
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Decomposition Approaches
for Optimization Problems

Joris Kinable

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor in Engineering

December 2014

Supervisors:
Prof. dr. P. De Causmaecker
Prof. dr. F. Spieksma
Prof. dr. ir. G. Vanden Berghe

Decomposition Approaches for Optimization Prob-
lems

Joris KINABLE

Examination committee:
Prof. dr. ir. H. Van Brussel, chair
Prof. dr. P. De Causmaecker, supervisor
Prof. dr. F. Spieksma, supervisor
Prof. dr. ir. G. Vanden Berghe, supervisor
Prof. dr. ir. M. Bruynooghe
Prof. dr. R. Leus
Prof. dr. K. Sörensen
(Faculty of Applied Economics, University of Antwerp)

Prof. dr. M. Trick
(Tepper School of Business, Carnegie Mellon University)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

December 2014

© 2014 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Joris Kinable, Celestijnenlaan 200A box 2402, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

ISBN 978-94-6018-923-4
D/2014/7515/143

Preface
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

from The Road Not Taken by Robert Frost (1874–1963)

The last 6 years, including 4 years as a PhD researcher, I spent most of my time
abroad, living in different places, experiencing new cultures and connecting with
new people. Two years I have stayed in Finland and Norway, three years in
Belgium, another year in the USA, and in between I have visited China, Ireland,
Poland, Colombia, France, and Great Britain. Each time you leave a place, you
inevitably leave something behind, but, in return you carry new memories and
experiences back home. I could not have undertaken this incredible journey
without the support of colleagues, friends, family, and relatives. This section is
dedicated to the people who supported me throughout the course of my PhD.

Following traditional academic etiquette, I would first and foremost like to thank
my supervisors and jury members for their useful comments and suggestions with
respect to my dissertation. I am particularly grateful towards my supervisors,
Greet Vanden Berghe, Frits Spieksma, and Patrick De Causmaecker for their
support during the last four years. Your doors were always open; your differences
in vision and interests often provided for interesting and diverse insights. A
warm word goes out to Greet, whom, over the years, I have got to appreciate
as a person who is strongly concerned with the well-being of the people in her
group.

Next I would like to thank Prof Michael Trick for providing me the opportunity
to spend a year at Carnegie Mellon University. Despite the many obligations
you had as Senior Associate Dean, you always managed to find time to provide
me with excellent feedback. I sincerely thank you for your hospitality. Similarly
I thank Prof Willem-Jan van Hoeve. Next to the many academic meetings we
had over the past year, I thoroughly enjoyed dining, cooking and even gardening
with you.

i

ii PREFACE

Finally I thank Erik Van Achter for his feedback regarding the textual quality
of my publications.

Moving on to the colleagues section, I have to thank three groups: CODeS in
Ghent, my colleagues at the Faculty of Economics in Leuven, and my colleagues
at the Tepper School of Business, Carnegie Mellon University. Many of you I
got to know as colleagues, co-authors and eventually as friends. On the CODeS
side, I would explicitly like to thank Tony, Wim, Jannes, Pieter, Joris, Jan and
Faysal. On the Leuven side there are Kris, Fabrice, Ann, Yannick, Mieke, Bart,
Marjolein, Dries, Dennis, Jeroen and Roel. Some of you contributed directly
to this dissertation, others indirectly through the many, often entertaining
discussions we have had over the past couple of years, both at work in Belgium,
at a conference in China, or even at a beer tasting in Leuven.

A dedicated section should be reserved for my friends at Carnegie Mellon
University. A year full of new inter-cultural experiences, very long nights at
work, and exhausting weekends of outdoor activities. Yang, Diana, Andre, Max,
Spyros, Thiago, Siddharth, Vince and Wenting. Thank you for the colorful
summer you’ve provided me. We’ve enjoyed many activities together, from
having lunch in the park overlooking downtown Pittsburgh to visiting classical
concerts, ice skating, climbing, crane bird folding, swimming and barbecuing in
Moraine and Raccoon state parks, rafting in Ohiopyle, trips to Yellow Stone,
San Francisco, and New York. I sincerely enjoyed these moments together.

Over the years, friends come and go, but some will stay with you for a very
long time. You pretty much cannot get rid of them. Kai, Ralph, Guy, and
Jan-Willem. Thank you for your support, any place, any time.

Lastly, I would like to thank my family, my parents Karin and Dirk, my
grandparents and of course my sister Els. I explicitly acknowledge the support
I received from my father, who always motivated me to pursue this PhD.

My final words go to Karin, who has patiently been here, all the way throughout
my PhD.

Joris Kinable Ghent, November 2014

Abstract

This dissertation encompasses the development of decomposition approaches
for a variety of both real-world and fundamental optimization problems. Many
optimization problems comprise of multiple interconnected subproblems, often
rendering them too large or too complicated to solve as a single integral
problem. Decomposition approaches are required to deal with these problems
efficiently. By decomposing a problem into multiple subproblems, efficient
dedicated procedures can be employed to solve the subproblems independently.
Furthermore, often strong bounds on the optimal solutions can be derived by
exploiting structures in the underlying subproblems.
This work primarily focuses on analyzing and identifying problem components
to decompose a problem into multiple, easier-to-solve, subproblems. The actual
decompositions are obtained through mathematical techniques such as Column
Generation and Benders decomposition, thereby relying on Integer Programming,
Constraint Programming, heuristic and combinatorial procedures to solve the
resulting subproblems. Each solution method is developed with scalability and
extendability in mind, while simultaneously making the methods sufficiently
robust to account for changes to the original problem definitions. Moreover
the decomposition strategies are designed to preserve a notion of optimality,
thereby providing insight into the quality of a solution.
From an application point of view, the present work is centered around four
routing and scheduling problems: the School Bus Routing Problem (SBRP),
the Concrete Delivery problem (CDP), the Time-Dependent TSP (TD-TSP)
and the Balanced TSP (BTSP). For each of these problems, decomposition
strategies have been developed. The SBRP and BTSP are solved via a
branch-and-price framework; lower bounds on the SBRP are derived through
Lagrangian Relaxation. A Benders decomposition is developed for the CDP.
The subproblems resulting from the Benders decomposition are efficiently
solved through Integer and Constraint programming, in combination with a
fast scheduling heuristic. Finally, a generic, robust Constraint Programming
approach, strengthened with Multivariate Decision Diagrams, is implemented for

