 2| =20 (2.22)

n

> zpngl- i=1,...,m, (2.23)
J=1 pi€Sp;

J

P! j=1,...,n, (2.24)
zp; € {0,1} j=1...,n,pe{l,... . kj}. (2.25)

In the formulation (M3), the binary variable z,; indicates whether product j is offered to
the set of clients Sy; (2p; = 1) or not (2,; = 0). The first constraint (2.22) enforces that
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the campaign’s return on investment must be at least R, the set of constraints (2.23)
ensures that at most M; products are offered to client ¢ and the set of constraints (2.24)
states that at most one nonempty set of clients is selected for each product. We call
the formulation (M3) a set-covering formulation to reflect the fact that its solution can
be viewed as a cover for the set of clients. The set-covering formulation (M3) is then
essentially obtained by applying Dantzig-Wolfe decomposition to a relaxation of the
basic formulation (M2). As a consequence, the value of the bound provided by the LP
relaxation of (M3) is equal to the value of the Lagrangian dual obtained by dualizing the
constraints (2.2) and (2.4) (Nemhauser and Wolsey, 1988). Furthermore, the example
described by Figure 2.1 illustrates that the LP relaxation of (M3) is stronger than
the LP relaxation of (M1). We denote S11 = {1,2}, Si2 = {2,3} and 211,212 the

corresponding variables. The associated LP relaxation of (M3) is

max 1211 4+ 0212
4
s.t. 0z11 — 5212 >0

0§21j§1 j:1,2.

Remark that the constraints (2.23) and (2.24) are obviously satisfied. The optimal
solution is (1,0) with an optimal value of 1, which is also the optimal objective function
value of the integer program. The result highlighted in the above example has been
observed for the generalized assignment problem by Savelsbergh (1997).

Let z be any feasible solution to the LP relaxation of (M3) and let z7; = Zme S,; 2pi>

y; = Z?Zl Zpj, then (z*,y*) is a feasible solution to the LP relaxation of (M2) which
achieves the same objective value as z. Furthermore, we have the following result,

which is useful for the branching strategies.

Proposition 2.6. Given a feasible solution z to the LP relaxation of (M3), if, for a
given product j, zp; is fractional, then there must be an i such that Ty = Zp:ies,,j Zpj

is fractional.

Proof. Suppose that zp; is fractional and there is no client ¢ such that z7; is fractional.
Let Fj; ={pe{l,...,k;j}|0 < z,; < 1} be the set of fractional variables associated with
product j. We may assume that |F}| > 2, otherwise the hypothesis (there is no client 4
such that z7; is fractional) will be violated. We have ZpeFj Zpj=y; <lforj=1,...,n
and ZpeFj:ieSpj zpj = xf; € {0,1}, i = 1,...,n. In particular for i € Upep;Sp;, we have

ZpeFj:ieSpj zpj = 1. But ZpeFj:ieSm “pj = ZpeFj Ls,; (i) zpj = 1 and ZpeFj zpj = 15
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where 1g . is the indicator function of Sp;. Hence, 15,.(i) = 1, Vp € Fj, meaning that
for all p1,pe € F}j, we have S,, = Sp,, contradicting |F;| > 2. O

Proposition 2.6 implies that the bound provided by the LP relaxation of the set-
covering formulation is at least as strong as that obtained by the LP relaxation of the
basic formulation; in fact, in Section 2.6 we show that for most instances the former

bound is stronger than the latter.

2.3.2 The pricing problem
We consider the LP relaxation (LPM3) of (M3) obtained by replacing constraints (2.25)
by

2p;j >0 j=1,...,n,pe{l,... k;}. (2.26)

The formulation (LPM3) has an exponential number of variables, which makes it dif-
ficult to solve even instances of average size. Instead of solving the master problem
(LPM3), we consider a restricted problem that includes only a subset of variables
(columns) and can be solved directly. Additional columns for the restricted problem

can be generated by looking at the dual of (LPM3) given by:

m n
(DLPM3) min M+ » v;
i=1 j=1

st. Y [(pij — (L+ R)eyj)d +wi] — (1+ R) fid + v

iESp]'
iESpj
wv;>0,d<0  i=1,....m j=1,...n, (2.28)

where we use the dual variables d corresponding to (2.22), u; corresponding to the set
of constraints (2.23) and v; corresponding to (2.24). The optimal solution found for the
restricted problem is not optimal for the master problem if the associated dual variables
u,v and d violate one of the constraints (2.27). Note that the set of constraints (2.28)
is automatically satisfied by the dual variables. Since it is not computationally viable
to compute and check the inequality (2.27) for all couples (p,j) not included in the

restricted problem, we propose to proceed as follows. We drop the index j and assume
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that the product is given. We solve the following question called the pricing problem:

38, with Y [pi(d = 1) + ¢i(1 = (14 R)d) +ug] + v+ f(1 = (14 R)d) <0? (2.29)
i€S,

Remark that for a given product j, the left hand side of the inequality is exactly the
reduced cost of the variable z,;, so that the pricing problem (2.29) checks the primal

optimality condition.

Solving the pricing problem

A solution to the pricing problem (2.29) for a fixed product j can be obtained by solving
the following variant of the k-item knapsack problem. The k-item knapsack problem,
also known as cardinality constrained knapsack problem (Kellerer et al., 2004), is a
knapsack problem with an extra constraint enforcing a lower or upper bound on the
number of items that a feasible solution must or may contain. For ease of exposition,
we define w; = p;(d — 1) + ¢;(1 — (1 + R)d) + u; for all 7.

(Price) min Z WL, (2.30)
i=1

s.t. Zcil‘i <B (231)
i=1

x>0 (2.32)
i=1

2 e{0,1} i=1,...,m. (2.33)

We refer to the problem corresponding to (2.30)—(2.33) as the problem kKP. We take
the w;’s as the weights and the ¢;’s as the costs. Notice that in general the problem kKP
is weakly NP-hard. Furthermore in our case, the w; need not always be positive nor are
they always integers. These last observations make the use of dynamic programming
by weight (Kellerer et al., 2004) for solving kKP inefficient. Kellerer et al. (2004) derive
a dynamic programming algorithm for the case where the cardinality constraint (2.32)
is replaced by Y ", z; < O. We show here that this algorithm is easily modified to
deal with (2.30)—(2.33).
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Exact algorithm

We propose a dynamic programming algorithm based on the algorithm described
in (Kellerer et al., 2004) for solving kKP in pseudopolynomial time. Let k be the
maximum number of items that can be used by a feasible solution to kKP. Clearly,
since ¢; > 0, k can be computed by taking the items with smallest cost ¢; until the
budget constraint (2.31) is violated. If k& < O then the problem kKP is infeasible.
Assuming that k > O, we define the two-dimensional dynamic programming function
Yi(e,l) fori=0,1,...,m; £=0,1,...,k; ¢c=0,1,..., B, as the optimal solution value
of the following problem:

Yi(c,?) = min ijxj | chzj =c, Za:j =/(,z; €{0,1}
j=1 j=1 j=1

An entry Yj(c,f) = g means that among the clients 1,2,... 4, the minimum weight
subset of clients with total cost ¢ and cardinality ¢ has weight q.

The initialization is given by Yy(c,¢) = +oo for £ =0,1,...,k; ¢c=0,1,..., B, with
Y5(0,0) = 0. Then, for i = 1,...,m, the entries Y; can be computed from those of Y;_;

by the following recursion

Yi—l(C, 6) lf C; >c

. _ (2.34)
min{Y;_1(c,0),Yi—1(c—¢c;, £ — 1)+ w;} if £>0, ¢; <ec.

Y;(C7 ﬂ) = {
After computing Y7 to Yj,, the optimal objective function value of kKP is given by
min{Y,(c,0) | ¢ > O, ¢=0,1,...,B}.

We observe that only entries in Y;_1(c, £) need to be stored in order to derive Y;(c, ¢).
Caprara et al. (2000) propose an implementation based on pointers that achieves a
space complexity of O(k%B) and a time complexity of O(mkB).

Approximation algorithm

An approximation algorithm for kKP is based on the LP relaxation of the problem,

which is obtained by replacing constraints (2.33) by
0<z <1 i=1,...,m. (2.35)

Denoting the optimal objective function value of the LP relaxation of kKP by 2P, the
following result proved in (Caprara et al., 2000; Kellerer et al., 2004) holds.



26 Chapter 2 - Promotion campaign

Lemma 2.7. An optimal basic solution x* of the LP relazation (2.30), (2.51), (2.32)
and (2.85), has at most two fractional components. Let Jy := {l|x; = 1}. If the basic
solution has two fractional components x; and x;, supposing without loss of generality
cj < ¢, then wi + ) ey wy < 2P and the solution defined by Jy U {j} is feasible for
the kKP.

Algorithm 2.1 Pseudocode of the approximation algorithm for kKKP

1: Let %" be an optimal solution of the LP relaxation of kKP

2 Jy={l|zlP =1}, F:={(|0<zll <1} // fractional variables

3. if F =( then

4: 24 .= ZLF

5. end if

6: if F' = {i} then

24 = min{) e j, We, X peqiyur, Web where R; is the set of the k — 1 items with the
smallest weight in {1,...,m} \ {i}

8: end if

9: if F' = {i,j} with ¢; < ¢; then

10 24 = min{} ey, ugjy Wes 2pefitur, Web where R; is the set of the k — 1 items with
the smallest weight in {1,...,m}\ {i}

11: end if

Proposition 2.8. The approzimation algorithm for kKP described by Algorithm 2.1 is

a 2-approximation algorithm and runs in O(m) time.

Proof. This follows from an easy modification of a proof in (Caprara et al., 2000;
Kellerer et al., 2004). O

Remark that the pricing problem is solved for each product j = 1,...,n. Therefore,
up to n columns can be added to the master problem at each iteration of the column-
generation procedure.

Using the column-generation procedure outlined above, we can solve the master
problem (LPM3) in reasonable time. There is no guarantee, however, that the solution
found will be integral; if this is not the case we will proceed with a branch-and-bound

algorithm.
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2.3.3 Branch-and-bound

Branching is needed when the optimal solution to (LPM3) turns out not to be integral.
However, as Savelsbergh points out in (Savelsbergh, 1997), a naive branching strategy
may sometimes lead to a conflict between the variable used for branching and the
column generated. This occurs when the column generated by the pricing problem
contains a client forbidden by previous branching decisions. Hence, it is worth looking
for a branching strategy compatible with the pricing problem.

Proposition 2.6 allows the use of a hybrid branching policy (Barnhart et al., 1998;
Savelsbergh, 1997); that is to perform branching using the basic formulation while
working with the set-covering formulation. We will then fix a single variable (vari-
able dichotomy) (Savelsbergh, 1997; Wolsey, 1998). This variable dichotomy branching
strategy is exactly the branching scheme proposed by Ryan and Foster for set parti-
tioning master problems (Barnhart et al., 1998).

In the basic formulation, fixing z;; to zero forbids product j to be offered to client
i, and fixing x;; to one requires product j to be offered to client . In the set-covering
formulation, this is done by adding (not explicitly) one extra constraint. Fixing z;; to
zero leads to Zp:iesm zpj = 0 and fixing to one leads to Zp:z‘es,,j zpj = 1. Hence, at
the node u of the branching tree, let H(u) C {1,...,n} be the subset of products j
for which there exists a non-empty set of clients R C {1,...,m} who must receive an
offer of product j. Similarly, let L(u) C {1,...,n} be the set of products j for which
there exists a non-empty set of clients N3 C {1,...,m} who cannot receive an offer of
product j. The LP problem (LP,,) to be solved at the node u is the combination of the
LP relaxation (LPM3) of (M3) and the following two constraints.

> og=1 je H(u), (2.36)
p:R}*QSpj
> =0 j € Lu). (2.37)
p:N NSy £0

The branching scheme resulting from the variable dichotomy branching strategy is
compatible with the pricing problem since it does not render the pricing problem more
difficult. To meet the set of constraints (2.37), we set z; = 0, Vi € N;' when solving
the pricing problem associated with the product j € L(w). Similarly, for the set of
constraints (2.36), we set x; = 1, Vi € RY when solving the pricing problem corre-
sponding to the product j € H(u). The constraints (2.31) and (2.32) are updated and
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the remaining problem is still a kKKP, of reduced size. Moreover, the inequality (2.24)
of the restricted master will be changed into equality for the product j € H(u) to make

sure that the solution to (LP,) effectively offers product j to clients in RJ.

An upper bound at node u is provided by the optimal solution to the master problem
(LP,) or estimated by dualizing some constraints; details on these computations are
available in (Talla Nobibon et al., 2008).

2.4 Heuristics

In this section, we present seven heuristics for the promotion campaign problem. These
heuristics are either variants of the algorithms used in practice for application in a
bank or specifically developed based on the structure of the problem. The first is a
variant of the algorithm developed by FORTIS (Hellinckx, 2004). It assumes that the
variable cost and the profitability of the different clients are identical and that the
campaign involves all products. The second heuristic is also based on these simplifying
assumptions, but allows for choosing the products to be used for the campaign. The
third is a procedure that successively solves a number of Ezact k-item knapsack problems
(E-kKP) (which are kKP’s with an equality for the cardinality constraint (2.32)). It
uses an approximation algorithm for solving the (E-kKP) to identify the best product to
be offered as well as the selected set of clients at each iteration. The fourth heuristic is
also an iterative algorithm, inspired by the Next-Product-To-Buy model used by Knott
et al. (2002) for an application in a retail bank. The fifth heuristic is a depth-first
branch-and-price heuristic. The sixth heuristic is a truncated call to a MIP-solver and
the last one is a LP rounding heuristic. In this section, we will say that client ¢ is active

if it has not yet received M; offers.

2.4.1 Heuristic 1

Heuristic 1 is a variant of the algorithm developed by FORTIS. It uses the average
cost and the average revenue for each product. These quantities are defined by C; :=
% Yo, cij and Pj = % >, pij- This heuristic ignores the selection of products for
the campaign and simply imposes the minimum quantity O; on the number of offers of

each product j. Using a new decision variable u; := number of clients that receive an
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offer for the product j, the simplified formulation used by FORTIS is the following.

n

(M4) max > [(Pj— Cju; — fj]

j=1

st. Y [P - (1+R)Cluy = (1+R) [ Y g
j=1 J=1
Cj’UJjSBj, Ojgujgm Jj=1 3 T2y
uj; € N ] =1, y 1.

We remark that the problem formulated here is still NP-hard as it includes an integer
knapsack problem (Kellerer et al., 2004) as a special case. On the other hand, (M4)
does not take into account the third constraint (2.4) of the basic formulation (M1); that
is it does not enforce an upper bound on the number of products that can be offered

to a client.

Algorithm 2.2 Pseudocode of Heuristic 1
1: for each product j, compute the average revenue P; and the average cost C}

2: solve the resulting integer-programming formulation (M4)

3: sort products such that for two products j and k, j < k if and only if Pju; > Pyuy

4: for each product j, sort clients such that for two clients ¢ and ¢, ¢ < £ if and only if
Dij = Dej

5: consider the products following the order obtained in line 3; offer each product j to the
first u; active clients in the sequence given by line 4

6: keep this solution if it is feasible and if its total profit is greater than 0; otherwise,

output the trivial solution

2.4.2 Heuristic 2

Heuristic 2 is an improvement of Heuristic 1; here the average revenue and the average
cost per product are still used, but the choice of products to be offered during the
campaign is taken into account. Using an additional binary variable y; that equals

1 if product j takes part in the campaign and 0 otherwise, the integer programming
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problem to be solved is

n

(M5) max > [(P;— Cyu; — fy]

j=1
st. > [(Pj—(1+R)Cju;j— (1+R)fiy;] =0
j=1

yj€{0,1}, w;eN  j=1,...,n.

Notice that (M5) generalizes (M4), since (M4) arises when we set y; = 1 for all j.
This formulation also does not take into account the upper bound on the number of
products that can be offered to a client. However, unlike formulation (M4), (M5) does

incorporate the choice of products to be offered during the campaign.

Algorithm 2.3 Pseudocode of Heuristic 2
: for each product j, compute the average revenue P; and the average cost ()

1

2: solve the resulting integer-programming formulation (M5)

3: sort products such that for two products j and k, j < k if and only if Pju; > Pyuy

4: for each product j, sort clients such that for two clients ¢ and ¢, i < £ if and only if
Dij = Dej

5: consider the products following the order obtained in line 3; offer each product j to the
first u; active clients in the sequence given by line 4

6: keep this solution if it is feasible and if its total profit is greater than 0; otherwise,

output the trivial solution

Notice that if the last line (line 6) is not included in the description of Heuristic 2
then its outcome may be an infeasible solution; the same is true for Heuristic 1. As
an example, consider an instance with one product and three clients, where c;; = 5,
c21 = 2 and c31 = 2. The revenues are pi; = 10, p21 = 8 and p3; = 3. The hurdle rate
R = 50%, the budget B; = 6, the lower bound O; = 2 and the fixed cost f; = 0. The
application of either Heuristic 1 or Heuristic 2 will offer the product to the first and
second client. However, this solution is not feasible as the total cost is 7, greater than
the budget.
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2.4.3 Heuristic 3

Heuristic 3 iteratively solves a number of successive Exact k-item knapsack problem
(E-kKP); an E-kKP being a kKP with an equality for the cardinality constraint (2.32).
For a given product j, we define the following E-kKP:

m

(E-KKPj) max Y [pij — (1 + R)eiy] gy — (1+ R) f;
=1
s.t. Zcijl‘i]’ < Bj
=1

m
> zij=0;
=1

xijE{O,l} 1=1,...,m.

We denote the associated k-item knapsack problem by kKPj. Remark that the LP

Algorithm 2.4 Pseudocode of Heuristic 3
1: val :==0, Rate:=0, V:={1,...,m} //val is the objective value
2: for each j =1...,n, solve (E-kKPj) and compute val]E
3: while there exists a product j with val;-E > 0 and Rate + zf >0 do

4:  select such product j* with the highest profit valﬁ

5.y =1, wal :=val + vale*, Rate := Rate + zﬁ

6: forie Jjb: do

7: i =1, M;:=M; —1

8: if M; = 0 then

9: V=V \{i}

10: end if

11: forbid any further offer of the product j* to client ¢ //by setting c;;- greater
than B;-

12:  end for

13z Oj+ =1, fp:=0

14: update Bj*

15 for each j =1...,n satisfying O; < |V, solve (E-kKPj) and compute val]E
16: end while

17: val := max{val;max{valf ci=1... ,n,z;-4 >0}}
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relaxation of (E-kKPj) has a solution with either 0 or 2 fractional components. The
approximation algorithm for kKP is used as a 2-approximation algorithm for (E-kKPj).

The pseudocode of Heuristic 3 (Algorithm 2.4) describes an iterative procedure for
finding a solution to the promotion campaign problem using a 2-approximate solution
for (E-kKPj). We denote the objective value found by the approximation algorithm
for the problem (E-kKPj) (respectively kKPj) by zf (respectively 234) and the set
of solution components equal to 1 by JJE (respectively J]A) The quantity Ual]E =
ZieJJE [pij — cij] — f; (respectively val}4 = ZieJ]A [pij — cij] — f;) is the profit collected
by offering product j to the clients selected by J JE (respectively JJA). Heuristic 3 works
as follows: it first selects the product j* with the highest positive profit Ualﬁ such
that the hurdle rate constraint is not violated. Then, this product is offered to the
set of clients Jﬁ, the problem is updated and the procedure is repeated until no more
product can be offered to clients; the quantity val represents the objective value of the
solution obtained by the algorithm at each stage of its execution. Notice that after each
iteration, the reconstructed problem is still a promotion campaign problem. The last
line (line 17) chooses the best solution between the obtained solution and the solutions

achievable by solving kKPj for each product j.

Algorithm 2.5 Pseudocode of Heuristic 4
:for j=1,...,ndo

1

2:  sort clients such that ¢« < £ if and only if 7;; > r4;
33 fori=1,...,mdo

4 if 7 is active and there is enough budget then
5: rij =1, M;:=M;—1

6 if M; = 0 then

7

8

9

7 becomes inactive

end if
else
10: Tij 1= 0
11: end if

12:  end for

13: end for

14: keep this solution if it is feasible and if its total profit is greater than 0; otherwise,
output the trivial solution
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2.4.4 Heuristic 4

This heuristic is inspired by the Next-Product-To-Buy model proposed by Knott et al.
(2002) for an application in a retail bank. This heuristic is based on the probability r;;
that product j is the next product bought by client i. The pseudocode of this heuristic
is given by Algorithm 2.5

2.4.5 Heuristic 5

This is a depth-first heuristic based on the branch-and-price approach. The goal of
this heuristic is to find a feasible and high-quality solution as quickly as possible. To
achieve this, Heuristic 5 performs a partial traversal of the nodes corresponding to a
particular branching decision within our branch-and-price approach. In the heuristic,
we branch on a variable with value closest to 1 and we have preference for following

the branch where that variable is set to 1.

i

‘ Solve restricted master |

Generate new
columns
Add new Y
columns .
]
Column(s)
identified
N

Good integral
solution?

N
Branch

Select node

Figure 2.2: Flow chart of the branch-and-price heuristic (Heuristic 5)

Figure 2.2 describes the precise steps to follow. To start the algorithm, we need
an initial restricted master problem with a feasible LP relaxation. Therefore, for each
product, we solve the KKP problem (kKPj) with the 2-approximation algorithm. If
a feasible solution is obtained, it is added to the master problem. We speed up our

heuristic using ideas proposed by Vance et al. (1997). At the root node, the restricted
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master problem is solved only once (so without using column generation). Next, we
branch. Since the goal of this heuristic is to find a good feasible solution and not
necessarily an optimal one, we do not have to branch in such a way that the solution
space is divided evenly. Thus, using the hybrid branching strategy, we branch on the
fractional variable x;; closest to 1 and set x;; = 1 in one branch and x;; = 0 in the other
branch. If the solution at the root node is integral we branch on a variable z;; = 1. In
case of a tie, we select the variable with the highest revenue p;;. With this branching
rule, we are more likely to find a good solution in the node with z;; = 1, and we
investigate that node first. At each node an upper bound on the number of calls to
the pricing problem is used to stop the column generation; our implementation uses a
bound of 20 x n, which was chosen based on some preliminary experiments. Moreover,
a target value equal to 110% of the value obtained at the root node is used at each
node to stop the column-generation procedure. That is, if at a given node the value of
the objective function becomes larger than the target value, the column generation is
stopped. We stop the algorithm when we find a feasible solution with an objective value
greater than or equal to the target value. In other words, the algorithm continues when
it finds a feasible solution with a value less than the target value. Similar heuristics
have been used successfully in a variety of applications, including raw materials logistics
planning (Luo et al., 2007) and the airline crew pairing problem (Barnhart et al., 1998;
Vance et al., 1997).

2.4.6 Heuristic 6

This is a truncated call to the MIP-solver CPLEX: the solver is used to solve (M2) and
is interrupted when a time limit is reached. For our implementation, we use one hour as
time limit. This limit is set according to the average time spent by the other heuristics
on large instances. Consequently, after at most one hour, CPLEX stops and either has
already found a feasible solution, in which case the best feasible solution obtained so
far is output by the heuristic, or CPLEX has not yet found a feasible solution and the

heuristic outputs the trivial solution.

2.4.7 Heuristic 7

This heuristic is based on the LP relaxation of (M2). Given a solution z;;, i =
1,...,m, 7 = 1,...,n to the LP relaxation of (M2), there are two possibilities: ei-

ther that solution is integer, in which case it is the output of the heuristic, or it is
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fractional and we round it up to integer values as follows. The product j is used if
Yj = % and we set x;; to 1 if it is greater than or equal to % On the other hand, if
Y < % then we set y; = 0 and all corresponding z-variables also receive the value 0. If
this solution is infeasible or has a non positive total profit, then the heuristic outputs
the trivial solution. A time limit of one hour is imposed for solving the LP relaxation.

When the limit is reached, we use the best solution found as solution of the LP.

2.5 Tabu search

In this section, we present a tabu-search algorithm for solving the promotion campaign
problem. A rationale behind the choice of tabu search is the fact that it has been
successfully applied to solve the generalized assignment problem (Laguna et al., 1991),
which is a special case of the problem studied in this chapter.

The tabu-search algorithm is described by Algorithm 2.6. In the description, we
use the function g(x,y) to represent the objective function (2.1) of our problem and
Ni(z,y) to identify a set of solutions in the neighborhood of a given solution (x,y). At

any time, (z*,y*) is the best feasible solution obtained so far.

Algorithm 2.6 Tabu-search algorithm

1: choose an initial solution (z,y) and set z* =z, y* =y and k =0

2: set k = k+1 and consider the first solution (2, y') € Ny (z,y) with g(z*,y*) < g(/,v')
which is non-tabu

if (¢/,y) exists, thenset z* =z =2/, y* =y =14

else choose (', 1) to be the best non-tabu solution in N(z,y) and set x = 2/, y = ¢/
update the tabu list

if a stopping condition is met, then stop; else goto 2

When comparing Algorithm 2.6 to a general description of the tabu search (Aarts
and Lenstra, 1997), we should point out two main differences. First, in line 2 we do not
necessarily investigate the entire neighborhood N (z,y); in fact when we find a solution
with a better objective value than the current best solution, we do not investigate
remaining solutions in Ny (z,y) but rather update our solution immediately. The main
reason is the fact that Ny (z,y) is very large. The second difference is the absence of
aspiration conditions in Algorithm 2.6 (aspiration conditions are conditions that allow

to consider an attractive tabu solution as our current solution).
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In the rest of this section, we describe in more details each step of our tabu-search

algorithm.

Algorithm 2.7 Initial solution procedure
1 val =0, exp:=0,V:={1,....,m}, S:=10
2: for each j =1...,n and for each i € V compute NPP;; := 22
3: for all product 5 ¢ S do
4:  sort the clients in V' in non-increasing order of their NPP;
C; := the cost of offers to the first O; clients in the sorted list

Cij

5

6:  P; := the revenue of offers to the first O; clients in the sorted list

7. PR;:=P; - C; —F}

8: end for

9: select j* ¢ S with the highest PRj« and satisfying Cj= < Bj» and val + Pj= >
(1+ R)(exp+ Cj« + Fj-)

10: if j* exists and PR;« > 0 then

11 S:=SU{j*}, yj» :=1, val := val + Pj=, exp := exp + Cj= + F}=

12:  for each client 7 amongst the first O;« clients in the sorted list do

13: i =1, M;:=M; —1
14: if M; = 0 then

15: V=V \{i}

16: end if

17:  end for

18:  goto 3

19: end if

20: for each active client ¢ do

21:  for each j € S do

22: if p;; > c¢;; and the offer of product j to client 7 leads to a feasible solution, make
that offer and update the current solution

23:  end for

24: end for

2.5.1 Initial solution

The initial solution used by the tabu search is obtained using the procedure proposed

by Van Praag (2010). This procedure is given by Algorithm 2.7.
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Notice that Algorithm 2.7 runs in polynomial time; and from Proposition 2.4, there
is no guarantee that it will always produce a non-trivial feasible solution. For the
benchmark instances used in this chapter, however, this procedure turns out to be

quite effective, as it produces a non-trivial feasible solution to all the instances.

2.5.2 Neighborhood N,(z,y) and selection of (z’,y’)

Let (z,y) be the current solution at iteration k. The neighborhood Nj(z,y) =
Nt (z,y) UNE(z,y) UNZ(z,y) of (x,y) is the union of three sets. The set N} (z,y)
contains feasible solutions (z’,3y’) obtained from (x,y) by considering two clients i; and

i2, and a product j satisfying y; = 1, x;,; = 1 and x;,; = 0; then we set m;u' =0

and ) . = 1. Notice that this solution, (2/,4), is in N} (z,y) only if it is feasible.

i2]
The second set, NZ(z,y), contains feasible solutions (z’,y’) obtained from (z,y) by

considering two clients ¢; and 42, and two products j and ¢ satisfying y; = y, = 1,
/

2]
;,, = 0. Once again, the solution (z,y') is in N 2(z,y) only if it is feasible. The last

Tiyj =1, Tjp; = 0, 74,0 = 0 and x50 = 1; then we set 2} ; =0, v;,; = 1, 2} , = 1 and

set, N2 (x,y), contains feasible solutions (z/,y’) obtained from (z,y) by permuting two
/

) !
1]

clients i1 and i9; that is for all products j, we set x i

(z',y') € N3(x,y) only if it is feasible.

= xj,; and x;_; = x;,j. Here also,

The three sets N}l (z,y), NZ(z,y) and N2(z,y) are investigated successively in this
order. Once we find a non-tabu solution (2’,y’) with better objective than the current
best solution, we stop the investigation and that solution is considered as our new
solution. On the other hand, if this is not the case, at the end of the investigation,
we have found the best non-tabu solution in Ny (z,y). That solution is considered as
our new solution. In the implementation, when this happens five times consecutively
(finding a non-improving solution), we apply a diversification procedure to the current
solution. The number five is chosen based on some preliminary experiments. This
diversification procedure searches a feasible solution (z’,3’) obtained from the current
solution (z,y) by replacing a product j currently in the campaign (y; = 1) by another
product ¢ not used in the current solution (y, = 0); that is y} = 0 and y, = 1. Of course,
from the set of clients S = {i|x;; = 1 or 2;; = 0 and ¢ is still active}, we should be

able to find at least Oy clients who should receive an offer of product £.
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2.5.3 Tabu list

From iteration & to the next iteration k+ 1, we move from a solution (z,y) to a solution
(2',y"). As mentioned above, this new solution can be obtained in different ways; it is
either in N (z,y) (i = 1,2,3) or is obtained after a diversification procedure. In any
case, the reverse modification needed to go from (2/,y') to (x,y) is considered as tabu
for the next 20 similar iterations. More concretely, suppose that (z/,vy') € NZ(z,y)
is obtained from (x,y) by giving product j to client i5 and product ¢ to client ;.
This move is then considered as tabu during the next 20 similar iterations; that means
during the next 20 iterations we will not consider any solution obtained from the current
solution by the reverse operation (offering product j to client ¢; and product ¢ to client

i2). Again, the number 20 is chosen based on some preliminary experiments.

2.5.4 Stopping conditions

In our implementation, we combine two stopping conditions. We stop the tabu search
when either a time limit of one hour is reached or the diversification procedure was not

able to find any other non-tabu feasible solution.

2.6 Computational experiments

All algorithms have been coded in C using Visual Studio C++ 2005; all the experiments
were run on a Dell Optiplex GX 620 personal computer with Pentium R processor with
2.8 GHz clock speed and 1.49 GB RAM, equipped with Windows XP. CPLEX 10.2 was
used for solving the linear programs. A number of issues related to the implementation
of the algorithms is explained in more detail in (Talla Nobibon et al., 2008). Below,
we first provide some details on the generation of the data sets and subsequently, we

discuss the computational results.

2.6.1 Generating test instances

The instances used for the experiments are randomly generated, with cost ¢;; randomly
generated from the set {1,2,3} and the return to the firm p;; = r;; DF'V;; is an integer
randomly generated between 0 and 16. The choice of these figures is guided by exam-
ining the real-life data used by Cohen (2004). The corporate hurdle rate R belongs
to the set {5%,10%, 15%}. There are six different values for the number of clients m:
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these are 100, 200 and 300 clients (small size; S1, S2 and S3), 1000 and 2000 clients
(medium size; M1 and M2) and 10000 clients for instances of large size (L). For each
number of clients, we have three different numbers of products n; these are 5, 10 and

15 products. In total, we have 54 groups of instances, as described in Table 2.1.

Table 2.1: Size of the generated inputs

Group rate R number of clients (m) | number of products (n)
S1 | 5%, 10% or 15% 100 5, 10 or 15
S2 | 5%, 10% or 15% 200 5, 10 or 15
S3 | 5%, 10% or 15% 300 5, 10 or 15
M1 | 5%, 10% or 15% 1000 5, 10 or 15
M2 | 5%, 10% or 15% 2000 5, 10 or 15
L | 5%, 10% or 15% 10000 5, 10 or 15

For each group, we generate a minimum quantity commitment bound O; as a
random integer selected between [%1 and [%} ([a] is the ceiling of a).
We consider three values for the budget Bj, namely a random integer chosen be-
tween Oj% and 2% and the two extreme budgets which are LOJ%J (la]
is the floor of a) and [QZ'Mi Lt ] The fixed cost f; is a random integer between
m > oilpij — (1 + R)ciyj) and 1+R > i[pij = (1 + R)cij]. These bounds have been
chosen in such a way that the instances become feasible and consistent. We generate
one instance with a small upper bound M; for each client, selected between 1 and
2, (denoted by s) and another one with a large random upper bound M; for each

n

client, selected between [2] and [2%] (denoted by ). In conclusion, we have in total

3 X 2 x b4 = 324 test instances.

Since Heuristic 4 requires as input r;; (and not p;;), we have decided to gener-
ate for each of the 324 test instances, three different sets of values for r;;. The
first set is generated randomly from ]0, 1[, while the second is also randomly gen-
erated in ]0,1[ but proportional to c¢;;, and the last is inversely proportional to
pij- Note that by choosing 7;; in ]0,1[, we discard certainty. These 3 x 324 =
972 test instances are solved using Heuristic 4. All instances can be found at

http://www.econ.kuleuven.be/public/NDBAC96/promotion_campaigns.htm
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2.6.2 Computational results

In this section, we report on different implementations of the column-generation pro-
cedure (Table 2.2), the performance of the LP relaxation (Table 2.3), different imple-
mentations of the branch-and-price (Table 2.4), a comparison of the basic model and
the branch-and-price algorithms (Table 2.5) and a comparison of heuristics and the
tabu search (Table 2.6 and Table 2.7). Throughout this section, the computation time

(Time) is expressed in seconds.

Table 2.2: Comparison of column-generation procedures for solving the

LP relaxation of the set-covering formulation

Grouwp | n | M Approx. Exact CPLEX
nr. | Time nr. | Time nr. Time ‘
Single column

5 S 2643 | 2.05 7| 0.03 | 597 7.42

l 881 | 0.76 22 | 0.74 | 233 1.20

s1 10 S 2902 | 2.37 37 | 0.18 | 412 6.47
l 1325 | 1.08 24 | 0.70 | 179 2.17

15 S 2896 | 2.30 | 126 | 0.42 | 319 5.83

l 1054 | 0.96 72 | 2.36 | 108 1.24

Multiple columns

5 s 11788 | 3.17 7| 0.04 | 545 | 10.98

l 5056 | 1.41 35 | 1.22 | 266 3.69

S 16020 | 4.28 | 140 | 0.81 | 455 | 16.14

51 10 l 6880 | 1.72 19 | 0.61 | 185 7.02
15 S 14601 | 3.96 | 226 | 0.87 | 337 | 12.02

l 5449 | 1.61 68 | 2.36 | 167 3.86

Table 2.2 compares two implementations of the column-generation procedure for
solving the LP relaxation of the set-covering formulation. In this table, each cell is the
average of nine values. The first implementation (Single column) adds a single column
per product to the master problem. For each product, the approximation algorithm is
first used to solve the pricing problem; if a column is identified it is added to the master
problem. On the other hand, if no column is found for any product, we successively use
the exact algorithm for solving the pricing problem for each product. Once a column
is identified, we stop and do not use the exact algorithm for the remaining products.
The LP problem obtained is then solved using CPLEX. The second implementation

(Multiple columns) can add up to five different columns per product, but only in the



2.6. Computational experiments 41

case where the first column is identified using the approximation algorithm. For each
product, the approximation algorithm is first used to solve the pricing problem; if
a column is identified we generate at most four additional columns as follows. We
randomly select a single client 77 with ;, = 1 and we fix z;, = 0 and the pricing problem
is re-solved using the approximation algorithm. If a feasible solution with negative
reduced cost is obtained, the corresponding column is added and a new client io with
z;, = 1 in the above column is randomly chosen and we set x;, = z;, = 0. The pricing
problem is re-solved and this procedure is repeated until either five columns are added
or the pricing problem (with these additional constraints) is either infeasible or the
solution has a non-negative reduced cost. In Table 2.2, we report for the approximation
algorithm (Approx.), the exact algorithm (Exact) and CPLEX (CPLEX) the number of
calls (nr.) and the total time spent (Time). We observe that the average time spent is
0.00081s (respectively 0.01539s) per call of the approximation algorithm (respectively
the exact algorithm) for the “Single column” implementation which is greater than the
corresponding average time for the “Multiple columns” implementation, 0.00027s and
0.0114s respectively. However, the increasing number of columns and the increasing
average time of using CPLEX for solving intermediary LP problems (0.02748s for the
second implementation compared to 0.01317s for the first implementation) make the
overall time of the “Multiple columns” implementation larger than the overall time of

the first implementation.

We have implemented a local-search algorithm to generate multiple columns per
product, (a similar technique has been used by Van Den Akker et al. (2006) for appli-
cation in parallel machine scheduling), but the results were not better than the results
reported above. In the sequel, the LP relaxation of the set covering is solved using the

first implementation.

Table 2.3 shows a comparison between the LP relaxation of the basic formulation
and of the set-covering formulation. Here also, each cell is the average of nine values.
The results of the group S3 are not reported in this table because there are instances
in that group for which we do not know the optimal value, while for group S1 and
group S2 we have obtained an optimal solution using either the MIP-solver CPLEX for
solving (M2) or the branch-and-price algorithms (see Table 2.5). In Table 2.3, LP-Gap
is a percentage % x 100%, where zpp is the optimal objective value and zpp is

the objective value of the LP relaxation.

Table 2.3 confirms the theoretical result obtained in Section 2.3.1 that the set-
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Table 2.3: LP relaxzation of the basic formulation and the set-covering

formulation
Basic formulation Set-covering formulation
Group | n | M || LP-Gap . Time LP-Gap . Time
5 S 8.33 | 0.06 | 0.16 | 0.31 5.05 0.44 9.56 24.47
l 6.51 | 0.08 | 0.30 | 0.55 0.03 1.05 2.20 3.86
s1 10 S 3.11 | 0.05 | 0.13 | 0.23 0.62 6.05 9.02 14.83
J4 3.26 | 0.08 | 0.26 | 0.50 0.18 1.81 3.65 7.76
15 S 2.96 | 0.05 | 0.14 | 0.27 0.45 5.51 8.59 10.66
l 1.28 | 0.06 | 0.25 | 0.53 0.07 1.69 4.68 11.36
s 2.51 | 0.11 | 0.31 | 0.67 0.78 | 152.18 | 378.81 | 852.84
> l 12.80 | 0.19 | 0.93 | 2.31 5.47 0.47 36.39 | 108.04
59 10 S 3.37 | 0.11 | 046 | 0.91 0.21 | 105.60 | 220.75 | 375.74
l 10.51 | 0.20 | 1.06 | 2.28 0.80 0.45 92.01 | 176.33
15 S 2.47 | 0.11 | 0.43 | 0.83 0.15 80.75 | 190.46 | 271.88
J4 5.00 | 0.16 | 1.12 | 2.23 0.00 4.73 49.48 | 119.54

covering formulation is at least as strong as the the basic formulation: that is, it
gives a solution very close to the optimal solution compared to the solution obtained
by the basic formulation. This difference is reflected by LP-Gap for the set-covering
formulation which is less than 1% for many instances. However, this quality of the
LP relaxation of the set-covering formulation comes with a relatively high computation
time. Notice that this computation time increases with the size of the problem (number
of clients). Table 2.3 explicitly displays the trade-off between the solution quality and
the computation time. Notice also that the computation time reported in Table 2.3
for the set-covering formulation is not necessarily the computation time spent by the
branch-and-price algorithm at the root node as we stop solving the LP at each node of
the branching tree (and therefore at the root node) when we go through 30 iterations

without an improvement of the objective value.

Table 2.4 compares three different strategies of traversing the branching tree. These
are breadth first, depth first, and best first. The main difference between these
three strategies is observed after the branching, when selecting the child to investi-
gate first (Savelsbergh, 1997).
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Table 2.4: Comparison of different tree traversal strategies for the

branch-and-price algorithm

breadth first depth first best first
n | M Time | Nr Nodes Time | Nr Nodes Time | Nr Nodes
S 10131.57 178 7365.78 74 2031.13 26
S1 > l 64.68 8 38.75 6 72.85 2
10 5057.54 936 1141.08 210 || 3035.86 410
L 9967.78 754 || 20172.64 1395 || 8587.53 208

The comparison is made for 36 instances from Group S1. We clearly see from
Table 2.4 that the breadth-first branch-and-price algorithm is dominated either by the
depth-first branch-and-price algorithm or by the best-first branch-and-price algorithm.
Remark that the number of nodes might be important here as more nodes is likely to
imply more columns generated. The generation of these columns is time consuming,
and too many columns may sometimes lead to a memory problem for our branch-and-
price algorithm. Observe that for n = 10 and M = s, the best-first strategy explores
more nodes than the depth-first strategy; this is due to a single instance for which the
best-first strategy has to investigate a very hight number of nodes in order to find a

guaranteed optimal solution.

Table 2.5 displays the results of the exact algorithms for the promotion campaign
problem. The basic formulation (M2) is solved using the MIP-solver of CPLEX 10.2. In
Table 2.5, the minimum, the mean (average), the maximum computation time as well
as the number of instances solved (Solved) are recorded. Notice that each cell is based
on nine instances. For Group S1, CPLEX was able to solve each instance. However, the
computation time increases when we move to Group S2. For that group, CPLEX could
not solve four instances, due to memory problems. Amongst these four instances, three
have a small upper bound per client M; and only one was an instance with large upper
bound. For Group S3, up to ten instances were not solved by CPLEX. In that group,
all unsolved instances have a small upper bound M;. The above observations coupled
with an analysis of the computation time given in Table 2.5 for the basic formulation
lead to the following conclusions. Computation time seems to increase exponentially
with the size of the instance (number of clients). Moreover, instances with small upper

bound M; seem to be harder to solve than instances with large upper bound.

Table 2.5 also shows the computation times obtained by the branch-and-price algo-
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Table 2.5: Basic formulation and branch-and-price algorithms

Basic formulation depth first best first

Group | n | M Solved . Time Solved . Time Solved . Time
5 S 9 1.72 57.39 190.13 9 103.69 7365.78 | 21135.56 9 279.97 2031.13 4999.85
l 9 0.11 3.91 12.28 9 11.95 38.75 75.78 9 11.20 72.85 168.86
s1 10 S 9 1.33 27.90 114.84 9 24.98 1141.08 | 11052.67 9 578.39 3035.86 5493.34
4 9 0.17 6.05 35.95 9 61.72 | 20172.64 | 35798.08 9 74.16 8587.53 | 16683.14
15 S 9 1.50 22.57 74.73 8 | 17259.00 | 39845.53 | 62432.07 8 | 3038.83 19521.5 | 36004.17
l 9 0.11 3.22 14.03 9 23.81 31117.1 | 62210.36 9 23.56 | 18014.18 | 36004.79
S 9 0.23 253.47 1036.68 9 2862.80 | 36725.30 | 62143.55 7 | 2862.80 | 36382.61 | 51143.56
b l 8 0.44 138.18 1094.44 9 358.72 | 12125.45 | 36017.63 9 251.53 | 15699.19 | 36101.53
S9 10 S 8 3.58 | 2246.54 | 16249.26 9 518.71 | 36138.39 | 57844.56 8 422.7 | 36696.35 | 57842.13
l 9 0.33 20.40 124.16 9 336.17 | 12010.04 | 36021.12 9 631.33 | 18334.06 | 36036.80
15 S 7 3.59 | 1811.47 | 14259.19 9 1575.14 | 12545.51 | 36061.38 7 444.75 | 36209.22 | 64422.08
4 9 0.30 9.47 53.83 9 458.99 5742.13 | 11052.67 9 179.95 | 18183.22 | 36186.49
S 8 0.48 241.79 1311.32 — X X X — X X X
b l 9 2.63 103.94 596.19 — X X X — X X X
93 10 S 4 ] 12.81 823.01 3213.22 - X X X — X X X
4 9 0.75 809.26 5646.58 - X X X — X X X
S 5 1.53 127.03 370.22 - X X X — X X X
15 14 9 0.66 172.78 1490.54 — X X X - X X X
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rithms. We concentrate only on depth-first and best-first branch-and-price algorithms
since Table 2.4 has shown that these two dominate the breadth-first algorithm. Using
the depth-first branch-and-price algorithm, we are able to solve all the instances in the
group S1 and the group S2 except for one instance in S1 while the best-first branch-
and-price algorithm fails to find an optimal solution to six instances, one in the group
S1 and five in S2. It is clear that using the MIP-solver of CPLEX 10.2 for solving
the basic formulation (M2) (enhanced with the default cutting planes) is much faster
than the branch-and-price approaches. Although the pricing problem is solved fast and
LP-Gap is smaller at the root node as shown in Table 2.2 and Table 2.3, the number
of nodes in the branching tree can be excessive, as witnessed in Table 2.5. We do not

apply the branch-and-price algorithms for solving the instances in S3.

Table 2.6: Comparison of heuristics for S3

S3
n 5 10 15
Gap 8.46 8.50 9.17
Heuristic 3 Time 2.80 9.63 1.66
Feas 100 100 100
Gap 8.15 8.17 8.30
Heuristic 5 Time 1498.87 | 2455.66 | 2301.48
Feas 100 100 100
Gap 6.91 4.11 4.59
Heuristic 6 Time 320.54 | 1452.93 | 1653.53
Feas 100 100 100
Gap 0.54 0.00 0.00
Heuristic 7 Time 0.47 1.20 3.13
Feas 11.11 5.56 22.22
Gap 19.20 17.85 18.34
Initial solution | Time 0.00 0.00 0.00
Feas 100 100 100
Gap 6.86 6.52 7.76
Tabu search Time 1.17 0.60 0.79
Feas 100 100 100

In Table 2.6, the outcomes of the heuristics and the tabu search are exhibited for
the set of instances S3. The groups S1 and S2 are not considered because we have

obtained optimal solutions to all instances in these groups. Here, Gap is a percentage
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ZU’;}% x 100%, where zy g is either the optimal objective value, found by solving (M2)
with the MIP-solver CPLEX, or an upper bound of that value obtained by solving the
LP relaxation of the problem and zap is the objective value obtained either by the
heuristic or by the tabu search. This Gap is computed only for instances for which
a non-trivial feasible solution is found; that is when the heuristic or the tabu search
finds a feasible solution with z4p > 0. Feas is the percentage of feasible solutions
with positive objective value. Unlike the previous tables, here each cell is the average
of 18 values, described by three values for R, three values for the budget B and the
two values of M. The experimental results of Heuristic 1, Heuristic 2 and Heuristic 4
are not displayed in Table 2.6 because they could not produce any non-trivial feasible

solution. A time limit of one hour is imposed for each heuristic and for the tabu search.

The results of Table 2.6 confirm the existence of a trade-off between computation
time and solution quality. Heuristic 3 gives a feasible solution with strictly positive
objective value for all the test instances. Moreover, the Gap reported for each instance
is less than 10% and the computation time is at most 10s. The solutions provided
by Heuristic 5 are of good quality with Gap less than 9%. However, unlike Heuristic
3, Heuristic 5 requires much more time. Heuristic 6 provides feasible solutions with
strictly positive objective value for each instance in S3. Although it takes more time
than Heuristic 3 and the tabu search, the Gap is the smallest compared to other heuris-
tics able to solve all the instances. The last heuristic (Heuristic 7) has a competitive
computation time (less than 4s) but provides very few feasible solutions with strictly
positive objective value (less than 23%). On the other hand, the tabu-search algorithm
gives a non-trivial feasible solution to all the test instances. Moreover, the Gap reported
for each instance is less than 7.77% and the computation time is at most 1.5s. Notice
that for each instance, the initial solution is feasible and is obtained almost instanta-
neously (computation time is 0s). The average smallest gap is 17.85% for instances with
n = 10 while the final output of the tabu search has a gap of 6.52%; clearly indicating

an improvement of more than 11% over the initial solution.

To summarize the comparison between the four heuristics and the tabu search re-
ported in Table 2.6, we formulate the following advice. If the solution quality is the only
criterion to be taken into account, the use of Heuristic 3, Heuristic 5, Heuristic 6 or the
tabu search is advised if an efficient exact algorithm is not available. However, if both
the computation time and the solution quality are relevant, we strongly recommend the

use of the tabu search or of the Heuristic 3. Finally, we advise not to use Heuristic 7
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Table 2.7: Comparison of heuristics for medium and large size instances
M1 M2 L

5 10 15 5 10 15 5 10 15

Gap — 81.61 — 97.77 62.21 — — — 62.81

H2 Time 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.04 0.04

Feas 0.00 2.00 0.00 2.25 2.25 0.00 0.00 0.04 1.50

Gap 11.20 13.23 14.46 13.10 13.15 12.31 34.04 33.52 37.80

H3 Time 146.60 394.54 304.32 2125.62 | 2231.14 1195.45 3573.92 | 3143.41 3353.81

Feas 100 100 100 100 100 100 100 100 100

Gap 8.72 13.04 14.43 12.40 12.84 12.01 13.60 24.54 34.26

5 Time 2441.74 | 3318.04 | 3274.59 1978.80 | 3565.28 | 3384.92 || 3730.05 | 3711.15 | 3634.33

Feas 100 100 100 100 100 100 100 100 100

Gap 4.44 2.97 23.11 2.77 17.74 23.20 14.19 13.11 -

6 Time 1845.20 | 2414.50 | 3018.14 || 2048.79 | 3132.60 | 3523.35 || 3667.33 | 3763.12 | 3803.61

Feas 100 100 77.78 100 83.33 77.78 61.11 5.56 0.00

Gap 0.00 0.00 0.00 0.00 0.39 0.27 0.00 2.75 51.10

H7 Time 8.63 28.30 64.26 17.63 124.36 298.37 558.66 | 2974.50 | 3558.28

Feas 11.11 11.11 16.67 11.11 22.22 16.67 22.22 5.56 11.11

Gap 17.90 16.20 18.36 18.92 19.23 17.84 26.22 24.86 25.65

Init Time 0.01 0.01 0.01 0.02 0.03 0.03 0.28 0.32 0.36
nit.

Feas 100 100 100 100 100 100 100 100 100

Gap 7.22 8.54 7.60 9.75 9.58 9.11 10.86 11.04 10.23

TBS Time 16.10 11.62 15.36 56.58 50.33 67.24 1268.30 1347.23 1149.28

Feas 100 100 100 100 100 100 100 100 100

unless no other choice is available as it does not guarantee a feasible solution.

In Table 2.7, Feas and Gap have the same meaning as in Table 2.6. For some
instances, the LP relaxation was not solved to optimality, and we impose a time limit
of one hour and consider the value obtained at that time as zyp; an upper bound of
the optimal objective value since we use the dual simplex algorithm of CPLEX. For
each heuristic and the tabu search, a time limit of one hour is imposed.

Table 2.7 confirms the difficulty experienced by Heuristic 2 (H2) in finding a fea-
sible solution with strictly positive objective value. Moreover, when it finds a feasible
solution, the Gap is very large (more than 60%). The only good news comes from the
computation time, which increases very slowly. Heuristic 3 (H3), by contrast, behaves
very well for large instances: all the instances are solved with Gap less than 15% for
Group M1 and Group M2, and less that 38% for the instances with 10 000 clients.
This good quality of the solutions is coupled with an increased running time. Heuris-

tic 5 (H5) finds non-trivial feasible solutions to all instances, with a smaller Gap than
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Heuristic 3. Compared to Heuristic 3, the running time is higher, however. The solu-
tions proposed by Heuristic 6 (H6) are usually close to the optimal solution (judging
from the Gap), but for large instances, this heuristic is quite limited in terms of the
number of non-trivial feasible solutions it can find. We clearly see in Table 2.7 that for
instances in the set L, Heuristic 6 provides at most 62% of feasible solutions when n = 5
and at most 6% for n = 10. When n = 15, this heuristic fails to find any non-trivial
feasible solution. The last heuristic, Heuristic 7 (HT7), provides good solutions from
time to time, but is very limited by the number of feasible solutions it is able to find
(at most 23%). As for the tabu search (TBS), it has an excellent behavior. In fact,
all the instances are solved with Gap less than 10% for Group M1 and Group M2 in
about one minute, and with Gap less that 12% for the instances with 10 000 clients
with average time less than 23 minutes. As observed in Table 2.6, the initial solution
procedure is very fast and always provides a good feasible solution. Further, there is a
difference of at least 7% between the gap of the initial solution and the gap of the tabu
search.

To conclude this comparison, although Heuristic 6 and Heuristic 7 provide good
solutions, they are strongly limited by the number of non-trivial solutions they output
for large instances. Therefore, we advice the use of either Heuristic 3, Heuristic 5 or
the tabu-search algorithm with a clear preference for the latter.

In practice, there may be instances with millions of clients (Cohen, 2004). We
believe that the use of the tabu search with more running time may provide a good fea-
sible solution. In practice nowadays, when dealing with such instances, one often-used
technique is to cluster the clients into groups (these techniques are also called aggregate
techniques (Cohen, 2004)). Next, clients within a group are treated as identical. We
point out here that a variant of (M1) provides a model for this situation where x;; is
then defined as the number of clients of group ¢ that receive the product j and the

parameters c¢;; and p;; are redefined accordingly.

2.7 Extensions

In this section, we deal with two additional constraints regularly encountered in finan-
cial institutions (Cohen, 2004; Knott et al., 2002). The first constraint is a single time
window constraint. So far, our formulations take into account only the probability that

client 7 reacts positively to an offer of product j, missing the question of when client 7
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is likely to accept an offer of j. This condition can be incorporated in our formulations
by taking for a given time window 1" the probability r;-";. that client ¢ reacts positively
to an offer of product j over the next period 7. These quantities are computed using
well known statistical and probability tools (Knott et al., 2002). The extension with
sequentially ordered products over multiple time windows (Li et al., 2005; Prinzie and
Van Den Poel, 2006) is an avenue for future work.

The second constraint is related to the maximum number of offers that can be made
for a given product during the campaign. This constraint is easily incorporated into the
basic formulation by adding a constraint of the form ), z;; < N;y; for each product j,
where IV; represents the maximum number of offers allowed for the product j. The set-
covering formulation (M3) remains valid under a slight modification in the definition
of Sp; such that it contains at least O; clients and at most N; clients. The major
effect appears in the pricing problem: instead of solving the k-item knapsack problem
kKP ((2.30)-(2.33)), we have to solve a kj|ke-item knapsack problem, which is a k-item
knapsack problem in which the cardinality constraint (2.32) is replaced by

m
k< Z x; < ka.
i=1
The dynamic programming recursion applied for the k-item knapsack problem is also
valid for the kq|ke-item knapsack problem if we replace k by min{k, k2}, while the 2-
approximation algorithm is valid without any modification. This is due to the fact that
a solution to the ki|ko-item knapsack problem has at most two fractional components.
This second constraint is also easily incorporated in all the heuristics defined above after

some minor modifications and can be taken into account by the tabu-search algorithm.

2.8 Conclusions and future work

This chapter explicitly models the promotion campaign problem taking into account
both business constraints and customer preferences and specificities. The problem is
strongly NP-hard and it is unlikely that a constant factor approximation algorithm
can be proposed for solving this problem. We have also presented a set-covering for-
mulation for the promotion campaign problem in which each product is associated
with a subset of clients (which can be empty) in the optimal solution and developed
a branch-and-price algorithm for solving it. We have shown that this last formulation

is stronger than the basic formulation. These two formulations are used to produce
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optimal solutions to the promotion campaign problem. Experimental results confirm
that these two formulations are limited by the size of instances that they can efficiently
solve, which makes their application more suited for business-to-business applications
in which variable (and fixed) costs are more important and the number of clients is not
very large (around 1000 clients (Air Transport Action Group, 2007)).

To extend the application to a business-to-consumer environment with considerably
more customers, we have presented seven heuristics and a tabu-search algorithm. Some
of the heuristics are currently used in practice (Heuristic 1, 2, 4), while others are new
(Heuristic 3, 5, 6, 7). Based on extensive experimental results, we provide a comparison
and comments on the efficiency and quality of the results obtained using the different
formulations, the heuristics and the tabu-search algorithm. These results clearly show a
trade-off between computation time and solution quality and suggest the use of optimal
algorithms for small and medium size instances, while heuristics and the tabu search
are preferable for large size instances (tabu search and Heuristic 5) and when time is
an important factor (tabu search).

An important immediate further research direction that might be pursued is an ex-
tension of this work to multichannel offers where the products can be offered through
many different channels and each channel has its own constraints (e.g. minimum and
maximum number of offers through this channel (Cohen, 2004)). Further, an explo-
ration of “high-multiplicity” approach where similar clients are put together in one class
and the promotion campaign problem is run with these classes might be investigated
for solving very large instances. For the long term, we may consider some extensions
of the problems. One such extension concerns the case where the revenue obtained by
offering a given product to a client is a S-shaped or a T-shaped function of the (ef-
fort) cost put in the promotion. Another extension of this work may take into account
different related products that are offered over multiple time windows (Li et al., 2005;
Prinzie and Van Den Poel, 2006). Further, since the computation of some input data,
especially the probability that product j is the next product bought by client i (r;;),
are certainly affected by uncertainty, a robust approach of the problem that explicitly

deals with such uncertainty is an important direction for future work.



Chapter 3

Order acceptance and scheduling
problem in a single-machine

environment

In this chapter, we study a generalization of the order acceptance and scheduling prob-
lem in a single-machine environment where a pool consisting of firm-planned orders as
well as potential orders is available from which an over-demanded company can select.
The capacity available for processing the accepted orders is limited and each order is
characterized by a known processing time, delivery date, revenue and a weight rep-
resenting a penalty per unit-time delay beyond the delivery date. We prove that the
existence of a constant-factor approximation algorithm for this problem is unlikely. We
propose two linear formulations that are solved using a MIP-solver and we devise two
exact branch-and-bound procedures able to solve instances with up to 50 jobs within
reasonable CPU times. We compare the efficiency and quality of the results obtained

using the different solution approaches.

This chapter is the result of a collaboration with Roel Leus and is available as: F. Talla Nobibon
and R. Leus. Exact algorithms for a generalization of the order acceptance and scheduling problem

in a single-machine environment. Computer & Operations Research, 38:367-378, 2011.
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3.1 Introduction

Many organizations give no formal consideration to either order acceptance or rejection.
Instead, an order-entry process is operated that tacitly accepts all orders. In today’s
competitive manufacturing environment, an organization must respect order deadlines
agreed to with customers, but order acceptance often takes place without consideration
of the effect on the planning of the other jobs in the order portfolio. Herbots et al.
(2007) observe that “this is often the consequence of the functional separation between
the order acceptance decision, which is made by the sales department, and the capacity
planning, which usually lies in the hands of the production department”. The sales
department tends to accept as many jobs as possible while the production department
attempts to meet the promised delivery dates. In order to avoid conflict of interest
between these two departments, which may result in considerable delays, violated due
dates and/or excessive use of highly expensive non-regular capacity, an integration of
job selection and planning is needed (Guerrero and Kern, 1998; Herbots et al., 2007;
Zijm, 2000).

Over the past decade, order acceptance has gained increasing attention both from
academia as well as from practitioners communities. As clearly described by Rom and
Slotnick (2009), “this decision is intricate because it should strike a balance between
the revenue obtained from an accepted order on the one hand, and the (opportunity)
costs of capacity as well as potential tardiness penalties on the other hand”. In this
chapter, we study a generalization of the order acceptance and sequencing problem.
Order acceptance refers to the selection decision an over-demanded company has to
make, while sequencing determines the order in which accepted jobs are executed.
More specifically, the focus of this chapter is on the order acceptance and sequencing
decisions of an organization that has a pool consisting of firm-planned orders as well
as potential orders to choose from, while orders have known processing times, delivery
dates and revenues. The capacity available for processing the accepted orders is limited.
In addition, the urgency of individual orders may be emphasized by the importance of
the client and/or the contract details.

We examine a generalization of the order acceptance and planning problem on a spe-
cialized scarce resource, which is represented as a single machine and which constitutes
the bottleneck of the manufacturing environment. We propose two linear formulations
and devise two exact branch-and-bound algorithms to solve the problem of deciding

which potential orders to retain and which to reject for profit maximization, and we
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determine the processing order of the accepted jobs. By means of computational ex-
periments on a number of benchmark data sets, we solve instances with up to 50 jobs.

The problem studied can be seen as a generalization of two existing problems. The
first problem is the order acceptance and sequencing problem with weighted-tardiness
penalties studied by Slotnick and Morton (2007). Our problem reduces to the latter one
when the pool of firm-planned orders is empty and all jobs are eligible for rejection.
The second problem is the total-weighted-tardiness scheduling problem studied e.g.
by Potts and Van Wassenhove (1985). It corresponds with the problem studied in this
chapter when all orders are firm-planned orders.

The remainder of this chapter is structured as follows. First, we survey the existing
literature in Section 3.2. In Section 3.3, we provide a formal description of the prob-
lem that we wish to solve. Section 3.4 contains the proof of the non-approximability
result and the two linear formulations. Section 3.5 is devoted to the development
of two branch-and-bound algorithms. We comment the results of the computational

experiments in Section 3.6 and conclude in Section 3.7.

3.2 Literature review

Excellent literature surveys on the topic of order acceptance and scheduling are pro-
vided by Guerrero and Kern (1998), Keskinocak and Tayur (2004), Rom and Slotnick
(2009) and Roundy et al. (2005). The objective of this section is therefore not to
provide an exhaustive listing of the existing literature, but rather to survey the differ-
ent perspectives that have been developed on the topic by different researchers, with
a particular focus on the work in single-machine environments. Although the total-
weighted-tardiness problem is strongly NP-hard (Lawler, 1977; Lenstra et al., 1977),
Potts and Van Wassenhove (1985) have developed a branch-and-bound algorithm that
efficiently solves problems with up to 50 jobs; recently, Pan and Shi (2007) has derived
a new bound which allows to solve instances with up to 100 jobs and Tanaka et al.
(2009) has presented a Successive Sublimation Dynamic Programming method able to
solve instances with up to 300 jobs. This review will therefore only discuss the most
closely related articles on the subject of order acceptance and scheduling. First, we
discuss the order acceptance problem with weighted-tardiness penalties; subsequently,
we briefly consider alternative objective functions and on-line decision making.

Slotnick and Morton study the single-machine job selection and sequencing problem



54 Chapter 3 - Order acceptance and scheduling

with deterministic job processing times and job rewards; their objective is to maximize
the rewards in case of lateness (Slotnick and Morton, 1996) and tardiness (Slotnick
and Morton, 2007) penalties. A pseudo-polynomial-time algorithm to solve the for-
mer problem was developed by Ghosh (1997). The problem was extended in (Lewis
and Slotnick, 2002) to multiple periods for the case where rejecting a job will result
in the loss of all future jobs from that customer. An exact approach for solving the
order acceptance problem with weighted-tardiness penalties was developed in (Slotnick
and Morton, 2007). Since the proposed algorithm can only deal with very moderately
sized problem instances (at most ten jobs), suboptimal algorithms were also presented.
Other heuristics include genetic algorithms (Rom and Slotnick, 2009) and greedy al-
gorithms (Alidaee et al., 2001). Yang and Geunes (2007) consider an extension of the
problem where job processing times are reducible at a cost and every job has a release
time. In their paper, Yang and Geunes develop an optimal algorithm for maximizing
schedule profit for a given sequence of jobs, along with heuristics to solve the entire
problem. Sengupta (2003) studies a similar problem with mazimum lateness and tardi-
ness objectives, and proposes pseudo-polynomial time algorithms and approximations
schemes. Both a mixed-integer programming (MIP) formulation as well as a branch-
and-bound algorithm for solving the order acceptance problem with weighted-tardiness
penalties are mentioned in the very brief article of Yugma (2005); he reports (without
details) results “in reasonable time” via MIP for up to 15 jobs, and up to 30 using
branch-and-bound. Finally, Bilginturk et al. (2007) look into a generalization of the
order acceptance problem with weighted-tardiness penalties that includes release times,
deadlines and sequence-dependent setup times; they conclude that a MIP-solution is

not attainable for problem sizes exceeding ten jobs and resort to simulated annealing.

Other objective functions for the selection and sequencing problem have been con-
sidered in literature. Engels et al. (2003) seek to minimize the sum of the weighted
completion times of the scheduled jobs and the total rejection penalty of the rejected
jobs. A related objective function is used in (Lu et al., 2008) for the unbounded parallel-
batch-machine scheduling problem with release dates. A parallel batch machine can
process a number of jobs simultaneously, so that the makespan is the same for all
jobs in a batch. A different but related problem is the job-interval selection problem
(JISP) (Spieksma, 1999), where a job is determined by a set of intervals. In (Chuzhoy
et al., 2006), some special cases of the JISP are considered. The paper develops al-

gorithms that aim to maximize the number of jobs scheduled between their release
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dates and deadlines. Another objective function was examined by Gupta et al. (1992),
who develop an efficient polynomial-time dynamic-programming method that solves
the project selection and sequencing problem (a fixed number of projects is selected
from a set) while maximizing the net present value of the total return. De et al. (1991)
study the sequencing problem and minimize the weighted number of tardy jobs. In (De
et al., 1991), a project-dependent cost is charged when starting the execution of a
project, leading to a selection problem. It is also assumed that a revenue is collected
at the completion of a project. The goal is to maximize the expected rewards of a
selection of jobs with random processing times and random deadlines. Meng-Gérard
et al. (2009) study a related problem with unit durations inspired by a practical case
of a satellite launcher, and describe polynomial-time dynamic-programming recursions
for some special cases.

The on-line problem, in which projects arrive dynamically over time and need to
be selected or rejected upon arrival, has been studied by several authors for a broad
range of objective functions. For dynamic arrivals with a single resource constraint,
Kleywegt and Papastavrou (2001) study a dynamic and stochastic knapsack problem,
where the size of the knapsack represents the available resource quantity. Each arrival
demands some amount of the resource, and a reward (unknown prior to the job arrival)
is received upon acceptance. They provide an optimal acceptance policy that maximizes
expected profits. For the batch process industry, Ivanescu et al. (2006) develop policies
that focus on delivery reliability while maintaining high utilization rates. Epstein et al.
(2002) consider a single-machine on-line job selection and scheduling problem with job-
dependent rejection penalties. Their algorithm aims to minimize the total completion

time of accepted jobs plus job rejection penalties.

3.3 Problem statement

A set of jobs N ={1,2,...,n} with durations p; (i € N) is to be scheduled on a single
machine; all jobs are available for processing at the beginning of the planning period.
Each job 7 has a due date d; and a revenue ();; the weight w; represents a penalty per
unit-time delay beyond d; in the delivery to the customer. The pool N of jobs consists
of two disjoint subsets F and F' (N = FUF and F N F = (), where F' comprises the
firm-planned orders and its complement F contains the “optional” jobs (the ones that

can still be rejected). Our objective is to maximize total net profit, that is, the sum



56 Chapter 3 - Order acceptance and scheduling

of the revenues of the selected jobs minus applicable total-weighted-tardiness penalties
incurred for those jobs.

There are two decisions to be made: which jobs in F' to accept, and in which order
to process the selected subset. We call M the set of jobs selected for processing, so
F C M CN. If we let m =|M]| (m is the cardinality of M), the sequencing decisions
can be represented by a bijection m : {1,2,...,m} — M, where 7(t) is the job in
position ¢ in the sequence. Each such bijection is in one-to-one correspondence with a

total order on set M. The objective is thus
nlax Z Qr(t) = Wr(t)(Crrry — dr(r) ™ (3.1)
’ t=1

where C; is the completion time of job i, i.e. C; = Zf:_ll(l) Pr(t), and sT = max{s, 0}.
In the remainder of this chapter, we refer to (3.1) as either the objective function or
the problem formulation; there will be little danger of confusion.

When N = F, all jobs are mandatory and the problem reduces to the single-machine
total-weighted-tardiness scheduling problem 1|| Y w;T; (Pan and Shi, 2007; Potts and
Van Wassenhove, 1985; Tanaka et al., 2009). When N = F, on the other hand, the
problem is equivalent to the order acceptance problem with weighted-tardiness penalties
discussed in (Rom and Slotnick, 2009; Slotnick and Morton, 2007), which is akin to a
number of other recently examined optimization problems, as discussed in the literature
review. This problem contains the scheduling problem; it is therefore strongly NP-hard.
The branch-and-bound procedure in (Slotnick and Morton, 2007) only solves relatively
small problem instances (at most ten jobs) and is primarily used as a benchmark for
evaluating the performance of heuristics.

We mention that although our problem generalizes the order acceptance problem
with weighted-tardiness penalties problem (F = (}), the opposite also holds. In fact,
given an instance of problem (3.1) we simply assign sufficiently large revenues to jobs

in F' to make them “non-removable” (see page 63 for the definition).

3.4 Non-approximability and linear formulations

In this section, we first show that it is unlikely that a constant-factor approximation
algorithm can be developed for solving the problem (3.1); subsequently, we present two

mixed-integer linear formulations of (3.1), which can be solved using a MIP-solver.
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3.4.1 Non-approximability

The next result shows that (3.1) is difficult to solve even approximately. We prove
this non-approximability result by showing that any polynomial-time constant-factor
approximation algorithm for solving (3.1) can be used to solve the following variant of

Partition (see also page 18):

INSTANCE: A finite set A = {1,2,...,2q} (where ¢ is an integer greater than 0)
with size s(i) € ZT for each i € A, and K = 3>, 4 5(i).
QUESTION: Does there exist a subset A’ C A with [A'| =g and ), 4 s(i) = K7

Proposition 3.1. Unless P = NP, there is no polynomial-time algorithm that guar-

antees a constant-factor approzimation for solving the problem (3.1).

Proof. Suppose that there is a polynomial-time constant-factor approximation algo-
rithm for solving the problem (3.1). We build from every instance of Partition an
instance of (3.1) in polynomial time and we prove that by applying the approximation
algorithm to this instance of (3.1), if, on the one hand, the objective value is equal to 0
then the instance of Partition is a YES instance. If the value is not zero, on the other
hand, we conclude that the instance of Partition is a NO instance.

For a given arbitrary instance of Partition, consider the following polynomial re-
duction to an instance of (3.1) with n = 2¢ + 2 jobs. The set of firm-planned orders
F = {2q + 1,2¢ + 2} and we let § = 2K + 1. The properties of each job are the
following: for job i = 1,...,2¢ we have a revenue Q); = Js(i), the processing time
p; = 0 + s(i), the due date d; = g0 + K + 2 and the weight w; = s(i)(d + 1). For the
last two jobs, we have Q2441 = Q2442 = 9, P2g+1 = P2g+2 = 1, dag+1 = dog42 = 1 and
Wag1 = Wagt2 = 6(K + 2).

If the instance of Partition is a YES instance then an appropriate set A’ exists. We
consider the solution of our problem that selects the jobs in A" (jobs built from the
elements in A’) plus those in F' and executes them as follows. Job 2¢ + 1 is first, job
2q + 2 second and the jobs in A’ in any order thereafter. For this solution, the only
job delivered after its due date is job 2¢ + 2. The total revenue obtained from selected
jobs is K¢ for jobs built from the elements in A’ plus 20 received for job 2¢ + 1 and job
2q + 2. The latter job, however, is tardy by one time unit, for which we incur a cost
d(K + 2). Together, the objective value of this solution is K§ 4+ 20 — §(K + 2) = 0,

which can be seen to be the highest value possible for any feasible solution. Therefore,
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a constant-factor approximation algorithm will provide an optimal solution, from which
we can easily infer the elements of A’.
Conversely, if a constant-factor approximation algorithm leads to an objective value

different from 0, we conclude that the instance of Partition is a NO instance. O

Proposition 3.1 implies that while heuristics can be devised to produce solutions to
large instances of our problem, there is no guarantee that they will always attain at

least a specific proportion of the optimal objective value.

3.4.2 Linear formulations

We present an assignment formulation and a time-indexed formulation of our problem,

which can be solved using a MIP-solver.

Assignment formulation

This formulation uses a binary decision variable y; € {0,1} (¢ € N), which takes the
value 1 if job 7 is accepted and 0 otherwise. Notice that each job in F' must be accepted.

This constraint translates into:
yi=1, VieF. (3.2)

A second set of binary variables z;; € {0,1} (i € N, t € {1,...,n}) is used to identify
the position of the accepted jobs in the sequence of execution. The variable x;; is equal
to 1 if job i is accepted and is the t™ job processed, and to 0 otherwise. The following
set of equality constraints is imposed, stating that an accepted job is scheduled at

exactly one position, while a rejected job is not put into any position:
n
yi:int, i=1,...,n. (3.3)
t=1

The set of constraints (3.3) allows the integrality constraints on the variable y; to be
replaced by 0 < y; < 1,2 = 1,...,n. The capacity constraints entail that a given
position can be attributed to at most one job; this is enforced by adding the following

set of constraints.

n
<l t=1,...,n (3.4)
=1
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To linearize the objective function (3.1), we introduce the binary variable z;; € {0,1}
(i,j € N, i # j), which is equal to 1 if both jobs i and j are accepted and job j is
executed before job ¢, otherwise z;; takes the value 0. Since both jobs i and j must be

accepted when zj; = 1, we have

We add the following set of constraints to enforce the fact that if job ¢ is accepted and

job j is processed before job ¢ (meaning that job j is also accepted) then zj; = 1:
S wmig+ Y mig <1z, djit=1...m i#j t#L (3.6)
q<t q=>t

To complete our formulation, we need a real variable T; > 0 representing the tardiness

of job i € N, satisfying

n
TiZijsz-pz‘yz‘—di, t=1,...,n. (3.7)
j=1
The objective is
n
maximize Z (Qiyi — wiT;) . (3.8)
i=1

We refer to the mixed-integer linear formulation given by the objective function (3.8)
and the constraints (3.2)—(3.7) as ASF. The following result shows that ASF is equiv-
alent to the problem as stated in (3.1).

Proposition 3.2. From any solution to ASF, we can infer a solution to the problem

(3.1) with the same objective value and vice versa.

Proof. =) Suppose that there is a solution y;, x4, z;; and T; to ASF. Consider M* =
{i € N :y; = 1}; it holds that FF C M*. Each job i € M* has a unique value ¢ that
represents its position, namely ¢ for which z;; = 1. The function 7* that orders the
jobs in M* according to increasing position is a bijection. The pair (M*, 7*) forms a
feasible solution to (3.1). Moreover, this solution has the same objective value as the
initial solution to ASF because it selects the same jobs and follows the same execution
sequence.

<) On the other hand, suppose that we have a solution (M, ) to (3.1), then take
xy = 1if i € M and 7(t) = i, otherwise set x;; = 0. We can easily infer y;, z;; and T;.

This solution is feasible and has the same objective value as (M, ). d
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The formulation ASF can be strengthened by adding the following inequalities:

n n
(Cuts) meﬂ Sint, t=1,...,n—1.
i=1 i=1

These inequalities remove empty positions between two consecutive jobs. We refer to
these inequalities as “cuts”, although a number of integer solutions to ASF are also
eliminated.

The following result states that we can relax the integrality constraints on the
variables zj; without harm. Let ASF " be the formulation ASF in which the domain
{0,1} of the variables zj; is replaced by [0, 1].

Proposition 3.3. In any optimal solution to ASF’ with non-zero processing times and

non-zero weights, each zj; € {0,1}.

Proof. Consider a given optimal solution y;, =, zj and T; to ASF’ and suppose that
there exists a variable zj+«;+ with 0 < 2+ < 1. Due to constraints (3.5), both job ¢*
and job j* are accepted (y+ = yj+ = 1) and constraints (3.3) imply that they are
executed at different positions. The constraints (3.6) and inequalities 0 < 2=+ < 1
imply that job i* is executed before job j* and thus z;j;+ = 1. Finally, constraints
(3.7) allow to see that the above solution, which executes job i* before job j* and has
0 < zj+» < 1, is dominated by the solution obtained by setting z;+; = 0 and therefore

is not optimal. O

Time-indexed formulation

This formulation is based on a discretization of the time horizon [0, H] into H one
unit-time buckets, where H = ).\ p; and the bucket ¢ is the time interval [t — 1,¢].
It has been applied to various single-machine scheduling problems; in particular with
the weighted-completion-time objective in (Van Den Akker et al., 2000), and to the
total-weighted-tardiness problem in (Bigras et al., 2008; Tanaka et al., 2009).

In our setting, the decision variables are the binary quantities z;; € {0,1} with
j=1...,nand t = 1,...,H — p; + 1, which equal 1 if job j is selected and its
execution starts in bucket ¢, and 0 otherwise. We let ¢j; = max{t + p; — d; — 1;0},

the tardiness of job j associated with the decision ;. The time-indexed formulation
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is given by:
n H-p;j+1
(TIF)  max > 2 (Q) — wjcs) (3.9)
j=1 t=1
H—p;+1
s.t. > oap=1 Vj e F, (3.10)
t=1
H-p;+1
> oap<i VjeF, (3.11)
t=1
n t
> w <1 t=1,..H, (3.12)
j=1s=t—p;+1
.’L‘th{O,l} j:1,...,n,t:1,...,H—pj+1.(3.13)

The set of constraints (3.10) specifies that each job j € F' is processed exactly once
while the constraints (3.11) state that each job j € F should be executed at most once.
The set of constraints (3.12) reflects the capacity constraints: it avoids the processing

of more than one job at the same time.

3.5 Implicit-enumeration algorithms

In this section, we present two branch-and-bound (B&B) algorithms for solving the
problem (3.1). These algorithms are inspired by the work of Slotnick and Morton
(1996, 2007). The first B&B algorithm is hierarchical, in that it performs selection
and scheduling separately. At each node of the branching tree, the B&B algorithm
developed by Potts and Van Wassenhove (1985) is used to schedule a set of selected
jobs. Notice that the recent Successive Sublimation Dynamic Programming (SSDP)
algorithm proposed by Tanaka et al. (2009) represents an attractive alternative. The
second B&B algorithm performs both selection and scheduling simultaneously. In what
follows, these two B&B algorithms are called two-phase and direct, respectively.

In the related literature, a two-phase algorithm is used only for the case of lateness
penalties as studied by Slotnick and Morton (1996) (where the scheduling problem is
easy; in fact after the selection process, the weighted shortest processing time (WSPT)
algorithm (Slotnick and Morton, 1996) is used to optimally schedule the accepted jobs),
although our algorithm gradually adds jobs while jobs are stepwise removed in (Slotnick
and Morton, 1996) while going down the search tree. Slotnick and Morton (2007) do
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refer to a pilot study in which they “consider all permutations of a given sequence”,
but this approach turns out to be impractical for all but a very small number of jobs.
In our implementations, the two-phase approach will prove to be at least as efficient as
the direct one.

A direct algorithm for solving the special case F' = () is proposed by Slotnick and
Morton (2007) in combination with an assignment-based upper bound. They do not
specify how the assignment problems are solved, however (reference is made only to
an “assignment algorithm”), and they also implement an approximate solution to the
assignment problems (Vogel’s approximation). In our implementations, we examine also
a lateness-based bound and an LP relaxation based bound next to an assignment bound,
and the latter is computed using a very efficient cost-scaling algorithm. Additionally,
our direct algorithm is augmented with a number of dominance rules borrowed from
the scheduling literature.

Optimal solutions are reported by Slotnick and Morton (2007) only for instances
with n = 10; the instances solved are unavailable from the authors because they are
generated “on the fly”. Additionally, it is underlined in (Slotnick and Morton, 2007)
that finding optimal solutions to 20-job problems is not “practical”. In our compu-
tational results reported in Section 3.6, we produce optimal solutions for instances
with up to 50 jobs. While the average reported computation time for solving ten-job
instances to optimality is 6154 seconds in (Slotnick and Morton, 2007), we solve similar-
size instances with F' = () in less than one second. These differences seem large enough
to justify the assertion that the computational improvements are not only due to a
different computer infrastructure.

We will use the same problem instance to illustrate the working of the two algo-
rithms. This instance has four jobs, one of which (job 2) has already been accepted, so
F = {2}. The properties of each job are given in Table 3.1. In the rest of this chap-
ter, we refer to this instance as Example 1. An optimal solution to Example 1 selects
M = {2,3,4} and executes job 4 first, followed by job 2 and finally job 3, yielding an
optimal objective value of 10. Note that a solution to the corresponding instance with
F = () will select the jobs 1, 3, 4 and achieve the value of 14 by executing job 4 first,
then job 1 and subsequently job 3.

3.5.1 Two-phase B&B algorithm

In this section, we describe in detail each step of the two-phase B&B algorithm.
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Table 3.1: Job properties for Example 1.

Job |1 2 3 4
Q: |5 4 5 7
wi |3 2 1 4
pi |2 3 2 2
di |4 4 3 2

Removable set

We wish to distinguish a set R of jobs for which we are certain that they are part of
each optimal solution, we call these jobs non-removable. By symbol R, we denote the
set of removable jobs: R = N \ R. Slotnick and Morton (2007) propose the following
procedure to identify R for the order acceptance problem with F' = (): given an optimal
sequence of all the jobs and given a job j, if removing job j from the sequence decreases
the net profit then j € R, otherwise j € R. The next result generalizes this procedure

to our problem.

Proposition 3.4. For a given instance of problem (3.1) and a removable set A for the
corresponding instance with F = (), the set R of removable jobs of our problem is given

by R=A\F.

Proof. This follows from the reasoning given by Slotnick and Morton (2007) for the
total-weighted-lateness penalties and the fact that jobs in F' must be selected. O

Let us assume from now on that the jobs in R are labelled Ji,...,J|g|, where |R|
is the cardinality of R and J; < J;j41 for i = 1,...,|R| — 1. For Example 1, we obtain
R={1,3} and R = {2,4}.

Branching strategy

Figure 3.1 depicts the branching tree explored by the two-phase B&B algorithm for
solving Example 1. The top node (node 1) in Figure 3.1 corresponds to the decision
where all the jobs in R = {2,4} are accepted and the other ones rejected. Solving
the total-weighted-tardiness scheduling problem with the selected jobs (the optimal
solution schedules job 4 first and job 2 second), leads to a tardiness cost of 2. This

value is subtracted from the revenue of Q3 + Q@4 = 11 collected, resulting in a lower
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Level O
LB =9

UB, =14
UB, =14

node 1

Level 1 node?2

Figure 3.1: [llustration of the two-phase BEB algorithm for solving Example 1. Op-
timal solutions are obtained at node 2 and node 3. Inside each node u, the set M, of
selected jobs is described. The assignment bound and lateness bound are both 13 at the

root node.

bound (LB) of 9 at node 1. Three upper-bound (UB) procedures are implemented.
The first procedure obtains an upper bound U B; by solving an assignment problem,
the second upper bound UB- is the optimal objective value of an order acceptance
problem with weighted lateness penalties while the last upper bound is the objective
value of the LP relaxation of the time-indexed formulation (TIF). More details on the

upper bounds are provided later on page 65.

Starting from level 0, each node u at each subsequent level of the search tree rep-
resents a new set of selected jobs obtained by adding an extra job from R to the set of
jobs selected at the parent node. For example, at node 2 in Figure 3.1 where three jobs
are selected, job 1 is added to the set of jobs {2,4} selected at the parent node (node 1).
Consequently, at level k& a node corresponds to a set of |R| 4+ k jobs selected. To avoid
repetition (having two nodes in the branching tree with the same set of selected jobs),
a job J; in R is added at a child node if and only if J; > J,, with J, the job added at
the parent node. To illustrate this in Figure 3.1, consider node 3 where job 3 is added.
One might expect the tree to include a child node of node 3 with selection {1, 2, 3,4},
but because 1 < 3 this child node is not considered. Notice that the use of the above
criterion may yield a strongly unbalanced branching tree and that we do not compute

UBs for nodes that are certainly leaves of the tree. In Figure 3.1, node 3 is a leaf node
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because it selects job 3, the job with the highest index in R. Node 2 is a leaf node
because the LB of 10 is already equal to the UBs, and the potential child node with

selection {1,2,3,4} is therefore not entered.

Node selection

We explore the branching tree in a best-first search (BFS) manner. During the search,
a list of unfathomed nodes is kept in non-increasing order of their UB. The first node in
the list is the next node to investigate. When a new node is created, the list is updated
by inserting that node at the appropriate position such that the non-increasing-UB

order is preserved.

Scheduling algorithm and lower bound

In each node u, we have a set M, of selected jobs, which contains the firm-planned
orders, that is F' C M,. Therefore, each set M, together with any execution sequence
for the jobs in M, constitutes a feasible solution to our problem. We use the B&B
algorithm developed by Potts and Van Wassenhove (1985) to optimally schedule the
jobs in M, to minimize the total-weighted tardiness. The objective value of the solution
obtained at node u is the total revenue ), a, Qi from the accepted jobs minus the
tardiness costs provided by Potts and Van Wassenhove’s algorithm. This value is a LB

of the optimal objective value of our problem.