iii

iv ABSTRACT

the TD-TSP. To improve domain propagation, bounds derived from alternative
problem relaxations are incorporated in the CP search through an additive
bounding procedure. To validate the aforementioned solution approaches,
experiments are conducted on real-world or simulated data.
By decomposing a problem, techniques from various interdisciplinary domains
can be combined into an integrated solution approach. Correlations between the
problems under consideration as well as the proposed solution methodologies
provide insight as to the applicability, limitations and the intuition behind the
various techniques. It are exactly these insights that ultimately will lead to fully
automated problem solvers, capable of analyzing and decomposing optimization
problems without human interference.

List of Symbols

ARL Allocation Routing Location

BBC Branch-Bound-Cut

BEFS Best First Search

BFS Breadth First Search

BPC Branch-Price-Cut

BTSP Balanced Traveling Salesman Problem

CDP Concrete Delivery Problem

CG Column Generation

CP Constraint Programming

CPM Column Pool Manager

CRSP Capacitated Ring-Star Problem

CVRP Capacitated Vehicle Routing Problem

D-W Dantzig-Wolfe

DFJ Dantzig Fulkerson Johnson

DFS Depth First Search

ESPPRC Elementary Shortest Path Problem with Resource Constraints

GA Genetic Algorithm

HC Hamiltonian Circuit

IPS Interior Point Stabilization

v

vi LIST OF SYMBOLS

LAR Location Allocation Routing

LB Lower Bound

LD Lagrangian Dual

LP Linear Program

LPM Linear Program Master

LR Lagrangian Relaxation

MDD Multivariate Decision Diagram

MILP Mixed Integer Linear Program

MIP Mixed Integer Program

MP Master Problem

MV-TPP Multiple Vehicle Traveling Purchaser problem

NN Nearest Neighbor

OR Operations Research

PMSP Parallel Machine Scheduling Problem

PTS Proximal Type Stabilization

RMC Ready Mixed Concrete

RMP Restricted Master Problem

SBRP Schoolbus Routing Problem

SD Steepest Descent

SP subproblem

TD-TSP Time Dependent Traveling Salesman Problem

TSP Traveling Salesman Problem

UB Upper Bound

VNS Variable Neighborhood Search

Contents

Abstract iii

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1

2 The Schoolbus Routing Problem 15

2.1 Introduction . 16

2.2 Problem description and related research 17

2.3 Set covering formulation of SBRP 19

2.4 Column Generation . 21

2.4.1 Pricing Problem . 21

2.4.2 Stabilization . 25

2.4.3 Column Pool Manager 30

2.5 Branch and Price . 31

2.5.1 Branching rules . 31

2.5.2 Pattern initialization . 34

vii

viii CONTENTS

2.5.3 Bounds . 34

2.5.4 Branch and Price Implementation 37

2.6 Computational Experiments . 38

2.7 Conclusion . 47

3 The Concrete Delivery Problem 49

3.1 Introduction . 50

3.2 Related Research . 51

3.3 Mathematical models . 57

3.3.1 Integer Programming models 57

3.3.2 Constraint Programming model 65

3.4 Heuristic models . 68

3.4.1 Steepest Descent and Best Fit 68

3.4.2 Fix-and-Optimize heuristic 70

3.5 Bounds . 72

3.6 Experimental Results . 73

3.6.1 Data Sets . 73

3.6.2 Experiments . 74

3.7 Conclusion . 77

3.8 Literature Summary Notation 80

3.9 Computational Experiments . 83

4 A Logic Based Benders Approach to the Concrete Delivery Problem 93

4.1 Introduction . 94

4.2 A logic-based Benders decomposition 96

4.2.1 Master Problem . 97

4.2.2 Subproblem . 98

4.2.3 Generating an initial set of cuts 101

CONTENTS ix

4.3 Computational Experiments . 101

4.4 Conclusion . 103

5 Integrating CP, LP and Decision Diagrams for the Time-Dependent
TSP 111

5.1 Introduction . 112

5.2 The TD-TSP problem description 113

5.3 Mathematical Models . 114

5.3.1 Constraint Programming Model 114

5.3.2 Mixed Integer Programming models 115

5.3.3 Column Generation Model 117

5.4 Reinforcing the CP model . 117

5.4.1 Decision Diagrams for the TD-TSP 118

5.4.2 CP model with MDD 123

5.5 Strengthening MDD propagation through additive bounding . . 125

5.5.1 Additive bounding . 125

5.5.2 Projecting information from the additive bounding
procedure onto the MDD 126

5.6 Computational Experiments . 127

5.6.1 Impact of additive bounding 132

5.7 Impact of the refinement order 138

5.8 Branching rules . 139

5.9 Implementation limitations . 146

5.10 Conclusion . 146

6 The Balanced Traveling Salesman Problem 149

6.1 Introduction . 150

6.2 Complexity Analysis . 151

x CONTENTS

6.3 Formulations for 2-BTSP . 153

6.4 Column generation . 156

6.4.1 Pricing Problem . 156

6.4.2 Branching . 157

6.4.3 Initialization . 157

6.5 Some implementation details 162

6.6 Computational Experiments for 2-BTSP 163

6.6.1 Instances . 163

6.6.2 Experimental Results for 2-BTSP 163

6.7 Conclusion . 170

7 Conclusion 171

A Extension: A Column Generation Approach to the Concrete
Delivery Problem 177

B Extension: Generalizing 2-BTSP 181

B.1 k-balanced TSP . 181

B.1.1 MIP model with |E|k variables 182

B.1.2 Column generation model for 2 ≤ k < |V| 183

B.1.3 Special case |V| = k . 186

Bibliography 187

List of Publications 195

List of Figures

2.1 Comparison of different stabilization approaches 48

3.1 Example where the SD-heuristic does not find the optimal solution. 71

3.2 Comparison of the different methods on Data Set A. 75

3.3 Comparison of the different methods on Data Set B. 76

3.4 Influence of the time lag γ. Solutions are obtained via the CP
model. 76

5.1 Time Space Network (source: Picard and Queyranne (1978)) . 114

5.2 Example of an MDD (Source: Ciré and van Hoeve (2013)). . . 118

5.3 Calculating sum of setup times on an MDD. 118

5.4 MDDs of different width . 120

5.5 Influence of the MDD width. 133

6.1 Example of a 2-BTSP solution. 152

xi

List of Tables

2.1 Parameters and variables defining the SBRP 20

2.2 Computational results Data Set I 41

2.2 Computational results Data Set I 42