Upper bound

At node u, an UB is computed only if node u is not a leaf node. We have imple-
mented three UBs. The first one is obtained by solving an assignment problem; this
bound generalizes a similar bound used by Slotnick and Morton (2007). The second
bound is the optimal objective value of an order acceptance and scheduling problem
with weighted-lateness penalties and the last bound is the objective value of the LP

relaxation of TIF.

Assignment bound In the computation of this UB, we relax the implicit non-
preemption constraint on the jobs. Each job is divided into joblets with a duration
of one time unit, and these joblets are then scheduled independently of each other.
The resulting scheduling problem is solved by an assignment problem that assigns

joblets to unit-duration time buckets. At node u, we include dummy joblets and
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dummy positions to allow for the rejection of joblets stemming from jobs not
in M,.

Consider a node u at level £ of the search tree and let J, be the last job added;
it holds that z > ¢. The set S, = N\ ({J1,...,J.} \ M,) contains the jobs that
remain eligible for selection in the descendant nodes of node u (and some of them
have already been selected with certainty); let K = ;¢ p;. We associate with
the allocation of any joblet of a job in M, to a time instant larger than K a
very large negative cost in the assignment problem, while the assignment of any
joblet of jobs not in M, to a time instant larger than K and the assignment of
any dummy joblet corresponds with zero cost. A non-dummy joblet assigned to
a time bucket with index lower than or equal to K corresponds with acceptance
of that joblet; the contribution of such a combination to the objective function
is determined based on the per-joblet reward, weight and due date. The per-
joblet reward and weight are obtained by dividing the original job’s reward and
weight by the job’s processing time; the due date of a joblet is a function of the
position of the joblet (within the job) and the job’s due date (Rom and Slotnick,
2009; Slotnick and Morton, 2007). The assignment problem is solved using a
cost-scaling algorithm (Ahuja et al., 1993; Goldberg and Kennedy, 1995) and the

optimal value constitutes an UB.

Lateness bound In an arbitrary node u of the search tree, the total net profit is
[M]

max Z Q7r Wr( Tr(t) dﬂ(t))+7

My CMCNy,m

where N, = N\ {j; € R: J; < J, and J; ¢ M,}, with J,, the last job accepted.
We replace the tardiness penalties by lateness penalties; jobs can then also receive
a reward for being early. We obtain the following problem:

|M]

max Z Qnr(t) — Wr(t)(Cr(r) — drr))-

MyCMCNy,m

This latter problem is a generahzatlon of the job selection and sequencing prob-
lem with weighted-lateness penalties (Ghosh, 1997; Slotnick and Morton, 1996).
The generalization resides in the fact that a specific subset of jobs (namely M,,)
is necessarily selected. The pseudo-polynomial-time dynamic-programming algo-
rithm proposed by Ghosh (1997) is easily modified to solve this problem. The

optimal objective value provides an UB for our problem.
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LP relaxation bound This bound is the optimal value of the LP relaxation of TIF
where for each job j € M, \ F, the sense of the corresponding constraint (3.11)

is changed into equality.

It turns out, from empirical observations, that the assignment bound is virtually
always at least as strong as the lateness bound, but also computationally more expen-
sive. Similarly, the LP relaxation bound is at least as strong as the assignment bound,
but takes more time. In the working paper (Talla Nobibon et al., 2009), we investigate
two combinations of the first two UBs. The first combination computes an assignment
bound at the root node, while at all subsequent nodes a lateness bound is computed
first. If the lateness value is less than or equal to o times the UB of its parent node
(o €]0,1]) then an assignment bound is computed, in an attempt to prune the node.
The second combination is based on similar principles but « varies during the search,
by choosing its value as the number of jobs accepted at the parent node divided by
the number of jobs accepted at the child node. The use of these two combinations
in the implementation of the B&B, however, did not improve the CPU time achieved
by the initial upper bounds, and we will not report the computational results of these

implementations in Section 3.6.

3.5.2 Direct B&B algorithm

The main steps of the direct B&B algorithm are described in this section.

Branching strategy

Figure 3.2 depicts the search tree explored by the direct B&B algorithm when applied
to Example 1. Optimal solutions are found in node 9 and node 10. The root node
(node 1) represents the situation where no job has been accepted yet. The LB of 4
corresponds with the value achieved by the solution that selects all the jobs in F' and
executes them in increasing order of job index (in this case, it is only job 2). The
UB reported in Figure 3.2 is an assignment bound; for more details, see page 69. At
level 1 of the search tree, n new nodes are created representing n (possibly partial)
solutions, each generated by selecting one job and scheduling it at the first position.
In Figure 3.2, these are node 2, which selects job 1 (whence the entry ‘1’ inside the
node), node 3, which selects job 2, and similarly up to node 5. Given a parent node
at level Kk —1 (k > 1), we create n — k + 1 child nodes each with k jobs selected with
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Level O

Level 1
LB =7

UB, =8
Level 2

Level 3

Figure 3.2: lllustration of the direct BE&B algorithm with lateness bound UBs for
solving Example 1. Inside each node, the corresponding (possibly partial) solution is

represented as a sequence of job indices.

known position: the job added at level k is the k" job processed. Node 5, for instance,
has three child nodes (nodes 6, 7 and 8), each of which selects one additional job to
be executed immediately after job 4. At node 6, for example, job 1 is selected and the
text ‘41’ in the node means that job 4 comes first, followed by job 1. In the same way

as in the two-phase algorithm, the branching tree is explored in a BFS manner.

Lower bound

At a given node u of the branching tree, let M,, C N be the set of selected jobs and
V., the return (net profit) obtained from the selection of jobs in M, and the sequencing

decisions inherent in node u. Two cases can occur. Either

(1) F € M,, in which case V,, is a LB, or
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(2) F ¢ M,, and then V,, is not a LB at node u.

In the latter case, our LB is the objective value of the solution that selects the jobs in
F U M, and executes them following the sequence corresponding with node u for M,,

followed by the jobs in F'\ M, in increasing order of job index.

Upper bound

Both the assignment, the lateness bound as well as the LP relaxation bound presented
on page 65 for the two-phase algorithm only need minor modifications to be applicable
in the direct algorithm. We denote by M, the complement N \ M,. At node u, the
contribution to the objective function of the jobs in M, is known exactly; therefore,
only the contribution of potential jobs in M, needs to be bounded. Because the |M,|
selected jobs are scheduled at the first |M,,| positions, the due date of each job in M,
is updated accordingly by subtracting ) ;. 1, Pis we refer to these new values as d; for
i€ M,.
Assignment bound This UB is similar to the one presented in (Slotnick and Morton,
2007), apart from the updated due dates. The sum of V,, and the optimal objective

value of the assignment problem yields an UB.

Lateness bound At node u, the unscheduled jobs can achieve a net profit of

|M]|
_ C n—d- )T <
MEIJ%I)E,W ;Qw(t) ww(t)( w(t) W(t)) =

where F'\ M,, C M. The value A + V,, is an UB.

LP relaxation bound At node u, the LP relaxation of the restricted TIF formulation
including only jobs in M, with updated due date is solved. The optimal value

added to V,, constitute an upper bound.

In addition to the two UB-combinations mentioned for the two-phase B&B, two
more combinations have been investigated in (Talla Nobibon et al., 2009) for the direct
B&B algorithm. One computes the assignment bound at the root node, while a lateness

bound is computed first at subsequent nodes. If the value of the LB at that node is less
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than or equal to a €]0, 1] times the LB of its parent node then an assignment bound
is also computed, in an attempt to prune the node. The second combination follows
the same idea but puts « equal to the number of jobs accepted at the parent node
divided by the number of jobs accepted at the current node. More details on these
combinations and the resulting computational results can be found in (Talla Nobibon
et al., 2009).

Dominance rules

Below, we outline some global and local dominance rules that are used as pruning
devices for the direct B&B algorithm.

Global dominance rules The global dominance rules presented below generalize
Emmons’ rules (Bigras et al., 2008; Emmons, 1969; Rinnooy Kan et al., 1975).
The goal of these rules is to identify for each job j a set B; containing jobs that,
if selected together with job j, can be processed before job j, and Aj;, a set of
jobs that, if selected together with job j, can be executed after job j. Let BJF be
the set of jobs in F' that must be processed before job j, and Af the set of jobs
in F' that must be processed after job j. Both BJF and Af are initially empty,

and the rules below are applied iteratively.

Lemma 3.5. If job i and job j are selected, then there is an optimal sequence in
which job i is processed before job j, if one of the following conditions holds:
Rule 1: p; < pj, w; > wj and d; < max{d;,p; + EheBJF Dh}-

Rule 2: w; > wj, d; < dj and dj +p; > ZheN\Af Dh.

Rule 3: dj > ZheN\Af Dh-

Proof. The proof of these three rules follows from the proof proposed by Rin-
nooy Kan et al. (1975). In fact, if job ¢ and job j are accepted then the set
of selected jobs contains F'U {i,j}. For the scheduling problem associated with
that set, Rule 1 corresponds to Corollary 1 in (Rinnooy Kan et al., 1975), Rule 2
corresponds to Corollary 2 and Rule 3 to Corollary 3. O

When F' = N, these three rules are exactly Emmons’ rules (Rinnooy Kan et al.,
1975) for the total-weighted-tardiness scheduling problem; Lemma 3.5 proposes

similar rules for the order acceptance problem. As for the scheduling problem,
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these three rules are used to construct a predecessor graph. Unlike the scheduling
problem, however, where each arc in the graph is unconditionally respected, here
a precedence relation imposing the execution of job i before job j is respected

only in the branches where both job ¢ and job j are accepted.

Once a number of precedence-related activity pairs have been distinguished, ad-
ditional pairs can be transitively inferred. Our implementation of this transitivity
is slightly different from Rinnooy Kan et al. (1975) because, again, we need to
select jobs as well as schedule them. We distinguish between jobs in F' and those
in N\ F and proceed as follows. Whenever we identify a new dominant decision
of the form ‘job j precedes job k’, we consider two possible cases:

Case 1: If job j € F then we ensure that job k and each successor of k is processed
after job j and any of its predecessors.

Case 2: If job k € F then we enforce that job j and each predecessor of j is

executed before job k£ and any of its successors.

Local dominance rules At each node of the branching tree, we use two local dom-
inance rules as pruning devices. The following lemma presents the selection cri-
terion. At node u, let J,, be the last job selected and scheduled at position |M,|

and t,, the start time of the execution of job J,.

Lemma 3.6. At a given node u of the branching tree, consider j € M, \ F. If
Qj—wji(tyu+py, +pj—dj) <0 then the child node of u in which job j is scheduled

at position |M,| + 1 can be pruned without losing all optimal solutions.

Proof. In the best case, selecting job j can lead to a net profit equal to the optimal

net profit obtained when job j is not selected. O

The rule defined by Lemma 3.6 is an adaptation of the adjacent-job interchange
rule. Consider a child node of node u where a job j is appended to the schedule.
If it is possible to execute j before J,, and still accept (and execute) J,, thereafter,
and if the profit obtained by putting j before J, is larger than that obtained

when J, is executed before j, then that child node is not considered.
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3.6 Computational experiments

All algorithms have been coded in C using Visual Studio C++ 2005; all the experiments
were run on a Dell Optiplex GX 620 personal computer with Pentium R processor with
2.8 GHz clock speed and 1.49 GB RAM, equipped with Windows XP. CPLEX 10.2
was used for solving the linear formulations. Below, we first provide some details on

the generation of the data sets, followed by a discussion of the computational results.

3.6.1 Data generation

The algorithms are tested on randomly generated instances with n jobs, for n = 10,
20, 30, 40 and 50. For each job i, an integer processing time p; and an integer weight
w; are drawn from the discrete uniform distribution on [1,10].

In the choice of the job parameters, we follow Potts and Van Wassenhove (1985)
and consider multiple values for the relative range r of the due dates and for the average
tardiness factor 1. The values chosen for r are 0.3, 0.6 and 0.9; the same values apply
for T. For given values of r and T and with P = )" | p;, for each job ¢ we draw an
integer due date d; from the uniform distribution with support the set of integers in
the interval [max{P(1 —T — %), p;}, max{P(1 —= T+ %) — 1,p;}]. In this way, we avoid
the creation of instances in which jobs might be processed last without being late, if all
jobs are executed. Each job revenue (J; is an observation of a lognormal distribution
with an underlying normal distribution with mean 0 and standard deviation 1, rounded
to the nearest integer. This reflects a situation in which job characteristics are fairly
similar but where the potential revenue of a job may vary widely (Slotnick and Morton,
1996, 2007).

For every value of n and for each of the nine pairs of values of r and T', one instance
is generated. These instances are subsequently modified by randomly choosing the
firm-planned orders out of the n jobs, as follows. Two extreme cases considered are
|F| = 0 and |F| = n; intermediate choices for |F| are 0.2n, 0.4n, 0.6n and 0.8n. For
each of the latter values for |F|, two different sets F' are set up, and we ensure that
each smaller set F' is embedded in the larger F' of another instance. This means, for
example, that for a given instance with a set F of firm-planned orders with |Fy| = 0.2n,
there exists an instance with a set of firm-planned orders F, with |F5| = 0.4n such that
Fy C F;. For a given value of n, we have 9 x (24 2 x 4) = 90 test instances, yielding
5 x 90 = 450 instances in total.
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In order to study the effect of the size of the processing times on algorithmic per-
formance, we have also generated a set of 90 instances with n = 10 jobs each, following
the methodology described above but with larger processing times: the p; are generated

from the discrete uniform distribution on [10, 100].

3.6.2 Computational results

In this section, computation time is referred to as Time and is expressed in seconds;
Nodes is the number of nodes explored in the search tree of the considered algorithm.
Each cell in the tables appearing in this section is (unless mentioned otherwise) the
average of either nine values (corresponding to the cells with |F'| equal to 100%n and
0%n) or 18 values (corresponding to the cells with 80%mn, 60%n, 40%n and 20%n).
Some tables contain rows entitled Unsolved, which indicate the number of instances of

each group that remained unsolved when the time limit was reached.

Size n =10

Table 3.2 displays the results of the mixed-integer linear formulations for the data set
with n = 10 and processing times between 1 and 10. The table shows that using
the time-indexed formulation (TIF), CPLEX solves all instances within a fraction of a
second (at most 0.08 seconds). Most solutions are obtained at the root node of the LP-
based branching tree, which can also be seen by the entry ‘0’ in the cells corresponding
to 100%, 80%, 40% and 0% in the row entitled ‘Nodes’. TIF dominates the other linear
formulations: it reports both the lowest average CPU time and explores the lowest

number of nodes. As for the other formulations, we observe that ASF’ dominates

Table 3.2: Linear formulations for n = 10 with small processing times.

Firm-planned orders 100% 80% 60% 40% 20% 0%
Nodes | 96680 (2) | 120075 97140 48417 59467 51417

ASF+Cuts -
Time 505.58 | 657.61 | 548.21 | 342.52 | 401.73 | 378.15
ASF’ Nodes 17870 17920 21137 14935 15256 19118
Time 123.46 91.28 97.30 70.97 78.40 | 118.30
, Nodes 30556 10058 16110 7339 6315 6989

ASF’+Cuts -
Time 194.94 99.89 | 107.67 61.06 52.42 54.39
Nodes 0 0 7 0 1 0

TIF

Time 0.05 0.07 0.07 0.08 0.07 0.07
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ASF+Cuts, which is the formulation ASF with the addition of cuts. On average,
CPLEX solves ASF’ faster than ASF’+Cuts for instances with at least 60% of firm-
planned orders, but the reverse is true when |F| < 40%: the benefits of the cuts are
more pronounced when the cardinality of F' is small. With the addition of cuts to ASF
(ASF+Cuts), there are two instances with 100% of firm-planned orders that CPLEX
is not able to solve within the time limit of one hour, which is indicated by the number

2 between brackets after the number of nodes explored.

Table 3.3: BB algorithms for n = 10 with small processing times.

Firm-planned orders 100% | 80% | 60% | 40% | 20% | 0%
. Nodes 0 1 4 12 20 39
assign. -
Time 0.00 | 0.02 | 0.05 | 0.13 | 0.21 | 0.41
Nodes 0 2 10 34 | 125 | 442
two-phase | lateness -
Time 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04
Nodes 0 1 4 10 17 26
LP-TIF
Time 0.03 | 0.04 | 0.04 | 0.05 | 0.07 | 0.12
. Nodes 61 33 31 38 45 84
assign. -
Time 0.23 | 0.16 | 0.21 | 0.32 | 0.39 | 0.59
. Nodes 58 56 82 138 | 267 | 579
direct | lateness -
Time 0.00 | 0.00 | 0.01 | 0.02 | 0.05 | 0.13
Nodes 36 24 34 33 43 56
LP-TIF
Time 0.09 | 0.09 | 0.12 | 0.14 | 0.19 | 0.31

Table 3.3 reports on the B&B algorithms applied to the data set with n = 10 and
small processing times, including the three UBs. The assignment bound is identified by
assign., the lateness bound by lateness while LP-TIF refers to the implementation using
the LP relaxation bound. All settings lead to a solution in less than one second on
average by each of the B&B algorithms, with a maximum of 0.59 seconds reported for
the direct B&B with assignment bound on instances with F' = (). Both B&B algorithms
are faster when implemented with the lateness bound than when used with either the
assignment bound or the LP relaxation bound — this will no longer be the case for
larger values of n. Although both the assignment bound and LP relaxation bound are
tighter than the lateness bound and reduce the average number of nodes investigated
by the B&B algorithm, for n = 10 this does usually not lead to a lower running time.
For n = 10 and small processing times, the two-phase algorithm with lateness bound

is the fastest of the six B&B algorithms, and it is also faster on average than the linear
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Table 3.4: Linear formulations for n = 10 with large processing times.

Firm-planned orders 100% 80% 60% 40% 20% 0%
Unsolved — — - - - -

ASF’ Nodes 23875 20054 31021 36362 58677 | 48539
Time | 214.50 88.88 | 105.12 | 141.57 | 202.97 | 179.38

Unsolved — — — — — —

ASF'+Cuts Nodes | 39134 9699 9192 | 11663 7064 | 13548

Time | 284.14 78.53 78.13 75.12 66.41 | 124.38
Unsolved — 1 2 3 3 1
TIF Nodes 0 2585 1033 3202 1348 1395
Time 7.08 | 228.04 54.03 38.06 15.74 27.38

formulation TTF. On the other hand, the B&B algorithm with the LP relaxation bound
is usually faster than the same algorithm implemented with the assignment bound.
Next, we study the effect of the processing times on the algorithms. Table 3.4
contains the main results of the two linear formulations when processing times range
from 10 to 100. In this table, we do not include the formulation ASF+4Cuts since this
setting is dominated by the formulation ASF’ (see Table 3.2). The number of variables
of the formulation TIF is strongly dependent on the size of the processing times, and
this obviously impacts the formulation’s computational performance: the average CPU
time rises from at most 0.08 seconds for small processing times to up to 228 seconds
for large durations. Additionally, there are ten instances that CPLEX is unable to
solve within the time limit of one hour, and an exploration of only the root node of the
search tree is usually not sufficient anymore, except when F' = N. The formulations
ASF’ and ASF’+Cuts, on the other hand, solve all instances within a timespan of less
than three times the average time reported for the instances with small job durations.
Table 3.5 displays the results of the B&B algorithms for n = 10 with large processing
times. The algorithms with lateness bound are only little affected by the size of the
processing times, while the assignment bound and the LP relaxation bound turn out
to be very sensitive. This observation is intuitive: both the number of objects to be
matched in the assignment instances and the size of TIF are proportional to the order of
magnitude of the durations. The maximum CPU time is now some 40 (resp. 5) seconds
for the two-phase B&B with assignment (resp. LP relaxation) bound and around 41
(resp. 17) seconds for the direct B&B with assignment (resp. LP relaxation) bound,
compared to 0.41 (resp. 0.13) and 0.59 (resp. 0.31) seconds when p; € [1,10]. The two-



76 Chapter 3 - Order acceptance and scheduling

Table 3.5: B&B algorithms for n = 10 with large processing times.

Firm-planned orders 100% | 80% | 60% | 40% | 20% 0%
. Nodes 0 1 3 9 25 53
assign. -
Time 0.00 1.54 3.93 8.13 | 18.79 | 40.59
Nodes 0 2 10 44 178 722
two-phase | lateness -
Time 0.00 0.01 0.01 0.02 0.03 0.08
Nodes 0 1 2 4 19 31
LP-TIF
Time 0.14 0.84 0.95 1.67 3.90 5.31
. Nodes 67 31 25 34 52 93
assign. -
Time | 13.87 8.88 | 10.45 | 15.46 | 24.57 | 41.17
. Nodes 53 55 87 155 259 536
direct | lateness -
Time 0.00 0.01 0.01 0.03 0.07 0.20
Nodes 24 30 64 75 43 79
LP-TIF
Time 8.32 | 10.20 | 12.42 | 15.71 | 11.94 | 17.27

phase B&B with lateness bound reports the smallest average CPU times in Table 3.5,
and these times are also smaller than those for the linear formulations, making the
two-phase B&B with lateness bound the most efficient exact algorithm for solving any
ten-job instance.

The range of the job durations tested by Slotnick and Morton (2007) is unclear
(they are “adjusted by a constant”). Although our results do not pertain to the same
instances nor to the same computer as Slotnick and Morton, the differences in running
times seem large enough to justify the assertion that the computational improvements
are not only due to a different computer infrastructure: while the average reported
computation time for solving ten-job instances to optimality is 6154 seconds in (Slotnick

and Morton, 2007), we solve similar-size instances with F' = () in less than one second.

Size n = 20

Table 3.6 displays the results of the time-indexed formulation and the B&B algorithms
for the instances with n = 20. Using TIF, CPLEX is unable to solve four instances
(two for 80% and two for 60%) within the time limit of two hours, and solutions are
no longer found at the root node (contrary to Table 3.2). The two-phase B&B solves
all instances, regardless of the UB used. The best running times are obtained by the
lateness bound when the proportion of firm-planned orders is greater than or equal
to 40%, and by the assignment bound otherwise. This observation differs from our

analysis for n = 10, where the lateness bound was unconditionally recommended.
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Table 3.6: Results for n = 20 with exact algorithms.

Firm-planned orders 100% | 80% 60% 40% 20% 0%
Unsolved — 2 2 — — -

TIF Nodes 14 | 9255 | 19288 | 192019 4129 1677

Time 0.54 | 19.45 | 27.11 | 703.54 6.25 4.21

Unsolved - - — — — —

assign. Nodes 0 5 20 70 140 315

Time 0.00 0.23 0.90 3.11 6.39 13.32

Unsolved — — — — — -

two-phase | lateness Nodes 0 13 162 2461 35565 | 471566
Time 0.00 0.02 0.16 1.39 12.87 208.35

Unsolved — — — — — —

LP-TIF Nodes 0 4 17 67 137 265

Time 0.04 0.09 0.30 3.16 36.59 78.48

Unsolved — — — — - —

assign. Nodes 182 412 249 621 1446 2948

direct Time 2.60 4.52 6.12 15.52 34.63 65.66
Unsolved — — - - 2 5

lateness Nodes 1138 | 3412 | 11028 64553 | 416139 | 904924

Time 0.01 0.43 2.98 40.42 | 1346.03 | 2332.84

Unsolved — — - — — -

LP-TIF Nodes 151 327 321 508 1159 2586

Time 5.05 | 23.36 | 57.13 | 208.04 | 1157.91 | 1875.67

This might be explained by the fact that for n = 20, the potential size of the branching
tree increases when the cardinality of F' decreases and that therefore, the time spent
in computing the assignment bound is compensated by the extra nodes pruned. On
the other hand, the use of the LP relaxation bound usually prunes more nodes but the
overall running time is larger than the overall running time of the algorithm with the
assignment bound for instances with proportion of firm-planned orders greater than
or equal to 40%. This implies that although the LP relaxation bound is the tightest

bound, it is substantially more expensive to compute than the other bounds.

The direct B&B algorithm solves all instances with both the assignment bound and
the LP relaxation bound, and all but seven of the 90 instances with the lateness bound.
The best performance for large F' is again associated with the lateness bound, while the
assignment bound is preferable for a low number of firm-planned orders. In both cases,

the two-phase algorithm is more efficient and is therefore recommended as the fastest
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Table 3.7: Results for n = 30 with exact algorithms.

Firm-planned orders 100% 80% 60% 40% 20% 0%
Unsolved — 2 2 2 - 1

TIF Node 5 1334 4486 3223 4855 25063

Time 2.44 14.99 26.43 15.90 25.21 115.33

Unsolved - — — — — —

assign. Nodes 0 7 61 174 765 1385

Time 0.30 1.06 5.40 16.66 72.83 128.60

Unsolved - - - - 8 7

two-phase | lateness Nodes 0 33 1742 98302 | 416965 0
Time 0.30 2.43 21.60 585.66 | 560.51 0.00

Unsolved — — — — 4 5

LP-TIF Nodes 0 8 124 392 1015 1651

Time 0.45 1.51 13.51 195.20 | 375.29 315.22

Unsolved - - - 3 3 2

assign. Nodes | 14279 9807 9907 5441 13441 6146

Time | 408.47 | 192.93 | 166.30 149.44 | 336.47 300.42

Unsolved - - 3 11 15 7

direct | lateness Nodes | 15088 | 89888 | 192703 | 516127 | 267993 | 257571
Time 0.50 | 132.66 | 293.13 | 1207.88 | 619.58 | 1055.19

Unsolved — — — 4 8 6

LP-TIF Nodes 1585 7926 9392 6191 19582 5795

Time | 180.99 | 222.73 | 184.76 208.15 | 590.36 839.97

exact algorithm for solving 20-job instances, although TIF is competitive, especially

for the case where all jobs can still be rejected.

Size n = 30,40 and 50

The results of the exact algorithms for n = 30 are reported in Table 3.7. The time
limit is again two hours. The number of unsolved instances by TIF increases from four
in Table 3.6 to seven. With the assignment bound, the two-phase B&B solves all the
instances, while the direct B&B is not able to solve eight instances within the time
limit. With the lateness bound, on the other hand, the two-phase B&B cannot solve
15 instances while the direct B&B fails to solve 36 instances within the time limit.
Implemented with LP relaxation bound, the two-phase B&B algorithm is unable to
solve nine instances while the direct B&B algorithm fails to solve 17 instances within

the time limit. We conjecture that for n = 30, the branching tree becomes large enough
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to fully warrant a time-consuming but strong bound. Although the LP relaxation bound
is at least as strong as the assignment bound, it usually take more time to be computed.

Overall, taking into account both the running times and the unsolved instances, we
conclude that the two-phase B&B with assignment bound is the best exact algorithm
for n = 30.

Table 3.8: Results for n = 40 and n = 50.

Firm-planned orders | 100% | 80% | 60% | 40% |  20% 0%
40 jobs
TIF Unsolved - 6 4 6 5 1
Time 7.73 | 169.24 | 222.80 | 122.98 320.44 182.19
Unsolved — — — — — —
two-phase -
Time 8.96 | 105.01 | 107.87 | 178.76 290.79 533.76
50 jobs
Unsolved - - — - 1 -
two-phase -
Time | 24.51 | 345.38 | 379.71 | 878.53 | 1334.96 | 2091.59

In Table 3.8, the results for the two-phase B&B algorithm with the assignment
bound and the TIF formulation are reported (for the latter only for n = 40). Again,
a two-hour time limit is applied. For n = 40, the two-phase B&B solves all instances,
while the linear formulation TTF leaves up to six out of 18 unsolved for some settings.
When n = 50, the two-phase B&B algorithm solves all but one of the instances to

guaranteed optimality within two hours.

3.7 Summary and conclusions

In this chapter, we have studied a generalization of the order acceptance problem with
weighted-tardiness penalties, considering both firm-planned orders as well as potential
orders, where the latter are orders that can still be rejected. We show that it is unlikely
that a constant-factor approximation algorithm can be developed for this problem.
We have presented two mixed-integer linear formulations, the first of which is rather
intuitive, the second is a time-indexed formulation. Our results indicate that the MIP
solver of CPLEX solves the latter formulation faster than the former one, even with
the addition of cuts, when the processing time of each job is relatively small. In case
of larger processing times, the two formulations appear to be competitive with each

other, although the time-indexed model is frequently still the fastest.
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We have also developed two B&B algorithms for finding optimal solutions. The first
algorithm (a ‘two-phase’ algorithm) is hierarchical and performs selection and schedul-
ing separately, while the second one (a ‘direct’ algorithm) integrates these two decisions.
Three upper-bound procedures have been implemented, one based on an assignment
problem, one that uses a job selection problem with weighted-lateness penalties and
one based on the LP relaxation of the time-indexed formulation. Our experimental
results demonstrate the efficiency of these two algorithms; the two-phase algorithm
comes out best overall. For small instances (with a low number of jobs), the lateness
bound leads to the fastest implementation; the full benefit of the computationally more
expensive bound is achieved for instances with more than 20 jobs. For large instances,
the two-phase B&B algorithm with assignment bound generally dominates the other
exact algorithms and produces optimal solutions for instances with up to 50 jobs in less
than two hours.

An important research direction that might be pursued in the future is an exten-
sion of this work to on-line scheduling, where not all jobs are available at the beginning
of the planning horizon but arrive dynamically throughout time. A second obvious
extension that deserves attention is the case where the manufacturing capacity is in-
adequately modeled as a single machine, so that multiple parallel machines or a more
general scheduling environment should be considered. The extension of the Successive
Sublimation Dynamic Programming method to solve our problem is also an interesting
issue to pursue. For the long term, we may study a robust approach of our problem
where the processing time of each job is not known exactly but rather takes its value
either in a finite discrete set or in an interval. Further, we may investigate the existence
of pseudo-polynomial time algorithms for a special case of our problem where there are

deadlines instead of due dates.
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Chapter 4

A Graph-based interpretation of the
Collective Axiom of Revealed

Preference

In this chapter, we propose a directed graph for testing whether observed data of
household consumption behavior satisfy the Collective Axiom of Revealed Preferences
(CARP). More precisely, the data sets satisfy CARP if the graph allows a vertex-
partitioning into two induced subgraphs that are acyclic. We prove that the problem of
checking whether the obtained graph can be partitioned into two acyclic subgraphs is
NP-complete. Next, we derive a necessary condition for CARP that can be verified in
polynomial time, and we present an example to show that our necessary and sufficient
conditions do not coincide. We also propose and implement fast heuristics for testing
the sufficient condition. These heuristics can be used to check reasonably large data
sets for CARP, and can be of particular interest when used prior to computationally
demanding approaches. Finally, based on computational results both on real-life data

and on synthetic data, we conclude that our heuristics are effective in testing CARP.

This chapter is the result of a collaboration with Laurens Cherchye, Bram De Rock, Jeroen Sabbe,
and Frits Spieksma and is available as: F. Talla Nobibon et al. Heuristics for deciding collectively
rational consumption behavior. Computational Economics, 2010, DOI 10.1007/s10614-010-9228-9.
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4.1 Introduction

The economics literature has paid notable attention to modeling household consump-
tion behavior. In this respect, Chiappori’s 1988; 1992 collective model of household
consumption has become increasingly popular in recent years. The model explicitly
recognizes that a household consists of multiple individuals (household members and/or
decision makers) with their own rational preferences. In this sense, this collective ap-
proach contrasts with the conventional unitary approach, which models households as
if they were single decision makers.

The distinguishing feature of the collective model is that it only assumes Pareto ef-
ficiency of the collective household decisions, i.e. the intra-household allocation process
yields consumption outcomes such that no household member can be made better off
without making another member worse off. The use of Pareto efficiency as the sole as-
sumption is in sharp contrast with usual cooperative models of household consumption
behavior, which typically combine multiple bargaining assumptions (see Lundberg and
Pollak, 2007, for a recent survey).

In this chapter, we concentrate on a general collective consumption model, which
accounts for consumption externalities and public consumption within the house-
hold Browning and Chiappori (1998); Donni (2008) provides a neat overview of al-
ternative collective consumption models. In the present context, public consumption
of a certain good, which must be distinguished from private consumption, means that
consumption of this good by one household member does not affect the supply available
for another household member, and no individual can be excluded from consuming it
(at least if one wants to maintain the household). Of course, some commodities may
be partly publicly consumed (e.g. car use for a family trip) and partly privately con-
sumed (e.g. car use for work). Next, consumption externalities refer to the fact that
one household member gets utility from another member’s consumption (e.g. the wife
enjoys her husband’s nice clothes).

The general collective model provides a useful starting point for testing Pareto effi-
ciency of household collective consumption decisions: a rejection of the corresponding
empirical restrictions can be interpreted as a rejection of the efficiency assumption.
Moreover, given that all cooperative models use Pareto efficiency as a basic assumption
and since it is also a natural benchmark in most non-cooperative settings, this test can
also serve as basic input for these models.

Cherchye, De Rock, and Vermeulen (2007, 2009b) propose a testable nonparamet-
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ric revealed preference condition for data consistency with the collective consumption
model. Throughout, nonparametric analysis stands for revealed preference analysis in
the tradition of, among others, Afriat (1967), Diewert (1973) and Varian (1982). Essen-
tially, nonparametric (revealed preference) conditions allow for testing data consistency
with a particular consumption model starting from a finite set of consumption obser-
vations, while avoiding the use of a (parametric) functional structure for the consump-
tion decision process. The condition proposed by Cherchye, De Rock, and Vermeulen
(2007, 2009b) (see Section 4.2) is known as the Collective Axiom of Revealed Prefer-
ences (CARP). CARP is a necessary and sufficient condition, i.e., observed household
consumption behavior is consistent with the collective consumption model if and only
if observed household consumption behavior satisfies CARP (Cherchye et al., 2009b).
Because it uses minimal prior structure, checking CARP consistency implies a “pure”
test of Pareto efficiency. Such a test can provide a most convincing case for the good-
ness of, in general, the Pareto efficiency assumption and, in particular, the collective

consumption model.

Essentially, CARP provides the collective counterpart of the unitary concept GARP
(Generalized Axiom of Revealed Preferences; see Section 4.2). The issue of testing data
consistency with GARP has attracted considerable attention in the literature on the
unitary model of household consumption; (see Cherchye et al., 2009a; Varian, 2006, for
a recent survey). This chapter complements this rich literature by focusing on testing

CARP.

More specifically, we consider in this chapter the computational issues involved in
checking CARP and we propose a graph-theoretical representation of the CARP condi-
tions. Following this approach, we derive a sufficient condition for CARP consistency,
of which verification is shown to be an NP-complete problem, and a necessary condition
for CARP consistency, which can be verified in polynomial time. Moreover, our graph-
theoretical approach allows us to propose and implement heuristics that quickly test
our sufficient condition for CARP. A consequence of attempting to test CARP quickly,
is that the outcome of a heuristic may be inconclusive, i.e., it is possible that after
running the heuristic it is still not clear whether the data satisfy CARP. By performing
computational experiments, however, we show that a vast majority of real-life instances
is susceptible to our approach. This leads us to conclude that heuristics are relevant
for testing CARP, particularly for large data sets; see Cherchye et al. (2008a) and Deb

(2008b) for recent discussions of the relevance of testing CARP for large instances.
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Our graph-theoretical approach complements recent work of Cherchye et al. (2008a),
who formulate the computational problem of verifying CARP as an Integer Program-
ming (IP) problem. These authors show practical usefulness of this IP test for empir-
ically evaluating the collective model. Using the MIP-solver of CPLEX, they perform
their test on real-life data sets that are of reasonably large size when compared to
existing nonparametric studies. It is well-known, however, that solving IP problems
with exact implicit enumeration methods is computationally demanding. The approach
presented in this chapter is particularly useful for (large) instances where Cherchye et
al.’s IP approach takes a long time, or is unable to decide whether or not consumption
behavior is collectively rational (see Section 4.5). In fact, even if the proposed heuristics
fail to directly decide CARP, their outputs can be used to reduced the size of the IP

to be solved, by fixing some variables.

In another study, Deb (2008b) proposes a different heuristic for testing the collective
model. This heuristic pertains to a condition for collective rationality which he shows
to be NP-complete. Yet, Deb’s collective rationality condition is sufficient but not
necessary for CARP; that is, data satisfying this condition satisfy CARP, but not
necessarily vice versa. We will show that our sufficient condition extends the condition
proposed by Deb. Specifically, all data sets that pass Deb’s test also pass our test, but

the opposite conclusion does not hold.

At a more general level, our analysis demonstrates the usefulness of operations
research techniques to implement nonparametric (revealed preference) conditions for
economic decision behavior. In fact, our insights on testing CARP consistency can also
be instrumental for designing operational tests in alternative settings. For instance,
they readily extend to the general case of multi-person group consumption. See Chi-
appori and Ekeland (2006, 2009) for discussion on the relevance of the collective model
within the context of group consumption. To ease our exposition, the theoretical dis-
cussion in the following sections focuses on two-person households. Generalizations for
M-member groups (M > 2) are fairly easy and can be obtained along the lines of Cher-
chye, De Rock, and Vermeulen (2007, supplemental material). The sufficient condition
as well as the heuristics derived in this chapter can easily be extended to deal with the
general case of M-member groups. Next, the nonparametric approach for analyzing
collective consumption behavior is closely related to the literature on testable non-
parametric conditions of general equilibrium models, which deals with formally similar

issues. See, for example, Brown and Matzkin (1996), Brown and Shannon (2000) and,
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for more recent developments, Carvajal, Ray, and Snyder (2004). Lastly, our results
for the collective consumption model can also be relevant for nonparametric produc-
tion analysis. See Cherchye, De Rock, and Vermeulen (2008b), who adopt a formally
similar collective model for analyzing economies of scope in the context of multi-output
production.

The rest of this chapter unfolds as follows. Section 4.2 defines collective rationality,
and the corresponding CARP condition. Section 4.3 introduces the graph formula-
tion, establishes a sufficient and a necessary condition for CARP. It also discusses the
complexity of testing these conditions. Section 4.4 presents the heuristics. Section 4.5

discusses the computational results. Section 4.6 concludes.

4.2 Rationality conditions

Household consumption behavior that is consistent with the collective consumption
model is said to be collectively rational. The empirical condition for collective ratio-
nality requires that a collective rationalization is possible, i.e. the data can be made
consistent with the collective consumption model. As indicated above, a collective ra-
tionalization of the data is possible if and only if the data are consistent with CARP.
This section provides formal definitions of the different concepts of rationalization.
We first present a preliminary discussion of unitary rationality and the corresponding
Generalized Axiom of Revealed Preference (GARP). This will set the stage for our

subsequent discussion of the collective model.

4.2.1 Unitary rationality and GARP

Suppose we observe T' individual choices of N-valued bundles. For each observation ¢
the vector ¢; € Rf (with non-negative components) records the chosen quantities under
the prices p; € Rf_,_ (with strictly positive components). We let S = {(p;, q;);t € T =
{1,...,T}} be the corresponding set of T" observations, also referred to as the data.
For ease of exposition, the scalar product p; - ¢; is written as p.g;.

We recall that the unitary model assumes that the household behaves as a single de-
cision maker, i.e. the observed household quantities maximize a well-behaved household
utility function U subject to the household budget constraint. In the context of the uni-
tary model, well-behavedness means that the utility functions are locally non-satiated;

see, for example, Varian (1982). In the context of the collective model, it means that
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utility functions satisfy local collective non-satiation; this is the collective consumption
analogue of the standard local non-satiation concept for the unitary model (for more
discussion, see Cherchye et al., 2009b). We obtain the following condition for household

behavior to be consistent with the unitary model.

Definition 4.1 (unitary rationalization). Let S = {(p:, q);t € T} be a set of observa-
tions. A utility function U provides a unitary rationalization of S if for each observation

t we have U (q;) > U (z) for all quantities z with p;q; > p;2.

Varian (1982) (based on Afriat (1967)) demonstrates that a data rationalizing utility
function exists if and only if the observed set S is consistent with the Generalized Axiom
of Revealed Preference (GARP). Essentially, GARP imposes empirical restrictions on
revealed preference relations Ry and R. First, gsRoq: means that the decision maker
(directly) reveals her or his preference for the quantities g5 over the quantities ¢;. Next,
gsRq; represents the transitive closure, that is ¢s Rg; means that there exists a (possibly
empty) sequence u, ..., w € T with ¢sRoqu, quRoqv,- - -, and ¢, Rog:. We can now define
the GARP condition that applies to the unitary model.

Definition 4.2 (GARP). Let S = {(ps,q:);t € T} be a set of observations. The set S
satisfies GARP if there exist relations Ry, R that meet for all s,t € T:

Rule 1: if p,qs > psqs, then gsRogy;

Rule 2: if pyq; > piqs, then =(qsRqy).

Testing GARP proceeds in two steps. First, one recovers the relations Ry and (the
transitive closure) R on the basis of Rule 1. Subsequently, one checks Rule 2, which
requires piq; < pqs for gsRq,. Varian (1982, p. 949) presents an efficient testing algo-
rithm. Dobell (1965), Chung-Piaw and Vohra (2003) and Varian (1982) discus graph-
theoretical representations of GARP. Our graph-theoretical formulation extends these
studies by considering formally similar representations for the collective consumption

model.

4.2.2 Collective rationality

Once again, we consider a household that purchases the (non-zero) N-vector of quanti-
ties ¢ € Rﬂ\r] with corresponding prices p € Rf 1, and we start from a set of observations

S. As indicated in the introduction, we focus on a two-member household to keep our
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exposition simple. All goods can be consumed privately (e.g. member 1 uses the car
alone), publicly (e.g. member 1 and member 2 use the car together), or both. Gener-
ally, we assume that the empirical analyst has no information on the decomposition of
the observed ¢. That is, we need to consider all allocations ¢ = ¢' + ¢ + ¢ for ¢ the
(observed) aggregate quantities, ¢! and ¢? the (unobserved) private quantities of each
household member, and ¢" the (unobserved) public quantities.

The collective model explicitly recognizes the individual preferences of the house-
hold members. Because we account for consumption externalities, these preferences
may depend not only on the own private and public quantities, but also on the other
individual’s private quantities. Formally, this means that the preferences of each house-
hold member m (m = 1,2) can be represented by a well-behaved utility function of the
form U™ that is defined in the arguments ¢!, ¢> and ¢". Note that we do not demand
that these utility functions are concave. Indeed, it has been argued that in the presence
of externalities (i.e. the utility of one member depends on the private consumption of the
other member) this assumption of concave utility functions (or, alternatively, convex
preferences) is problematic (see, for example Starr, 1969; Starret, 1972).

For aggregate quantities g, we define feasible personalized quantities ¢ as
G=(a'a%q") with g',% q" € RZ and ' + 7 + 9" = ¢

Each ¢ captures a feasible decomposition of the aggregate quantities ¢ into private
quantities (¢' and ¢?) and public quantities (¢"). This reflects that our model allows
for general preferences that depend on private and public consumption. In the following,
we consider feasible personalized quantities because we assume the minimalistic prior
that only the aggregate quantity bundle ¢ and not the “true” personalized quantities
are observed. Throughout, we will use that each g defines a unique gq.

Given this, a collective rationalization of S requires the existence of utility functions
U! and U? such that each observed consumption bundle can be characterized as Pareto
efficient. Thus, we get the following definition, which has an analogous structure as
Definition 4.1.

Definition 4.3 (collective rationalization). Let S = {(ps, q1);t € T} be a set of ob-
servations. A pair of utility functions U! and U? provides a collective rationalization
of S if for each observation ¢ there exist feasible personalized quantities g; such that
U™ (2) > U™ () implies U’ (2) < U*(q;) (m # ¢) for all feasible personalized quanti-
ties 2 with prq: > piz.
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4.2.3 Collective Axiom of Revealed Preference (CARP)

This section presents CARP, which provides a testable nonparametric necessary and
sufficient condition for a collective rationalization of the data as described in the previ-
ous section. We refer to Cherchye, De Rock, and Vermeulen (2007, 2009b) for detailed
discussions on CARP and the equivalent results.

Essentially, CARP imposes empirical restrictions on hypothetical member-specific
preference relations Hjy* and H™, which have a similar interpretation as the revealed
preference relations Ry and R for the unitary model. In this case, the hypothetical
relations Hj* and H™ represent feasible specifications of the true individual preference
relations that are consistent with the information revealed by the set of observations
S. First, ¢sH{"q; means that we “hypothesize” that member m (directly) prefers the
quantities g5 over the quantities ¢;, m = 1,2. Next, q;H™q; represents the transitive
closure, that is ¢; H™q; means that there exists a (possibly empty) sequence u, ..., w €
T with ¢ H}"qu, ¢quH}"qu,- . ., and q,,Hy"q;. Notice that, while the “true” preferences are
-of course- expressed in terms of the feasible personalized quantities ¢ (i.e. member m
prefers gs over ¢ only if U™(gs) > U™(q:)), the hypothetical preferences only use
observable information (captured by the observed aggregate prices p and quantities ¢
in the set S). This naturally complies with the assumption that in the general model
we have no information concerning the feasible personalized quantities.

Given this notion of hypothetical preference relations, we can define CARP. The
next definition, which reformulates Definition 6 of Cherchye, De Rock, and Vermeulen
(2009b), gives us a condition that can be empirically tested on aggregate price-quantity
information. Moreover, these authors show that there exists a collective rationalization
of the data in terms of Definition 4.3 if and only if the data set is consistent with CARP.

As such, we obtain the desired test of Pareto efficiency.

Definition 4.4 (CARP). Let S = {(pi,q:);t € T} be a set of observations. S satisfies
CARP if there exist hypothetical relations HJ*, H™ for each member m € {1,2} that
meet for all s,t,t1,t5 € T:

Rule 1: if psqs > psq: then either qu(%qt or qugqt;
Rule 2: if psqs > psq: and ¢ H™qs then qsﬂgqt with £ # m,;
Rule 3: if psqs > ps(qt, + qi,) and g, H™qs then qugth with ¢ # m;

Rule 4: if psqs > psq; then either —(qH'qs) or =(q:H?qs);
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Rule 5: if psqs > ps(qs, + qr,) then either —(q,, H'qs) or —|(qt2H2qs).

This CARP condition has a similar structure as the unitary GARP condition in
Definition 4.2. Specifically, GARP states (in casu unitary) rationality conditions in
terms of the preference information that is revealed by the observed price and quantity
data. CARP does the same, but now the revealed preference information is understood
in terms of the collective model of household consumption and, thus, pertains to the
individual household members. It can be verified that a data set S satisfies CARP if
it satisfies GARP, but not vice versa. In other words, CARP consistency is necessary
but not sufficient for GARP consistency.

Interestingly, CARP has a direct interpretation in terms of the Pareto efficiency
requirement that underlies collective rationality. Rule 1 states that, if the quantities
gs were chosen while the quantities ¢, were equally attainable (under the prices ps),
then it must be that at least one member prefers the quantities ¢; over the quantities
¢t (i.e. gsH}qr or qsHZq:). Rule 2 can also be interpreted in terms of Pareto efficiency
as follows: if member m prefers ¢; over ¢, for the bundle ¢; not more expensive than
gs (i-e. psqs > psqr), then the choice of g5 can be rationalized only if the other member,
member ¢, prefers qs over q;. Indeed, if this last condition were not satisfied, then the
bundle ¢; (under the given prices ps and outlay psqs) would imply a Pareto improvement
over the chosen bundle ¢;. Analogously, Rule 3 states that, if the summed bundle
Qt, + qt, is attainable and member m prefers q;, over g5, then Pareto efficiency requires
that the other member (member ¢) prefers g5 over ¢,. Finally, Rule 4 complements
Rule 2 and Rule 5 complements Rule 3; and their interpretation in terms of Pareto
efficiency is the following. Rule 4 states that, if ¢; was attainable when ¢; was chosen,
then it cannot be that both members prefer ¢; over ¢s; otherwise Pareto improvements
would have been possible (under the given prices ps and outlay psqs), which conflicts
with collective rationality. Similarly, Rule 5 states that, if ¢;, +¢:, was attainable when
gs was chosen, then it cannot be that member m prefers ¢;, over g5 while, at the same
time, member ¢ prefers g, over gs. In the rest of this chapter, we will refer to the
inequality psqs > ps(qy, + qt,) as double-sum inequality. The following example, which

we also use in the next section, illustrates CARP.

Example 4.5. Consider a situation with three goods (N = 3) and two household mem-
bers (M = 2) with data given in Figure 4.1. The observed price-quantity combinations

are:

l:g1=08 2 2) andpr=(6 2 2)
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Two-member household

]:1 ]=2 |=3

time Monday Tuesday Wednesday

good (price, quantity) (price, quantity) (price, quantity)

water (6, 8) (2, 1) (2, 1)
bread (2, 2) (6, 8) (3, 2)
vegetable (2, 2) (1, 3) (5, 8)

p,9,=56>28=p,q, p,q,=53>30=p,q, P;a;=48>32=p,q,
p,9,=56>26=p,q; p,q,=53>22=p,q, P;d;=48>41=p,q,

P.9; > P19, * P,05 P4, > P,4; +P,05

Figure 4.1: Fxample of data set.

2:qo=(1 8 3) andp2=(2 6 1)
3:q3=(1 2 8 andps=(2 3 5)
and the inequalities are:

I psqs > psqt for each pair s,t € {1,2,3}

Ir: pig1 > p1(g2 + ¢3)

I3: p2ga > pa(q1 + g3)-

Consider H} and HE defined as follows. For each observation s € {1,2, 3}, we have

qsHJ'qs for m = 1,2. Moreover, qH}qo, qiHigs and qsH}q> while goHZq1, qsHiq
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and qugqg. One can verify that this specification of H& and Hg satisfies Rules 1-5 in
Definition 4.4. As such, we conclude that the data satisfies CARP.

One concluding remark pertains to the fact that CARP only uses information on
the (observed) aggregate quantities ¢, and not on the (unobserved) private quantities
q' and ¢ and (unobserved) public quantities ¢". Because CARP provides a necessary
and sufficient condition for a collective rationalization of the data, this actually means
that the distinction between private consumption (with or without externalities) and
public consumption is irrelevant in view of empirical tests of the collective consumption
model. See also Cherchye, De Rock, and Vermeulen (2009b) for a detailed treatment
of this issue.

In Chapter 6, we prove via a reduction from the Not-All-Equal-3Sat problem, that
the problem of testing CARP is an NP-complete problem.

4.3 A graph-theoretic formulation

In this section, we show how to build from the data set S a directed graph G(S) =
(V(S),A(S)) and use it to derive the following sufficient condition for CARP. If the
vertices of V(S) can be partitioned into two subsets such that each induced subgraph is
acyclic, then the data satisfy CARP. By induced subgraph, we mean a subset of vertices
of G together with any arcs whose both endpoints are in that subset; an acyclic subgraph
is a subgraph which does not contain a cycle. Subsequently, we present a necessary
condition for CARP. We also provide an example which shows that there exist instances
of data set S for which neither the sufficient condition nor the necessary condition
presented here are satisfied, while there exist hypothetical relations H&, Hg satisfying
Rules 1-5 in Definition 4.4. Finally, we prove that while checking the necessary condition
can be achieved in polynomial time, deciding whether a partition of vertices into two
acyclic subgraphs exists for the graph G(S) is NP-complete. For reasons of notational
convenience, we will simply write G, V, and A instead of G(S), V(S), and A(S)

respectively.

4.3.1 Construction of the graph

Given a set of observations S = {(ps, ¢:);t € T}, each pair of distinct observations (s, t)
with s,¢ € T represents a vertex in V if psqgs > psq:. Hence, the vertices (s,t) and

(t,s) (if they exist) are different. No other vertices exist in V. A vertex (s,t) is said
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to be involved in a double-sum inequality if there exists a vertex (s,u) € V such that
Dsqs > Ps(qe+qu). Such vertices (s,t) and (s,u) will be called double-sum vertices. The

set of arcs A is defined in two stages:

a: First of all, we draw an arc from a vertex (s,t) to a vertex (u,v) whenever t = u.
The resulting graph is denoted by G' = (V, A’) and is a line graph (Gross and
Yellen, 2004).

b: Second, for any given three distinct observations s,t1,to € T, verify whether
Psqs > Ps(qy +qi,) and whether there exist two observations u, v € T (respectively
u',v" € T) such that (t1,u), (v,s) € V (respectively (ta,u’), (v/,s) € V). If so, we

distinguish two different cases:

o (t1,4) # (v,5) (respectively (tz,o/) # (v/,5))

— If there is a path! in G’ from (t1,u) to (v,s) (respectively from (t2,u’) to
(v, s)), then we draw an arc from (s,ts) to (t1,u) (respectively from (s,t1)
to (t2,u’)). Notice that the vertices (s,t1) and (s,t2) exist in V.

o (t1,u) = (v, s) (respectively (t2,u') = (v', s))

— We draw an arc from (s,t2) to (t1,u) (respectively from (s, 1) to (t2,u’)).

The directed graph G = (V, A) is then defined by the set of vertices V' described
above and the set of arcs A described by a) and b). The arcs defined in b) will be called
double-sum arcs. Notice that if there is no extra arc defined in b), then G = G’. Observe
that in the construction of GG, we associate a vertex with a pair of observations. This
allows us to take into account relationships between three observations as formulated

in Rule 3 and Rule 5. The following example illustrates the above construction.

Example 4.6. We consider the data of Example 4.5. The first set of inequalities
(I, ) implies the existence of all possible vertices in the graph. Figure 4.2(a) represents
the vertices of graph G. The first step in the construction of the set of arcs leads
to the line graph given by Figure 4.2(b). Next, the double-sum arcs are added to the
line graph. In Figure 4.2(c), the dashed arcs — — —> correspond with the double-sum
inequality Is (i.e. prq1 > p1(q2 + q3)) while the dashed arcs - - - - - > correspond with I3
(i.e. prq1 > p1(q2 + q3) ). Finally the graph G is depicted in Figure 4.2(d).

LA sequence of vertices [vo, v1,...,ve] is called a path from vo to v, if there exists an arc from v;—1 to

v, fori=1,...,¢.
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Q\é:’é@

(a) Existing vertices (b) Line graph G’

(¢) Double-sum arcs added (d) Final graph G

Figure 4.2: Illustration of the construction of G.

Notice that the construction of GG is done in polynomial time. In fact, an algorithm
that finds the set V' of vertices and determines double-sum vertices is implemented to
run in time O(T®). Having the set of vertices, the line graph is immediate. To build
the double-sum arcs, we proceed as follows. For a given vertex (s,t) involved in a
double-sum inequality psqs > ps(q: + qu), we use Dijkstra’s algorithm (Ahuja et al.,
1993) to find all the vertices which are such that there is a path in G’ from (s,t) to
those vertices. Among those vertices, we identify the vertices ending with s (these
are vertices (.,s)) and draw an arc from (s,u) to the vertex (t,.) appearing in each
path. In the rest of this chapter, graphs built from a set S of observations following
the procedure described in this section constitute the class of CARP-graphs.
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4.3.2 A sufficient condition for CARP

In this section, we show that if the graph G can be vertex-partitioned into two acyclic
subgraphs, then the set S of observations satisfies CARP; that is there exist H} and H?
satisfying Rules 1-5 in Definition 4.4. In other words, when we can color each vertex
of the directed graph G with one of the two colors red or blue, such that V' = Vg U Vg,
VeNVg =0, where Vp (respectively VR) is the set of vertices colored blue (respectively
red); and the induced subgraphs G = (Vg, Ap), Gr = (Vr, ARr) are each acyclic, then
there exists hypothetical relations H& and Hg that satisfy Rules 1-5 in Definition 4.4.

An equivalent way of phrasing this sufficient condition is as follows: can we color
each vertex of G red or blue such that no monochromatic? cycle exists? For an arbitrary
directed graph G, the problem of vertex-partitioning the graph into two acyclic induced
subgraphs is proven to be NP-complete by Deb (2008a). Results for undirected graphs
can be found in Chen (2000) (who gives an efficient algorithm to minimize the number
of acyclic subgraphs), and more recently by Chang, Chen, and Chen (2004) (who study
the complexity of the problem for specific graph classes).

Theorem 4.7. If a CARP-graph G can be vertex-partitioned into two acyclic subgraphs
then the corresponding set S of observations satisfies CARP.

Proof. Suppose that G can be partitioned into two acyclic subgraphs Gp = (Vp, Ap)
and Gr = (Vgr, Ar). From this partition we infer H& and Hg as follows.

H}: (i) gsHlg if and only if (s,t) € Vp and (ii) gsHigs for all s € T.
HZ: (i) gsHZq if and only if (s,t) € Vg and (ii) g¢sHZgs for all s € T.

In other words, for each observation s € T, gsHJgs and for each vertex (s, ) which is
colored blue, we have qs Hiq;. For each vertex (s,t) which is colored red, we have gs H3 g
and for each observation s € T, qSngS. We are now going to check that Rules 1-5
hold.

Rule 1: Let s,t € T be two distinct observations such that psgs > psq:. Then (s,t) €
V = Vg U Vg, which implies that (s,t) € Vg or (s,t) € Vg, and hence ¢sH}q
or qugqt by construction of H& and Hg. Moreover, for each observation s € T
qsHlqs (i =1,2) by definition. Thus Rule 1 is satisfied.

2 A monochromatic cycle is a cycle containing vertices of the same color.
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Rule 2: Clearly, this rule is satisfied for a single observation s. Let s, € T be two
distinct observations such that pygs > psq; and ¢:H'qs. Now, psqs > psq; im-
plies that (s,t) € V and ¢ H'qs implies that there exist observations u, wup,
uy, ..., ug, v € T such that (t,u), (u,uo), (uo,u1), ..., (ug—1,ux), (ug,v),
(v,s) € V. By construction of GG, there is a cycle containing the vertices (s,t),
(t,u), (u,uo), (uo,u1),. .., (ug_1,ut), (ug,v) and (v,s). Since g, H'qs, all the ver-
tices (¢, u), (u,ug), (ug, u1), ..., (ugk—1,ux), (ug,v), (v, s) arein Vg. Gg = (Vp, Ap)
is an acyclic subgraph implies that (s,t) € Vg and hence qsHiq:. Notice that a
similar reasoning is applied to show that if psqs > psgr and ¢ H?qs then qu&qt
for any distinct observations s and t. This completes the proof that Rule 2 is
satisfied.

Rule 3: Suppose s,t1,ta € T. Notice that if s = ¢; or s =t then psqs < ps(qe, + qi,)
and if £; = t5 checking this rule becomes equivalent to checking Rule 2. Hence, we
assume that s, t1,ty are three distinct observations such that psqs > ps(qi, + qt,)
and g, Hqs. Now, psqs > ps(qi, +qi,) implies that (s,t1) and (s, t) belong to V.
Also, g, H'qs implies that there exists u,v € T such that (¢1,u), (v,s) € V and
either (t1,u) # (v, s) and there is a path from (¢1,u) to (v,s) or (t1,u) = (v, s).
By construction of G, there is a cycle containing the vertices (s,t2) and (¢1,u).
Remark that if (¢1,u) = (v, s) then that cycle contains only two vertices which
are (t1,s) and (s,t3). Moreover, q;, H'qs indicates that all the vertices of the
path from (¢1,u) to (v,s) (included) are in Vg or (t1,s) € Vg if (t1,u) = (v, s).
Since G = (Vp, Ap) is an acyclic subgraph, (s,t2) € Vg and qsHZqy,. As in the
proof of Rule 2, the symmetry between H{ and Hg allows us to conclude that if
psqs > ps(qe, + q1,) and g, H?gs then gsHlgqy, for any three distinct observations
s,t1,ts. This completes the proof of Rule 3.

Rule 4: Since Vg N Vi = 0 and psqs = psqs for each s € T, this property holds.

Rule 5: Suppose that s,t1,to € T are three distinct observations such that pgsgs >
ps(q, + qr,) and q, H'qs and g, H*qs. Now, psqs > ps(qy, + i,) implies that
(s,t1) € V = Vg UVg. From ¢, H?qs and Rule 3, we know that (s,t;) € V3.
qi, H'qs implies that there exists u,v € T such that (t1,u), (v,s) € V and either
(t1,u) # (v,s) and there is a path from (t1,u) to (v,s) in Gp = (Vg, Ap) or
(t1,u) = (v,s) and (t1,8) € Vp. (s,t1) € Vp implies that Gg = (Vp, Ap) contains
a cycle. This contradicts the fact that Gp is acyclic.
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We have shown that if the graph G can be partitioned into two acyclic subgraphs,
then from these subgraphs, we can infer H& and Hg satisfying Rules 1-5. 0

The next example illustrates our sufficient condition.

Example 4.8. Consider the graph G of Figure 4.2(d) built from data of Example 4.5.
A possible coloring of vertices into two acyclic subgraphs is to color the vertices (1,2),
(1,3) and (3,2) blue while the vertices (2,1), (3,1) and (2,3) get the color red. It is
not difficult to see that each subgraph induced by the color class is acyclic. Therefore,
Theorem 4.7 implies that the set of observations of Example 4.5 satisfies CARP.

We remark that Theorem 4.7, which gives a sufficient condition for CARP, is not
a necessary condition. In fact, Example 4.12, given later in the chapter, proves this
point. Consequently, there can exist data sets S, with corresponding graphs G = (V, A),
which are such that there is no partition of V' into two acyclic subgraphs while S
satisfies CARP. Or equivalently, there can exist data sets S, with corresponding graphs
G = (V, A), that satisfy CARP but such that for any partition of V' into two subsets,
at least one induced subgraph is cyclic.

Next, we want to note that Cherchye, De Rock, and Vermeulen (2007, supplemen-
tal material) also generalize the definition of CARP for dealing with households (or
groups) of more than two members. Given our construction of the graph, one can in
an analogous way extend the above theorem to deal with this general case. That is, if
the graph G built from the data set S can be vertex-partitioned into at most M acyclic
subgraphs, then there exist Hol, Hg,. ‘e Hé\/[ satisfying the corresponding generalization
of CARP. Inter alia, this allows us to test for the number of decision makers in the
household.

We end this section by showing that the problem of partitioning the vertices of our
graph G = (V, A) into two subsets such that each induced subgraph is acyclic, is an
NP-complete problem.

Theorem 4.9. The problem of deciding whether a vertex-partitioning of a CARP-graph

G into two acyclic subgraphs exists, is NP-complete.

Proof. This proof is a refinement of Deb’s proof (2008b) for arbitrary graphs to CARP-
graphs. It uses a reduction from the Not-All-Equal-3Sat problem defined as follows.

INSTANCE: Set X = {x1,...,z,} of n variables, collection C = {C1,...,Cp} of m
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clauses over X such that each clause Cy = x; V; V), depends on exactly three distinct
variables.
QUESTION: Is there a truth assignment for C' such that each clause in C has at least

one true literal and at least one false literal?

Garey and Johnson (1979) proved that the Not-All-Equal-3Sat problem is NP-complete.

For a given instance of the Not-All-Equal-3Sat problem, consider the following
polynomial-time reduction to an instance of our graph partitioning problem. For each
variable x; € X, we have a pair of observations, that gives rise to the existence of
two vertices called (z;,7;) and (Z;,z;). (Notice that the existence of these vertices
has implications for the prices and the quantities of goods corresponding to those
observations. Here, we will ignore this issue, and simply create vertices assuming
that the prices and quantities satisfy the corresponding relationships.) Hence, since
|X | = n, we have 2n such vertices called variable vertices as they come from variables.
For each clause Cy = x; V x; V x, € C, we define 18 clause vertices as follows. There
are three initial vertices (xf,x?), (xf,mi) and (2%, z%) and there are three complement
vertices (xg,xf), (xﬁ,wf) and (zf,2%). Moreover, for each initial vertex, we define
four path vertices which are used to create a path from that initial vertex to a given
variable vertex. We say that these four path vertices are associated to this initial
vertex. Explicitly, for the first initial vertex (z?, x?), we have (s%,Z;), (z;,s") , (s, xf)
and (ZL‘;,SZ); we refer to these four path vertices as the first, the second, the third
and the fourth path vertices. For the second initial vertex (xg, zt), we define (t,z;),
(Zj,t9) , (t*,2%) and (z{,t"). Finally, for the third initial vertex (z%,z{), are created the
path vertices (uf,7t), (Zg,u’), (u,2%) and (2%, u’). For each initial vertex, we define
the path containing the vertices from the first path vertex to the complement vertex

l

via the initial vertex. For instance, for the initial vertex (mi,azﬁ), we have the path

P(xf,acg) = {(SZ,@-),(a’:i,sg),(se,xﬁ),(x?,se),(:cf,xf),(xﬁ,xf)}. We use P to denote
such path. In total, we have |V| = 2n + 18m vertices. To complete the definition of
our graph G = (V, A), we now specify the arcs. Clearly, as described in Section 4.3,
there is an arc going from (u,v) to (v,t) whenever (u,v) and (v,t) are vertices in V.
Also, we add specific double-sum arcs. These arcs are derived from specific double-sum
inequalities. For a given clause C; = z; V z; V 2 € C, we consider 9 double-sum
inequalities, three for each initial vertex. For the initial vertex (a:‘f, 1‘5), we have three
inequalities:

1. Pty > Pat (qxf + ¢4¢). This inequality implies the existence of arcs from vertex
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(m?,sé) to vertices (zf,.), and arcs from vertex (:L‘?,l’f) to vertices (s%,.). Notice that

all these double-sum arcs are between clause vertices from the clause Cj.

2. pyeqye > pye(que + gz,;). This inequality implies the existence of double-sum arcs
’ l l

70 ’

that there may be an arc between two vertices of different clauses; indeed, if z; occurs

‘

from vertex (s, Z;) to vertices (z¢,.), and from vertex (s x?) to vertices (Z;,.). Notice

in another clause C,., then there is a double-sum arc from (s, x% ) to vertex (z;,s").

3. 3,9z, > Pz, (qz;, + q4¢). This inequality implies the existence of arcs from vertex
(Z;, s*) to vertices (z;,.), and from vertex (Z;, x;) to vertices (s’,.). Again, if Z; occurs

in another clause C,, then there is an arc from (Z;, s) to vertex (x;, s").

L

For each of the two remaining initial vertices (7, zt) and (z%, %), the construction

is similar. We simply list here the corresponding double-sum inequalities. For the

l

initial vertex (xj, mi), we have the three inequalities

A Dot ut 2 Pt (Gt + ) 5. Predre 2 Pe(qpt +3z;) 6. pz;qz; > Pz, (Qe; + ),
and for the initial vertex (zf,zf), the double-sum inequalities are:
G )-

This completes the definition of our graph. Clearly, the above reduction can be
done in polynomial time. Notice that each consecutive pair of vertices in each path P
induces a cycle.

To have an overview of the above reduction, let us consider the following exam-
ple. X = {z,y,z} and there are two clauses C1 = xVyV zand Co =~z VyV -z
(here, -z is the negation of the variable z). Remark that the assignment z = y = 1
and z = 0 is a solution to this Not-All-Equal-3Sat problem. From our reduction,

— (@), (m 1), o), (wy) (202), (522), (@hyl), (heh), () sb),
(sl, . (s (6 42, ), L, (2, ). (0 (2 )
(@' 2h), (@ uh), (uhat), (mzul), (uh,=2), (m2297), (¥%—2?), (¥% %), (s 2, %),
(,5%), (32,:1;), (2 ~2%), (22%9%), (=2%,8%), (%, =27), (-, t?), (£, -), (=22 —2?),
( 2

)

-2, -22%), (~2%,u?), (u?, —-z?), (z,u?), (u?,2)}. The graph obtained is depicted in

Figure 4.3. Notice that for reason of clarity, not all the double-sum arcs are present in
that figure.

Now, we prove that the graph G = (V, A) obtained by the reduction can be parti-
tioned into two acyclic subgraphs if and only if the instance of the Not-All-Equal-3Sat
problem is a Yes-instance.

On the one hand, if graph G can be partitioned into two acyclic subgraphs G; and
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Figure 4.3: Ezample of reduction

G, then for each variable x; € X, if the vertex (z;,Z;) € G1, then we set the variable
x; = 1; else we set the variable x; = 0. Let us prove that this assignment is a truth
assignment for the set of clauses C. Let Cy = x; Vx; V), € C be any clause 1 <4 < m.
Ifv; =2 =z = 1 or 7; = x; = 3 = 0, then the vertices (z?, mg), (l‘?,l’i) and (4, zt)
are in the same partition and this will contradict the fact that each subgraph is acyclic.

On the other hand, if there is a truth assignment for C', then consider the following
partition of G. For each z; € X, if z; = 1 we color the variable vertex (z;,Z;) red
and (Z;,x;) blue. Otherwise, if z; = 0 we color the variable vertex (x;, ;) blue and
(Z4, ;) red. Moreover, we alternate the color of the nodes on the path P by coloring
the first path vertex different from the corresponding variable vertex. This completes

the coloring.
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Clearly, the blue subgraph and the red subgraph define a partition of G. It remains
to show that each subgraph is acyclic. We associate a parity to each vertex (except
variable vertices) as follows: the first path vertex, the third path vertex, and the
corresponding initial vertex are odd vertices, while the second path vertex, the fourth
path vertex, and the complement vertex of the corresponding initial vertex are even
vertices. Let us now argue that each cycle in G is not monochromatic. First, we

consider cycles containing vertices from different clauses.

As described above, some double-sum arcs may link path vertices of different clauses.
From the definition of our coloring, it turns out that such an arc links vertices of dif-
ferent colors. In fact, suppose that there is a double-sum arc from (sg,xﬁ) to a path
vertex (Zj, s") of another clause C,. Then the coloring implies that (z;, s") and (;, s*)
have the same color. Therefore, (Z;,s") and (se,xg) have different colors. Thus, any
cycle including vertices from different clauses linked using a double-sum arc, is not
monochromatic. It follows that any monochromatic cycle containing vertices of dif-
ferent clauses necessarily contains a variable vertex. Moreover, since each arc leaving
a variable vertex goes to a vertex with a different color, any cycle containing a vari-
able vertex is not monochromatic. We conclude that cycles with clause vertices from

different clauses are not monochromatic.

Second, we consider cycles within the subgraph defined by a single clause. Obvi-
ously, no monochromatic cycle can contain an arc between two consecutive vertices
from path P. Thus each cycle in the subgraph consists of three arcs, linking three

vertices of the three different paths that exist within each subgraph.
We claim that there do not exist arcs between vertices of different parity.

This claim implies that a monochromatic cycle would consist of three vertices of
the same parity. However, the three initial vertices have the same parity, and the
solution of the Not-All-Equal-3Sat problem implies that these vertices do not form
a monochromatic cycle. The coloring then implies that any set of three vertices of
the same parity do not form a monochromatic cycle. Hence, the validity of our claim

implies the result.

To establish the claim, observe that each regular (i.e., non double-sum) arc between
vertices of different paths is induced by a literal from the initial vertices, e.g. from (., z¥)
to (zf,.). Since this literal occurs in the three vertices once in the first position and
once in second position, this implies that each regular arc links vertices of the same

parity. In fact, it can be verified that this is also true for double-sum arcs. Hence, the
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claim is valid. This completes the proof. O

4.3.3 A necessary condition for CARP

In this section, we present a necessary condition for CARP. Consider the data set
S = {(pt,qt);t € T}. A subset Sy of S containing at least four observations and at most
six observations is called a double-sum block subset of S if S1 contains three pairs of ob-
servations (t1,t2), (s1,s2) and (41, ¢2) such that S1 = {(ps, qt);t € {t1,12, 51, 82,¢1,02}}
and the following inequalities are met:

N1 prae, > ptt;, Psids; > Ps;ds; and pe,qe, > pe,qe; with 4 # jand i, j€{1,2}
No: pr, Gty > piy (G, + g5, ) if 81 # 2
N3t pray > pr (g, +qe) if b # Lo
Ny: sy sy > psy (gsy +q1y) if t1 # 52
N5 Psi s, > Psy (G, +qey) if €1 # 52
Ne: pe,qe, = pey (qe, + gs,) if 517 62

N7: Deqe, Z Pey (qu + Qtl) if tl 7é £2

The following result show that if the data set .S contains a double-sum block subset,
then S does not satisfy CARP.

Theorem 4.10. If the data set S contains a double-sum block subset, then S does not
satisfy CARP; that is there are no H& and Hg satisfying Rules 1-5.

Proof. Suppose that the data set S contains a double-sum block subset S;. This subset

has either four, five or six distinct observations.

Case 1: The double-sum block subset S; has four distinct observations. Without loss
of generality, suppose that s; = t5 = £5. Let us assume that there exist hypothet-
ical relations Hol and Hg. Suppose without loss of generality that thHOlq52 and
sy H2q1,. The pair of observations (t1,t2) is such that either g, H}qs, or qi, H3q, .
If g, Hiqt, then g, H3qi,. The double-sum inequality pi,qt, > i, (g1, + gs,) (in-
equality Ny) and the fact that g, Hlqs, imply ¢, H3qs, from Rule 3. This leads
to qi, H}qs, and q1, H3qs, and Rule 4 is violated. We conclude that g, H3g:, and
thus ¢, H& qt,- A similar reasoning allows to conclude that qlegth and g, H& qe, -
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The double-sum inequality pg,q:, > pi, (¢, + qo,) from N3 and the fact that
1, Hi gy, imply that g;, H2qe, (using Rule 3). The double-sum inequality pg, s, >
pe, (@1, + qr,) from N7 together with g, H2qe, imply, using Rule 3, that g, Hlgy,.
We then have qp, H}q:, and qo, H3qt,, contradicting Rule 4. This conclude that if
the data set .S contains a double-sum block subset with four distinct observations,

then there is no H& and Hg satisfying Rules 1-5.

Case 2: The double-sum block subset S; has five distinct observations. Without loss
of generality, suppose that s; = to. Suppose also that the hypothetical relations
Hol and Hg exist such that g, H&qs2 and g, ngm. We know from the reasoning
of Case 1 that g, H3qt, and qi, Hiq, -

The double-sum inequality pi,qi, > pi,(qs, + qe, ) from N together with gy, HZqr,
imply, from Rule 3, that q, Hiqe, and qo, H3q:, comes from Rule 2. On the
other hand, the double-sum inequality py, ge, > pe, (qe, + g1, ) identified by Ng and
qtzHS% imply that %nggg from Rule 3. Rule 2 allows to conclude qu&qgl.
The double-sum inequality py, g1, > pr, (g, +qe, ) from N3 with i, H g¢, imply that
qt, H3qp, from Rule 3. The inequality py, qe, > Doy (qe, +qr, ) from N7 and g, Hi g,
imply that qelHOth1 from Rule 3. Therefore, from Rule 2 we have g, H}qe,. This
implies that thH&qu and thnggl, hence contradicting Rule 4. Therefore, there
is no H} and HZ satisfying Rules 1-5.

Case 3: The double-sum block subset S; has six distinct observations. A reasoning
combining ideas of Case 1 and Case 2 allows to conclude that the existence of a
double-sum block subset implies that the data set S does not satisfy CARP.

O
The following example describes a data set S containing a double-sum block subset.

Example 4.11. Consider a situation with 4 goods (N = 4), two household members
(M = 2) and the following four observed price-quantity combinations (T = 4):

l:gg=08 2 2 0)andpr=(6 2 2 10)
2:q=(1 8 3 0) andpa=(2 6 1 10)
3:q3=(1 2 8 0) andp3=(2 3 10 4)

4: qg4=1 2 0 5 andps=(1 1 1 1.7)
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The inequalities satisfied are:
I psqs > psqt for each pair s,t € {1,2,3}
Iy: p3qs > p3qa and pags > paqs
Is: prgn > pi(ge + g3)
Iy: pag2 > pa(q1 + g3)
Is: p3qs > ps(q1 + qa)
Is: p3qs > p3(q2 + qa)

Consider the subset S1 of S containing the four observations, grouped in pair of
observations as follows. The first pair is (1,3), the second pair is (2,3) and the third
pair is (3,4). One can easily check that Sy satisfies the inequalities N1-N;. Therefore,
from Theorem 4.10, the data set S does not satisfy CARP.

Notice that checking whether the data set S contains a double-sum block subset can
be done in polynomial time; more precisely, an algorithm for identifying a double-sum
block subset can be designed to run in time O(73).

Finally, we provide an example of a data set that shows that our necessary and
sufficient condition do not coincide. That is, S does not contain a double-sum block
subset and the corresponding graph G cannot be vertex-partitioned into two acyclic

subgraphs.

Example 4.12. Consider a situation with 4 goods (N = 4), two household members
(M = 2) and the following four observed price-quantity combinations (T = 4):

l:gi=0@® 2 2 0 andpr=(6 2 2 10)
2:q2=(1 8 3 0) andpa=(2 6 1 10)

3:qg3=(1 2 8 0) andp3=(2 3 10 4)

W

cqgu=01 2 0 5 andps=(1 1 1 1)
The inequalities satisfied are:

I: psqs > psqt for each pair s,t € {1,2,3}
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Figure 4.4: The graph built from the data of Example 4.12.

Ir: p3g3 > p3qa

I3: prg1 > p1(q2 + q3)
Iy: paga > pa(q1 + q3)
Is: p3gs > p3(q1 + qa)
Is: p3qs > p3(q2 + qa)

The directed graph representation of this problem is given by Figure 4.4. We realize
that it is not possible to color the vertices of the graph using only two colors in such
a way that both subgraphs are acyclic. More explicitly, in any feasible coloring of this
graph, one can deduce that vertices (1,3) and (2,3) need to have a different color. It
follows that (3,4) cannot be feasibly colored. Further, the data S of this example does
not contain a double-sum block subset. However, it is not difficult to see that H& and
HZ defined as follows satisfy Rules 1-5 in Definition 4.4.

H: qiHYqe, iHiqs, g3Hiqo, gsHlqs and gsHlgs for all s=1,...,4.

HE: H2qi, ¢2H2qs, sHEqr, q3HEqa and qsHZqs for all s =1,...,4.
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Notice that the preference relations H& and Hg obtained for the data of Exam-
ple 4.12 have a non-trivial intersection; that is there exist two distinct observations
s,t with psqs > psq: such that quolqt and qugqt. In the case of Example 4.12, we
have s = 3 and ¢ = 4. In fact, any pair of hypothetical relations H} and HZ satisfying
CARP for this data will have a non-trivial intersection. This non-trivial intersection
is crucial to have data sets as in this example. Indeed, if there exists H& and Hg with
only a trivial intersection for a given data set, then the corresponding graph can be
partitioned into two acyclic subgraphs and the converse of Theorem 4.7 will hold.

In this respect, we can also relate our proposal to the sufficient condition for CARP
of Deb (2008b). Essentially, Deb’s condition boils down to finding hypothetical relations
with a trivial intersection. However, it is fairly easy to verify that Deb’s approach, which
focuses on a partitioning of some given data set, only considers a subset of all possible
hypothetical relations with a trivial intersection. To give a specific illustration, the
data in our Example 4.5 do not satisfy Deb’s (2008b) condition for the collective model
with two household members, while it passes our sufficient condition in Theorem 4.7.
As such, Deb’s sufficient condition is more stringent than ours and, in this sense, our

condition extends Deb’s condition.

4.4 Heuristics

This section is devoted to the development of simple heuristics for partitioning the
directed graph G' = (V, A) built in Section 4.3 into two acyclic subgraphs. We first
prove that the graph G can always be partitioned into two acyclic subgraphs when
G = G’ is a line graph. We next present heuristics for solving the general case by
combining a greedy rule for coloring the vertices of G with a specific sequence of the

vertices. The main motivations to derive simple heuristics are twofold:

(i) Sophisticated and time consuming heuristics will not allow the rejection of CARP

when they fail to color the vertices of G.
(ii) Heuristics are used prior to an exact and time consuming algorithm.

The heuristics developed in this section keep as a hard constraint the number of
members in the household (two members). This is in accord with practical data where
the rationality is tested for two members household data (Cherchye et al., 2008a; Deb,

2008b). Therefore, these heuristics try to color as many vertices as possible with two
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colors, as opposed to the heuristic developed by Deb (2008b) which aims to color all
the vertices using as few colors as possible. Although the heuristics described here
focus on partitioning the vertices of the graph G built in Section 4.3, they can easily be
adapted to deal with similar graph partitioning problem encountered by Deb (2008b).
In what follows, we first prove that a line graph can always be colored using two colors,

subsequently we describe heuristics for general case.

Lemma 4.13. If G = G’ is a line graph, then G can be partitioned into two acyclic
subgraphs.

Proof. Since G = G’, we have no double-sum arcs. As such, the subgraph of G' con-
taining vertices (s,t) with s < ¢ is by construction acyclic and the same holds for the
subgraph with vertices (s,t) where s > t. Clearly these two subgraphs form a partition
of G. 0

We remark that this special case with G = G’ can be quite relevant for empirical
exercises; see for instance our own application in Section 4.5. For the general case
where G is not a line graph, we develop heuristics by distinguishing coloring strategies
on the one hand, and specifying vertex orderings, or sequences, on the other hand.
More specifically, we present four coloring strategies for attempting to color a directed
graph into two acyclic subgraphs and 13 sequences of vertices. A heuristic then is a

combination of a coloring strategy and an ordering of the vertices.

4.4.1 Coloring strategies

CS1: Given a sequence of vertices, color iteratively each vertex red, unless this would
create a red cycle. In case coloring the current vertex blue would create a blue

cycle, we stop (and output: 0), else we color it blue, and continue.

CS2: Given a sequence of vertices, this coloring strategy colors iteratively each even
(respectively odd) vertex red (respectively blue), unless this would create a red
(respectively blue) cycle. In case coloring the current vertex blue (respectively
red) would create a blue (respectively red) cycle, we stop (and output: 0), else
we color it blue (respectively red), and continue. Notice that in this coloring
strategy, a vertex is called “even” (respectively “odd”) when its position in the

sequence is even (respectively odd).
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CS3: Given a sequence of vertices, this coloring strategy colors iteratively each vertex
by a randomly generated color (from the set {blue, red}), unless this would create
a monochromatic cycle. If coloring the current vertex red or blue would create a
monochromatic cycle, we stop (and output: 0), else we color it with the remaining

color, and continue.

CS4: Given a sequence of vertices, this coloring strategy colors iteratively each vertex
with the same color as its predecessor, unless this would create a monochromatic
cycle. If coloring the current vertex with the other color would also create a
monochromatic cycle, we stop (and output: 0), else we color it with the other

color, and continue.

Notice that in each coloring strategy we often need to check whether a (sub)graph
is acyclic. We use the topological ordering algorithm to do so, see Ahuja et al. (1993)
for more details. This algorithm labels the vertices of the graph (order(i) to each
vertex i) in such a way that every arc joins a lower-labelled vertex to a higher-labelled
vertex. If for each connected pair of vertices i,j with an arc from i to j we have
order(i) < order(j), the graph is acyclic. Otherwise, it contains a cycle. The time
complexity of the topological ordering algorithm is O(m) where m is the number of

arcs in the graph.

4.4.2 Ordering of the vertices

In the previous section, we assumed that a sequence of the vertices was given as input
for each of the coloring strategies. Since there are n! possible sequences for a graph
G consisting of n vertices, it is not practical to try all of them. Therefore, we now
describe specific sequences of vertices (often based on the structure of the graph) that

will be used as input for the above coloring strategies.

Sql: Sequence 1 is a natural sequence given by: (0,1), (0,2), ..., (0,7, (1,0), (1,2),
(1,7, (2,0), (2,1), ..., (2,T), ..., (T—1,1), (T—=1,2), ..., (T—1,T) (recall
that T is the number of observations). Of course, not all of these vertices need

to exist, the non-existing vertices are simply removed from the list.

Sq2: Sequence 2 is the reverse of Sequence 1, hence it starts with (T'— 1,7T") and ends
with (0, 1) (provided these vertices exist).
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Sq3: Sequence 3 is found by placing each vertex (s,t) with s < ¢ before each vertex
(s,t) with s > ¢; within each of these two sets of vertices we use the ordering

implied by Sequence 1.

Sq4: Sequence 4 is the reverse of Sequence 3. Here, we follow the idea of Sequence 1,

but we select vertex (s,t) with s > ¢ before vertex (s,¢) with s < ¢.
Sq5: In this sequence, the position of a vertex is chosen randomly.

The next two sequences partition the vertices into those involved in a double-sum
inequality, and those that are not. The idea is that vertices involved in a double-sum
inequality might be more difficult to color than other vertices, and hence it might be

worthwhile to place these vertices in the beginning of the sequence.

Sq6: Sequence 6 also uses the ordering of Sequence 1, but we place each double-sum

vertex before each other vertex.

Sq7: Sequence 7 is the reverse of Sequence 6.

The following six sequences are based on the degree of a vertex. The degree of
a vertex is the number of arcs it is incident to; the indegree is the number of arcs
that enter a vertex while the outdegree of a vertex is the number of arcs that leave a
vertex. Again, the rationale for using this measure is that the number of arcs a vertex

is incident to is a measure of the difficulty of coloring that vertex.

Sq8: Sequence 8 is found by sorting the vertices with respect to their degree in increas-

ing order; if there is a tie we use the ordering of Sequence 1.
Sq9: Sequence 9 is the reverse of Sequence 8.

Sql10: Sequence 10 is found by sorting the vertices in increasing order of their indegree;

if there is a tie we use the ordering of Sequence 1.
Sqll: Sequence 11 is the reverse of Sequence 10.