2.2 Computational results Data Set I 43

2.3 Computational results Data Set II 45

2.3 Computational results Data Set II 46

3.1 Parameters defining the CDP 52

3.2 Summary of the various CDP problems and solution approaches
in related literature. For notation, refer to Section 3.8 on page 80 53

3.3 Description of CP constraints 66

3.4 Data sets . 79

3.5 Summary (averages). 79

3.7 Computational results Data Set A 84

3.7 Computational results Data Set A 85

3.7 Computational results Data Set A 86

3.8 Computational results Data Set B 87

3.8 Computational results Data Set B 88

3.8 Computational results Data Set B 89

xiii

xiv LIST OF TABLES

3.8 Computational results Data Set B 90

3.8 Computational results Data Set B 91

4.1 Parameters defining the CDP 95

4.2 Computational results Data Set A 105

4.2 Computational results Data Set A 106

4.2 Computational results Data Set A 107

4.3 Computational results Data Set B 108

4.3 Computational results Data Set B 109

5.1 MIP comparison . 130

5.1 MIP comparison . 131

5.2 CP comparison . 132

5.3 Lower bound on the root node of the CP search tree 133

5.3 Lower bound on the root node of the CP search tree 134

5.4 Analyzing the impact of the additive bounding procedure. . . . 136

5.4 Analyzing the impact of the additive bounding procedure. . . . 137

5.5 Refinement Order . 138

5.5 Refinement Order . 139

5.6 Branching rule comparison . 142

5.6 Branching rule comparison . 143

5.7 Branching rule comparison . 144

5.7 Branching rule comparison . 145

6.1 Column abbreviations in computational results 164

6.2 Branch-Bound-Cut versus Branch-Price-Cut 166

6.2 Branch-Bound-Cut versus Branch-Price-Cut 167

LIST OF TABLES xv

6.3 Branch-Price-Cut (Cuts calculated when column generation
terminates.) . 168

6.4 Branch-Price-Cut (Cuts calculated when master problem yields
integer solution.) . 169

A.1 Parameters used in the master problem reformulation for CDP 178

Chapter 1

Introduction

Over the last two decades, tremendous progress has been made in the field of
Operations Research (OR). This progress can partially be ascribed to significant
gains in computational power. However, a far stronger driving force is generated
by large companies which have gradually started to embrace OR, realizing the
enormous savings in resources that can be achieved through optimization. As a
natural consequence, many of today’s optimization challenges find their origins
in both industrial and commercial applications.
Unlike many of the traditional, fundamental optimization problems which
often have nice mathematical properties or clean structures, these new
optimization challenges frequently consist of several interconnected subproblems
and potentially exhibit a large number of side constraints. Despite the fact that
there exist highly efficient algorithms for many of the fundamental optimization
problems such as the traveling salesman, knapsack, matching, and bin packing
problems, it is often impossible to adapt these algorithms to problems with
side constraints without drastically decreasing their performance. Moreover,
developing dedicated algorithms for every optimization problem is expensive,
time-consuming, requiring expert knowledge, and the resulting algorithms are
often difficult to maintain or extend. Indeed, there is a demand for more robust,
modular approaches enabling rapid development of optimization strategies. In
this perspective, decomposition approaches, the focal point of this thesis, may
provide a viable outcome.
In any decomposition, the original problem is divided into multiple, easier-
to-solve subproblems. A solution to the original problem can be acquired by
iteratively or sequentially solving the resulting subproblems. Specifically in
the context of large, complex optimization problems, decompositions offer a
number of advantages. When the original problem is divided into smaller

1

2 INTRODUCTION

subproblems, each subproblem may be solved by efficient, dedicated procedures
which can employ different optimization techniques independently. Similarly,
various optimization problems often share some common component solvable
by the same algorithm; isolating this component through decomposition could
facilitate efficient reuse of code.
By decomposing a problem, different structural properties of the optimization
problem can be captured. The latter observation is used to derive strong bounds
on the optimal solutions. Examples can be found in literature where problems
are decomposed through Column Generation; the resulting decomposition often
yields stronger bounds than any of the bounds obtainable through alternative
Mixed Integer Programming (MIP) models formulated over the entire problem.
In fact, many of these MIP formulations suffer from large numbers of conditional
constraints, resulting in weak Linear Programming relaxations and consequently
weak bounds. Finally, symmetrical structures in MIP formulations frequently
introduce repetition in branch-and-bound based search procedures employed by
most Integer and Constraint programming solvers, thereby significantly reducing
their effectiveness. Decomposition methods may again be used to mitigate these
issues.
In this dissertation, decomposition techniques are studied for various optimiza-
tion problems, mainly in the area of routing and scheduling. Each decomposition
is developed with the following key design aspects in mind:

• How can a problem be decomposed without breaking its structure?

• How to communicate the results from one subproblem to another?

• Is the decomposition approach robust, i.e., can the approach accommodate
modifications to the original problem specifications?

• Does the decomposition preserve a notion of optimality, i.e., is it possible
to derive bounds on the optimal solution?