Sql2: Sequence 12 is found by sorting the vertices in increasing order of their outdegree;

if there is a tie we use the ordering of Sequence 1.

Sql3: Sequence 13 is the reverse of Sequence 12.
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Notice that we have specified 13 x 4 = 52 heuristics since we can combine each
of the four coloring strategies with each of the 13 sequences. We will apply all these
heuristics on the given instances, and we comment on their efficiency in Section 4.5.2.

We mention that even if the heuristics fail to partition the vertices of G using two
colors, its output can be used to reduced the size of the integer-programming problem
to be solved. This could be done by fixing the variables of integer-programming model

corresponding with the vertices of G colored before the heuristic stops.

4.5 Computational experiments

All algorithms have been coded in C using Visual Studio C++ 2005 and are available
from the authors upon simple request. The experiments were run on a HP Pavilion
dv6000 laptop with AMD Turion (tm) 64 x 2 Mobile Technology TL-56 processor with
1.80 GHz clock speed and 2047 MB RAM, equipped with Windows Vista. Below,
we first provide some details on the data sets used and subsequently, we discuss the

computational results.

4.5.1 Data

Our goal is to investigate the usefulness of the graph construction from Section 4.3,
and to assess the quality and the speed of the heuristics proposed in Section 4.4. To
do so, we apply the heuristics to two types of data sets drawn from Phase II of the
Russian Longitudinal Monitoring Survey, which covers detailed consumption data from
a nationally representative sample of Russian two-person households (or couples) during
the time period between 1994 and 2003 (Rounds V-XII). When assuming homogeneity
of the intra-household allocation process and individual preferences over time, such
panel data enable us to treat each household as a time series in its own right. For
each household, we focus on a rather detailed consumption bundle that consists of
21 nondurable goods. Only two-person households sharing certain characteristics are
retained, which results in a basic sample consisting of 148 couples that are observed
eight times. We refer to Cherchye et al. (2008a) for more details on the data.

Data I consists of the same real-life instances used by Cherchye et al. (2008a); as
such this allows us to compare the integer-programming approach and the heuristics
described here, see Section 4.5.2. In order to obtain bigger data sets that are still use-

fully interpretable from an economic point of view, these authors merged all households
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of which males share the same birth year into one data set. In fact, this pertains to
testing homogeneity of the intra-household allocation process and individual prefer-
ences for these couples. Next, to optimize the CPU times of the integer-programming
approach they applied two efficiency enhancing procedures to minimize the number
of observations that need to be considered by their procedures. This resulted in 69
instances with a number of observations that varies between two and 101, for which
CARP was tested; for more details, see Cherchye et al. (2008a). We refer to this set of
instances as Data I.

Second, on the basis of the above sample of 148 households, we also construct
120 synthetic data sets (instances) with varying size; these are contained in Data II.
Every synthetic data set is obtained by randomly drawing households from the basic
sample. Since each household is observed eight times, data set sizes are multiples of
eight and range from eight to 96. As such, we consider data sets with substantially
more observations than existing consumer panels; this allows us to analyze in further
detail the performance of our heuristics. As far as we know, existing panel data with
detailed consumption only contain a rather limited number of observations per house-
hold. For example, Blow, Browning, and Crawford (2008) and Christensen (2007) use,
respectively, Danish and Spanish consumer panels with at most 24 observations per
household.

4.5.2 Computational results

In this section we discuss the output of the heuristics applied to Data I and Data II.

Data I

The name of the instance is represented by three numbers. The first is the year, the
second represents the number of that instance in that year and the last one is the
number of observations considered in that instance. Density is the density of the graph
given by the percentage of the number of arcs present in that graph divided by the

total number of possible arcs.

Table 4.1: Properties of the Graph representation of the instances of Data I

double- Simple DS DS Total
Instance Ref. Obser. Vertices Density Cyclic
sum arcs arcs vertices arcs

1918-1-3 - 3 5 0 8 0 0 8 40.00 1
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1924-1-2 - 2 0 2 0 0 2 | 100.00 1
1924-2-2 - 2 0 2 0 0 2 | 100.00 1
1924-3-7 I 7 22 2 52 1 2 53 11.47 1
1924-4-15 I 15 95 5 511 2 3 513 5.74 1
1926-1-2 - 2 2 0 2 0 0 2 | 100.00 1
1926-2-2 - 2 2 0 2 0 0 2 | 100.00 1
1926-3-3 - 3 5 0 8 0 0 8 40.00 1
1926-4-11 I3 11 48 4 167 2 4 169 7.49 1
1927-1-3 - 3 5 0 8 0 0 8 40.00 1
1927-2-4 - 4 8 0 14 0 0 14 25.00 1
1927-3-4 - 4 7 0 13 0 0 13 30.95 1
1927-4-12 Iy 12 68 42 280 17 17 297 6.52 1
1927-5-27 Is 27 279 590 1951 61 34 2012 2.59 1
1928-1-2 - 2 2 0 2 0 0 2 | 100.00 1
1928-2-7 - 7 23 0 60 0 0 60 11.86 1
1929-1-3 - 3 5 0 8 0 0 8 40.00 1
1929-2-3 - 3 5 0 8 0 0 8 40.00 1
1929-3-5 - 5 12 0 29 0 0 29 21.97 1
1929-4-32 Is 32 410 447 3639 21 27 3660 2.18 1
1930-1-2 - 2 2 0 2 0 0 2 | 100.00 1
1930-2-2 - 2 2 0 2 0 0 2 | 100.00 1
1930-3-6 - 6 21 0 63 0 0 63 15.00 1
1930-4-16 17 16 118 30 682 17 15 699 5.06 1
1930-5-17 Ig 17 139 11 976 9 14 985 5.14 1
1931-1-2 - 2 2 0 2 0 0 2 | 100.00 1
1931-2-2 - 2 2 0 2 0 0 2 | 100.00 1
1932-1-2 - 2 2 0 2 0 0 2 | 100.00 1
1932-2-5 - 5 12 0 23 0 0 23 17.42 1
1932-3-6 - 6 19 0 60 0 0 60 17.54 1
1933-1-4 - 4 9 0 19 0 0 19 26.39 1
1935-1-2 - 2 2 0 2 0 0 2 | 100.00 1
1935-2-7 - 7 22 0 61 0 0 61 13.20 1
1935-3-101 Iy 101 4384 46916 | 121269 | 3052 2672 | 124321 0.65 1
1936-1-2 - 2 2 0 2 0 0 2 | 100.00 1
1936-2-2 - 2 2 0 2 0 0 2 | 100.00 1
1936-3-2 - 2 2 0 2 0 0 2 | 100.00 1
1936-4-2 - 2 2 0 2 0 0 2 | 100.00 1
1936-5-5 - 5 11 0 25 0 0 25 22.73 1
1936-6-40 | Iio 40 755 1121 10049 64 46 10113 1.78 1
1937-1-2 - 2 2 0 2 0 0 2 | 100.00 1
1937-2-4 - 4 9 0 19 0 0 19 26.39 1
1937-3-5 - 5 13 0 30 0 0 30 19.23 1
1937-4-21 I 21 226 111 1953 26 19 1979 3.89 1
1938-1-2 - 2 2 0 2 0 0 2 | 100.00 1
1938-2-4 - 4 8 0 15 0 0 15 26.79 1
1938-3-4 - 4 8 0 14 0 0 14 25.00 1
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1938-4-6 - 6 17 0 43 0 0 43 15.81 1
1938-5-9 - 9 39 0 129 0 0 129 8.70 1
1938-6-16 - 16 108 0 511 0 0 511 4.42 1
1939-1-2 - 2 0 2 0 0 2 | 100.00 1
1940-1-2 - 2 0 2 0 0 2 | 100.00 1
1940-2-2 - 2 2 0 2 0 0 2 | 100.00 1
1940-3-3 - 3 0 8 0 0 8 40.00 1
1940-4-18 - 18 141 0 852 0 0 852 4.32 1
1941-1-2 - 2 2 0 2 0 0 2 | 100.00 1
1941-2-3 - 3 4 0 5 0 0 5 41.67 1
1941-3-26 | 112 26 294 257 2353 74 66 2427 2.82 1
1945-1-2 - 2 2 0 2 0 0 2 | 100.00 1
1945-2-2 - 2 2 0 2 0 0 2 | 100.00 1
1948-1-2 - 2 2 0 2 0 0 2 | 100.00 1
1948-2-4 - 4 7 0 10 0 0 10 23.81 1
1948-3-4 - 4 8 0 15 0 0 15 26.79 1
1949-1-2 - 2 2 0 2 0 0 2 | 100.00 1
1950-1-5 - 5 12 0 25 0 0 25 18.94 1
1954-1-2 - 2 2 0 2 0 0 2 | 100.00 1
1954-2-2 - 2 2 0 2 0 0 2 | 100.00 1
1962-1-2 - 2 2 0 2 0 0 2 | 100.00 1
1962-2-3 - 3 5 0 8 0 0 8 40.00 1

Table 4.1 gives the properties of the graph representation of these instances. Notice
that each graph contains a cycle. The analysis of this table shows that 57 instances out
of 69 lead to a line graph; that is because they have no double-sum arc. This represents
more than 82% of the instances, and it clearly shows that it is worthwhile to detect the
absence of double-sum arcs in the data: if these arcs are absent one can immediately
conclude (using Lemma 4.13 and Theorem 4.7) that the data satisfy CARP (instead of
having to solve an IP-model). The second column of Table 4.1, entitled “Ref.” contains
the name which is used to refer to each instance in the rest of this chapter.

We then apply the heuristics to the remaining 12 instances. Table 4.2 displays the
output of the heuristics. Each column (except for the first two columns and the last
column) corresponds to a single instance. The row called “Time” (which corresponds
to a specific sequence) reports the CPU time in seconds, which is the average value of
the time needed for the four strategies using that particular sequence. The row “CS”
identifies the coloring strategies for which we have obtained a partition into acyclic
subgraphs. Finally, the last column gives, for each sequence, the total number of

strategies for which a feasible coloring was found.
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From Table 4.2, we see that for each instance except Iy (1935-3-101), there is at
least one heuristic finding a feasible coloring, meaning that each instance (except Ig)
can be partitioned into acyclic subgraphs, and hence, by Theorem 4.7, satisties CARP.
This shows that (at least for this set of real-life instances) using the graph construction
described in Section 4.3 does not lead to a loss of the ability to test whether the data
sets satisfy CARP.

When looking at the results of the heuristics in more detail, we find that strategy 1
and strategy 4 are more successful than the other strategies. In particular, strategy 1
(CS1) is successful (meaning there is a sequence for which a coloring is found) in 11
out of the 12 instances, and strategy 4 (CS4) is successful for ten instances. This
contrasts with strategies 2 and 3 which are only successful for two and five instances,
respectively. We conclude that when coloring the vertices sequentially, it is better to
keep using the same color, and only resort to another color when forced, rather than
to build a “balanced” coloring, having approximately the same number of vertices of

each color in any partial coloring.

When analyzing the sequences, it can be concluded that the relevance of a particular
sequence is limited. Indeed, when a strategy is successful for some instances, there are
often (but not always) many sequences for which this strategy is successful. Sequence 6
(Sq6) and Sequence 13 (Sql3) contain the highest number of strategies for which a
feasible coloring was found, making them the most attractive sequences. In particular,
the heuristic obtained by combining sequence 6 (Sq6) and strategy 1 (CS1) is very
successful indeed: it solves all the instances except the one that is not solved by any
heuristic (I).

In fact, instance Iy is a particular instance in the sense that it is the only instance
that was not solved by the IP-model of Cherchye et al. (2008a) after one hour of
computing time. Our best heuristic (combining strategy 1 and sequence 6) led to
a partial feasible coloring of 4224 vertices, i.e., about 95% of the vertices. We also
verified that this instance passes our necessary condition in Theorem 4.10. On the
other hand, we find that this graph can be colored by the heuristics using three colors.
In Chapter 5, we show that this particular graph can, in fact, be colored using two

colors, using a dedicated enumerative algorithm. This result enforces the usefulness of
Theorem 4.7.

Table 4.2 also shows that the heuristics are quite fast. Computation time for most

instances are within 0.1 second, and always (except for Iy) within two seconds. This is in
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contrast with the computation time of Cherchye et al. (2008a), who report computation
times up to five minutes for their instances. It should be noted, though, that solving
the IP-model can lead to a conclusive answer, while the possible failure of a heuristic
to produce a coloring gives no information about whether the data satisfy CARP.
Nonetheless, we conclude that investing a little computation time to test for CARP

quickly is a sensible approach for real-life data (Data I).

Data 11

The name of a group of instances is represented by “Rand” followed by a number. Each
group contains ten randomly generated instances. Rand is used to express the random
characteristics of these instances and the number refers to the number of instances with
eight observations aggregated. For instance, Rand-5 has 8 x 5 = 40 observations as it

is the aggregation of five instances, each with eight observations.

Table 4.3: Properties of the Graph representation of the instances of Data IT

Instance Ref. Obser. Vertices double- Simple DS ADS Total Density Cyclic
sum arcs arcs vertices arcs

Rand-1 Ry 8 25 20 45 1 2 46 6.96

Rand-2 R> 16 108 285 445 12 13 457 3.87 5

Rand-3 R3 24 254 1098 1651 46 46 1697 2.63

Rand-4 Ry 32 449 2652 3920 113 105 4033 2.00 10

Rand-5 Rs 40 718 5608 8079 141 133 8220 1.59 10

Rand-6 Rg 48 1023 9420 13671 212 188 13883 1.32 9

Rand-7 Ry 56 1406 16003 22452 494 369 22946 1.15 10

Rand-8 Rg 64 1808 23199 31981 456 351 32437 0.97 10

Rand-9 Ro 72 2276 32338 44917 710 567 45627 0.88 10
Rand-10 | Rio 80 2845 45464 63526 835 654 64361 0.79 10
Rand-11 | Ry 88 3448 59654 84963 | 1112 838 86075 0.72 10
Rand-12 | Ri2 96 4045 73973 | 106191 | 1065 832 | 107256 0.66 10

Table 4.3 gives the properties of the graph representation of the instances in Data II.
In this table, each entry (except the entries in the last column) represents the average
value of the ten values obtained for each instance in that group. In the last column
(Cyclic), we give the number of instances in that group that contain both a cycle and
a double-sum arc. Therefore, instances with only a cycle and no double-sum arc are
not counted, since these are solved by Lemma 4.13.

Table 4.4 displays the output of the heuristics when applied to the instances in

Data II. The notations are the same as in Table 4.2; an entry in the row “CS” is a 4-
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Table 4.4: Output of heuristics for instances of Data II

Instance Ry Ro R3 Ry Rs Rg R7 Rg Ry Rio R Ri2
Sql Time 0.00 0.01 0.08 0.35 1.38 4.53 6.60 18.17 19.97 34.51 38.98 56.26
cs || L,0,01 | 51,16 | 7,327 | 7.1,1,9 | 6,008 | 51,0,7 | 40,06 | 401,4 | 1,003 | 0,0,0,2 | 0,0,01 | 0,0,0,1

Sq2 Time 0.00 0.01 0.08 0.35 1.51 3.77 9.12 18.89 25.58 38.11 52.29 80.11
os || 1,001 | 5314 | 7,227 | 7T.1,1,7 | 62,1,6 | 40,14 | 40,0,1 | 40,03 | 0,0,0,2 | 0,0,0,0 | 0,0,0,0 | 0,0,0,0

Time 0.00 0.01 0.08 0.37 1.51 4.69 7.58 19.24 24.21 42.03 58.57 92.67

Sa3 (e} 1,0,0,1 | 5,1,1,5 | 7,3,1,6 | 7,2,2,6 | 6,0,0,4 | 51,04 | 4,0,0,3 | 4,0,0,3 | 1,0,0,1 | 0,0,0,1 | 0,0,0,0 | 0,0,0,0
Sq4 Time 0.00 0.01 0.09 0.38 1.66 4.21 10.19 21.13 31.06 46.70 88.99 136.29
os || LLIL | 51,25 | 7,237 | 73,15 | 6,025 | 40,03 | 4,0,0,0 | 40,01 | 0,002 | 0,0,0,0 | 0,0,00 | 0,0,0,0

Time 0.00 0.01 0.10 0.37 1.26 3.26 3.35 11.20 12.98 14.81 23.93 21.77

S5 1010 | 3121 | 7343 | 6124 | 2100 | 2000 | 1,000 | 1.000 | 0000 | 00,00 | 0,000 | 0.0.0.0
Time 0.00 0.01 0.08 0.33 1.32 2.99 3.87 16.99 33.88 10.54 21.67 0.80

546 cs 1,1,1,1 | 4,444 | 7,5,6,6 | 85,55 | 83,3,3 | 5,2,2,2 | 3,1,1,1 | 5,2,1,4 | 5,2,1,3 | 0,0,1,2 | 1,0,0,0 | 0,0,0,0
Sq7 Time 0.00 0.01 0.08 0.35 1.37 4.52 6.59 18.22 19.97 34.43 38.95 56.47
(e} 1,0,0,1 | 5,1,1,5 | 7,3,2,7 | 7,1,19 | 6,0,0,8 | 5,1,0,7 | 4,0,06 | 4,0,14 | 1,0,0,3 | 0,0,0,2 | 0,0,0,1 | 0,0,0,1

Time 0.00 0.01 0.14 0.73 3.41 10.23 25.40 56.35 100.94 164.76 | 347.73 | 537.32

S48 0000 | 3113 | 5233 | 2213 | 2001 | 2011 | 1,000 | 1.000 | 0000 | 00,00 | 0,000 | 0.0.0.0
Time 0.00 0.01 0.12 0.37 1.55 4.07 15.58 28.18 13.63 6.05 4.55

S cs 1,1,1,1 | 2,3,2,2 | 7,76,6 | 6,4,3,6 | 6,3,54 | 42,3,3 | 1,0,0,1 | 4,1,0,1 | 2,1,0,3 | 1,0,0,0 | 0,0,0,0 | 0,0,0,0
Sq10 Time 0.00 0.01 0.09 0.39 1.46 4.77 9.18 18.99 29.85 61.56 105.78 132.23
(e} 0,0,0,0 | 2,2,2,2 | 5,3,2,5 | 4,1,14 | 2,0,1,1 | 2,0,0,3 | 1,0,0,0 | 2,0,0,0 | 0,0,0,0 | 0,0,0,0 | 0,0,0,0 | 0,0,0,0

Sqll Time 0.00 0.01 0.07 0.30 1.21 2.64 1.80 10.29 13.41 5.41 1.33 4.53
cs || LLLL | 2232 | 6,546 | 6,346 | 6335 | 4222 | 1,1,01 | 41,1,1 | 1,0,,,1 | 0,0,0,1 | 0,0,0,0 | 0,0,0,0

Sql2 Time 0.00 0.00 0.10 0.42 1.39 4.35 7.36 16.45 29.42 44.76 51.29 96.40
os || 0,1,1,0 | 321,1 | 4224 | 21,23 | 2,1,01 | 20,00 | 1,0,0,0 | 1,0,0,0 | 0,0,0,0 | 0,0,0,0 | 0,0,0,0 | 0,0,0,0

Sql3 Time 0.00 0.02 0.11 0.46 2.18 4.88 7.47 22.74 40.05 39.15 82.32 92.34
cs 1,1,1,1 | 444,2 | 7,6,6,7 | 7,6,4,7 | 8,5,5,6 | 5,3,2,2 | 2,0,14 | 4,1,0,3 | 3,3,1,2 | 1,0,0,1 | 0,0,0,0 | 0,0,0,0

Nr. solved 10 10 10 10 10 8 6 7 6 3 2 1
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tuple indicating the number of instances solved by CS1, CS2, CS3, and CS4 respectively.
Notice however that here an entry in the row “Time” is the average over the ten values
obtained for the instances in that group. The last row of Table 4.4 (Nr. solved) reported
the number of instances in each group for which the heuristics are able to find an optimal

partition.

When analyzing the results of Table 4.4, we see that for the instances with at most
40 observations, the heuristics behave excellent. In fact, for each instance, the heuristics
found an acyclic partition. Moreover, the CPU time used by the heuristics is less than

two seconds. These observations confirm the results from Data I.

When the number of observations grows, the effectiveness of the heuristics drops.
This is clearly seen from the last row of Table 4.4. Still, more than 60% of the instances
whose number of observations is between 48 and 72 are solved in a reasonable amount of
time (less than a minute). However, when the number of observations further increases,
the effectiveness of the heuristic goes further down. We recall that there are three
possible explanations for this: (i) either a coloring exists, but the heuristics fail to find
one, or (ii) the graph does not admit a coloring in spite of the fact that the data satisfy
CARP, or (iii) the data simply does not satisfy CARP. More sophisticated heuristics
might shed a light on this question.

Overall, Table 4.4 reports that 83 instances out of 120 are solved using the heuristics;
that is around 69% of the instances. The findings obtained after the application of
heuristics to the instances in Data I are confirmed here. For instance, sequence 6
(Sg6) and sequence 13 (Sql3) are still the most attractive sequences, while coloring

strategies 1 (CS1) and 4 (CS4) are the most successful strategies.

Summarizing, the computational results suggest that

(i) verifying whether the graph derived from the data contains double-sum arcs is

rewarding for real-life instances,

(ii) the graph construction from Section 4.3 is useful for testing CARP at least for

medium-sized instances (up to 75 observations), and

(iii) investing a little computation time (two seconds) trying to find a heuristic coloring

often prevents the usage of a much more time-demanding exact algorithm.
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4.6 Summary and conclusions

We consider in this chapter the computational problem of testing whether observed
data from household consumption behavior satisfies the Collective Axiom of Revealed
Preferences (CARP). We construct a directed graph from the data of observed house-
hold consumption which is such that the existence of a vertex-partitioning giving rise to
two induced subgraphs that are acyclic implies that the data satisfies CARP. We also
propose a necessary condition for CARP. We provide an example showing that there
exist data sets which do not satisfy the necessary condition and the corresponding
graphs do not admit a partition into two acyclic subgraphs while the data set satisfies
CARP. Although checking the necessary condition can be achieved in polynomial time,
we prove that the problem of checking whether the vertices of the obtained graphs can
be partitioned into two acyclic subgraphs is an NP-complete problem.

We show that when the graph is a line graph, the data used to build that graph
satisfies CARP. For graphs that do contain double-sum arcs, we propose and implement
heuristics which are quite fast and can be used to check large data sets for CARP.
The heuristics proposed are used prior to an exact and time-consuming algorithm.
Moreover, if the outcome of the heuristics is not conclusive, it can still be used to
reduced the size of the IP model to be solved. Applied to real-life and synthetic data,
the heuristics turn out to be very effective for testing CARP. Moreover, the running
time of the heuristics are usually within a fraction of second.

An important research direction that might be pursued in the future is an attempt to
fill the gap between the necessary and the sufficient conditions proposed in this chapter
by providing stronger conditions. Based on the success of the combinatorial structure
(graph) used in this chapter for testing CARP, the long term research direction might
investigate whether such a structure can be used to improve other (more specific)
collective rational tests. Further, we may study how the recovery analysis can be

performed from the outcome of a test based on a combinatorial structure.



Chapter 5

Acyclic 2-coloring problem

In this chapter, we consider the general problem of deciding whether a given directed
graph can be vertex partitioned into two acyclic subgraphs. Applications of this prob-
lem include checking the sufficient condition of the Collective Axiom of Revealed Pref-
erence (CARP) defined in Chapter 4. We prove that the problem is NP-complete,
even for oriented graphs and argue that the existence of a constant-factor approxi-
mation algorithm is unlikely for an optimization version which maximizes the number
of vertices that can be colored using two colors while avoiding monochromatic cycles.
We present three exact algorithms, namely an integer-programming algorithm based
on cycle identification, a backtracking algorithm, and a branch-and-check algorithm.
We compare these three algorithms both on real-life instances obtained in Chapter 4
and on randomly generated graphs. We find that for the latter set of graphs, every
algorithm solves instances of considerable size within few seconds; however, the CPU
time of the integer-programming algorithm increases with the number of vertices in
the graph while that of the two other procedures does not. For real-life instances, the
integer-programming algorithm solves the largest instance in about a half hour while
the branch-and-check algorithm takes about ten minutes and the backtracking algo-
rithm less than five minutes. Finally, for every algorithm, we also study empirically the
transition from a high to a low probability of a YES answer as function of the number

of arcs divided by the number of vertices.

This chapter is the result of a collaboration with Cor Hurkens, Roel Leus and Frits Spieksma. A
preliminary version is available as: F. Talla Nobibon et al. 2010. Exact algorithms for coloring

graphs while avoiding monochromatic cycles. Lecture Notes in Computer Science 6124, 229-242.
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5.1 Introduction

Consider the following problem. Given is a finite, directed graph G = (V, A). The goal
is to partition the vertices of G into two subsets such that each subset induces an acyclic
subgraph. Since the problem can be equivalently phrased as coloring the vertices of G
using two colors such that no monochromatic cycle occurs, we refer to this problem as
the acyclic 2-coloring problem. Notice that the acyclic 2-coloring problem is defined for
a directed graph. The counterpart for undirected graphs is named partition into two
forests and is known to be NP-complete (Wu et al., 1996). The problem defined for
directed graphs seems to be neither a special case nor a generalization of the problem for
undirected graphs; in other words, an algorithm for solving one problem cannot directly
be used to solve the other problem and vice versa. Notice also that the acyclic 2-coloring
problem is different from the standard graph coloring problem on an undirected graph
because two adjacent vertices can have the same color; a directed acyclic graph, for
instance, can be colored using a single color.

In this chapter, we prove that the problem is NP-complete, even for oriented graphs.
We also show that it is unlikely to find a constant-factor approximation algorithm for
solving an optimization formulation which maximizes the number of vertices that can
be colored using two colors while avoiding monochromatic cycles. Further, we identify
classes of directed graphs for which the problem is easy. We develop and implement
three exact algorithms, namely an integer-programming (IP) algorithm based on cycle
identification (in the rest of this chapter, we also refer to this algorithm as cycle-
identification algorithm), a backtracking algorithm and a branch-and-check algorithm.
We compare these algorithms based on their CPU time, both on real-life instances ob-
tained in Chapter 4 and on randomly generated graphs. We find that every algorithm
solves random graphs of considerable size within few seconds. The CPU time of the
cycle-identification algorithm increases with the number of vertices in the graph while
the running time of both the backtracking algorithm and the branch-and-check algo-
rithm does not increase. Further, for every algorithm we study empirically the phase
transition of the problem as function of the number of arcs divided by the number of
vertices. When applying the three algorithms to real-life instances obtained in Chap-
ter 4, however, we find that the cycle-identification algorithm usually takes more time
than the two other procedures: the largest instance with 4384 vertices takes about
a half hour, while the branch-and-check algorithm solves that instance in about ten

minutes and the backtracking algorithm in less than five minutes.
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This chapter is organized as follows. In Section 5.2, we describe some notation
and present a brief literature review. In Section 5.3, we prove the complexity and
the non-approximability results and present some properties of the acyclic 2-coloring
problem. In Section 5.4, we describe the three exact algorithms, present some refine-
ments and identify classes of directed graphs for which the acyclic 2-coloring problem
is easy. Section 5.5 presents some issues related to the implementation of the algo-
rithms. In Section 5.6, we comment computational results and study empirically the

phase transition of the problem. We conclude in Section 5.7.

5.2 Notation and literature review

In this section, we describe some notation and definitions that will be used throughout

this chapter and subsequently, we present a brief literature review.

5.2.1 Notation and definitions

We denote by G = (V, A) a finite directed graph with |V| = n vertices and |A| = m
arcs. In this chapter, we are only interested in directed graphs without loops, which
are arcs for which start and end vertex are the same. For a vertex p € V, the outdegree
of p is the number of arcs leaving p while the indegree of p is the number of incoming
arcs to p. The degree of p is the sum of its outdegree and its indegree. For ease of
exposition, we will use pg to represent the arc p — ¢. If G is such that there are no
vertices p and ¢ in V with pg € A and ¢p € A then G is an oriented graph. An oriented
graph is also obtained by choosing an orientation for each edge of an undirected graph.
If the undirected graph is planar (outerplanar) then the obtained oriented graph is also
planar (outerplanar). A sequence of vertices [vg, vy, ..., vy is called a chain of length ¢
ifvi_1v; € Aor v € Afori=1,...,4. G is connected if between any two vertices
there exists a chain in G joining them. Throughout this chapter, we consider only
connected graphs. A sequence of vertices [vg, v1,. .., v is called a path from vy to vy
if v,_qv; € Afori=1,...,0. A vertez-induced subgraph (subsequently called induced
subgraph) is a subset of vertices of G together with all arcs whose endpoints are both in
that subset. An arc-induced subgraph is a subset of arcs of G together with any vertices
that are their endpoints. A strongly connected component (SCC) of G is a maximal
induced subgraph S = (V(.5), A(S)) where for every pair of vertices p,q € V(S), there

is a path from p to ¢ and a path from ¢ to p. A sequence of vertices [vg,v1, ..., v, vg] is
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called a cycle of length £+1in G = (V, A) if v;_qv; € Afori=1,... ¢ and vyvg € A. A
graph is acyclic if it contains no cycle; otherwise it is cyclic. A k-coloring of the vertices
of G is a partition Vi, Va, ...,V of V; the sets V; (j = 1,..., k) are called color classes.
Given a k-coloring of G, a cycle [vg, v1,. .., v, vo] in G is monochromatic if there exists
i € {1,...,k} such that vy, vy, ..., vp € V;. In this chapter, we use the notions vertex
coloring and vertex partition of a graph interchangeably.

Given an integer k, an acyclic k-coloring of G is a k-coloring in which the subgraph
induced by each color class is acyclic. The acyclic chromatic number a(G) of G is the
smallest k£ for which G has an acyclic k-coloring. The directed line graph LG of G
has V(LG) = A(G) and a vertex (u,v) is adjacent to a vertex (w,z) if v = w. An
arc pq € A is called a single arc if the arc gp ¢ A. We define the 2-undirected graph
Go = (V, E) associated with G as the undirected graph obtained from G by deleting
all single arcs and transforming a pair of arcs forming a cycle of length 2 into an edge
(undirected arc); more precisely, {v1,v2} € E if and only if vjvg € A and vev; € A.
We define the single directed graph Gs = (V, As) of G as the subgraph of G containing
only single arcs; more precisely, for a given pair of vertices v1 and vs in V', vive € Ag

if and only if vivy € A and vov; ¢ A.

5.2.2 Literature review

To the best of our knowledge, Deb (2008a,b) is the first to explicitly address the acyclic
2-coloring problem. He proves that the problem is NP-complete and extends the results
of Chen (2000) for undirected graphs by computing an upper bound on the acyclic
chromatic number a(G). In Chapter 4, we propose heuristics for maximizing the number
of vertices that can be colored using two colors while avoiding monochromatic cycles;
these heuristics are based on greedily coloring the vertices.

The literature on acyclic k-coloring for undirected graphs, however, is more elabo-
rate. For k = 2, Wu et al. (1996) study the partition of a graph into two induced forests.
Thomassen (2008) studies 2-list-coloring planar graphs without monochromatic trian-
gles. Broersma et al. (2006) investigate the coloring problem on planar graphs while
avoiding monochromatic subgraphs. Several authors have studied the acyclic coloring
problem for planar graphs (Aifeng and Jinjiang, 1991; Goddard, 1991; Raspaud and
Wang, 2008; Roychoudhury and Sur-Kolay, 1995). For a general k, Chen (2000) gives
an efficient algorithm for computing an upper bound of a(G). Theoretical results on

acyclic k-coloring for undirected graphs are contained in the framework of the general-
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ized graph coloring problem (Alekseev et al., 2004). Applications of acyclic k-coloring
for undirected graphs include wireless spectrum estimation (Khanna and Kumaran,
1998), game theory (Bartnicki et al., 2008) and logic (Bench-Capon, 2002).

5.3 Complexity and properties of the problem

In this section, we study the complexity of the acyclic 2-coloring problem and derive

some properties that we use in the next section to build exact algorithms.

5.3.1 Complexity results

We prove that the acyclic 2-coloring problem is NP-complete, even for oriented graphs
and we argue that it is unlikely to find a constant-factor approximation algorithm for
an optimization version which maximizes the number of vertices that can be colored
using two colors while avoiding monochromatic cycles.

The acyclic 2-coloring problem is explicitly defined as the following decision prob-

lem.

INSTANCE: A finite directed graph G = (V, A).
QUESTION: Does G have an acyclic 2-coloring?

Notice that the acyclic 2-coloring problem is defined as a vertex partition problem.
A different problem can be similarly defined by considering arc partitioning of G into
two subsets such that each arc-induced subgraph is acyclic. This variant of the problem
can be decided in polynomial time; in fact every directed graph is a YES instance.
This argument comes from the fact that by building the corresponding line graph,
the problem becomes equivalent to partitioning the vertices of the line graph into two
subsets such that each subset induces an acyclic subgraph. The latter is identified later
in this chapter as a YES instance of acyclic 2-coloring problem (see Section 5.4.5).

Notice that the acyclic 2-coloring problem is in the class NP. In fact suppose that
we are given a coloring of the vertices of G using two colors. We consider each subgraph
induced by a color class separately. We conclude that we have an acyclic coloring of
G if and only if both subgraphs are acyclic (this can be checked in linear time using
the topological ordering algorithm (Ahuja et al., 1993)). The following theorem shows

that the acyclic 2-coloring problem is NP-complete, even for oriented graphs.
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Theorem 5.1. The acyclic 2-coloring problem is NP-complete for oriented graphs.

Proof. The proof is a refinement of Deb’s proof (Deb, 2008a) for arbitrary directed
graphs G to oriented graphs. It uses a reduction from the Not-All-Equal-3Sat problem

defined as follows.

INSTANCE: Set X = {x1,...,z,+} of n* variables, collection C' = {C1,...,Cp+} of
m* clauses over X such that each clause Cy € C has |Cy| =3, =1,...,m"
QUESTION: Is there a truth assignment for X such that each clause in C has at

least one true literal and at least one false literal?

Garey and Johnson (1979) proved that the Not-All-Equal-3Sat problem is NP-complete.

The proof of Theorem 5.1 is structured as follows. First, we build an oriented graph
G = (V, A) given the instance of the Not-All-Equal-3Sat problem. Next, we argue the
equivalence of a yes-instance of Not-All-Equal-3Sat and the oriented graph G having a
partition into two acyclic subgraphs.

In our construction of G, we use a gadget called a p-q block, which is a (sub)graph
Bpg = (Vpg, Apg) with five vertices and ten arcs defined by: Vp, = {p,q,aP?, P4, P}
and Apq = {pq, qaP?, qb?4, qcP?, aPip, aP1bPe, bPip, bPIcP, cPlp, P1aP?}. The illustration
of By, is depicted in Figure 5.1(a). In Figure 5.1(b), we draw two blocks sharing one
vertex p; these are the p-¢ block and the s-p block. In the block B,,, the vertices a9,
bP4, P are called block vertices because they are used to build the block Bp,. All the
arcs in A,q are called block arcs. In our construction of the oriented graph G, there is
no arc going from a block vertex a??, bP¢ or P? to vertices other than p and q.

Observe that in any feasible coloring of the block By, using two colors, the vertices
p and ¢ must always have different colors. Indeed, if p and ¢ are assigned the same
color then the three block vertices aP?, b?4, and ¢ all must have the same color and
therefore will form a monochromatic cycle. To obtain a feasible coloring of B, it
suffices to assign different colors to p and ¢, and make sure that the block vertices aP?,
b1, and cP? do not have the same color.

In the first step of the proof, we aim at building an oriented graph G = (V, A) from
an arbitrary instance of the Not-All-Equal-3Sat problem. We first determine the set V'
of vertices followed by the set A of arcs.

Consider an arbitrary instance of the Not-All-Equal-3Sat problem. We build the
set V of vertices as follows. For each variable x; € X, we have five vertices: x;, T,

a®®i, bi% and c*%i, where the last three vertices are block vertices; they are used to
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p
bPa
a7 ) —
A\ 4
q
(a) p-q block (b) Two blocks sharing vertex p

Figure 5.1: Illustration of a single p-q block and two blocks sharing one vertex.

build the block B,,z,. Therefore, in our oriented graph there will not be an arc going
from one of these three vertices to a vertex other than z; and z;. The vertices x; and Z;
are called variable vertices. Hence, if | X| = n*, we have 5n* vertices corresponding to
variables in the Not-All-Equal-3Sat instance. For each clause Cy = (m{ vabhv :cg) e C,

we define 12 vertices among which nine block vertices. The three vertices %, x5, and

xé are called literal vertices. There are block vertices associated with x{, mg, and mg,
respectively. For the literal 1‘{ there is a variable x; € X such that either :U{ = x; or
2! = Z;. On the one hand, if #{ = z; then using the block vertices a®%, b1% and
cmgfi, we build the block Bl“fi‘z" On the other hand, if m‘i = T; then we use the block
vertices a”"{xi, b*1% and ¢*1% to build the block Bm{:m' The block vertices associated
with the literal 2§ and x§ are defined similarly. Notice that for each literal z¢ € C,
(r = 1,2,3) we have four vertices, namely the literal vertex =% and three block vertices.
If there are m™* clauses, we have 12m* vertices coming from clauses. In total, the set V'

contains dn* + 12m™* vertices.

To complete the definition of our oriented graph G, we now specify the set A of
arcs. We distinguish two types of arcs, depending on whether they are block arcs or

not.

1. Block arcs: For each variable z; € X, there is a block B,,z;, which requires ten
block arcs. Hence, if | X| = n*, we have 10n* such block arcs. Further, for each clause
Cy = (x‘i VbV wé) € C there are three blocks, one associated with each literal. Hence,

for the m* clauses there are 30m* block arcs.
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2. Other arcs: For each clause Cy = (fc{ Vah v mg) € C there are three arcs which

are not block arcs. These are z{z4, x5x%, and x4, which form a cycle containing the

literal vertices x¢, z5, and x§. Hence, for the m* clauses there are 3m* such arcs.

In total, we have |A| = 33m™* + 10n*. This completes the definition of our oriented
graph G. Clearly, the above reduction can be done in polynomial time and the obtained

graph is an oriented graph.

To illustrate the reduction, we consider the following example of the Not-All-Equal-
3Sat problem. The set of variables is X = {x1,z2,23}, and there are two clauses
Cy = (v1Vae V) and Cy = (T1 Va2 VZ3); that is 21 = 21, 23 = x9, :U;l,, =23, 22 = Ty,
:L'% = x9 and x% = Z3. Notice that the truth assignment r; = x2 = 1 and z3 = 0 is
a solution to this Not-All-Equal-3Sat instance. For this example, the set of vertices
corresponding to variables is {x1, T1, a®1%1, b*1T1 P11 gy Ty, a2T2 HT2T2 (V272 pg

_ 7 7 7 . . . 1~
Ty, a3 pPsT3 - cT3T31 and the set of vertices stemming from clauses is {x%, a®1®1,

15 15 15 15 15 15 15 15 2 2 2
T T T 1 5T T o5& X5 & 1 3T T T3 X 2 Tix TyT Tyx 2
bl 17 cl 17 x27 a2 27 b2 27 c2 27 $37 a3 37 b3 37 c3 37 $17 al 17 bl 17 cl 17 372,

a¥3T2 piT2 cwET2 z3, a¥3Ts | priTs c“i%»“}. The set A of arcs obtained by the reduction
contains the arcs xizl, xixd, xizrl, 2323, 2222 2322, which are not block arcs, and
the block arcs used to build the blocks Bz z,, Bryzas Beszss Batzy Bulzyr Batzsr Brays
Bxgb, and Bz%mg-

In the last step of our proof, we show that the oriented graph G obtained by the
above reduction can be partitioned into two acyclic subgraphs if and only if the instance
of the Not-All-Equal-3Sat problem is a YES instance. The goal here is to prove that
partitioning the oriented graph G built from the instance of the Not-All-Equal-3Sat
problem into two acyclic subgraphs is at least as hard as that instance of the Not-All-

Equal-3Sat problem.

= ) If the graph G can be vertex-partitioned into two acyclic subgraphs G1 and Go,
then for each variable z; € X, if the associated variable vertex x; € GG1, then we set the
variable x; = 1; otherwise z; = 0. This is a truth assignment for X since each variable
in X receives either value 0 or value 1. We now prove that this truth assignment is
such that each clause in C has at least one true literal and at least one false literal.
We argue by contradiction. Suppose that there exists a clause Cy = (x{ \% :Ué \% :Ug)
(¢ € {1,...,m*}) in C which is such that either z{ = 2§ = 2§ = 1 or 2§ = 2§ = 2§ = 0.
Without loss of generality, let us assume that 31:?L = xé = mg = 1. We are going to
investigate each literal in C, individually. The first literal z¢ is either z; or Z; for a

given variable x; € X. We will argue that in both cases, the associated literal vertex,
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xl{, belongs to G.

On the one hand, if the literal x‘i = x; then the variable z; = 1. This implies,
from the assignment of values to variables, that the associated vertex x; € G1. In
the construction of G, there is a block B,,z, which makes sure that the vertices x;
and Z; are not in the same subgraph. Since the vertex x; € 1 this implies that
the vertex Z; € Go. Next, the presence of the block B:c‘i’ 7 nG (which exists by
construction) and the fact that the vertex z; € G imply that the vertex m‘i € (.

On the other hand, if ml{ = T; then Z; = 1 implies that the variable z; = 0 and
hence the associated variable vertex x; € (Go. The block szi o in G and the fact
that the vertex x; € G2 imply that the vertex x{ € Gy.

We conclude that whether the literal xf is the variable x; or its negation Z;, as long
as its value equals 1 the associated vertex zf € Gj. Notice that for case ¢ = 0 we
would conclude that the vertex x{ € Gs.

By applying a similar reasoning to the literal z%, we obtain that the associated
literal vertex :cg € (31, while the application of that reasoning to the literal :cg leads to
x5 € G1. We obtain that the vertices zf € G1, 2§ € G and 2§ € G1; which implies that
G1 contains the cycle [z{, 25, 2]. This contradicts the hypothesis that G is acyclic.

= ) Conversely, suppose that there is a truth assignment for X which is such that
each clause in C has at least one true literal and at least one false literal. Consider
the subgraphs G and G defined as follows. For each variable x; € X, if x; = 1 then
the variable vertex x; € G1 and the variable vertex T; € G. Otherwise, if the variable
x; = 0 then the vertex Z; € G and the vertex z; € G9. Further, for the block vertices
(used to build the block B,,z,) we make sure that they are not all three in the same
subgraph. For example, we may put the block vertex a%* € Gy, the block vertex
b*i%i ¢ (G4 and the block vertex ¢¥i% € G5. This ensures that each vertex coming from
a variable in X is either in G7 or in Go. We now deal with vertices stemming from
clauses.