The dissertation is structured into five chapters, each centered around a different
optimization problem or a different decomposition technique. The chapters are
largely self-contained and can be read independent of each other.
Chapter 2 considers the School Bus Routing Problem (SBRP), a Vehicle Routing
Problem involving the selection of bus stop locations, student assignment
to buses, and routing of the school buses to the pickup locations of the
students. Early attempts to solve SBRP are based on sequential (iterative)
procedures where the selection, assignment and routing subproblems are solved
independently. Although it is appealing to decompose a problem directly
towards its natural components, this often leads to suboptimal results, or is
simply not possible because the subproblems cannot be solved independently.

INTRODUCTION 3

In this thesis, a Column Generation procedure is presented to solve the SBRP.
The problem is decomposed into a master problem and a subproblem. In the
subproblem, bus schedules are generated. Each schedule defines a bus route,
starting and ending at the school, plus a description of the students that should
be picked up along the route and their respective pickup locations. In turn,
the master problem selects a set of compatible bus schedules such that each
student is transported to school. The resulting solution procedure is capable
of obtaining provable optimal solutions for large SBRP instances through the
use of a branch-and-price framework. Particular emphasis is put on a number
of techniques to improve the efficiency of the column generation procedures,
through, for instance, the use of lower bounding procedures and stabilization
methods.
Chapters 3 and 4 revolve around a Concrete Delivery Problem (CDP): a difficult
problem involving both vehicle routing and scheduling. In CDP concrete delivery
trucks are routed back and forth between concrete production stations and
construction sites. Each construction site has limited processing capacity. Hence,
when multiple truck loads are required, the trucks need to be sequenced, such
that deliveries for the same customer do not overlap in time. However, due to
the fact that concrete is a perishable product, the temporal spacing between two
consecutive deliveries may not exceed a predefined amount of time to prevent
the first batch of concrete from hardening before the next batch arrives. The
deliveries are performed by a heterogeneous fleet of vehicles. Although the
demand of the customers is known a priori, it is unknown how many deliveries
are required to fulfill the customer’s demand as this depends on the actual
capacities of the vehicles performing the deliveries. Many variations of the CDP
exist in literature, each dealing with different constraints, or treating the problem
from a different perspective. An extensive comparison of these variations is
provided in Chapter 3. In addition, to support future comparison of different
solution methodologies, Chapter 3 presents a generalized version of the CDP,
preserving the main characteristics of the existing problem variations. Exact
methods based on Constraint Programming and Mixed Integer Programming as
well as a number of heuristic approaches are studied for the problem at hand,
and are compared on a large data set of problem instances.
The exact and heuristic methods presented in Chapter 3 are able to swiftly
obtain good primal solutions, but establishing the quality of these solutions
proves difficult due to the lack of strong bounds. One perhaps logical solution
would be to attempt the same approach presented for the SBRP in Chapter
4 to the CDP problem, thereby generating individual delivery schemes for
the vehicles, and using a centralized mechanism to select a set of compatible
schedules. It is however not evident how to select or generate a set of compatible
schedules efficiently due to the numerous temporal and delivery constraints.
Therefore, we propose a different integrated solution approach for CDP based

4 INTRODUCTION

on a logic based Benders decomposition. Similar to the Column Generation
procedure for SBRP in Chapter 2, this approach decomposes the problem into
a master problem and a subproblem. The master problem selects the customers
concrete is delivered to. For these customers, the subproblem attempts to
generate a feasible delivery schedule. Cuts are generated and added to the
master problem in absence of such a schedule. Many of the algorithms developed
in Chapter 3 can be efficiently reused in the Benders framework to solve the
resulting master and subproblem.
The last two chapters, Chapters 5 and 6 treat two, more fundamental
optimization problems: the Time-Dependent Traveling Salesman Problem (TD-
TSP) and the Balanced TSP (BTSP). The TD-TSP asks to sequence a number
of jobs, while minimizing the total sum of setup times. For each pair of jobs, a
sequence dependent setup time is specified which does not only depend on the
jobs, but also on their relative positions in the sequence. In Chapter 5 we develop
a Constraint Programming based approach for the TD-TSP. Despite the fact that
CP is more of a programming paradigm than an actual decomposition approach,
we can still interpret it as such because of the way constraints are treated in
CP. Each constraint captures some combinatorial structure of the problem, and
implements its own independent filtering mechanism which removes inconsistent
domain values. The constraints are propagated one by one until some fixed
point is reached; communication between the constraints is solely based on the
domains of the variables. Traditionally, variable domains bare little structural
information as they are represented by flat sets of numbers. To strengthen the
CP formulation for the TD-TSP, Chapter 5 proposes to incorporate Multivariate
Decision Diagrams (MDDs) into the CP model. We show how the MDDs can
be used to derive bounds on the optimal solutions for TD-TSP, to prune the
search space, and to guide the CP search. Moreover, we show how MDDs can
be used to consolidate the CP model by integrating structural information from
other problem relaxations such as Linear Programming relaxations through the
use of additive bounding.
Chapter 6 finally focuses on the k-Balanced Traveling Salesman Problem (k-
BTSP) which seeks to find a route through a number of cities such that, when
the edges in the tour are partitioned into k edge-disjoint groups, the total
length of the edges in each group is approximately equal. The k-BTSP belongs
to a particularly challenging class of optimization problems where equity or
fairness in resource distribution is important. We present and compare two
Mixed Integer Programming formulations. One of the formulations is solved
through a traditional branch-bound-cut approach, whereas the other relies on a
branch-price-cut framework. In the latter case, a decomposition is used which
exploits an underlying combinatorial structure of the BTSP.

INTRODUCTION 5

Foundations

This Section provides theoretical background for a number of commonly used
decomposition methods. We focus primarily on the foundations of these methods,
the intuition behind them, their applicability and some of their limitations. The
purpose of this section is to give the unfamiliar reader a better understanding
of the variety of available decomposition approaches, their mechanics and their
uses. It is not our intent to give an exhaustive overview, nor do we treat
all special cases or pitfalls inherently related to the implementation of these
methods.
The content of Section Column Generation is based on Hooker (2013), Lübbecke
(2010), Barnhart et al. (1998). Hooker (2013), and Wolsey and Nemhauser
(1988) have been used for the Section Benders Decomposition. Finally, Section
Lagrangian Relaxation and Decomposition is based on the work by Reeves
(1993).

Column Generation

Often, Linear and Mixed Integer Programming models have a large number of
variables, but only a limited number of constraints. Instead of solving these
large models for all variables at once, which may prove intractable, a reduced
problem defined over a subset of the variables may be considered instead, as
most of the variables in the original model will be zero in the optimal solution.
Column Generation (CG) is an iterative procedure used to solve these reduced
problems. During every iteration, a check is performed to test whether adding
any of the absent variables to the reduced model could potentially improve its
objective value. The procedure terminates when no more such variables exist,
thereby obtaining a provable optimal solution to the original problem.
The first applications of CG date back to the 1960’s where CG was used
in the context of Dantzig-Wolfe decomposition (D-W decomposition). D-W
decomposition is a technique used to split optimization problems into a master
problem and a subproblem which are then solved through CG. Often the
decomposed problem can be solved much more efficiently. Moreover, when the
procedure is terminated prematurely, for example due to a time limit, the current
best solution is still primal feasible to the original problem. In what remains we
will elaborate on the concept of CG in the context of D-W decomposition. The
same ideas are used in Chapter 2 and Appendix A, albeit on different problem
formulations.
Given the following general Linear Program (LP). For simplicity we assume

6 INTRODUCTION

that the solution space represented by this LP is bounded and non-empty:

min cTx

s.t. Ax ≥ b

Dx ≥ d

x ≥ 0

(1.1)

Let X = {x ∈ Q+|Dx ≥ d}. From Minkowski’s theorem we know that each
x ∈ X can be written as a convex combination of extreme points {yk|k ∈ K}
and extreme rays {wl|l ∈ L}, i.e.,:

x =
∑
k∈K

λky
k +

∑
l∈L

µlw
l

(1.2)

where
∑
k∈K λk = 1 and λk, µl ≥ 0 for all k ∈ K, l ∈ L. Substituting 1.2 into

1.1, thereby eliminating constraints Dx ≥ d, yields:

min
∑
k∈K

λkc
T yk +

∑
l∈L

µlc
Twl

s.t.
∑
k∈K

λkAy
k +

∑
l∈L

µlAw
l ≥ b

∑
k∈K

λk = 1

λk, µl ≥ 0 ∀k ∈ K, l ∈ L

(1.3)

This formulation, also known as extended formulation or Dantzig-Wolfe
formulation, typically has a vast number of variables (columns), but usually
only a limited number of constraints (rows). Instead of solving this problem
directly, which is simply intractable due to the potentially large number of
variables, the problem is solved only for a small subset of the extreme points
and rays. The resulting, reduced problem, is often referred to as the Restricted
Master Problem (RMP), whereas the original problem is called the Master
Problem (MP). Note that in the RMP, the variables λk, µl corresponding with
the extreme rays and points that are absent, are equal to zero.
When the RMP is solved, a solution is obtained for which, by definition of the
MP and RMP, the following holds: v(RMP) ≥ v(MP), where v(·) gives the
value of the optimal solution.
Recall that, at each iteration, the well-known Simplex algorithm, used to solve
LPs, searches for non-basic variables with negative reduced cost to bring into the

INTRODUCTION 7

basis, thereby (potentially) improving the objective value. For an optimization
problem stated as min{cTx|Ax ≤ b, x ∈ Rn} the reduced cost of a variable
xj is given by cj − uTAj , where u is the vector of dual variables, and Aj the
j-th column in A. An optimal solution is obtained when there are no more
variables with negative reduced cost. The same technique can be applied to
verify whether the solution of RMP can be improved through the addition of
extra λk, µl variables.
Associate dual variables u, α with the constraints in formulation (1.3). The
reduced cost of a variable λk, k ∈ K is given by cT yk − uTAyk − α. To verify
whether there exists a variable λk currently absent in the RMP, and having a
negative reduced cost, the following auxiliary problem, commonly referred to as
the pricing problem, can be solved:

min cT y − uTAy − α

s.t. Dy ≥ d

y ≥ 0

(1.4)

If (1.4) yields a solution ȳ with an objective value strictly smaller than 0, we
have found a variable with negative reduced cost. Then a new variable λk,
corresponding with the extreme point ȳ is added to the RMP, with column
(Aȳ, 1) and cost cT ȳ.
In a similar fashion we can search for µl, l ∈ L variables with negative reduced
cost by solving the following auxiliary problem:

min cTw − uTAw − α

s.t. Dw ≥ d

w ≥ 0

(1.5)

When the outcome of this problem has an objective −∞ for a solution w̄ a
new variable µl, corresponding with the extreme ray w̄ is added to RMP, with
column (Aw̄, 0) and cost cT w̄.
After adding one or more variables with negative reduced cost to the RMP, the
RMP is re-solved and the process is repeated. This procedure is commonly
referred to as Column Generation. The process terminates when no more
variables with negative reduced cost can be identified. Logically, it follows that
at this point v(RMP) = v(MP) holds. Although it is not known beforehand
how many Column Generation iterations are required before optimality is
established, typically this number is fairly limited and significantly smaller than
|K|+ |L|.
Dantzig-Wolfe decomposition can be particularly effective if the original

8 INTRODUCTION

constraint matrix has a so-called block diagonal structure, in which several
blocks of constraints on set disjoint variables are linked together by some
complicating constraints, e.g.,:

min c1x1 + c2x2 + . . . + cpxp
s.t. D1x1 ≥ d1

D2x2 ≥ d2

. . .
Dpxp ≥ dp

A1x1 + A2x2 + . . . + Apxp ≥ b
x ≥ 0

(1.6)

where Dx ≥ d, D =

D1

D2

. . .
Dp

, d =

d1

d2

...
dp

 are the easy

constraints and Ax ≥ b, A =
[
A1 A2 A3 A4] are the complicating

constraints. The D-W decomposition of such a problem results in p pricing
problems which can be solved independently of one another. These block
structures are frequently encountered in set-cover formulations for Vehicle
Routing and Multi-Machine scheduling problems. An example of this can be
found in Chapter 2 and in Appendix A.
Remarks:

• The D-W procedure outlined above is described in the context of LP;
nevertheless, the procedure can be generalized to MILP.