Let us consider the vertices coming from a clause Cy = (z{Vva§val) (¢ € {1,...,m*})
in C. We deal with each literal vertex separately. The first literal vertex, :L'li, is
associated with the first literal z{ in Cy, the latter is either x; or &; (i € {1,...,n}).
Since the corresponding variables vertices (z; and Z;) are either in G or in Ga, we
proceed as follows. If the literal x{ = x; then we put the literal vertex :c{ in the same

subgraph as the variable vertex z;. Otherwise (the literal 2§ = 7;), the literal vertex {
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is in the same subgraph as the variable vertex Z;. In each case, the block vertices (used
in the block Bz{ g, Where 0 is either x; or Z;) are distributed in such a way that they are
not all three in the same subgraph as sketched before. A similar distribution is done
for the literal vertex x4 and for the literal vertex z§. This completes the definition of
G1 and G,. Clearly G7 and G2 form a partition of GG since each vertex in G is either
in GG1 or in Gs.

We now prove that G and G4 are acyclic. We also argue by contradiction. Suppose,
without loss of generality, that G contains a cycle. Notice that this cycle cannot contain
both p and ¢ for any p-¢ block present in GG. Further, that cycle cannot be contained
in two blocks sharing one vertex. Therefore, if there is a cycle in G then there exists
a clause C; € C such that the cycle uses the literal vertices x%, x5, and xg. Therefore,
zf, 2, 2§ € G1 and hence all the literals of the clause C; have the same value. This
contradicts the fact that the truth assignment for X was such that each clause of C
has at least one false and at least one true literal.

This concludes the proof that the instance of the Not-All-Equal-3Sat is a YES
instance only if the oriented graph G can be partitioned into two acyclic subgraphs,

and hence completes the proof of Theorem 5.1. O

An optimization version of the acyclic 2-coloring problem maximizes the number
of vertices of G that can be colored using two colors such that the subgraph induced
by each color class is acyclic. We refer to this problem as Max-A2C. We next prove
that Max-A2C contains the maximum bipartite subgraph problem defined for undirected
graphs as a special case. The maximum bipartite subgraph problem is defined a follows:
given an undirected graph K, find a bipartite subgraph of K with the maximum number

of vertices.

Lemma 5.2. Maz-A2C contains the maximum bipartite subgraph problem as a special

case.

Proof. Consider a given instance of the maximum bipartite subgraph problem for a
given undirected graph K = (V, E). We build a directed graph G = (V, A) from K as
follows: given two vertices p, ¢ € V, if there is an edge between p and g in E then both
the arc from p to ¢ and the arc from ¢ to p are present in A. Observe that a bipartite
subgraph in K containing k vertices corresponds to a 2-coloring of the &k vertices in the
corresponding directed graph G that is acyclic, and vice versa. Therefore, the problem

Max-A2C is at least as hard as the maximum bipartite subgraph problem. O



5.4. Exact algorithms 131

Lund and Yannakakis (1993) prove a non-approximability result for the maximum
bipartite subgraph problem. Lemma 5.2, together with their result, implies the follow-

ing corollary.

Corollary 5.3. There exists an € > 0 such that Maz-A2C cannot be approximated in

polynomial time with ratio n® unless P = NP.

5.3.2 Properties of the acyclic 2-coloring problem

We derive two properties of the acyclic 2-coloring problem that are used in the next
section to build exact algorithms. Let G = (V, A) be a given directed graph, G its
associated 2-undirected graph and G its single directed graph.

Proposition 5.4. If the set V' of vertices of G can be partitioned into two subsets, RED
and BLUE, such that Go is bipartite with all the vertices in RED on one side and those
in BLUE on the other side; and the single directed graphs induced by RED, Gs(RED),
and by BLUE, Gs(BLUE), respectively, are acyclic then G is a YES instance of the

acyclic 2-coloring problem; otherwise G is a NO instance.

Proof. This follows from the fact that RED and BLUE form an acyclic coloring of G.
O

Proposition 5.5. If Gy is not bipartite then G is a NO instance of the acyclic 2-

coloring problem, while if G is bipartite and G is acyclic, then G is a YES instance.
Proof. Immediate. O

Notice that Proposition 5.5 implies Proposition 5.4 since if G5 is not bipartite, then
there are no two subsets RED and BLUE satisfying the hypothesis of Proposition 5.4.
On the other hand, if G9 is bipartite and G, is acyclic then there exists two subsets
RED and BLUE satisfying the hypothesis of Proposition 5.4. The reverse is not true.

5.4 Exact algorithms

In this section, we describe three exact algorithms for solving the acyclic 2-coloring
problem, namely a cycle-identification algorithm, a backtracking algorithm and a
branch-and-check (B&C) algorithm. The backtracking algorithm and the B&C algo-

rithm are implicit enumeration algorithms built to solve the acyclic 2-coloring problem
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while the cycle-identification algorithm is based on an IP formulation of the problem.
We also present two dominance rules which can be used to reduce the size of the con-
sidered graph. In the rest of this section, G = (V, A) is a given directed graph, G is
its associated 2-undirected graph and G its single directed graph.

5.4.1 Cycle-identification algorithm

We consider an IP formulation of the acyclic 2-coloring problem with binary variables
x; (i =1,...,n), each of which equals one if vertex ¢ is colored red and zero if it is
colored blue. We are looking for a coloring x; (i = 1,...,n) for which there is no
monochromatic cycle. We choose to maximize the number of red vertices. Notice that
any other objective function can be chosen. To complete the IP formulation, we add for
each cycle C in G, the pair of constraints 1 < ). - 2; < |C|—1, where |C| is the number
of vertices in C. Note that this IP formulation may have an exponential number of
constraints.

A formal description of the cycle-identification algorithm is given by Cycleld(G).
It works as follows. A relaxed IP instance containing only a subset of constraints is
solved. If that instance is infeasible, we stop and output NO. Otherwise, we consider
the subgraph induced by each color class separately and check whether there is a cycle.
If both subgraphs are acyclic then we stop and output YES. On the other hand, if
for at least one induced subgraph a cycle is found, we add to the relaxed IP instance
the corresponding pair of constraints. The problem is solved again and the above
procedure is repeated until either a YES or a NO answer is returned. Notice that the
implementation of this algorithm does not need an optimal solution to the IP instances;

a feasible solution is enough.

Algorithm 5.1 Cycleld(G)
1: solve a relaxed IP instance containing only a subset of constraints

. if there exists a feasible solution
for each subgraph induced by a color class, search for a monochromatic cycle

if monochromatic cycle found

solve the relaxed IP instance again and goto 2

2
3
4
5: add the corresponding pair of constraints to the relaxed IP instance
6
7:  else return YES

8:

else return NO
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5.4.2 Backtracking algorithm

An “ordinary” backtracking algorithm for solving the acyclic 2-coloring problem is an
adaptation of the well-known backtracking algorithm for graph coloring on undirected
graphs. It would work as follows: successively color the vertices of G either red or blue
and each time a new vertex is colored, the subgraph induced by the corresponding color
class is checked to see whether it is still acyclic; otherwise the color of the last vertex is
switched and the subgraph induced by its new color class is then checked. If it is not
acyclic, the algorithm backtracks.

In this section, we propose a backtracking algorithm based on Proposition 5.4.
This is an enumeration algorithm which explicitly colors every vertex of G. The key
difference between our algorithm and an ordinary backtracking algorithm is that the
backtracking algorithm described here can anticipate a NO conclusion earlier without
having to color many vertices. This is due to the bipartiteness test included in the
algorithm. Broadly speaking, this test consistently extends (if possible) the effect of
colored vertices to (connected) uncolored vertices.

A formal description of the backtracking algorithm is given by BT(RED, BLUE, G)
with RED = § and BLUE = ( at the beginning. In the description, the function
bipartite(RED, BLUE, G-) returns YES if G2 is bipartite given that the vertices in
RED are on one side and those in BLUE are on the other side; otherwise it returns
NO. We denote by Gs(A) the single directed graph induced by a set A.

Algorithm 5.2 BT(RED, BLUE, G)
if V.= REDUBLUE, then return YES

choose a vertex p in V\{RED U BLUE}

RED = RED U {p}

if bipartite(RED, BLUE, G2) and Gs(RED) acyclic then
if BT(RED, BLUE, G) then return YES

RED = RED \ {p}, BLUE = BLUE U {p}

if bipartite(RED, BLUE, G2) and G4(BLUE) acyclic then
if BT(RED, BLUE, G) then return YES

return NO

Proposition 5.6. The backtracking algorithm terminates after a finite number of iter-
ations. Further, upon termination, the output decision corresponds to the decision for

the original graph G.
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Proof. This follows from the fact that there is a finite number of colorings (at most 2")

and in the worst case, the backtracking algorithm will enumerate all of them. O

5.4.3 Branch-and-check algorithm

This B&C algorithm is based on Proposition 5.5. Like the backtracking algorithm,
it is an enumeration algorithm where at each node we check some conditions and
decides whether to proceed or to stop. Unlike the backtracking algorithm, however,
the B&C algorithm is an implicit coloring algorithm which branches on an arc, and
the directed graph obtained at every child node is different from the graph at the
parent node. The expression branch-and-check has also been used in the literature to
refer to some algorithms that integrate mixed-integer programming and constraint logic
programming (Thorsteinsson, 2001).

We now explain how to construct two new graphs from a given arbitrary directed
graph G. This construction is used in the branching step of the B&C algorithm. Let
p,q € V be two adjacent vertices in G4 such that there is a cycle in G5 containing the
arc pq. Consider the directed graphs HP? = (V" A") and FP?1 = (V', A") defined as
follows.

The set of vertices of HP? is V" =V and the set of arcs A” = AU {gp}. The set
of vertices V' of FP? contains V and two additional vertices (pq1) and (pge); that is
V' =V U{(pq1), (pgz2)}. The set of arcs A’ is built as follows.

1. Every arc in A\ {pq} is an arc in A’
2. For every single incoming arc ap into p, add an arc a(pgs) in A’.

3. For every single outgoing arc ga out of ¢, add an arc (pgz)a in A’.

4. Finally, add the arcs: p(pq1), (pq1)p, a(pq1), (pq1)a, (pa1)(pa2), (pa2)(pq1) € A'.

Example 5.7. Figure 5.2 illustrates the construction of H'® and F'3 from the directed
graph G by branching on the arc 1 — 3.

The graph HP?Y corresponds with a setting where p and g receive different colors,
whereas the graph FP? represents the setting where p and ¢ have the same color in
any feasible coloring. Informally, the graph HP? arises from G by adding the arc ¢p;
the graph FP? arises from G by replacing the arc pg by a node (pgz), such that each

single arc in G entering p (or leaving ¢) now enters (pga) (or leaves (pgs)). Further,
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AN
L

(b) The graph H'? (c) The graph F''3

Figure 5.2: Illustration of the construction of H' and F'3. In the graphs, a double-

direction arc (<) represents a cycle of length two between the considered vertices.

we add a node (pq;) in FP? to enforce that the vertices p, ¢ and (pga) have the same
color. Remark that each cycle in G containing the arc pq corresponds to a cycle in FP4

containing the vertex (pga).

Proposition 5.8. Let p and q be two adjacent vertices contained in a cycle in Gs. FP4
or HP? is a YES instance of the acyclic 2-coloring problem if and only if G is a YES
imstance.

Proof. <) Assume that the graph G can be partitioned into two acyclic subgraphs.
There are two options: either the vertices p and ¢ have the same color or they do not.

If p and ¢ have different colors, then the directed graph HP?¢ can be partitioned into
two acyclic subgraphs according to the coloring of Gj clearly, the 2-cycle [p, ¢, p| is not
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monochromatic.

On the other hand, if p and ¢ have the same color, we prove that the directed graph
FP4 can be partitioned into two acyclic subgraphs. Consider the following coloring of
V', Each vertex a € V receives the color obtained by the coloring of G. The vertex
(pg2) is given the color of p and ¢ while (pg;) receives the color different from that of
p and q. We next prove that the subgraphs induced by the color classes are acyclic.
Suppose there exists a monochromatic cycle C in FP4. C cannot contain (pg;) because
all its neighbors have a different color. C must contain (pga) because otherwise it would
lie in G as well. Consider the part of the cycle © — (pg2) — y. Now change cycle
C into cycle C’ by replacing z — (pg2) — y by © — p — ¢ — y. This would be a
monochromatic cycle in G.

=) Suppose that FP? or HP? can be partitioned into two acyclic subgraphs. Clearly,
a partition of HP? into two acyclic subgraphs immediately yields a partition of G into
two acyclic subgraphs. On the other hand, if FP? can be partitioned into two acyclic
subgraphs, we consider the coloring of G defined as follows: p € V receives the same
color as in the coloring of FP4. The partition of FP? induces a partition of G\ {pg} (the
graph G minus the arc pq) into two acyclic subgraphs because G \ {pq} is a subgraph
of FP4. Consequently, if there is a monochromatic cycle C in G, then C must use the
arc pq. However, since a cycle in G that uses the arc pq corresponds to a cycle in FP4

using (pgz), there would be a monochromatic cycle in FP4: a contradiction. O

A formal description of the B&C algorithm for deciding G is given by BnC(G).

Algorithm 5.3 BnC(G)

: determine G9, G

. if G2 is not bipartite, then return NO
. if Gy is acyclic, then return YES

: choose an arc pq on a cycle in G
. determine HP?, P4

. if BnC(HP?) then return YES

. else return BnC(FP?)

N O Ut W N =

The branching strategy involves the selection of two adjacent vertices p and ¢ in Gy
such that there is a cycle in G5 containing the arc pq. The following result proves that
using this branching strategy, the B&C algorithm terminates after a finite number of

iterations.
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Proposition 5.9. The B&C algorithm terminates after a finite number of iterations.

Proof. To prove this result we introduce the following parameter of a graph. Given
a directed graph G and its single directed graph G, we define the total length of all
distinct cycles in G, denoted L(G), as the number of arcs in all distinct cycles in Gs.
Notice that an arc is counted as many times as it appears in distinct cycles. We prove
that for any two adjacent vertices p,q € G such that there is a cycle in G4 containing
the arc pgq, L(HP?) < L(G) and L(FP?) < L(G). Clearly, L(HP?) < L(G) because at
least one cycle in G disappears in H%? since the arc pq is not in HY?. On the other
hand, L(FP?) < L(G) because any cycle in G that uses the arc pg has become one
arc shorter in the single directed graph FF? of FP4. Every cycle in G4 that does not
use the arc pq is still present in FY?, and so has the same contribution to L(G) and

L(FP)., O

Theorem 5.10. Correctness of the branch-and-check algorithm
Suppose that the BEC algorithm is run on G. Then, its execution terminates after a
finite number of iterations and the decision corresponds to the decision for the original

graph G.

Proof. This follows from Proposition 5.5, Proposition 5.8 and Proposition 5.9. O

Example 5.11. Figure 5.3 illustrates the application of the BEC' algorithm. The initial
graph G, Figure 5.3(a), is the graph in Figure 5.2(a). By branching on the arc 4 — 1,
we obtain two graphs (H*' and F*') and the graph H*', Figure 5.3(b), is selected as
the next graph to investigate. In that graph, we choose to branch on the arc 7 — 8. The
result is two new graphs, H'® and F'®, and we select H™® depicted by Figure 5.3(c) as
the next graph. By branching on the arc 6 — 8 in H'®, we obtain the graphs H® and
F58. Considering the graph H®® given by Figure 5.3(d), the associated 2-undirected
graph depicted by Figure 5.3(e) is bipartite and the single directed HS® depicted by
Figure 5.3(f) is acyclic. Therefore, the initial graph G is a YES instance of the acyclic
2-coloring problem. One acyclic 2-coloring of G has color classes {1,2,3,5,6,7,9} and
{4,8,10}.

5.4.4 Refinements

In this section, we present two dominance rules which can be used to reduce the size

(the number of arcs and/or the number of vertices) of the directed graph G.
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c e grap 8 e grap 68

ONC eo“e'g?oe
© O

(e) 2-undirected graph of H% (f) Single directed graph of H®

Figure 5.3: [llustration of the BEC algorithm.
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Dominance rule 1: This rule is characterized by the following lemma.

Lemma 5.12. Given a verter p in G, if the outdegree or the indegree of p is less than
or equal to one then the vertex p can be removed from G without changes in the final

outcome.

Proof. Let G = (V, A) be the directed graph and p be a vertex of G with outdegree or
indegree less than or equal to one. Let G, be the subgraph of G obtained by removing
the vertex p and all incident arcs (arcs from p and arcs entering p). Clearly, if G,
cannot be partitioned into two acyclic subgraphs, then G cannot be partitioned into
two acyclic subgraphs.

On the other hand, suppose that G, can be partitioned into two acyclic subgraphs.
If the degree of p equals zero, we simply add p to any one of the subgraphs forming the
partition of G, and the resulting partition is a partition of G into two acyclic subgraphs.
If the indegree (outdegree) of p equals one, let ¢ be the vertex of G, such that the arc gp
(pq) exists in G. Then we add the vertex p to the subgraph not containing q. Clearly,

the resulting partition is a partition of G into two acyclic subgraphs. O

Dominance rule 2: The aim of this rule is to identify and remove from the graph
all single arcs not involved in any cycles in G. It proceeds as follows. The vertices of
G are partitioned into SCCs; notice that such a partition is unique. The arcs between
two distinct SCCs are deleted since they are not part of any cycle in G.

Notice that if either Dominance rule 1 or Dominance rule 2 removes at least one arc
or at least one vertex, then the repeated application of the other rule may further remove
new arcs or vertices. For both the cycle-identification algorithm and the backtracking
algorithm, these rules can be applied before starting the algorithm. For the branch-and-
check algorithm, however, these rules can be applied both before starting the algorithm
and at every node of the branching tree since a new directed graph (either HPY or FP?)
is built.

5.4.5 Classes of easy graphs

This subsection is devoted to the identification of classes of directed graphs for which
the corresponding acyclic 2-coloring problem is always a YES instance. The first class
is the class of directed acyclic graphs (DAG). The second class of graphs is the class of
line graphs (LG). This class of graphs has been identified as a class of directed graphs
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for which the acyclic 2-coloring problem is always a YES instance (see Lemma 4.13 in
Chapter 4). The third class of easy graphs is the class of partial directed line (PDL)
graphs, see e.g. (Apollonio and Franciosa, 2007). These are graphs obtained from line
graphs by removing a set (possibly empty) of arcs. Clearly, the PDL class of graphs
contains the class of directed line graphs. Combining the fact that a line graph is a
YES instance of the acyclic 2-coloring problem and the fact that any subgraph of an
acyclic graph is also acyclic, we conclude that each graph G in the class of PDL graphs
is a YES instance of the acyclic 2-coloring problem.

Let us define the following class of directed graphs. The class G~ (with ¢ a positive
integer) contains all connected directed graphs with each vertex having degree at most ;
and there is at least one vertex with degree less than 7. The next corollary follows from

repeated application of Lemma 5.12.
Corollary 5.13. Every graph in G5 is a YES instance of the acyclic 2-coloring problem.

Further, some results obtained for undirected planar graphs can be extended to

oriented planar graphs. These results are included in the following lemma.

Lemma 5.14. (i) Each oriented planar graph of mazimum degree 4 is a YES in-

stance of the acyclic 2-coloring problem.

(ii) Each oriented outerplanar graph is a YES instance of the acyclic 2-coloring prob-

lem.

Proof. This follows from the fact that a similar result is true for undirected planar
graphs of maximum degree 4 (Raspaud and Wang, 2008) and for undirected outerplanar
graphs (Aifeng and Jinjiang, 1991; Goddard, 1991). O

5.5 Implementation issues

In this section, we present several issues related to the implementation of every algo-

rithm described in Section 5.4.

Bipartiteness, acyclicness and strongly connected components

An adapted breadth-first-search algorithm (Cormen et al., 2001) is implemented to
check whether G is bipartite. The same algorithm is also adapted to verify for two

given disjoint subsets of vertices, RED and BLUE, whether G5 is bipartite given that
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all the vertices in RED are on one side and those in BLUE are on the other side.
A topological ordering algorithm (Ahuja et al., 1993) is used for testing acyclicness
of G5 and any induced subgraph G4(A), where A is a subset of vertices. Tarjan’s
algorithm (Tarjan, 1972) is used to identify the SCCs of a given graph.

Cycle-identification algorithm

The intuition behind the implementation of this algorithm is that “large” cycles (cycles
having many vertices) are likely to share some vertices and arcs with “small” cycles
(cycles having few vertices). Therefore, feasibly coloring small cycles may lead to a
feasible coloring of large cycles at the same time. In our implementation, we start by
including only the smallest cycles and gradually add larger cycles.

Hence, the relaxed IP instance initially contains only constraints coming from cycles
of length 2. Therefore, throughout the algorithm we search a monochromatic cycle
only in the single directed graphs induced by the color classes. Given a color class,
we use the Floyd-Warshall algorithm (Ahuja et al., 1993; Cormen et al., 2001) to find
(if there exist) monochromatic cycles which use the smallest number of vertices. If a
monochromatic cycle is found, we add the corresponding pair of constraints to the IP,
and the IP instance is solved again. The IP instances are solved using the MIP-solver

of CPLEX; once a feasible solution is found we stop the solver.

Backtracking algorithm

Branching strategy: The branching strategy of the backtracking algorithm involves
the selection of a vertex p € V which is neither in RED nor in BLUE. We investigate
two choices: the first one is simply the first uncolored vertex found while the second

choice is an uncolored vertex with the highest degree; ties are broken arbitrarily.

Propagation rule: This rule is applied any time that a new vertex p is added either
to RED or to BLUE. It works as follows: suppose a vertex p is added to RED (BLUE).
Then for any vertex g which is such that the arcs pqg and gp exist (this is equivalent to
p and g being adjacent in the undirected graph Gs), if ¢ is not yet in BLUE (RED)
then we add g to BLUE (RED). The procedure is repeated for every new vertex added
either to RED or to BLUE.
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Node selection: Our main objective is to color all the vertices as soon as possible

(provided such coloring is possible). Therefore, we use a depth-first-search strategy.

Branch-and-check algorithm

Branching strategy: This branching strategy selects a single arc pg which is such
that there is a cycle in G4 containing that arc. Before choosing the arc pq, the graph
G, is first reduced by deleting all single arcs linking vertices of the same connected
component in GGo with different colors obtained from the bipartiteness test, and a single
arc between vertices of the same connected component in Go with the same color is not
considered for branching. We investigate two different choices of the arc pg. The first
choice is the first arc pg found that meets the above restriction. The second choice is
an arc pq with p having the highest degree possible, breaking ties arbitrarily. In both
cases, if in addition there is no path in G5 from p to ¢ other than the arc pq, we define
a simplified version of FP? = (V'  A") by merging p and ¢q. V' contains a vertex (pq)
and all vertices in V except p and ¢ such that |V’| = |V|—1 while A’ is built as follows.
First, every arc ab € A with a,b ¢ {p,q} is an arc in A’. Second, for every single
incoming arc ax to x with « € {p, q}, (respectively every single outgoing arc za from

x), add an arc a(pq) (respectively (pg)a) in A’ while avoiding the repetition of arcs.

Branch-pruning criterion: This branch-pruning criterion considers each connected
component of G and the coloring of its vertices given by the bipartiteness test. If there
exists a color class in a connected component which is such that the induced single
directed graph is cyclic, then any graph built at a child node of that node is a NO

instance of the acyclic 2-coloring problem. Therefore, that node is pruned.

Node selection: For the branch-and-check algorithm, we wish to reach a node with
a YES answer as soon as possible (provided it exists). We again use a depth-first-search

strategy.

5.6 Computational experiments

All algorithms have been coded in C using Visual Studio C++ 2005; all the experiments
were run on a Dell Optiplex 760 personal computer with Pentium R processor with
3.16 GHz clock speed and 3.21 GB RAM, equipped with Windows XP. CPLEX 10.2
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was used for solving the IP instances. Below, we first provide some details on the real-
life instances and the generation of random data sets and subsequently, we discuss the

computational results.

5.6.1 Data

The three algorithms were tested both on real-life graphs and on randomly generated
graphs. We first present the real-life instances and next we describe how random
instances were generated. The instances described in this section can be found at
http://www.econ.kuleuven.be/public/NDBAC96/acyclic_coloring.htm

Real-life data

The graphs presented below come from Table 4.1 in Chapter 4. Table 5.1 reports the

properties of the real-life instances.

Table 5.1: Properties of the real-life instances

Instance 1 2 3 4 5 6 7 8 9 10 11

12

# vertices (n) 22 48 68 95 118 139 226 279 294 410 755 4384

# arcs (m) 53 | 169 | 297 | 513 | 699 | 985 | 1979 | 2012 | 2427 | 3660 | 10113 | 124321

# arcs/n | 2,40 | 3.52 | 4.36 | 540 | 592 | 7.09 | 876 | 7.21 | 8.26 | 893 | 13.39 28.36

Random data

We have randomly generated graphs with n vertices, where n takes the values 50, 100,
200, 500 and 1000. These graphs are generated in such a way that they are connected
and contain at least one cycle. To diversify as much as possible the instances, we vary
the density D of the graph, which equals the number of arcs present in the graph
divided by the total number of possible arcs.

The graphs are generated using a two-phase procedure. During the first phase, for
each value of n, 400 graphs are randomly generated with 40 different densities, starting
from a lower bound of 2.5% for n = 50, 1.5% for n = 100, 1% for n = 200 and 0.5% for
n = 500 and n = 1000; and increased with a step of 0.5%. The lower bound is obtained
by taking the first multiple of 0.5 greater than or equal to the smallest density for

which a connected and cyclic graph can be generated given the number n of vertices.
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For every value of D, 10 directed graphs with m = [D x (n? —n)] arcs are generated.
Therefore, in total we have 400 x 5 = 2 000 test instances for the first phase.

After preliminary computation on the graphs obtained in the first phase, we identify
for each value of n a critical interval containing the densities for which we encountered
at least one YES instance and at least one NO instance. We observe that densities in
this critical interval are exactly those for which potential hard graphs (requiring long
running times) can be found. Notice that for each density not in the critical interval,
we have obtained for the instances generated in first phase either always a YES or
always a NO answer. This, however, does not mean that there is no density outside
the critical interval, for which both YES instances and NO instances exist. For a given

n, we generate additional graphs with the densities given in Table 5.2.

Table 5.2: Densities of the graphs generated in the second phase

density (D)
from to step | total
50 8% | 15.75% 0.25% 32
100 | 3.05% 8.95% 0.05% 119
200 | 2.01% 3.99% 0.01% 199
500 0.8% | 1.498% | 0.002% 350
1000 0.3% 1.2% | 0.002% 451

For every value of the density, 100 instances of directed graph are randomly gener-
ated following the procedure described above, leading to 1151 x 100 = 115100 additional

graph instances for the second phase.

5.6.2 Computational results

In this section, we examine different implementations of every algorithm for the set
of 50-vertex graphs generated during the first phase (these are 400 graphs in total).
The three algorithms are subsequently compared based on their best implementation
both on randomly generated graphs and on real-life instances. Finally, we study the
phase transition (Hogg, 1985; Monasson et al., 1999) of the acyclic 2-coloring problem
as function of the number of arcs divided by n. Throughout this section, the CPU time

is expressed in seconds.
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Figure 5.4: Average CPU time of four different implementations of the cycle-

identification algorithm for 50-vertex random graphs generated during the first phase.

Comparison of different implementations of every algorithm

Different implementations of every algorithm have been compared. A time limit of ten

minutes is used to stop the algorithm and when this happens, we output undecided.

Cycle-identification algorithm

Figure 5.4 displays the average CPU time as function of the number of arcs divided
by n, of four different implementations of the cycle-identification algorithm. The first
implementation, identified by C1, is Cycleld(G) where if there is a monochromatic
cycle in one color class, we do not search for a monochromatic cycle in the other color
class. Further, at each iteration, we add all the pairs of constraints corresponding
with cycles of length 3 in that color class. If there is no such cycle, we search and
(if found) add all the pairs of constraints corresponding with cycles of length 4. If
there is no cycle of length 4 then we add the pair of constraints corresponding with
one monochromatic cycle of any length found. The first color class investigated is the
class of red vertices. The second implementation, C2, is similar to the first one, except
that irrespective of finding monochromatic cycles in the first color class, we search
for monochromatic cycles in the second color class. The third implementation, C3,
considers the first implementation with in addition the use of dominance rules while the
fourth implementation, C4, adds the dominance rules to the second implementation.

A comparison of the different plots in Figure 5.4 shows that the four implementa-
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tions use comparable average CPU time. The plot of C4, however, is usually below
that of the other implementations. In the rest of this chapter, implementation C4 is
adopted for the cycle-identification algorithm, meaning that whenever we refer to this

algorithm, we imply that the implementation used is C4.

We would like to mention that several other implementations of this algorithms
have been tested. Their average CPU time, however, was usually substantially higher
than those presented above in Figure 5.4. We have implemented, among others, a
variant of Cycleld(G) where in the IP formulation a coefficient in the objective function,
either 1 and —1, is randomly chosen for each variable x;, in an attempt to balance the
objective function which initially maximizes the number of red vertices. We have also
implemented a variant of Cycleld(G) where at each iteration, the pair of constraints
corresponding with only one monochromatic cycle (of minimal length) is added to the

IP instance.

Backtracking algorithm

Figure 5.5 displays the average CPU time, as function of the number of arcs divided
by n, of four different implementations of the backtracking algorithm. The first im-
plementation, identified by BT1, is the pseudocode BT(RED, BLUE, G) with in
addition the use of the propagation rule and we branch on the first uncolored vertex
found. The second implementation, BT2, is similar to the first one, but we choose an
uncolored vertex with the highest degree. The third implementation, BT3, considers
the first implementation with in addition the use of dominance rules while the fourth

implementation, BT4, adds the dominance rules to the second implementation.

A comparison of plots in Figure 5.5(a) and Figure 5.5(b) shows that the first imple-
mentation, BT1, has an average CPU time higher than that of the third implementa-
tion (BT3). The average CPU time of BT2 is also usually higher than that of BT4.
These comparisons indicate the positive effect of the use of dominance rules. On the
other hand, BT4 has an average CPU time much more smaller than that of BT3 (see
Figure 5.5(c)). Further using BT4, all the instances are solved within a time limit of
ten minutes while there is one instance not decided after the time limit when we use
BTS3 (see Figure 5.5(d)). To conclude, the implementation BT4 is used for the rest of

experiments when we applied the backtracking algorithm.
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Figure 5.5: Average CPU time of four different implementations of the backtracking

algorithm for 50-vertex random graphs generated during the first phase.

B&C algorithm

Figure 5.6 plots the average CPU time of six different implementations of the B&C
algorithm. The first implementation, BnC1, is the B&C algorithm as described by
the pseudocode BnC(G), with in addition the use of the branch-pruning criterion and
the arc selected is the first arc found. The second implementation, BnC2, is similar to
the first one, except that we choose an arc pg with vertex p having the highest degree
possible. The third implementation, BnC3, considers the first implementation with
dominance rules applied at the root node and the fourth implementation, BnC4, con-
siders the second implementation with dominance rules also applied at the root node.
The fifth implementation, BnC5, considers the first implementation with dominance
rules at every node of the branching tree while the sixth implementation, BnC6, con-

siders the second implementation with dominance rules at every node of the branching
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Figure 5.6: Average CPU time of six different implementations of the BEC algorithm
for 50-vertex random graphs generated during the first phase.

A comparison of the six implementations based on the average CPU time is the
following. The three implementations using the branching strategy which selects the
first arc encountered (BnC1, BnC3 and BnC5) have higher average CPU time than
the average CPU time of implementations where the arc pq is chosen in such a way that p
has the highest degree (BnC2, BnC4 and BnC6). Among these last implementations,
BnC4 usually spends the smallest CPU time. We use the implementation BnC4 of

the B&C algorithm for the remaining experiments.

Solving random instances

We compare the three algorithms based on their best implementation on random
graphs. In Figure 5.7 we plot, for every value of n, the average CPU time of every
algorithm as function of the number of arcs divided by n. Figure 5.7(a) shows the av-
erage CPU time for the 50-vertex graphs. The B&C algorithm (BnC) usually reports
a higher CPU time than the other algorithms. However, the highest average CPU time
is less than 1.2 seconds. The cycle-identification algorithm (Cycleld) usually uses, on
average, the smallest CPU time. For 100-vertex graphs (Figure 5.7(b)), we see that
the average CPU time of Cycleld is usually between that of BnC and that of the back-
tracking algorithm (BT), with BT using, in most cases, the smallest average time. For
the large graphs (with more than 100 vertices, see Figures 5.7(c), 5.7(d) and 5.7(e)),
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the average CPU time reported for Cycleld increases with the value of n, while those

of BnC and BT are stable, comparable and usually below one second.
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Figure 5.7: Average CPU time of every algorithm for random graphs.



150 Chapter 5 - Acyclic 2-coloring problem

Table 5.3: CPU time of every algorithm for the real-life instances

Instance 1 2 3 4 5 6 7 8 9 10 11 12
Cycleld | 0.00 | 0.00 | 0.01 | 0.03 | 0.06 | 0.09 | 0.11 | 0.20 | 0.28 | 0.72 | 3.97 | 1812.24
BT | 0.00 | 0.00 | 0.02 | 0.03 | 0.06 | 0.09 | 0.36 | 0.28 | 0.31 | 0.28 | 3.45 283.72
Bnc | 0.00 | 0.00 | 0.01 | 0.02 | 0.05 | 0.09 | 0.59 | 0.05 | 0.28 | 0.11 | 3.84 612.41

Solving real-life instances

Table 5.3 reports the CPU time of every algorithm when applied to real-life instances.
We see that the backtracking algorithm (BT) reports the best CPU time for five in-
stances out of 12 while, the cycle-identification algorithm (Cycleld) achieves the best
CPU time for six instances and the B&C algorithm (BnC) has the best CPU time for
nine instances. For the largest instance with 4384 vertices, however, BT spends less
than five minutes, compared to about ten minutes for BnC and about 30 minutes for
Cycleld.

Phase transition analysis

In this section, we investigate the transition from a high to a low YES probability
as function of the number of arcs divided by n (subsequently called parameter in this
section). Further, we show how the CPU time of every algorithm varies as function of
that parameter.

Figure 5.8 presents the probability of a YES answer as well as the average CPU time
of every algorithm as function of the parameter. Figure 5.8(a) shows the probability
of YES answer as function of the parameter. The plots in Figure 5.8(a) are Bézier
approximations (Farin, 2006) of the real plots. This approximation is used mainly to
render the plots smoother. For every value of n, the plot has three regions. In the first
region, where the value of the parameter is between 0 and 3, almost all the generated
instances have a YES answer. The second region, with the value of the parameter
between 3 and &, is called critical interval and contains classes of graphs for which both
YES instances and NO instances are present. The last region, with the value of the
parameter greater than 8, contains graphs for which the probability of YES is almost

zero. Overall, we remark that the five plots are similar and the threshold value of the

1

parameter, for which the probability of YES answer is equal to 3, is almost the same

for every n and is close to 5.75.
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Figure 5.8: Probability of YES answer and average CPU time of every algorithm.

The plots in Figures 5.8(b), 5.8(c) and 5.8(d) are obtained using the data that are
used to generate the plots in Figure 5.7, but here the plots are grouped by algorithm.
Figure 5.8(b) plots the average CPU time of Cycleld for every value of n. The plots
respect the three regions described above. For the first and the third region, the average
CPU time is very close to zero while in the critical interval, we have a non-negligible
CPU time, showing an easy-hard-easy transition. Further, Cycleld has an average CPU
time which increases with the value of n, which probably occurs simply because when
n increases the IP instance becomes more difficult to solve. Figure 5.8(c) plots the
average CPU time of BT for every value of n. The easy-hard-easy transition is also
observed here. However, unlike Cycleld, BT spends more time in deciding 50-vertex
and 100-vertex instances in the critical interval than in deciding instances with more
vertices. This decrease in CPU time as the value of n increases stops beyond n = 200.

The high variability of average CPU time is due to the fact that for very few instances,



152 Chapter 5 - Acyclic 2-coloring problem

the algorithm requires more than one second to decide. In order words, among the
instances generated there are very few hard instances. In Figure 5.8(d), the plots of
the average CPU time of BnC for every value of n exhibit characteristics similar to those
observed for BT. A possible explanation for this decrease in average CPU time is the
following: when the value of n increases, the size (number of edges) of the undirected
graph Go increases, making the bipartiteness test used by both BT and BnC more
efficient in detecting NO instances. At the same time, both the propagation rule (used
by BT) and the branch-pruning criterion (used by BnC) become stronger, reducing the
number of possible nodes to investigate in order to arrive at a YES answer.

In general, for every value of n and irrespective of the algorithm used, the highest
average CPU time is usually obtained for values of the parameter around the threshold
value. Further, there is a high variability of the average CPU time and there are few

hard instances.

5.7 Summary and conclusions

In this chapter, we studied the problem of coloring the vertices of a given directed
graph using two colors such that no monochromatic cycle occurs. Applications of
this problem include testing of the Collective Axiom of Revealed Preference defined in
Chapter 4. We show that the problem is NP-complete, even for oriented graphs and we
prove that the existence of a constant-factor-approximation algorithm is unlikely for an
optimization version which maximizes the number of vertices that can be colored using
two colors while avoiding monochromatic cycles. We present a integer-programming
algorithm based on cycle identification, a backtracking algorithm and a branch-and-
check algorithm to solve the problem exactly. We compare the three algorithms based
on their CPU time, both on real-life instances and on random graphs. For the latter
set, graphs with up to 1000 vertices are solved in few seconds by every algorithm. We
also study empirically the phase transition of the problem. We find that the acyclic
2-coloring problem exhibits an easy-hard-easy transition and that hard instances are
difficult to generate. For real-life instances coming from the study of rationality of
consumption behavior, all the instances are decided using every algorithm and the
largest instance with 4384 vertices is solved using the backtracking algorithm in less
than five minutes, while the branch-and-check algorithm spends about ten minutes to

decide that instance and the cycle-identification algorithm about 30 minutes.
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An important research direction that might be pursed in the future is the study
of the acyclic 2-coloring problem for some special graphs, including oriented planar
graphs. Further, it might be interesting to investigate in more details the optimization

variants of the acyclic 2-coloring problem.






Chapter 6

The complexity of testing the Collective

Axiom of Revealed Preference

In this chapter, we prove that the problem of testing the Collective Axiom of Revealed
Preference (CARP) defined in Chapter 4 is an NP-complete problem. This proof uses
a reduction from the Not-All-Equal-3Sat problem.

6.1 Introduction

In this chapter we investigate the complexity of deciding whether an observed data set
satisfies the Collective Axiom of Revealed Preference (CARP) defined in Chapter 4.
We consider a two-member household that operates in an economy with N goods.
At times ¢ = 1,2,...,T, the household purchases a certain quantity of each of the
goods ¢ € RY (also known as a bundle), at corresponding prices p; € RY, . We
call a pair of N-vectors (p¢, q:) an observation, and the set of observations denoted by
S ={(ptyqt) : t €T ={1...,T}} is called the data set. For the sake of simplicity,
throughout this chapter we will also call ¢ € T an observation while referring to (py, q¢)-

The following definition recalls the rules defining CARP; for more details we refer
to Chapter 4.

This chapter is the result of a collaboration with Frits Spieksma and is available as: F. Talla Nobibon
and F.C.R. Spieksma. On the complexity of testing the collective axiom of revealed preference.
Mathematical Social Sciences, 60:123-136, 2010.

155



156 Chapter 6 - CARP complexity

Definition 6.1 (CARP). Let S = {(pt,q:);t € T} be a set of observations. S satisfies
CARP if there exist hypothetical relations HJ*, H™ for each member m € {1,2} that
meet for all s,t,t1,t5 € T:

Rule 1: if psqs > psqs then either quéqt or qSHOth;

Rule 2: if psqgs > psq: and ¢ H™qs then qugqt with ¢ # m,;

Rule 3: if psqs > ps(qt, + q1,) and g, H™qs then qugqtz with ¢ # m;
Rule 4: if pyqs > psq; then either —(qH'qs) or —(q:H?qs);

Rule 5: if psgs > ps(ar, + q1,) then either —(qs, H'qs) or —(qr, H?qs);
where psqs represents the scalar product.

The problem of testing whether a given data set S satisfies CARP can be phrased

as the following decision problem.

INSTANCE: A data set S = {(p,q): t € T}.
QUESTION: Does the data set satisfies CARP? In other words, do there exist H
and Hg such that Rules 1-5 are satisfied?

The main objective of this chapter is to show that testing whether a given data
set S satisfies CARP is NP-complete and this is done in Section 6.2; we conclude in
Section 6.3.

6.2 Complexity result

In this section we prove that testing CARP is NP-complete. The proof uses a reduction
from the Not-All-Equal-3Sat problem, which is defined as follows.

INSTANCE: Set X = {z1,...,z,} of n variables, collection C = {C,...,C),} of m
clauses over X such that each clause Cy € C has |Cy| = 3.
QUESTION: Is there a truth assignment for X such that each clause in C has at

least one true literal and at least one false literal?

Garey and Johnson (1979) proved that the Not-All-Equal-3Sat problem is NP-complete.
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In the proof, we consider instances of the Not-All-Equal-3Sat problem where no
variable occurs more than once in the same clause. This is without loss of generality,
since, given an instance of Not-All-Equal-3Sat where a clause contains the same variable
twice, we can simplify that clause to get a clause with two distinct variables. By
appropriately adding a new variable and a new clause, we can transform that instance
into an instance of the Not-All-Equal-3Sat problem where no variable occurs more than
once in the same clause. As illustration, the clause (x; V 22 V z2) can be replaced by
(x1 Vo Vas)A(xy VeV Ts).

The idea behind the proof is the following: for each variable and for each clause
of the Not-All-Equal-3Sat instance, we build a set of observations. Each of these
observations concerns a number of goods; in particular, we have a price-vector, and
a quantity-vector for each observation. By choosing appropriate values for the prices
and the quantities, we establish for each pair and for each triple of observations the
inequality desired. Next, the implications for the hypothetical relations H& and Hg
induced by Rules 1-5 are such that their existence is equivalent to the instance of the
Not-All-Equal-3Sat problem being satisfiable.

Our result:
Theorem 6.2. Testing whether a given data set S satisfies CARP is NP-complete.

The proof of this theorem is structured as follows. First, we build a data set S given
the instance of Not-All-Equal-3Sat. Next, we enumerate for each pair of observations
(s,t) and for each triple of observations (s,¢1,t2) whether an inequality of the form
Pss = Pst (0T Psgs > Psqr), or of the form poqs > ps(qr, + a1,) (01 Psgs > ps(qr, + at,))
is present. This is described in Claim 1 and Claim 2. Third, we argue the equivalence
of a YES instance of Not-All-Equal-3Sat and the data set S satisfying CARP. For the
sake of simplicity, throughout this chapter we will also call ¢ € T an observation while
referring to (p¢, qt).

Notice that it is not hard to see that the problem of testing CARP is in the class
NP: given the relations H& and Hg; (and hence H! and H?) we simply check, for each
pair or triple of observations, whether Rules 1-5 hold. Clearly, this can be done in
polynomial time.

In the first step of the proof, we aim at building the data set S. We shall first
determine the set T of indices of observations. Next, we derive the number of goods in
the economy and finally, for each observation, we derive a vector containing the price

(respectively quantity) of each good for that observation.
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Consider an arbitrary instance of the Not-All-Equal-3Sat problem where no variable
occurs more than once in the same clause. We build the set of observations as follows.
For each variable z; € X (i = 1,...,n), we have two observations specified by z; and
Z;, where the latter refers to the negation of x;. We define Ty = {z;,z; : i =1,...,n}

with cardinality |T;| = 2n. The observations in T, are called variable observations.

For each clause Cy = (X{ \% Xé \% xfi,) € C, where the literal X{ is either the variable x;
or its negation T;, Xé is either x; or Z;, and Xﬁ is either z or T with 1 <i < j <k <n
(this ordering of indices can be achieved by permuting some literals), we define six
observations ’H‘g = {X(i: Xg, Xg,t{,tg,tg}. The first three observations in ’]I‘g are called
literal observations. The last three observations in T4 are associated observations;
each associated observation is associated with a literal observation. In particular, ¢4
is associated with x{, t§ with x4 and #§ with x§. Let Ty = U™ T% with |To| = 6m.
The observations in Ty are called clause observations. That is, a clause observation is
either a literal observation or an associated observation. In total, the set of observations
T =Ty U Ty contains T = |T| = 2n + 6m observations.

To illustrate the reduction, we consider the following example of Not-All-Equal-
3Sat problem, subsequently referred to as the example. The set of variables is X =
{1,292, 3}, and there are two clauses C1 = (x1 Vx2Vx3) and Cy = (1 V z2 V ZT3); that
is X% =21, X3 = T2, X% = x3, X% = 1, X% = xo and X% = Z3. Notice that the truth
assignment 1 = 29 = 1 and x3 = 0 is a solution to this Not-All-Equal-3Sat instance.
For the example, the variable observations are {1, Z1,x2, T2, 3, T3} while the clause
observations are {x1, X3, x3,t1,t3,#3} for the first clause, and {x?, x3, X3, t3,13,t3} for
the second clause. The reduction leads to a set of observations T = {x1, Z1, x2, T2, T3,
T3, X1, X3, Xas t, 13, t5, X3, X3, X3, 12, 13, t3} with 18 elements.

To further describe the data set S, we need to fix the number of goods in each
bundle, and for each observation in T, we must specify the price and the quantity of
each good. We consider an economy with N = 272 goods. We now specify the price
and the quantity of the N goods for each observation in T. For ease of exposition,
a bundle of N = 272 goods is represented by two blocks, each block being a T x T

matrix. Each cell in each block represents a good.

We index the rows and columns of the first 7' x T matrix (referred to as Block 1 in
the rest of this chapter) by the observations in T. We use, both for the rows and for the
columns, the following ordering: z1, Z1, T2, T2, -, Tn, Tn, X5 Xas X35 11, tas thy X3

X3, X%, 12, 13, t%, o XTS XY Xt 15, 5t For the example, Block 1 is represented
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in Table 6.1.

Table 6.1: Block 1 for the example

xr1 1 X2 X2 x3 z3 X1 X3 X3 t% t% té X% X% X% t% t% t%

1

z1

€2

T2

3

T3
Xi
X3
X3
t
t3
t3
xi
X3
X3
t1
t3
43

We use the same indices for naming the rows and columns of the second T x T
matrix (subsequently called Block 2 throughout this chapter). Hence, we can identify
a good by specifying a pair (s,t) where s is the row-index (an observation), and where
t is the column-index (also an observation), and by specifying the block (either Block 1
or Block 2).

For each variable x; € X, we define
Iy, ={¢e{l,...,m}: clause Cy € C contains literal z;}.

Similarly,
Iz, ={fe{l,...,m}: clause Cy € C contains literal z;}.

Further, let
A =1+max {8 max{2[ly,|+4: i=1,...,n}, max{2]Tz,|+4: i=1,...,n}},

(where |A] is the cardinality of A). For the example, we have I';, = {1} as 1 appears
only in the clause Cy, I'z; = {2} because Z; is present only in Cy, Iy, = {1,2}, 'z, =0,
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'y, = {1}, I'z, = {2} and A = 9. Since we want to avoid prices equal to 0, we use, in
the rest of this chapter, ¢ to denote a very small, strictly positive, real number.
Next, for each observation in T we will determine the price, as well as the quantity

of each good. We will do this by distinguishing eight types of observations:

e variable observations corresponding to positive (negative) literals. The vector of
prices for that observation is denoted by ps, (pz,), and the bundle (purchased
quantities) is denoted by ¢, (¢z,;); for i =1,...,n.

e clause observations corresponding to the first (second, third) literal. The vector
of prices for that observation is denoted by Pyt (pxé ) Pyt ), and the bundle by Ayt

(qxé’ qxf;); fort=1,...,m.

e associated observations corresponding to the first (second, third) literal. The
vector of prices for that observation is denoted by Pyt (ptg, ptg), and the bundle
by e (qtg, qtg); for/=1,...,m.

Choosing the particular values of the prices and the quantities is done with the
objective of satisfying some inequalities for pairs or triples of observations. In fact, for
each pair of observations (s,t), there are two goods: one in Block 1 and one in Block 2.
The good in Block 1 is used to ensure that the desired inequality between psqs and psq:
holds. The good in Block 2 is used to enforce the presence or absence of a double-sum
inequality involving psqs and psqgs. All this is achieved by choosing appropriate values
for the price and the quantity of each good.

We now continue by describing how the prices of all goods for all observations are
set. That is, for each cell in each of the two blocks forming the set of all goods, we
fix a strictly positive real value, representing the price. To achieve this, we proceed
as follows. For each of the two blocks, we specify the structure of the corresponding
matrix by giving a value to each cell representing the price of the good corresponding

to that cell. We do this for every observation in T.

Specifying Pays Pitgs Pyt Dok Dok s it s Pyt » Dyt for goods corresponding to cells in
Block 1.

For each observation s € T, there is a row in Block 1 indexed by s. We set the price
of each good corresponding to a cell in this row equal to 1, except for the price of the
good corresponding to cell (s, s): its price equals 2. The goods corresponding to the

remaining cells in Block 1 get the price €.
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As an illustration, consider the observation Zs of the example. The price of goods

corresponding to cells in Block 1 is given by Table 6.2.

Table 6.2: Price of goods corresponding to cells in Block 1 for observation Zg.
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Specifying p,, for goods corresponding to cells in Block 2.

Given a clause Cy that contains 7; (negation of x;), let r denote the position of Z; in the
clause Cy. Of course, r € {1,2,3} (notice that r depends upon ¢ and i; for reasons of
convenience we simply write r instead of (4, £)). Thus, for each clause Cy with ¢ € 'z,
there is an associated observation t£ in T. The price of the good corresponding to cell

(z;,t%) equals ﬁ Also, the price of the good corresponding to cell (t,z;) equals
1 k2

2Tz, |
2|T'z,| cells with value

This is done for each clause Cy with ¢ € I'z,. Notice that in total, we have
2‘%@" in this block (Block 2). The goods corresponding to the
remaining cells in Block 2 get the price €.

As an illustration, consider the observation xg of the example. Since I'z, = (), the
price of all goods corresponding to cells in Block 2 is €.
Specifying p;, for goods corresponding to cells in Block 2.
We use an approach similar to the one used to determine p,,. Now, let r denote the

position of x; in the clause Cy. For each clause C, with ¢ € T';,, there is an associated
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observation tf. The price of the good corresponding to cell (x;, tf) equals ﬁo%l Also,
the price of the good corresponding to cell (tf, x;) equals ﬁ This is done for each

clause Cy with ¢ € I';;,. The goods corresponding to the remaining cells in Block 2 get
the price €.
As an illustration, consider the observation Zo of the example. The prices of goods

corresponding to cells in Block 2 are given in Table 6.3. Notice that there are four

1

goods with price 3.

Table 6.3: Price of goods corresponding to cells in Block 2 for observation Za.

w1 | @y | we | @2 | w3 | @3 | Xi | Xo | X3 |t |ty |t | X X3 | X3 |6 |t |t
T 3 13 &€ 15 &€ & € € 3 13 & € &€ & € & 15 3
T 3 13 & 15 € & € g &g € & € € & € 3 15 &€
T2 3 13 3 15 g &g 15 13 &g 13 i 13 g & € I3 i &€
T2 3 13 &g 15 13 & 15 g 3 13 & 13 &€ & € 3 15 3
3 3 13 3 15 13 &g 15 € &g 13 &g 13 &€ &g 13 3 13 &
i‘g g g g g g g g g g g g g g g g g g g
X% 13 g g g g g g g g g g g g g g 5] g g
X% 13 g g g g g g g g g g g g g g 5] g g
X% 13 g 5] g g g g g g g g g g g g g g g
t% 13 g g g g g g g g g g g g g g g g g
t% g g i g g g g g g g g g g g g g g g
té g g g g g g g g g g g g g g g g g g
X% g g g 13 g g g g g g g g g g g g g g
X% g g g g g g g g g g g g g g g g g g
X% g g 5] g g g g g g g g g g g g g g g
t% g g 5] g g g g g g g g g g g g g g g
t% IS 15 % 15 € I 15 € &€ 15 I 15 € I 15 &€ 15 &€
t% IS 15 € 15 € € 15 € &€ 15 € 15 € &€ 15 € 15 &€

Specifying Pyt for goods corresponding to cells in Block 2.
There are two goods corresponding to cells in Block 2 that have a price different from
e. These are the goods corresponding to the two cells (x4, t5) and (¢5, x4); the price for
these goods equals % The goods corresponding to the remaining cells in Block 2 get
the price €.

As an illustration, consider the example. For £ = 1 we have X{ = x1 and the two
goods with price 3 correspond to cells (x3,¢3) and (¢}, x3). The goods corresponding

to the remaining cells in Block 2 get the price . For £ = 2, the goods corresponding
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to cells (x3,%3) and (2, x3) get the price %; the goods corresponding to the remaining
cells in Block 2 get the price €.

Specifying Py for goods corresponding to cells in Block 2.

1

2

x4, t5) and (¢, x%). The goods corresponding to the remaining cells in Block 2 get the
101 1 X1

Again, there are two goods that have price 5, namely those corresponding to the cells
price €.

As an illustration, consider the example. For £ = 1 we have Xé = x9 and the two
goods with price % correspond to cells (x1,#1) and (¢}, x1). The goods corresponding
to the remaining cells in Block 2 get the price €. For ¢ = 2, the goods corresponding
to cells (x3,%3) and (2, x3) get the price 3; the goods corresponding to the remaining
cells in Block 2 get the price €.

Specifying Dyt for goods corresponding to cells in Block 2.
1
2
(x5, t5) and (t5, x5). The goods corresponding to the remaining cells in Block 2 get the

Also here, there are two goods with price 5, namely those corresponding to the cells
price .

As an illustration, consider the example. For £ = 1 we have Xé = x3 and the two
goods with price % correspond to cells (x4,t3) and (¢}, x3). The goods corresponding
to the remaining cells in Block 2 get the price . For £ = 2, the goods corresponding
to cells (x3,13) and (3, x3) get the price %; the goods corresponding to the remaining
cells in Block 2 get the price €.

Specifying Pyt for goods corresponding to cells in Block 2.
Recall that the observation t{ is associated with the literal observation x{. Further,
the literal Xli is either z; or Z; for a given ¢ € {1,...,n}. In both cases, there are only

two goods corresponding to cells in Block 2 that have price different from e¢.

If X{ = x;, then the two goods of Block 2 with price % are those corresponding
to cells (x4, Z;) and (Z;, x5). The goods corresponding to the remaining cells in

Block 2 get the price €.

On the other hand, if Xli = Z;, then the two goods of Block 2 corresponding to
cells (x4, ;) and (;, x5) have price % The goods corresponding to the remaining

cells in Block 2 get the price €.

As an illustration, consider the example. For £ = 1 the observation ¢} is such that

the goods corresponding to cells (x3,71) and (Z1,x3) in Block 2 have price % since
X1 = z1. The goods corresponding to the remaining cells in Block 2 get the price ¢.
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For ¢ = 2, the goods corresponding to cells (x3,z1) and (z1, x3) in Block 2 have price
% for observation 2 because x? = Z;. The goods corresponding to the remaining cells
in Block 2 get the price €.

Specifying Peg for goods corresponding to cells in Block 2.

The observation té is associated with Xé which is either x; or z; for a given j €

{1,...,n}.

If Xé = x;, then the two goods of Block 2 with price % are those corresponding
to cells (x4,Z;) and (Z;,x5). The goods corresponding to the remaining cells in

Block 2 get the price €.

Otherwise, if Xé = Z; then the two goods of Block 2 corresponding to cells
(x4, ;) and (x;,x%) have price % The goods corresponding to the remaining

cells in Block 2 get the price €.

As an illustration, consider the example. For ¢ = 1 the observation t} is such that
the goods corresponding to cells (x4, Z2) and (Z2,x3) in Block 2 have price % since
X3 = z2. The goods corresponding to the remaining cells in Block 2 get the price ¢.
For ¢ = 2, the goods corresponding to cells (X§7 T9) and (Zg, X%) in Block 2 have price
% for observation t3 because x3 = x3. The goods corresponding to the remaining cells
in Block 2 get the price €.

Specifying Pyt for goods corresponding to cells in Block 2.

The observation tg is associated with Xé which is either zj or Z; for a given k €

{1,...,n}.

If xfi, = 1z, the two goods of Block 2 with price % are those corresponding to cells
(x4, Z1) and (Zy, x{). The goods corresponding to the remaining cells in Block 2
get the price €.

If, on the other hand, Xg = T} then the two goods of Block 2 corresponding to
cells (x{, zx) and (zy, x{) have price % The goods corresponding to the remaining
cells in Block 2 get the price €.

As an illustration, consider the example. For ¢ = 1 the observation t% is such that

the goods corresponding to cells (xi,73) and (Z3,x1) in Block 2 have price % since

X3 = z3. The goods corresponding to the remaining cells in Block 2 get the price ¢.

For ¢ = 2, the goods corresponding to cells (x?,z3) and (z3, x?) in Block 2 have price
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% for observation t% because X% = Z3. The goods corresponding to the remaining cells
in Block 2 get the price €.

This achieves the description of prices: for each observation in T we have specified
the price of every good in the bundle (that is every cell in the two blocks). It remains

to fix for each observation in T the quantity used for each good in the bundle.

Specifying ¢,, for goods corresponding to cells in Block 1.

There is a row and a column in Block 1 indexed by x;. All the goods corresponding
to cells of Block 1 other than those corresponding to cells in row x; and in column
x; get the value 0 as their quantity. As for cells in row x; and column z;, the good
corresponding to cell (z;, ;) gets the value 1. The quantity of the good corresponding
to cell (z;,%;) equals 1, and the quantity of the good corresponding to cell (Z;, ;)
equals the value |I'z,| + 1. Moreover, for every clause Cy containing z; (¢ € I'z,), the
good corresponding to cell (z;,t%) gets the value 1, where 7 denotes the position of Z;
in the clause Cy. The quantity of the good corresponding to cell (tf,, x;) equals 2. The
remaining goods corresponding to cells in row x; are not used and get the quantity 0,
while those remaining in column x; get the value A. Observe that a good corresponding
to a cell (z;,t) in row z; has a non-zero value if and only if the corresponding to the

cell (¢,x;) in column z; has a value different from (more precisely less than) A.

Table 6.4: Quantity of goods corresponding to cells in Block 1 for observa-

tion x1.

xr1 x1 X9 X2 x3 x3 a:i x% :L‘é t% t% té j% x% a’c% t% t% t%
x1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
z1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
) 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
z3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x% 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x% 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x% 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t% 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t% 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
té 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
:E% 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
:c% 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c?:% 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t% 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t% 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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As an illustration, consider the observation x; of the example. The quantity of
goods corresponding to cells in Block 1 are given in Table 6.4.
Specifying ¢z, for goods corresponding to cells in Block 1.
All goods corresponding to cells in Block 1 other than those in row Z; and in column Z;
get the value 0 as their quantity. The good corresponding to cell (Z;, z;) has quantity 1.
Also, the good corresponding to cell (Z;, ;) has quantity 1, and the good corresponding
to cell (z;,Z;) has quantity |I'z,| + 1. For every clause Cy containing z; (¢ € I'y,), the
good corresponding to cell (Z;, %) has quantity 1 (where r refers to the position of x;
in clause Cy). The good corresponding to cell (', ;) has quantity 2. For the goods
corresponding to the remaining cells in row Z;, their quantity is 0, while the goods
corresponding to the remaining cells in column Z; have quantity A.

As an illustration, consider the observation Z, of the example. The quantity of

goods corresponding to cells in Block 1 are given in Table 6.5.

Table 6.5: Quantity of goods corresponding to cells in Block 1 for observa-

tion Za.

x1 T x2 T2 x3 x3 z} a:% xé t% t% té :E% z% a‘;% t% t% t§
1 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
To 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
To 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0
T3 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T3 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m% 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a:% 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a:é 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t% 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t% 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
té 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E% 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x% 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Eg 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t% 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t% 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t% 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Specifying 4yt for goods corresponding to cells in Block 1.

All goods corresponding to cells in Block 1 that are neither in row x4 nor in column
x4 have quantity 0. The goods corresponding to cells (x§,x%), (x%,x5), (x§,x4) and
(x4,t5) in row x4 have quantity 1. The good corresponding to cell (x5, x{) gets a
quantity of 4, that corresponding to cell (Xg, Xli) receives a quantity of 6 while the
good corresponding to cell (té, X‘{) has quantity 2. For the goods corresponding to
the remaining cells in row X{, their quantity is 0, while those corresponding to the
remaining cells in column X{ have quantity A.

Specifying Qe for goods corresponding to cells in Block 1.

All goods corresponding to cells in Block 1 neither in row x4 nor in column x4 have
quantity 0. The goods corresponding to cells (x5, x5), (x5, x1), (x5, x5) and (x5,t%)
have quantity 1. The good corresponding to cell (X‘i, Xg) has a quantity of 6 and that
corresponding to cell (Xg, XS) gets a quantity 4, while the good corresponding to cell
(tl{, Xé) has quantity 2. For the goods corresponding to the remaining cells in row X€>
their quantity is 0, while those corresponding to the remaining cells in column X% have
quantity A.

Specifying Qs for goods corresponding to cells in Block 1.

All goods corresponding to cells in Block 1 neither in row xfi, nor in column xé have
quantity 0. The goods corresponding to cells (x5, x5), (x5, x1), (x4, x%) and (x4, t5)
have quantity 1. In column Xé, the good corresponding to cell (Xf, Xé) has a quantity
of 4, that corresponding to cell (xg, Xé) has a quantity of 6 while the good corresponding
to cell (té, Xé) has quantity 2. For the goods corresponding to the remaining cells in
row Xg, their quantity is 0, while those corresponding to the remaining cells in column
x4 have quantity A.

Specifying Gt for goods corresponding to cells in Block 1.

All goods corresponding to cells in Block 1 that are neither in row ¢! nor in column
t‘i have quantity 0. Since tli is associated to Xli which is either z; or z; for a given

i€ {l,...,n}, we distinguish two cases.

If x{ = ;, then the goods corresponding to cells (¢,t{), (t,x5) and (¢!, ;)
have quantity 1. In column ¢{, the good corresponding to cell (x4,%) has quan-
tity 3, while the good corresponding to cell (Z;,t{) has quantity |T',| + 1. The
goods corresponding to the remaining cells in row t{ have quantity 0, while those

corresponding to the remaining cells in column tli have quantity A.
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If, on the other hand, x{ = Z; then the goods corresponding to cells (t¢,t{),
(t,x5) and (t¢, x;) have quantity 1. In column #¢, the good corresponding to cell
(x5, t{) has quantity 3, while the good corresponding to cell (z;,t}) has quantity
ITz,| + 1. The goods corresponding to the remaining cells in row { have quantity

0, while those corresponding to the remaining cells in column #{ have quantity A.

Specifying st for goods corresponding to cells in Block 1.
All goods corresponding to cells in Block 1 that are neither in row tg nor in column
tg have quantity 0. Since té is associated to Xg which is either x; or z; for a given

j€{1,...,n}, we distinguish two cases.

If x5 = z, then the goods corresponding to cells (5,t5), (t5, x4) and (t5, z;) have
quantity 1. The good corresponding to cell (Xg, té) has quantity 3, while the good
corresponding to cell (Z;, t4) has quantity ITz;| + 1. The goods corresponding to
the remaining cells in row tg have quantity 0, while those corresponding to the

remaining cells in column té have quantity A.

Otherwise, if x5 = Z; then the goods corresponding to cells (t5,%5), (t5,x%) and
(t5, z;) have quantity 1. In column t5, the good corresponding to cell (x4, t5) has
quantity 3, while the good corresponding to cell (xj,tg) has quantity |z |+ 1.
The goods corresponding to the remaining cells in row té have quantity 0, while

those corresponding to the remaining cells in column té have quantity A.

Specifying Qe for goods corresponding to cells in Block 1.
All goods corresponding to cells in Block 1 that are neither in row tg nor in column
té have quantity 0. Since té is associated to xé which is either x; or Zj for a given

ke€{l1,...,n}, we distinguish two cases.

If x4 = x then the goods corresponding to cells (t5,t5), (t5, x{) and (4, 71,) have
quantity 1. In column té, the good corresponding to cell (Xli,tg) has quantity
3, while the good corresponding to cell (Zj,t§) has quantity |T,|+ 1. The
goods corresponding to the remaining cells in row té have quantity 0, while those

corresponding to the remaining cells in column té have quantity A.

Otherwise, if x4 = Zy, then the goods corresponding to cells (¢5,t5), (¢4, x%) and
(t§, z) have quantity 1. In column 5, the good corresponding to cell (x{,t5) has
quantity 3, while the good corresponding to cell (zy,t5) has quantity [Tz, | + 1.
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The goods corresponding to the remaining cells in row té have quantity 0, while

those corresponding to the remaining cells in column tg have quantity A.

We now proceed with the quantities of the goods corresponding to cells in Block 2.
Specifying ¢,, for goods corresponding to cells in Block 2.

The goods corresponding to cells in Block 2 that have a non-¢ price get the quantity
|T'z,| + 1 while those with ¢ price get the value 0 as quantity.

As an illustration, consider the observation xo of the example. For that observation,
all the goods corresponding to cells in Block 2 get the price €. Therefore, all the goods
corresponding to cells in Block 2 have quantity 0.

Specifying ¢z, for goods corresponding to cells in Block 2.

The goods corresponding to cells in Block 2 have quantity |I'y,| + 1, if their price in
that observation is different from &; otherwise their quantity equals 0.

Specifying At s Ayt Dt for goods corresponding to cells in Block 2.

For goods corresponding to cells in Block 2, the following holds: if the price of such a
good in some observation is €, then the quantity of that good for that observation is 0,
otherwise the quantity is 3.

Specifying Qs Qs> Ayt for goods corresponding to cells in Block 2.

For goods corresponding to cells in Block 2, the following holds: if the price of such a
good in some observation is €, then the quantity of that good for that observation is 0,
otherwise the quantity is 2.

This completes the description of the quantity of each good in the bundle for every
observation in T. Thus, we have built the data set S. Notice that this construction of
S is done in polynomial time.

The second step of our proof identifies some characteristics of the data set S con-
structed above; these are the inequalities and double-sum inequalities satisfied by the
vectors of quantity and price of observations. Our goal is to compare for each pair s,

(respectively triple s, t1,t2) of observations the values psqs and psq; (respectively psgs

and ps(qy, + qt,))-

Claim 1. Given the data set S defined above, we have the following inequalities.

For eachi=1,...,n,
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For each 0 =1,...,m,
Pytlyt > Pty (6.5)
Pxsys = Pxgdi (6.6)
Pty > Pyt (6.8)
Foreach ¢ =1,...,m, foreachi=1,...,n withx{ = orxli =T
Pty > Pyt (6.12)
NN
Pedz; i X1 = i,
Pedye > ' o0 (6.13)
Ptz W X1 = T,
Pz;9x; > pxiqt‘i if X{ = T;.
Foreach ¢ =1,...,m, foreachj=1,...,n withxg =57 orxé =I;
Py > Dty (6.15)
A
Pz, if X9 = Ty
Dyt dyt 2 ¢ - } (6.16)
Pye; W X2 = Ty,
Da;qz; > Pz; 94 if Xg =Tj.
For each £ =1,...,m, for each k = 1,...,n with x§ = xp or x5 = T
Pt > Prilyts (6.18)
e A
Pyt qz , = Tk,
Pt Gyt > . fXZ) B (6.19)
ptglhk Zf X3 = Tk,
Pziqz, > pxkqtg Zf Xé = X.
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For all other pair s,t of distinct observations in T
Psqs < Psqt- (6.21)

Claim 2. Given the data set S defined above, the following double-sum inequalities
hold.

Foreach ¢ =1,...,m,

Pytye > Pye(aye + ap), (6.22)

Pty > Prglay ), (6.23)

Pytyt > Pye(dye + ) (6.24)
Foreach ¢ =1,...,m, foreachi=1,...,n withx{ =x; 07")({ =T

P (g +4z,) i X§ = i,
Pl = { A I (6.25)

P (s + ;) i XE = T,

Pads > Pa(do +a) i XE =, (6.26)
Pz;9z; > Dz (Qii + qt‘{) if Xli =T;.
For each ¢ =1,...,m, for each j=1,...,n withxg = orxg =I;
P (ayg +az,) i X5 =5
ptgqtg > { t5\ X3 J . ; ) ’ (627)
pté <qX§ + qa?]) lf X2 = 1'j,
Pz;4z; > Pz (QI] + qté) if Xé =Ty, (6 28)
Pz;Qe; > DPaxj (Q:Ej + qtg) if Xé = Zj.
Foreach ¢ =1,...,m, foreachk=1,...,n wz’thxg =x orxg =T
NI
e(gye + gz 7 = Tk,
Pyt > ptg(qxl ) in - (6.29)
Pet(Gys +4u) o X3 = T,
Payda, > Pado, +ag) U X5 = (6.30)

For each i = 1,...,n and for each {,0' € T'z, with r and r' being the position of

Z; in the clause Cp and Cyp respectively,

Peie; > Pai(Ge + G )- (6.31)
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For each i = 1,...,n and for each £,0' € Ty, with r and r' being the position of

x; in the clause Cy and Cyp respectively,
Pede > Pa(qe + g )- (6.32)

There are no double-sum inequalities other than those mentioned above.

The proofs of Claim 1 and Claim 2 are given in the Appendix.

In the last step of our proof, we prove that the data set S obtained by the above
reduction satisfies CARP if and only if the instance of the Not-All-Equal-3Sat problem
is a YES instance. The goal here is to prove that the instance of CARP built from
the arbitrary instance of the Not-All-Equal-3Sat problem is at least as hard as that
instance of the Not-All-Equal-3Sat problem. This proof strongly relies on Claim 1-2.

On one hand, suppose that S satisfies CARP. Thus there exist sets (hypothetical
relations) H} and HZ that satisfy Rules 1-5. The following is true for H} and H3.

Lemma 6.3. If the data set S satisfies CARP, then there are no two distinct observa-
tions s and t satisfying psqs > psqr such that (gs,q:) € Hi and (gs,q:) € HZ.

Proof. From the inequalities listed in Claim 1, we observe that for a pair of distinct
observations s,t € T, if psqs > psq: then psqs > psqr and prgr > prqs. Next, we argue
by contradiction: if (gs,q:) € H} and (gs, q:) € HE then (gs,q:) € H' and (g5, q:) € H>.
This, however, contradicts Rule 4. Therefore, Lemma 6.3 holds. O

We now build a truth assignment for the instance of Not-All-Equal-3Sat and show
that it is a YES instance. For each variable z; € X we set x; = 1 if (qu,,qz,) € HE;
otherwise z; = 0. Thus, the value of each z; is well-defined. In fact, using (6.1)
and Rule 1 we conclude that for each i, (¢z;,qz,) € H& or (¢z,;,qz,) € Hg. Since by
construction, z; = 1 corresponds to the case (¢u;,qz;) € Hg, it follows that z; = 0
corresponds to the case (¢g,,qz,) € Hg.

We now prove that each clause in C' has at least one true literal and at least one false
literal. We argue by contradiction. Suppose that there exists a clause Cp = (Xf\/ Xé\/ X%)
(¢ € {1,...,m}) in C which is such that either x§ = x5 = x{ =1 or x{ = x5 = x§ = 0.
Without loss of generality, let us assume that X!i = Xé = Xé = 1. We are going to
investigate each literal in Cy individually. The first literal X{ is either z; or z;. We will

argue that in both cases, we have (qt{,qxé) € H}.
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Indeed, if x{ = x; then z; = 1 implies that (¢s,,qz,) € H{ from the assignment
of values to variables. The double-sum inequality (6.26) for the clause C is
Pz.9%; > Pi; (Qa; + qt‘f)' Since (gx;,qz,) € Hg, Rule 3 implies that (qg—ci,qt;i) € H3.
Using the double-sum inequality Pty > ptg(qxg + gz,) given by (6.25) and the
fact that (q@,qt{) € HZ, Rule 3 leads to (qt{,qxg) € H{.

On the other hand, if Xli = 7; then Z; = 1 implies that x; = 0 and (qy,,qz,) € HE.
Using Rule 2 and (6.2) we obtain (gz,,q,;) € Hj. The double-sum inequality
(6.26) iS ps,qz; > DPa;(qz, + qtg) and (qz,,qz,) € H}. Thus Rule 3 implies that
(qzi,qtf) € HZ. The inequality (6.25) is Py pe > pt{(qxg +¢z,) and (gz,, qtg) € HE;
therefore <qt§’qx§) € H} from Rule 3.

Since (qt{ , qxg) € H} we use the double-sum inequality Pytys > Py (qx‘{ + qtﬁ), (given
by (6.23)) and Rule 3 to obtain that (qx’é’qx’i) € HZ. Finally, using Rule 2 and (6.8)
we have (qx’{’qxé) € H}.

We conclude that whether the literal X{ is x; or Z;, as long as its value equals 1 we
have (qxf’qxé) € H}. Notice that, in case x| = 0 we can conclude that <qx§’qx§> € HZ.

By applying a similar reasoning to the second literal x4, we obtain (qxé N ) € H},
while the application of that reasoning to the third literal xf% leads to (qxf; , qx;’i) € H}.
We obtain (qx{7qx§) € Hg, (qxé’qxé) € Hj and (qxé’ qx’{) € H}. Thus (qxf’qx§)>
(qxé’ qxﬁ)’ (qxﬁ’ qxf) € H', which imply from Rule 2, (6.4), (6.6), and (6.10) that
(qxlfaqxg)’ (qxgaqxg)7 (qxg’qxf) € HZ. Thus (qx‘{"qxé) € H} N H2 and x§ # x{. This
contradicts Lemma, 6.3. This concludes the proof that if the data set S satisfies CARP
then the instance of Not-All-Equal-3Sat is a YES instance.

On the other hand, suppose that there is a truth assignment for X which is such
that each clause in C' has at least one true literal and at least one false literal. Consider
H& and Hg defined as follows. For each variable z; € X, if ; = 1 then (¢4, ¢z,) € H&
and (qz,,qz;) € HZ. Otherwise, if z; = 0 then (qz,,qz;) € H and (gu;,qz;) € HZ. This
ensures that for each pair of observations (s,t) occurring in inequalities (6.1) or (6.2)
the corresponding bundle pair (gs, g;) is either in H} or in H3. We now deal with pairs
of observations occurring in inequalities (6.3)-(6.20). We will specify for each ordered
pair of observations occurring in each of these inequalities whether the corresponding
bundle pair is in H} or in HZ. For every clause Cp = (x§ V x4 V x§) in C, we consider
each literal in Cy in turn. The construction of H} and H for a given clause Cy is given
in Table 6.6.
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Table 6.6: Construction of H(% and Hg for a given clause Cy.

xXi = Xi =
z; =1 ‘ ineq. ‘ z; =0 ‘ ineq. z; =1 ‘ ineq. ‘ z; =0 ‘ ineq.
(QT“Q:E,;) (6'1) (qiwqqu) (6'2) (qquﬂ?i) (6‘1) (q-/i1',7qm1',) (6'2)
Hl (qt@ 1 qz;) (6.13) (gz,, 94t ) (6.14) (qz;, 944 ) (6.14) (qtg 1 qa;) (6.13)
" @ag) | 612 | e | 68 | Guoa) | 68 | @) | 612)
(qu +q e) (6:3) | (aye,a,¢) | (66) || (9,6:9,¢) | (6:6) | (aue,a.6) | (6:3)
(@255 q2;) | (6.2) | (qo;592) | (6.1) || (4z4:40;) | (62) | (4o;592,) | (6.1)
12 (gz:,9p¢) | (6.14) | (qperaz;) | (6:13) || (g¢,90;) | (6:13) | (aw;qpe) | (6.14)
S @gan) | 68) | (auiag) | (612) || (@) | 612) | (g5.90) | (68)
(4,59, g) (6.6) | (9,¢,9,¢) | (6:3) || (9,0,9,¢) | (6:3) | (9,¢,9,¢) | (6:6)

X5 =7; X5 =7;
zj=1 ‘ ineq. ‘ z; =0 ‘ ineq. ;=1 ‘ ineq. ‘ ;=0 ‘ ineq.
o (9460 4z;) | (6:16) | (az;,95¢) | (6:17) || (4oj595¢) | (6:17) | (9. da;) | (6.16)
U @) | 615) | (aa) | 610 || (gag) | (611) | (a.0,) | (615)
(aye:9ye) | (6:7) | (aye.aye) | (6:10) || (aye.aue) | (6:10) | (aye.q,6) | (6.7)
((Iij7QIj) (62) ((Izqu:ij) (6~1) (qij7QZj) (6'2) (q1j7q57j) (6'1)
H2 (Qi'jvqtg) (6-17) (qt@ 7q96J) (6-16) (qtquwj) (6-16) (quvqtl) (6-17)
" ) | 610 | @giae) | 635) || (@eae) | 615) | (aag) | 611
(4,¢59,8) | (6:10) | (ay¢.9 e) 6.7) || (9,8,9,2) | (6:7) (qxg ¢) | (6.10)

Xg = Tk Xé =T
T =1 ‘ ineq. ‘ T =0 ‘ ineq. T =1 ‘ ineq. ‘ T =0 ‘ ineq.
(ka7Q£k) (6'1) (Qikvqu) (6'2) (qwkvqfﬂk) (6'1) (ql‘kvqwk) (6'2)
g || @gaz) | (6:19) | (gzy, i) | (6:20) || (quysqpg) | (6:20) | (gpe,0m) | (6:19)
" @ag) | 619) | @uae) | 65 | Guoa) | 65) | @) | 619)
(aye:aye) | (6:9) | (ayesaye) | (64) | (ayesaye) | (64) | (aue.9, ﬁ) (6.9)
(qikvqlk) (6'2) (ka7q.ik) (6'1) (Qa’ck,ka) (6'2) (quvqu) (6'1)
H2 (q(ikvqtl) (620) (qtg7q53k) (619) (qtg7qflfk) (619) (quvqtf) (620)
" gean) | 69 | @ag) | ©18) || Grag) | 619) | @uea) | ©5)
(g, e5a.6) | (64) | (a6,a,0) | (6:9) || (ay0,9,¢) | (69) | (q,¢,9 2) (6.4)
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Table 6.6 displays two forms of symmetry. First, at the level of a literal Xf, 1=1,2,3
we observe that the set H& when Xf = 1 equals the set Hg when Xf = 0. Second, when
substituting Z; (z;, Z) for z; (x;, zx), and x; (zj, xx) for Z; (Z;, k), the set H}
(respectively HZ) when x§ = z; (x§ = 2, x§ = x) becomes the set HZ (respectively
H{) when x{ =2; (x5 = z;, x§ = 7).

To complete the definition of H} and HZ, we set (¢s,qs) € Hg N HE for every s € T.
Remark 1: Notice that there is no pair of distinct observations (s,¢) such that psgs >
psq: and (gs,q:) € H) N HE.

We next prove two properties of the sets H&, Hg, H' and H? described above.
Property 1: For any pair of observations (s, t), if (¢s,q:) € H' and psqs > psq: then
(gs,qt) € HE, for i = 1,2.

Proof. Without loss of generality, suppose that (gs,q;) € H' with psqs > psq. We
argue by contradiction; suppose that (gs,q:) ¢ H}. Then by construction, (gs,q) €
HZ. Since (gs,q:) € HZ, we have, by construction of H} and HZ, that (q:,qs) € H{.
Further, since (gs,q:) € H' there exists a sequence (non empty, because of Remark 1)
of observations u, v, ..., w such that (q¢s,qu), (qus @), ---, (qu,q) are in H}. By
construction of H¢ and HZ, however, this implies that (g¢, qw) - - - (Qu, qu)s (qu,qs) €
HZ. Together with the fact that (gs,q:) € Hg and (g, qs) € HE, we get (s, qu)s (qu, v)s
oy (Qus @), (@,95) € Hy and (g5, @), (@5 qw), -+ (G, qu)s (qu,qs) € Hi. In other
words, for every observation a € {s,t,u,...,w} there exist two observations b and
cin {s,t,u,...,w} such that (q,,q) € H and (¢a,q.) € H3. It follows from the
construction (see Table 6.6) that this can happen only if a € {x{, x5, x§} for a given
¢ =1,...,m. Therefore, s, t, u, ..., w € {x%, x5, x5} for a given £ = 1,...,m. The
latter result implies that the length of the sequence u, v, ..., w is one (suppose that
the sequence contains only u) and we have (gs,q,) and (qu, g:) in H}. If, in addition
(gt,qs) € HE, then we have (qxf’qx‘é)’ (qx§7qx§) and (qx§7qx§) in H}, which is only
possible if the variables X:’{, Xé and Xg are assigned the same value. Since these three
variables are in the same clause Cp, this contradicts the fact that we have a truth

assignment that is a solution to the Not-All-Equal-3Sat instance. O

Property 2: For any triple of observations (s, t1, t2) satisfying psqs > ps(qt, + qt,),
the pair of bundles (gs, g¢,) and (gs, gi,) are in the same set H{ for i = 1,2.

Proof. 1t is not difficult to check this result from Table 6.6. O
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We now prove that the hypothetical relations Hi and HZ defined above satisfy
Rules 1-5.

Rule 1: This rule is satisfied because on the one hand, a pair of distinct observations
s,t in T occurring in psqs > psq: is identified by one of the inequalities (6.1)-
(6.20) and therefore is by construction either in H} or in H3. On the other hand,
(gs,qs) € Hi N HE by construction.

Rule 2: Suppose that psqs > psq: and (g, qs) € H'. We know by construction that
Psqs > psqr implies prgr > prgs and from Property 1 we have (¢, qs) € H&; which
implies (gs,q:) € HJ.

Rule 3: Suppose that psqs > ps(qi, + qr,) and (qi,,qs) € H'. Property 1 implies that
(qt,,qs) € Hi and Property 2 implies that (gs,q:,) and (gs, gr,) are in the same
set. Since (g1,,¢s) € H}, we conclude that (gs, qr,) € HE.

Rule 4: This rule follows from the fact that Hi N HZ contains only (gs,gs) where s

is a given observation in T. Thus, for two distinct observations s and ¢ with
Dsqs > Psqi, (Q&Qt) ¢ H& N Hg

Rule 5: Suppose that there exist s,t1,ta € T such that psqs > ps(q, + q,) and
(qt,,q9s) € H'. Then (qi,,qs) € Hi from Property 1 and (gs,q,) € HZ from
Property 2. Therefore (qt,,qs) ¢ HZ because of Lemma 6.3.

This concludes the proof that if the instance of the Not-All-Equal-3Sat is a YES instance
then the data set .S satisfies CARP.

6.3 Conclusion

In this chapter, we prove that the problem of testing the Collective Axiom of Revealed
Preference (CARP) is NP-complete even for two-member household. This result jus-
tifies the enumerative approaches that are used in Cherchye et al. (2008a) and the
heuristic approaches presented in Chapter 4 to test a given data set for CARP.

Appendix

In Appendix A, we derive the value of the scalar product psq; for each pair of obser-

vations s and ¢ in T. Next, in Appendix B we prove Claim 1, and in Appendix C we
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prove Claim 2.

A. Scalar product of observations in T

In what follows, we first specify the quantity psq; for every pair of observations s and ¢
in T. The symbol £ is used to mean that the value reported of psq; is the limit when
€ tends to 0 of the exact value. We consider five cases.
Case 1. Both observations are variable observations; that is s,t €
{z1,Z1,..., 20, Tp}.
Below, we distinguish eight types of combinations as follows:
How to compute p,,q,, when s =t =z; withi¢=1,...,n.
Notice that the scalar product pg,q., is not affected by goods corresponding to
cells with quantity zero. Further, as we take the limit when ¢ tends to zero,
only goods corresponding to cells in Block 1 and in Block 2 with price different
from e are considered. In Block 1, this restriction allows to consider only goods
corresponding to cells in row z;. The quantity p,,g,, contains a part coming from
the good corresponding to cell (x;, z;) in Block 1. This accounts for 2 x 1 =1 in
Da; G, since the price is 2 and the quantity is 1. Looking at the vector of quantity,
the good corresponding to cell (z;,Z;) has a quantity of one and contributes for
1 x1=1in p,;,qy,. Moreover, we know that for every clause Cy with ¢ € I'z,,
the good corresponding to cell (z;,t%) in row x; gets the value one (here, r €
{1,2,3} is the position of Z; in the clause Cy). Thus each such good adds the
value of one to ps, ¢y, and there are |I'z,| such goods. There are no additional
value coming from the goods corresponding to the remaining cells in Block 1.
In total, goods corresponding ti cells in Block 1 contribute for 2 + 1 4 |I'z,| in
Dz;Gz;- For goods corresponding to cells in Block 2, we know by construction
ﬁl}il and the quantity of |I'z,| + 1.
Therefore, if 'z, # () then the goods corresponding to cells in Block 2 contribute
for 2 x |z, | (ﬁw x (|Tz,| + 1)) = |T'z,| + 1. Notice that if 'z, = () then that
contribution is zero. Putting together the contribution of goods corresponding to
cells in Block 1 and in Block 2, we obtain pg, ¢, = 2414z, |+|T'z,|+1 = 2|z, |+4
if Tz, # 0 and py,qq, =2+ 1if T'z, = 0. Therefore,

that there are 2 x |I'z,| goods with price

3 ifTz =0
0, i 6.33
Pz, { oTs|+4 Ty £0. (6.33)
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How to compute pz,gz, when s =t =2; withi¢=1,...,n.