• Next to block-diagonal matrix structures, there are several other special
structures which can be exploited in D-W decomposition, see (Bergner
et al., 2014).

Benders decomposition

Benders decomposition is a mathematical approach that exploits the fact that
fixing a number of difficult variables in a mathematical model may simplify the
problem considerably. The decomposition approach divides a problem into a
master problem (MP) and a subproblem (SP), which are solved iteratively. The
MP, considering a subset of the variables, is solved first. Next, the subproblem
is solved for the remaining variables, while temporarily fixing the variables’
values of the MP. Finally, based on the outcome of the SP, one or more cuts are
generated and added to the MP, thereby effectively preventing the MP from

INTRODUCTION 9

revisiting similar areas of the search space. Classical Benders decomposition
(Benders, 1962), considers linear programming subproblems where cuts are
derived from their dual solution. This approach is often interpreted as D-W
decomposition applied to the dual of the problem.
Classical Benders decomposition can be applied to MILPs of the form:

z = min cTx+ dT y

s.t. Ax+By ≥ b

x ∈ X ⊆ Zn+

y ≥ 0

(1.7)

Again, for simplicity we assume that (1.7) is bounded and feasible. When the x
variables are fixed to a solution x̄, i.e., x = x̄, formulation (1.7) simplifies to an
LP, formally known as the subproblem:

min cT x̄+ dT y

s.t. By ≥ b−Ax̄

y ≥ 0

(1.8)

Let z̄ be the value of the optimal solution to (1.8). When solving (1.8) for a
given x̄, two scenarios exist:

1. Formulation (1.8) yields a feasible solution ȳ for a fixed x̄. Solution (x̄, ȳ)
is primal feasible to the original problem (1.7), with objective value z̄.

2. Formulation (1.8) is infeasible, i.e., there does not exist a single y such
that (x̄, y) is feasible in the original problem space.

The dual of (1.8) is given by:

max uT (b−Ax̄) + cT x̄

s.t. uTB ≤ dT

u ≥ 0

(1.9)

Whenever the dual problem (Formulation (1.9)) is infeasible, i.e. there does
not exist a solution satisfying the constraints in the dual, then, for any value
of x̄, the subproblem (Formulation (1.8)) must be infeasible or unbounded.
Consequently, the original problem (Formulation (1.7)) must also be infeasible

10 INTRODUCTION

or unbounded. Hence, in what remains we will assume that the solution space
defined by the constraints in the dual (1.9) is non-empty.
Assume that (1.8) yields a feasible solution ȳ, then by strong duality, formulation
(1.9) must have a (finite) extreme point solution ū, s.t. cT x̄+dT ȳ = cT x̄+ūT (b−
Ax̄). By weak duality it follows that cTx+ dT y︸ ︷︷ ︸

z

≥ cTx+ūT (b−Ax). Finally this

leads to the Benders cut, also known as an optimality cut, z ≥ cTx+ ūT (b−Ax),
where z is a lower bound on the optimal solution value of (1.7). Informally
this cut states that each time variables x are fixed to x̄, the objective value of
formulation (1.7) will be at least z̄.
On the other hand, when the subproblem (1.8) cannot be solved for a given x̄,
i.e., the subproblem is infeasible, then its dual (1.9) must be either infeasible
or unbounded (positive infinity). By the aforementioned assumption that the
solution space defined by formulation (1.9) is non-empty, the dual cannot be
infeasible, so it must be unbounded, i.e., ūT (b − Ax̄) > 0 for some extreme
ray solution ū. We can then generate a feasibility cut ūT (b − Ax) ≤ 0 which
effectively states that x cannot be equal to x̄.
Model (1.7) can now be reformulated, thereby eliminating the y variables, as:

min z

s.t. z ≥ cTx+ (uk)T (b−Ax) ∀k ∈ K

(ul)T (b−Ax) ≤ 0 ∀l ∈ L

x ∈ X

(1.10)

where K and L are resp. the extreme points and extreme rays corresponding
with dual formulation (1.9). Model (1.10) is known as the master problem.
As with the extended formulation (1.3) obtained through D-W decomposition,
formulation (1.10) cannot be solved in its entirety due to the fact that their
may be a vast number of constraints. Therefore, the master problem (1.10) is
solved only for a subset of its constraints. After solving the master problem, the
subproblem is solved, and cuts (constraints) are added to the master problem.
This iterative procedure terminates whenever the optimal value of the master
problem equals the largest finite objective value obtained for the subproblem.
Similar to D-W decomposition, Benders decomposition can be particularly

INTRODUCTION 11

effective if the constraint matrix has some special structure, for example:

min cTx+ d1y1 + d2y2 + . . .+ dpyp

s.t. A1x+B1y1 ≤b1
A2x+ B2y2 ≤b2
... . . .