Following the procedure above, the scalar product

3 ifT, =0
o, |+4 if Ty, #0.

How to compute p,,qz, when s =z; and t =z; withi=1,...,n.

To compute the scalar product pg,qz,, observe that goods corresponding to cells
in Block 2 do not affect that scalar product. In fact, for the observation z;, the
only goods in Block 2 with price different from e corresponding to cells either in
row T; or in column Z; while the goods of observation Z; in Block 2 with non-zero
quantity corresponding to cells either in row x; or in column x;. Therefore, the
scalar product p,,qz, is based on goods corresponding to cells in Block 1. In that
block, only goods corresponding to cells in row x; are interesting as they have
a non-¢ price. However, for observation Z; the only good in row z; of Block 1
with non-zero quantity corresponding to cell (x;, z;) with quantity |I'z,|+ 1. This

implies that

Pa;Qz; = [Tz + 1. (6.35)

How to compute pz,q,, when s =2z; and t =z; withi=1,...,n.

An analysis following the reasoning used above leads to

Pz Qe; = [Ty + 1. (6.36)

How to compute p;,q,; when s = z; and t = x; with i,j € {1,...,n}, i # j.
We are not going to compute p;,q.; but we will rather provide a lower bound to
Pz;qx,;- Notice that the scalar product ps,q.; is at least as large as the contribution
of good corresponding to cell (x;,x;) in Block 1. The latter good contributes
1 x A = A to pg,qs; because the cell (z;,7;) is in the column z; and in that
column, the observation z; is such that only goods corresponding to cells (z;, z;),
(Zj,7;) and (t%, z;) where the clause C; contains Z; (r being the position of Z; in
Cy), have quantity different from A. Therefore

Pa;Gz; > A (6.37)
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How to compute pz,q,; when s = 7; and t = x; with i,j € {1,...,n}, i # j.
Similarly, pz,q., is greater than or equal to A using the same reasoning as above.
Thus,

P04z, > A (6.38)

How to compute p,,qz; when s = x; and t = 7; with i,j € {1,...,n}, i # j.
The quantity p.,qz,; is at least as large as the contribution of the good corre-

sponding to cell (z;,Z;) in Block 1. That contribution is 1 x A = A. Therefore

Pz, = A (6.39)

How to compute pz,qz;, when s = 7; and t = 7; with i,j € {1,...,n}, i # j.
The quantity pz,qz; is at least as large as the contribution of the good correspond-
ing to cell (Z;,Z;) in Block 1. However, that good contributes for 1 x A = A.
Therefore

Case 2. Both observations are clause observations, corresponding to some
clause Cy with / =1,...,m.

This means that s, € {x%, x5, x5, 1%, 5, t5}. There are 36 possibilities listed below.

How to compute Pyt Gyts Pyt and Pytdyt -

Consider the scalar product INTNE It is neither affected by goods corresponding
to cells with quantity zero nor by goods corresponding to cells in Block 1 and
Block 2 with price €. In Block 1, only goods corresponding to cells in row Xli
are considered. The quantity Pyt Qyt contains a part coming from the goods
corresponding to cells (x4, x1), (x{,x5), (x4, x%) and (x4, t4) in Block 1. Each of
these goods has a price of one and a quantity of one except the good corresponding
to cell (x4, x{) which has a price of two and a quantity of one. Therefore, they
contribute 2+ 1+ 1+ 1 = 5 in INUNE As for goods corresponding to cells
in Block 2, we know that there are two goods corresponding to cells (Xg, tg) and
(t5, x4) with price % and quantity three. These two goods contribute 2(% x3) = 3.
In total,

AN =5+3=28. (6.41)
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A similar analysis leads to

and
AN = 8. (6.43)

How to compute Pty Pyt and Pyt dyt -

The scalar product NN is affected only by the good of Block 1 corresponding
to cell (x{,x5). In fact, this good is in row x{, and therefore gets the price of one
in observation X?- Moreover, the observation Xé uses six units of that good. It
is not difficult to see that the goods corresponding to the remaining cells in row
x4 of Block 1 get the quantity zero for observation x4 and the goods (x4, t5) and
(té, Xg) which are the only goods of Block 2 with non-¢ price for observation Xli
have a quantity of zero for observation x’é; therefore do not contribute in Pyt Gyt
Thus

Pyt >~ 6. (6.44)
Similarly, we get

Py =6 (6.45)
and

Pytdye = 6. (6.46)

How to compute Pyt yts Dyt and Pyt 4yt -
The scalar product NN is affected only by the good of Block 1 corresponding to
cell (Xl{, Xé)- That good is in row X{ therefore gets the price of one for observation

X{- Moreover, the observation x§ uses four units of that good. Thus
Similarly, we get

Dytdyt = (6.48)

and
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How to compute Pet Gyt s Pit st and Pet Gyt -
The observation #{ is associated to x{. There are two options for the literal x{,

either x4 = x; or x! = ;.

If X{ = x; then the quantity Pyt Gyt contains a part coming from the goods
corresponding to cells (¢4, %), (t,x5) and (¢4, %;) in Block 1. The first good
has a price of two and a quantity of one, while the two others have a price of
one and a quantity of one. Therefore, they account for 24141 =4in Dyt Gyt -
In Block 2, the two goods corresponding to cells (x5, Z;) and (Z;, x5) with
price % and quantity two are the only goods contributing to Pyt Gyt - They

contribute for 2(% x 2) = 2. In sum, Pty = 442=6.

On the other hand, if Xli = Z; then the quantity P4yt contains a part coming
from the goods corresponding to cells (¢4, (), (5, x%) and (¢4, x;) in Block 1.
As above, these goods account for 2+ 1+ 1 =4 in Pyt Gyt - As for goods in

Block 2, only two goods corresponding to cells (x4, z;) and (z;, x4) with price

% and quantity two contribute to Pyt Gyt - They contribute for 2(% X 2) = 2.

In total, we obtain Pyt 4yt ~44+2=06.
To summarize, whether x{ = z; or x{ = Z;, we have
Py = 6. (6.50)
We also obtain, using similar reasoning that
Pty =6 (6.51)
and

How to compute psq; when st € {t{,t5 15} with s # t.

The scalar product psq; is greater than or equal to the contribution of the good
corresponding to cell (s,t) in Block 1. However, the cell (s,t) being in row s of
Block 1, it has the price of one for observation s. But that cell is in column ¢ in

Block 1 and gets the value A as quantity. Therefore
pet > A (6.53)

The set of inequalities (6.53) represents six values of psq;.
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How to compute Pyt Qets Pyt dyt and Pyt s+

The scalar product Pyt 4y is determined only by the good corresponding to cell
(Xf, tg) in Block 1. This good has a price of one for observation Xli and a quantity
of three for observation tg. Therefore, it accounts for 1 x 3 =3 in Pyt st Notice
that the good corresponding to cell (X‘{, tg) is the only good of observation té in
row X‘i of Block 1 with non-zero quantity. As for goods corresponding to cells in
Block 2, we know that the two goods of observation t§ in Block 2 with non-zero

quantity have the price of € for observation y§. Therefore,

The following similar results hold.
Pyt 3, (6.55)

How to compute PitQyts Pyt dyt and i Q-
The scalar product Pyt is mainly determined by the good corresponding to cell
(tg, X{) in Block 1. This good has a price of one for observation té and a quantity

of two for observation Xti- Therefore, it accounts for 1 x 2 = 2 in Pyt Qyt and
The following similar results hold.

How to compute p,q; and p;qs when s € {t{, 5,15}, t € {x%, x5, x4} and
(5,8) & {(#,X0), (85, 5): (XD} (825) & { (), (s 15), (XL £5)-

The scalar product psq; is at least as large as the contribution of the good corre-
sponding to cell (s,t) in Block 1. However, the cell (s,t) being in row s of Block 1,
it has the price of one for observation s. But that cell is in column ¢ of Block 1

and gets the value A as quantity for observation ¢. Therefore

psqt > A. (6.60)
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Similarly, we prove that
Pegs > A. (6.61)

These are 12 additional scalar products; completing the description of the 36

scalar products announced.

Case 3. One observation is a variable observation, the other is a clause ob-
servation such that the corresponding clause does not contain that variable.
This means one observation is in {x{, x5, x5, t{,5,t5} from clause Cy = (x§{ V x5 V x4)
while the other is a variable observation z; or Z; (i = 1,2,...,n) which is such that x;
or 7; is not in {x§, x5, x5} Let s € {x{, x5, x5, t1,5,t5} and ¢ be a variable observation

satisfying the above condition.

How to compute p:qs; and psq;.

The value of the scalar product p:qs is least as large as the contribution of good
corresponding to cell (¢, s) in Block 1. Since the price of that good equals 1, and
its quantity equals A, we get

pigs = A. (6.62)

Using similar arguments, we can prove that

Psqt > A. (6'63)

Case 4. Omne observation is a variable observation, the other is a clause
observation such that the corresponding clause contains that variable.

This means one observation is in {x{, x5, x5, 1,5, 15} from clause Cy = (x{ V x5 V x4)
while the other is a variable observation x; or Z; which is such that x; or Z; is in
{Xli> Xé, xfi,}- Let s € {Xf, Xé, Xg, tti, té, tg} and t be a variable observation satisfying the

above condition.

How to compute Pz Gyt and Pit Qa5 when X{ = x;.

The value of the scalar product Pzt is at least as large as the contribution of
good corresponding to cell (x;, t‘i) in Block 1. Since the price of that good equals
1, and its quantity equals A, we get

pxiqt{ > A. (6.64)
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Using similar arguments, we get
ptf%zi > A. (6'65)

Similar inequalities hold when x§ = x; and x4 = . These are

Pr; Qs = A, (6.66)
Ple; = A, (6.67)
Pryy = A, (6.68)
Pytlay, = A (6.69)

How to compute Pzt and Pyt Gz when Xli = x;.

The scalar product pz, Gyt is not affected by goods corresponding to cells in Block 2.
The scalar product Pzt is determined by the good corresponding to cell (Z;, t{)
in Block 1. That good has a price of one and a quantity of |I'y,| + 1. Therefore,
it accounts for 1 x (|I'y,|+1) =|I'z,| + 1 in Pz, qy - Hence,

p:fiqtf = |F$z| + L (6'70)
The scalar product Pyt Gz, is determined by the contribution of good corresponding

to cell (tl{,:f:i) in Block 1. That good has a price of one and a quantity of two.
Thus,

Prtdn, = 2. (6.71)

The inequalities similar to those above hold for the pair of observations t§ and

7j; and tg and Zj, when x5 = xj and Xg = z. There are given by

Pytdz; = 2, (6.73)
Py =Ty +1, (6.74)

ptg%'ck =2. (6‘75)
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How to compute J and Pyt Gz, when Xli = T;.
Inequalities similar to those obtained when Xli = x; hold. These are
If xé =T; and Xé = Ty, then
Py = A, (6.80)
Py dz, = A (6.81)
How to compute Pyt and Pt Qs when Xli = T;.
p:}ciqtf = |Ffz| +1, (6'82)
Dyt qx; =2, (6.83)
ptgqxj = 27 (685)
Pay Q= Tz, | +1, (6.86)
pt§q$k =2. (6‘87)
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How to compute p;,q, and pz,q¢ when r € {1,2,3} and Xt ¢ {z;, 7).

The value of the scalar product ps, gy is least as large as the contribution of good
corresponding to cell (a:i,tf,) in Block 1. Since the price of that good equals 1,
and its quantity equals A, we get

Pz e = A. (6.88)
Similarly,

Pl = A, (6.89)

Pz Qe = A, (6.90)
and

Pdz, > A. (6.91)

How to compute p;q; and p;gs when s € {x{,xg,xg} and t is a variable
observation.

It is not difficult to prove that all these scalar products are at least as large as
A. That is

psqr > A (6.92)
and

pigs = A. (6.93)

Case 5. Both observations are clause observations; one of them from clause
Cy,, the other from clause Cy, with ¢; # /(o.
Let s € {X?,Xgl,X?,t?,t?,t?} and t € {X?, ng, X?,t?,t?,t?}. These are 36 pairs

of observations (s, t).

How to compute p;q; and p:qs.

It is not difficult to obtain the following lower bounds.
psqt > A (6.94)
and

prgs > A, (6.95)
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Notice that for two distinct observations s and ¢ in T, we have psq; > A if and only
if Dbigs > A.
In Table 6.7, we summarize the scalar products computed above by presenting only

those which have values less than A.

B. Proof of Claim 1

We are now in a position to finish the proof of Claim 1. Here we show how the

inequalities identified by Claim 1 follow from the scalar product computed in Appendix
A.

The first set of inequalities (6.1) comes from (A) and (C) in Table 6.7.

The inequalities (6.2) stem from (B) and (D) in Table 6.7.

The inequalities (6.3), (6.7) and (6.9) stem from (E) and (G) in Table 6.7.
The inequalities (6.4), (6.6) and (6.10) stem from (E) and (H) in Table 6.7.
The inequalities (6.5), (6.8) and (6.11) stem from (E) and (I) in Table 6.7.

The inequalities (6.13), (6.16) and (6.19) stem from either (F) and (L) or (F) and
(N), in Table 6.7.

The inequalities (6.12), (6.15) and (6.18) stem from (F) and (J) in Table 6.7.

The inequalities (6.14), (6.17) and (6.20) stem from either (B) and (K) or (A)
and (M), in Table 6.7.

The set of inequalities (6.21) come from the fact that for any other pair of observations

s,t € T, the scalar product psq; is greater than or equal to A.

C. Proof of Claim 2

Here, we show how the double-sum inequalities described by Claim 2 originate from
the scalar products computed in Appendix A. For every clause Cp = (X{ Vv Xé \% x:%) eC,
¢ e {l,...,m} with the given clause observations X‘i, Xé, X§> t{, té and tg, we have:

The double-sum inequalities (6.22), (6.23) and (6.24) come from (E), (H) and (I)
in Table 6.7.



Table 6.7: Summary of scalar products with values less than A

Chapter 6 - CARP complexity

product value proof
Do e, = 3 ifTa, = b 1,...,n (6.33)
2Tz, | +4 if Tz, #0
Prqz = 3 mﬂﬁ =0 i=1,...,n (6.34)
Ea 2T, |+4 if Dy, #0
DaiGz; = |Tal+1 i=1,...,n (6.35)
Pz,Gz; = |Tayl+1 i=1,...,n (6.36)
Py = 8 I=1,...,m,r=1,2,3 (6.41), (6.42), (6.43)
e = 6 l=1,....m,r=1,2,3 (6.50), (6.51), (6.52)
Pyt = 6 I=1,...,m, (i,5) € {(1,2),(2,3),(3,1)} (6.44), (6.45), (6.46)
Pyt = 4 I=1,...,m, (i,5) € {(1,3),(2,1),(3,2)}  (6.47), (6.48), (6.49)
Pyt = 3 I=1,...,m, (i,5) € {(1,3),(2,1),(3,2)}  (6.54), (6.55), (6.56)
Pty = 2 I=1,...,m, (1,7) € {(3,1),(1,2),(2,3)} (6.57), (6.58), (6.59)
peqe = Do +1if x; = I=1,....m,r=1,2,3,i=1,...,n (6.70), (6.72), (6.74)
Pz, = 2 if ¥t = I=1,....mr=1,23i=1,...,n (6.71), (6.73), (6.75)
Peiqe = Uz +1 if x4 =z l=1....mr=123i=1,...,n (6.82), (6.84), (6.86)
Pitle;, = 2 if x% = Z; I=1,....m,r=1,23,i=1,...,n (6.83), (6.85), (6.87)
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The inequalities (6.25), (6.27) and (6.29) stem from (F), (J) and either (L) or (N)
in Table 6.7.

The inequalities (6.26), (6.28) and (6.30) stem from either (B), (D) and (K) or
(A), (C) and (M) in Table 6.7.

The inequalities (6.31) stem from (A) and (M) and the inequalities (6.32) from
(B) and (K) in Table 6.7.

The non-existence of the other possible inequalities is justified by the fact that for those
inequalities, at least one scalar product appearing in the right hand side has a value

greater than or equal to A.






List of Figures

2.1
2.2

3.1

3.2

4.1
4.2
4.3
4.4

5.1
5.2

5.3
5.4

5.5

An example of a promotion campaign with two products and three clients. 17

Flow chart of the branch-and-price heuristic (Heuristic 5) . . . ... .. 33

Mlustration of the two-phase B&B algorithm for solving Example 1. Op-
timal solutions are obtained at node 2 and node 3. Inside each node
u, the set M, of selected jobs is described. The assignment bound and
lateness bound are both 13 at the root node. . . . . . .. ... .. ... 64
Mlustration of the direct B&B algorithm with lateness bound U Bs for

solving Example 1. Inside each node, the corresponding (possibly par-

tial) solution is represented as a sequence of job indices. . . . ... .. 68
Example of dataset. . . . . . . . .. ... 92
Mlustration of the construction of G. . . . . . . . ... ... ... .... 95
Example of reduction . . . . . . . .. ... L L 101
The graph built from the data of Example 4.12. . . . . . . .. ... ... 106
Mlustration of a single p-g block and two blocks sharing one vertex. . . . 127

Ilustration of the construction of H'3 and F'3. In the graphs, a double-
direction arc («) represents a cycle of length two between the considered
vertices. . . . ... e 135
Mlustration of the B&C algorithm. . . . . . .. ... ... ... .... 138
Average CPU time of four different implementations of the cycle-
identification algorithm for 50-vertex random graphs generated during
the first phase. . . . . . . . .. 145
Average CPU time of four different implementations of the backtracking

algorithm for 50-vertex random graphs generated during the first phase. 147

191



192 List of Figures
5.6 Average CPU time of six different implementations of the B&C algorithm

for 50-vertex random graphs generated during the first phase. . . . . . . 148

5.7 Average CPU time of every algorithm for random graphs. . . . . .. .. 149

5.8 Probability of YES answer and average CPU time of every algorithm. . 151



List of Tables

2.1
2.2

2.3
2.4

2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4

5.1
5.2

Size of the generated inputs . . . . . . . . ... ... oL
Comparison of column-generation procedures for solving the LP relax-
ation of the set-covering formulation . . . .. ... ... ... ......
LP relaxation of the basic formulation and the set-covering formulation
Comparison of different tree traversal strategies for the branch-and-price
algorithm . . . . . . . .. Lo
Basic formulation and branch-and-price algorithms . . . . . . . .. ...
Comparison of heuristics for S3 . . . . . . .. ...

Comparison of heuristics for medium and large size instances . . . . . .

Job properties for Example 1. . . . . . . . .. ... ... ... ... ...
Linear formulations for n = 10 with small processing times. . . . . . . .
B&B algorithms for n = 10 with small processing times. . . . . . . . ..
Linear formulations for n = 10 with large processing times. . . . . . ..
B&B algorithms for n = 10 with large processing times. . . . . . . . ..
Results for n = 20 with exact algorithms. . . . . . . ... ... ... ..
Results for n = 30 with exact algorithms. . . . . . . .. ... ... ...
Results forn =40 and n=50. . . . . . . ... .. ... ...,

Properties of the Graph representation of the instances of Data I . . . .
Output of heuristics for instances of Data I . . . . .. ... ... ....
Properties of the Graph representation of the instances of Data 11

Output of heuristics for instances of Data IT . . . . . . . ... ... ...

Properties of the real-life instances . . . . . . . .. ... ... .. ....

Densities of the graphs generated in the second phase . . ... ... ..

193

74



194 List of Tables
5.3 CPU time of every algorithm for the real-life instances . . . . . . .. .. 150
6.1 Block 1 for the example . . . . . .. .. ... ... ... ... ..., 159
6.2 Price of goods corresponding to cells in Block 1 for observation Zs. . . . 161
6.3 Price of goods corresponding to cells in Block 2 for observation 3. . . . 162
6.4 Quantity of goods corresponding to cells in Block 1 for observation x1. . 165
6.5 Quantity of goods corresponding to cells in Block 1 for observation Zo. . 166
6.6 Construction of H} and HZ for a given clause Cp. . . . . . . . . . .. .. 174
6.7 Summary of scalar products with values less than A . . . . . ... ... 188



Bibliography

Aarts, E., Lenstra, J. K. (Eds.), 1997. Local Search in Combinatorial Optimization.
Wiley.

Afriat, S., 1967. The construction of utility functions from expenditure data. Interna-

tional Economic Review 8, 67-77.

Ahuja, R. K., Magnanti, T. L., Orlin, J. B., 1993. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall.

Aifeng, Y., Jinjiang, Y., 1991. On the vertex arboricity of planar graphs of diameter
two. Discrete Mathematics 307, 2438-2447.

Air Transport Action Group, December 2007. The economic and social benefits of air

transport. Tech. rep., Air Transport Action Group.

Alekseev, V. E., Farrugia, A., Lozin, V. V., 2004. New results on generalized graph

coloring. Discrete Mathematics and Theoretical Computer Science 6, 215-222.

Alidaee, B., Kochenberger, G., Amini, M., 2001. Greedy solutions of selection and
ordering problems. European Journal of Operational Research 134, 203-215.

Alsuwaiyel, M. H., 1999. Algorithms Design and Techniques and Analysis. World Sci-
entific Publishing.

Aluru, S., 2006. Handbook of Computational Molecular Biology. Chapman &
Hall/CRC.

Apollonio, N., Franciosa, P. G., 2007. A characterization of partial directed line graphs.
Discrete Mathematics 307, 2598-2614.

Baker, M. J., 2003. The Marketing Book, 5th Edition. Butterworth-Heinemann.

195



196 BIBLIOGRAPHY

Barnhart, C., Johnson, E., Savelsbergh, M., 1998. Branch-and-price: column generation

for solving huge integer programs. Operations Research 46, 316-329.

Bartnicki, T., Grytczuk, J. A., Kierstead, H. A., 2008. The game of arboricity. Discrete
Mathematics 308, 1388-1393.

Bench-Capon, T. J. M., 2002. Value-based argumentation frameworks. In Proceedings
of Non Monotonic Reasoning 2002, 444-453.

Bertsimas, D., Tsitsiklis, J. N., 1997. Introduction to Linear Optimization. Athena

Scientific.

Bhaskar, T., Sundararajan, R., Krishnan, P. G., 2009. A fuzzy mathematical program-
ming approach for cross-sell optimization in retail banking. Journal of the Opera-
tional Research Society 60, 717-727.

Bigras, L., Gamache, M., Savard, G., 2008. Time-indexed formulations and the total
weighted tardiness problem. INFORMS Journal on Computing 20, 133-142.

Bilginturk, Z., Oguz, C., Salman, S., 28-31 August 2007. Order acceptance and schedul-
ing decisions in make-to-order systems. In: Baptiste, P., Kendall, G., Munier-Kordon,
A., Sourd, F. (Eds.), Proceedings of the 3rd Multidisciplinary International Confer-
ence on Scheduling: Theory and Applications (MISTA). Paris, France, pp. 80-87.

Blow, L., Browning, M., Crawford, I., 2008. Revealed preference analysis of character-
istic models. Review of Economic Studies 75, 371-389.

Brandeau, M. L., Sainfort, F., Pierskalla, W. P., 2004. Operations Research and Health
Care: A Handbook of Methods and Applications. Kluwer Academic Publishers.

Brassington, F., Pettitt, S., 2003. Principles of Marketing, 3rd Edition. Financial
Times/Prentice Hall.

Broersma, H. J., Fomin, F. V., Kratochvil, J., Woeginger, G. J., 2006. Planar graph
coloring avoiding monochromatic subgraphs: Trees and paths make it difficult. Al-
gorithmica 4, 343-361.

Brown, D., Matzkin, R., 1996. Testable restrictions on the equilibrium manifold. Econo-
metrica 64, 1249-1262.



BIBLIOGRAPHY 197

Brown, D., Shannon, C., 2000. Uniqueness, stability and comparative statics in ratio-

nalizable walrasian markets. Econometrica 68, 1529-1540.

Browning, M., Chiappori, P., 1998. Efficient intra-household allocations: a general

characterization and empirical tests. Econometrica 68, 1241-1278.

Bruner, R. C., Eades, K. M., Harris, R. S., Higgins, R. C., 1998. Best practices in
estimating the cost of capital: survey and synthesis. Financial Practice and Education
8, 13-28.

Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D., 2000. Approximation algorithms
for knapsack problems with cardinality constraints. European Journal of Operational
Research 123, 333—-345.

Carvajal, A., Ray, L., Snyder, S., 2004. Equilibrium behavior in markets and games:

testable restrictions and identification. Journal of Mathematical Economics 40, 1-40.

Chan, A. H. S., Ao, S.-I., 2008. Advances in Industrial Engineering and Operations

Research. Springer.

Chang, G. J., Chen, C., Chen, Y., 2004. Vertex and tree arboricities of graphs. Journal
of Combinatorial Optimization 8, 295-306.

Chen, Z., 2000. Efficient algorithm for acyclic colorings of graphs. Theoretical Computer
Science 230, 75-95.

Cherchye, L., Crawford, 1., De Rock, B., Vermeulen, F., 2009a. The revealed preference
approach to demand. Chapter 9 in Quantifying Consumer Preferences: Estimating
Demand Systems, Daniel Slottje (ed.), Contributions to Economic Analysis, Emerald

Press.

Cherchye, L., De Rock, B., Sabbe, J., Vermeulen, F., 2008a. Nonparametric tests of col-
lectively rational consumption behavior: an integer programming procedure. Journal
of Econometrics 147, 258-265.

Cherchye, L., De Rock, B.; Vermeulen, F., 2007. The collective model of household

consumption: a nonparametric characterization. Econometrica 75, 553-574.

Cherchye, L., De Rock, B., Vermeulen, F., 2008b. Analyzing cost efficient production
behavior under economies of scope: A nonparametric methodology. Operations Re-
search 56, 204-221.



198 BIBLIOGRAPHY

Cherchye, L., De Rock, B., Vermeulen, F., 2009b. An Afriat theorem for the collective

model of household consumption. Journal of Economic Theory forthcoming.
Chiappori, P., 1988. Rational household labor supply. Econometrica 56, 63—89.

Chiappori, P., 1992. Collective labor supply and welfare. Journal of Political Economy
100, 437-467.

Chiappori, P., Ekeland, I., 2006. The micro economics of group behavior: general

characterization. Journal of Economic Theory 130, 1-26.

Chiappori, P., Ekeland, L., 2009. The micro economics of efficient group behavior:
identification. Econometrica 77, 763-800.

Christensen, M., 2007. Integrability of demand accounting for unobservable heterogene-

ity: a test on panel data. IFS Working paper W14/07, University of Manchester.

Chung-Piaw, T., Vohra, R., 2003. Afriat’s theorem and negative cycles. mimeo, North-

western University.

Chuzhoy, J., Ostrovsky, R., Rabani, Y., 2006. Approximation algorithms for the job in-
terval selection problem and related scheduling problems. Mathematics of Operations
Research 31 (4), 730-738.

Chvatal, V., 1983. Linear Programming. W.H. Freeman.

Cohen, M., 2004. Exploiting response models - optimizing cross-sell and up-sell oppor-

tunities in banking. Information Systems 29, 327-341.

Collins, W., 1987. Collins Cobuild English Language Dictionary. William Collins Sons
& Co Ltd.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., 2001. Introduction to Algo-
rithms, Second Edition, 2nd Edition. MIT Press and McGraw-Hill.

Cornuejols, G., Tutuncu, R., 2007. Optimization Methods in Finance. Cambridge Uni-

versity Press.

De, P., Ghosh, J. B., Wells, C. E., 1991. On the minimization of the weighted number
of tardy jobs with random processing times and deadline. Computers & Operations
Research 18 (5), 457-463.



BIBLIOGRAPHY 199

De Reyck, B., Degraeve, Z., 2003. Broadcast scheduling for mobile advertising. Oper-
ations Research 51, 509-517.

Deb, R., 2008a. Acyclic partitioning problem is NP-complete for k = 2. Private com-

munication, Yale University, United States.

Deb, R., 2008b. An efficient nonparametric test of the collective household model.
Working paper, Yale University, United States.

Deo, N., 1974. Graph Theory with Application to Engineering and Computer Science.
Prentice-Hall.

Diewert, E., 1973. Afriat and revealed preference theory. Review of Economic Studies
40, 419-425.

Dobell, A. R., 1965. A comment on A. Y. C. Koo’s an empirical test of revealed pref-

erence theory. Econometrica 33, 451-455.

Donni, O., 2008. Household behavior and family economics. The Encyclopedia of Life
Support Systems Contribution 6.154.9.

Downes, J., Goodman, J. E., 1995. Dictionary of Finance and Investment Terms, 4th

Edition. Barron’s.

Dwyer, F. R., 1997. Customer lifetime valuation to support marketing decision making.
Journal of Direct Marketing 11, 6-13.

Emmons, H., 1969. One machine sequencing to minimize certain functions of job tar-
diness. Operations Research 17, 701-715.

Engels, D. W., Karger, D. R., Kolliopoulos, S. G., Sengupta, S., Uma, R. N., Wein, J.,
2003. Techniques for scheduling with rejection. Journal of Algorithms 49, 175-191.

Epstein, L., Nogab, J., Woeginger, G. J., 2002. On-line scheduling of unit time jobs
with rejection: minimizing the total completion time. Operations Research Letters
30, 415-420.

Farin, G., 2006. Class A Bézier curves. Computer Aided Geometric Design 23, 573-581.

Garey, M. R., Johnson, D. S., 1979. Computers and Intractability: A Guide to the

Theory of NP-completeness. Freeman, San Francisco.



200 BIBLIOGRAPHY

Ghosh, J. B., 1997. Job selection in a heavily loaded shop. Computers & Operations
Research 24 (2), 141-145.

Goddard, W., 1991. Acyclic colorings of planar graphs. Discrete Mathematics 91, 91-94.

Goldberg, A. V., Kennedy, R., 1995. An efficient cost scaling algorithm for the assign-
ment problem. Mathematical Programming 71, 153-177.

Golumbic, M. C., 2004. Algorithmic Graph Theory and Perfect Graphs, 2nd Edition.
ELSEVIER B.V.

Gross, L. J., Yellen, J., 2004. Handbook of Graph Theory. CRC Press.

Guerrero, H. H., Kern, G. M., 1998. How to more effectively accept and refuse orders.

Production and Inventory Management Journal 4, 59-62.

Gupta, S. K., Kyparisis, J., Ip, C., 1992. Project selection and sequencing to maximize

net present value of the total return. Management Science 38, 751-752.

Hellinckx, E., 2004. Customer relationship management: De optimalisatie van de plan-

ning van campagnes. Master’s thesis, KULeuven (in Dutch).

Herbots, J., Herroelen, W., Leus, R., 2007. Dynamic order acceptance and capacity
planning on a single bottleneck resource. Naval Research Logistics 54 (8), 874-889.

Hogg, T., 1985. Refining the phase transition in combinatorial search. Artificial Intel-
ligence 81, 127-154.

Ivanescu, V. C., Fransoo, J. C., Bertrand, J. W., 2006. A hybrid policy for order
acceptance in batch process industries. OR Spectrum 28, 199-222.

Kellerer, H., Pferschy, U., Pisinger, D., 2004. Knapsack Problems. Springer.

Keskinocak, P., Tayur, S., 2004. Due date management policies. In: Simchi-Levi, D.,
Wu, S. D., Shen, Z. J. (Eds.), Handbook of Quantitative Supply Chain Analysis:
Modeling in the E-Business Era. Kluwer, Ch. 12, pp. 485-547.

Khanna, S., Kumaran, K., 1998. On wireless spectrum estimation and generalized graph
coloring. Proc. of INFOCOM’98, 1273-1283.

Kleywegt, A. J., Papastavrou, J. D.; 2001. The dynamic and stochastic knapsack prob-
lem with random sized items. Operations Research 49 (1), 26-41.



BIBLIOGRAPHY 201

Knott, A., Hayes, A., Neslin, S. A., 2002. Next-product-to-buy models for cross-selling
applications. Journal of Interactive Marketing 16, 59-75.

Kotler, P., Armstrong, G., 2006. Principles of Marketing, 12th Edition. Pearson Pren-
tice Hall.

Kumar, V., Ramani, G., Bohling, T., 2004. Customer lifetime value approaches and

best practice applications. Journal of Interactive Marketing 18, 60-72.

Laguna, M., Kelly, J. P., Gonzlez-Verlarde, J. L., Glover, F., 1991. Tabu search for
the multilevel generalized assignment problem. European Journal of Operational Re-
search 82, 176-189.

Lawler, E. L., 1977. A “pseudopolynomial” algorithm for sequencing jobs to minimize
total tardiness. Annals of Discrete Mathemathics 1, 331-342.

Lenstra, J. K., Rinnooy Kan, A. H., Brucker, P., 1977. Complexity of machine schedul-
ing problems. Annals of Discrete Mathemathics 1, 343-362.

Lewis, H. F., Slotnick, S. A., 2002. Multi-period job selection: planning work loads to
maximize profit. Computers & Operations Research 29, 1081-1098.

Li, S., Sun, B., Wilcox, R. T., 2005. Cross-selling sequentially ordered products: An
application to consumer banking services. Journal of Marketing Research XLII, 233—
239.

Lim, A., Wang, F., Xu, Z., 2004. On the selection and assignment with minimum

quantity commitments. Lecture Notes in Computer Science 3106, 102-111.

Lim, A., Wang, F., Xu, Z., 2006. A transportation problem with minimum quantity

commitment. Transportation Science 40, 117-129.

Lim, A., Xu, Z., 2006. The bottleneck problem with minimum quantity commitment.
Naval Research Logistics 53, 91-100.

Lu, L., Zhang, L., Yuan, J., 2008. The unbounded parallel batch machine scheduling
with release dates and rejection to minimize makespan. Theoretical Computer Science
396, 283—-289.

Lund, C., Yannakakis, M., 1993. The approximation of maximum subgraph problems.
Lecture Notes in Computer Science 700, 40-51.



202 BIBLIOGRAPHY

Lundberg, S., Pollak, R., 2007. Family decision-making. The New Palgrave, Dictionary

of Economics, 2nd Edition forthcoming.

Luo, Z., Tang, L., Zhang, W., 2007. Using branch-and-price algorithm to solve raw
materials logistics planning problem in iron and steel industry. 2007 International

Conference on Management Science and Engineering, 529-536.

Martello, S., Toth, P., 1990. Knapsack Problems: Algorithms and Computer Imple-

mentation. Jown Wiley and Sons.

Mazer, A., 2007. Electric Power Planning for Regulated and Deregulated Markets. John
Wiley & Sons.

Meng-Gérard, J., Chrétienne, P., Baptiste, P., Sourd, F., 2009. On maximizing the
profit of a satellite launcher: selecting and scheduling tasks with time windows and
setups. Discrete Applied Mathematics 157, 3656—-3664.

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L., 1999. Deter-
mining computational complexity from characteristic ‘phase transitions’. Nature 400,
133-137.

Nembhauser, G. L., Wolsey, L. A.; 1988. Integer and Combinatorial Optimization. Wiley.

Pan, Y., Shi, L., 2007. On the equivalence of the max-min transportation lower bound
and the time-indexed lower bound for single-machine scheduling problems. Mathe-

matical Programming, Serie A 110, 543-559.

Pochet, Y., Wolsey, L. A., 2006. Production Planning by Mixed Integer Programming.
Springer.

Potts, C. N., Van Wassenhove, L. N., 1985. A branch and bound algorithm for the total
weighted tardiness problem. Operations Research 33 (2), 363-377.

Prinzie, A., Van Den Poel, D., 2006. Investigating purchasing-sequence patterns for
financial services using Markov, MTD and MTDg models. European Journal of Op-
erational Research 170, 710-734.

Prinzie, A., Van Den Poel, D., 2007. Predicting home-appliance acquisition sequences:
Markov/Markov for discrimination and survival analysis for modeling sequential in-

formation in NPTB models. Decision Support Systems 44, 28-45.



BIBLIOGRAPHY 203

Raspaud, A., Wang, W., 2008. On the vertex-arboricity of planar graphs. European
Journal of Combinatorics 29, 1064—1075.

Reinartz, W., Thomas, J. S., Kumar, V., 2005. Balancing acquisition and retention

resources to maximize customer profitability. Journal of Marketing 69, 63-79.

Rinnooy Kan, A. H. G., Lageweg, B. J., Lenstra, J. K., 1975. Minimizing total cost in
one-machine scheduling. Operations Research 23, 908-927.

Rom, W. O., Slotnick, S. A.; 2009. Order acceptance using genetic algorithms. Com-
puters & Operations Research 36 (6), 1758-1767.

Roos, C., Terlaky, T., Vial, J. P., 2006. Interior Point Methods for Linear Optimization.
Springer.

Roundy, R., Chen, D., Chen, P., Cakanyildirim, M., Freimer, M. B., Melkonian, V.,
2005. Capacity-driven acceptance of customer orders for a multi-stage batch manu-

facturing system: models and algorithms. IIE Transactions 37, 1093-1105.

Roychoudhury, A., Sur-Kolay, S., 1995. Efficient algorithms for vertex arboricity of
planar graphs. Lecture Notes in Computer Science 1026, 37-51.

Ryals, L., 2005. Making customer relationship management work: The measurement
and the profitable management of customer relationships. Journal of Marketing 69,
252-261.

Savelsbergh, M., 1997. A branch-and-price algorithm for the generalized assignment
problem. Operations Research 45, 831-841.

Sengupta, S., 2003. Algorithms and approximation schemes for minimum late-
ness/tardiness scheduling with rejection. Lecture Notes in Computer Science 2748,
79-90.

Slotnick, S. A., Morton, T. E., 1996. Selecting jobs for a heavily loaded shop with
lateness penalties. Computers & Operations Research 23, 131-140.

Slotnick, S. A., Morton, T. E., 2007. Order acceptance with weighted tardiness. Com-
puters & Operations Research 34 (10), 3029-3042.

Spieksma, F. C. R., 1999. On the approximability of an interval scheduling problem.
Journal of Scheduling 2, 215-227.



204 BIBLIOGRAPHY

Starr, R., 1969. Quasi-equilibria in markets with non-convex preferences. Econometrica
37, 25-38.

Starret, D., 1972. Fundamental nonconvexities in the theory of externalities. Journal
of Economic Theory 4, 180-199.

Talla Nobibon, F., Herbots, J., Leus, R., 2009. Order acceptance and scheduling in
a single-machine environment: exact and heuristic algorithms. Working paper KBI-
0903, Department of Quantitative Methods and Information Management, Faculty

of Business and Economics, KULeuven (Leuven, Belgium).

Talla Nobibon, F., Leus, R., Spieksma, F. C. R., 2008. Models for the optimization of
promotion campaigns: exact and heuristic algorithms. Research report KBI_0814,
Department of Quantitative Methods and Information Management, Faculty of Busi-

ness and Economics, KULeuven (Leuven, Belgium).

Tanaka, S., Fujikuma, S., Araki, M., 2009. An exact algorithm for single-machine
scheduling without machine idle time. Journal of Scheduling 12, 575-593.

Tarjan, R. E., 1972. Depth-first search and linear graph algorithms. SIAM Journal on
Computing 2, 146-160.

Thomassen, C., 2008. 2-list-coloring planar graphs without monochromatic triangles.
Journal of Combinatorial theory 98, 1337-1348.

Thorsteinsson, E. S., 2001. Branch-and-check: a hybrid framework integrating mixed
integer programming and constraint logic programming. Lecture Notes in Computer
Science 2239, 16-30.

Van Den Akker, J. M., Hoogeveen, J. A., Van Kempen, J. W., 2006. Parallel machine
scheduling through column generation: Minimax objectives (extended abstract). ESA
2006, Lecture Notes in Computer Science 4168, 648—659.

Van Den Akker, J. M., Hurkens, C. A. J., Savelsbergh, M. W. P., 2000. Time-indexed
formulations for single-machine scheduling problems: column generation. INFORMS

Journal on Computing 12, 111-124.

Van Praag, N., 2010. Optimization of promotion campaigns using tabu search. Master’s
thesis, KULeuven.



BIBLIOGRAPHY 205

Vance, P. H., Atamturk, A., Barnhart, C., Gelman, E., Johnson, E. L., Krishna, A.,
Nembhauser, G. L., Rebello, R., 1997. A heuristic branch-and-price approach for the
airline crew pairing problem. Tech. Rep. LEC-97-06, Georgia Institute of Technology.

Varian, H., 1982. The nonparametric approach to demand analysis. Econometrica 50,
945-974.

Varian, H., 2006. Revealed preference. in M. Szenberg, L. Ramrattan and A.A. Gottes-

man (eds.), Samuelsonian economics and the 21st century, Oxford University Press.
Wolsey, L. A.; 1998. Integer Programming. John Wiley & Sons.
Wright, S. J., 1997. Primal-Dual Interior Point Methods. STAM.

Wu, Y., Yuan, J., Zhao, Y., 1996. Partition a graph into two induced forests. Journal
of Mathematical Study 1, 1-6.

Yang, B., Geunes, J., 2007. A single resource scheduling problem with job-selection
flexibility, tardiness costs and controllable processing times. Computers & Industrial
Engineering 53, 420-432.

Yugma, C., 2005. Dynamic management of a portfolio of orders. 40R: A Quarterly
Journal of Operations Research 3, 167-170.

Zhu, J., 2009. Optimization of Power System Operation. John Wiley & Sons.

Zijm, W. H. M., 2000. Towards intelligent manufacturing planning and control systems.
OR Spektrum 22, 313-345.






Doctoral dissertations from the
Faculty of Business and

Economics

A list of doctoral dissertations from the Faculty of Business and Economics can be
found at the following website:
http://www.econ.kuleuven.be/phd/doclijst.htm.

207