Apx+ Bpyp≤bp
x ∈ X
y ≥ 0

(1.11)

The Benders decomposition of such a problem results in p LPs which can be
solved independently of one another. These problem structures arise in for
example stochastic programming problems where the variables x represent
first-stage decisions, and the y variables represent second-stage decisions under
different scenarios for x (Conforti et al., 2014).
A disadvantage of the Classical Benders decomposition approach is that the
subproblem needs to be an LP. In more recent work, e.g., Geoffrion (1972) and
Hooker (2007), the Benders decomposition approach has been generalized to
a broader class of problems, no longer requiring the subproblem to be linear.
Nevertheless, the exact same principles apply: a master problem, a relaxation of
the original problem, and a subproblem are solved iteratively, while generating
cuts along the way. Hooker (2007) introduced the concept of Logic Based
Benders decomposition. In contrast to the approach introduced by Benders
(1962), cuts are not necessarily obtained from the dual formulation of a linear
subproblem, but through the so-called inference dual. Whenever the subproblem
is a feasibility problem, the inference dual is a condition which, when satisfied,
implies that the master problem is infeasible (Rasmussen and Trick, 2007).
This condition can then be used to obtain Benders cuts to cut off infeasible
solutions. A particular case of Logic Based Benders decomposition, frequently
referred to as Combinatorial Benders decomposition, is discussed by Codato
and Fischetti (2006) where it is applied to MILPs involving large numbers of
logical implications (big-M constraints). Whenever a particular assignment of
variable values in the MP renders the SP infeasible, a Combinatorial Benders
cut is generated and added to the master problem, thereby ensuring that at
least one of the variables in the master problem changes its value. Note that
this approach only works for binary variables or integer variables with a small
domain. Logic Based Benders decomposition is used to solve the Concrete
Delivery Problem in Chapter 4.

12 INTRODUCTION

Lagrangian Relaxation and Decomposition

When the constraints in an MILP can be partitioned in a group of ’nice’
constraints and ’complicating’ constraints, Lagrangian Relaxation (LR) may
be used to simplify the problem. LR removes the complicating constraints and
introduces a penalty function in the objective function to penalize violation of
the complicating constraints. LR can be used to compute strong bounds on the
objective value of a MILP; it can be shown that the LR is at least as strong as
the Linear Relaxation of the problem (Geoffrion, 1974). In some cases, the LR
bound equals the optimal solution of the MILP (Wolsey and Nemhauser, 1988).
Given the following Integer Problem where Ax ≥ b are the complicating
constraints and Bx ≥ d the easy constraints:

min cx

s.t. Ax ≥ b

Bx ≥ d

x ∈ Zn

(1.12)

The Lagrangian Relaxation LR(λ) for λ ≥ 0 is given by:

LR(λ) = min cx+ λ(b−Ax)

s.t. Bx ≥ d

x ∈ Zn

(1.13)

Note that (1.13) is a relaxation of the original problem (1.12) because (1) a
negative term ((b−Ax) ≤ 0) is added to the objective function and (2) some
constraints have been removed. In fact, LR(λ) is a relaxation of the original
problem for all λ ≥ 0. The problem is to find the strongest such relaxation, i.e.,
LD = minλ≥0LD(λ). Problem LD is called the Lagrangian Dual of the original
problem with respect to constraints Ax ≥ b. Geoffrion (1974) showed that LD
is at least as strong as the LP relaxation of the original problem. A solution x̄
to a problem LR(λ) for some λ ≥ 0 is optimal in the original problem if (1) x̄
satisfies all the constraints in the original problem and (2) if cx̄ = cx̄+λ(b−Ax̄),
i.e., if λ(b−Ax̄) = 0.
Finally, in line with our discussion of decomposition approaches, one can also
decompose a problem through Lagrangian Decomposition. Observe that problem

INTRODUCTION 13

(1.12) can be rewritten as:

min cx

s.t. Ax ≥ b

By ≥ d

x = y

x, y ∈ Zn

(1.14)

Dualizing x = y yields:

min cx+ λ(x− y)

s.t. Ax ≥ b

By ≥ d

x, y ∈ Zn

(1.15)

Clearly (1.15) decouples into two problems which can be solved independently:

min (c+ λ)x

s.t. Ax ≥ b

x ∈ Zn

(1.16)

min − λy

s.t. By ≥ d

y ∈ Zn

(1.17)

The sum of the objective values of these two problems is a valid lower bound
on (1.12) for any value of λ. The resulting Lagrangian Decomposition bound
is often stronger than the standard Lagrangian Relaxation bound. Moreover,
the resulting subproblems may be easier to solve, and can capture different
structural characteristics of the problem.
LR is applied in Chapter 2 to compute lower bounds on the objective value of
the School Bus Routing Problem.

Chapter 2

The Schoolbus Routing
Problem

Abstract

The School Bus Routing Problem (SBRP), a generalization of the well-known
Vehicle Routing Problem, involves the routing, planning and scheduling of
public school bus transportation. The problem can be decomposed into several
subproblems, including bus stop selection, assigning students to buses, and
determining the bus routes. This work presents an exact branch-and-price
framework for the SBRP, with a strong emphasis on efficiency issues inherently
related to column generation.
Experiments in this chapter are conducted on a data set of 128 SBRP instances.
Many of these instances are solved optimally; for the remaining instances,
strong lower and upper bounds have been derived, thereby improving upon
some of the best results published in related work. Both lower bounds
computed on the optimum solution, as well as stabilization added to the column
generation procedure significantly improve the performance of the branch-and-
price framework.

The content of this chapter is based on joint work with F.C.R. Spieksma and G. Vanden
Berghe, see Kinable et al. (2014a)

15

16 THE SCHOOLBUS ROUTING PROBLEM

2.1 Introduction

Many primary and secondary schools in Europe organize school bus trans-
portation services for commuting students. The organization constitutes a
challenging task both from a planning and a budgetary perspective. A typical
school bus planning problem entails selecting appropriate bus stops reachable
by the students, assigning students to the available buses, and determining the
necessary bus routes. Possible locations for the bus stops are usually restricted
by local policies and legislations such as the maximum walking distance to the
stop, or safety regulations. From an optimization point of view, different goals
can be aspired including minimizing the total travel distance or the number of
buses, balancing bus loads or keeping the travel time spent by the students to a
minimum. This vehicle routing problem is commonly referred to as the School
Bus Routing Problem (SBRP), see Section 2.2 for a precise description.
The SBRP is part of the class of capacitated vehicle routing problems in which
a set of bus tours has to be designed, each passing through a number of bus
stops. The tours have to be disjoint except in the depot node. Students are
assigned to stops on the tours; students can only be assigned to stops they can
reach, and the total number of students assigned to stops on a single route
cannot exceed the bus capacity.
Among the many variants that exist in the domain of schoolbus routing (see
Park and Kim (2010), and Section 2 for an overview), we focus here on a
single-school SBRP, without time windows. The main contribution of this
chapter is to present a branch-and-price framework based on a set covering
formulation of the SBRP. We provide an in-depth discussion on the design of
the Branch-and-Price framework, thereby focusing on a number of choices made
in the implementation in order to improve the efficiency of the framework. We
discuss:

• lower bounds on the optimal integer solutions
• a comparison of two distinct stabilization approaches to reduce degeneracy
• effective pruning mechanisms
• a column pool manager

We demonstrate the performance of our branch-and-price algorithm on two
benchmark sets: one set containing traditional SBRP instances, and a newly
generated set of instances.
The remainder of this chapter is structured as follows: first, in Section 2.2,
an overview of related work on the SBRP is given. Next, Sections 2.3, 2.4
introduce the column generation procedure. The latter procedure is then
integrated in a branch-and-price framework which we discuss in Section 2.5.

PROBLEM DESCRIPTION AND RELATED RESEARCH 17

To improve the framework’s efficiency, several extensions are implemented,
including stabilization (Section 2.4.2), a column manager (Section 2.4.3), and a
pruning mechanism (Sections 2.5.3, 2.5.4). Finally, the resulting algorithm is
tested on a series of 128 SBRP instances. The results are presented in Section
2.6. Section 5.10 provides the conclusions.

2.2 Problem description and related research

The SBRP can be defined as follows. We are given a set of bus stops V (including
the school) with a distance for each ordered pair of stops, as well as a set of
students S. For each student s ∈ S, a set Vs ⊆ V is given that represents the
set of stops to which the student can be assigned. Assigning student s to a
stop in Vs is called a feasible assignment. There is a fleet of identical vehicles
available, each with capacity Q. A route is a sequence of stops ending with
the school. Students assigned to stops in a route are picked up by the vehicle
performing that route. The problem is to find a feasible assignment of students
to stops, and to find routes for the vehicles, such that (i) the capacity of each
vehicle is respected, (ii) each student is picked up, and (iii) total length of the
routes is minimized.
Notice that the description of our problem does not provide the locations of
the students. Indeed, we only know for each student the set of stops to which
this student can be assigned. This feature distinguishes our problem from the
more general Multiple Vehicle Traveling Purchaser problem (MV-TPP, see
Riera-Ledesma and Salazar-González (2012)) where a location for a student,
and its induced distance to a stop, is used to include assignment costs in the
objective of the problem. These assignment costs capture the cost of assigning
a student to a stop, and may represent walking distance. Of course, MV-TPP
is more general since, by having assignment costs in {0,∞}, an instance of
SBRP arises. However, the setting without assignment costs is conform the
situation faced by a bus company designing routes (see Schittekat et al. (2013)
for more details), where it is stipulated that any assignment of students to stops
should satisfy a maximum walking distance. Thus, from the point of view of
the bus company, no optimization of the walking distances is required; it is only
required that they do not exceed this maximum walking distance.
Obviously, SBRP is not a new problem. Indeed, many variations have been
proposed in the literature. Here it is not our ambition to give an overview;
instead we restrict ourselves to discussing the main solution approaches. For a
recent overview, we refer to (Park and Kim, 2010); a discussion of the MV-TPP
and related models can be found in (Riera-Ledesma and Salazar-González,
2013).
Due to its composite nature, the earliest papers discussing school bus routing

18 THE SCHOOLBUS ROUTING PROBLEM

attempted to solve the problem via decomposition. The selection, assignment
and routing problems are solved independently and the results are then merged
into a feasible SBRP solution. These attempts can be roughly classified into
two groups (Park and Kim, 2010): Location Allocation Routing (LAR) and
Allocation Routing Location (ARL). In the LAR class (e.g., Bodin and Berman
(1979); Desrosiers et al. (1986); Dulac et al. (1980)), first the stops are determined
and students are assigned to those stops, after which the necessary bus routes
are generated. A disadvantage of this approach is that the first two subproblems,
selection and allocation, are solved independently of the routing problem, often
resulting in excessive and suboptimal routes (Park and Kim, 2010). To counter
this problem, the ARL strategy has been proposed effectively changing the
order in which the subproblems are treated (Bowerman et al., 1995; Chapleau
et al., 1985). First the students are assigned to buses, thereby taking capacity
constraints into consideration. Then the bus stops are selected and the bus
routes are created. Although this approach resolves some of the issues inherent
to LAR (Bowerman et al., 1995), assigning students to buses before the stop
locations have been decided upon may still lead to suboptimal schedules. The
problems surrounding the decomposition of the SBRP as demonstrated by the
discussions on LAR and ARL strategies motivate the use of a more integrated
approach that treats the SBRP as an integral problem instead of the sum of
several subproblems.
Schittekat et al. (2013) describe a metaheuristic for the SBRP. By comparing
their results with a lower bound, they show that the metaheuristic is capable of
efficiently producing high-quality solutions for the instances generated.
Riera-Ledesma and Salazar-González (2012) propose a cutting plane algorithm
for MV-TPP. The method is based on an integer programming formulation that
uses, among other variables, a binary variable for each pair of stops. They report
extensive computational results solving instances with up to 125 stops and 125
students. In a recent follow-up paper, Riera-Ledesma and Salazar-González
(2013) use a set covering formulation, together with cuts from (Riera-Ledesma
and Salazar-González, 2012) to construct a branch-and-cut-and-price algorithm
for the MV-TPP. Although their work represents a formidable step forward in
our ability to solve instances of MV-TPP, it is good to note that in most of
their instances the number of students does not exceed the number of stops. In
our experience however (see Schittekat et al. (2013); Park et al. (2012)), typical
instances of the SBRP feature many more students than stops. One goal of our
work is to find out how a branch-and-price approach fares upon such instances.
Another problem related to SBRP is the m-Capacitated Ring-Star Problem
(m-CRSP) (Baldacci et al., 2007). In m-CRSP, one has to find m paths (rings),
starting and ending in a depot, and traversing through a number of customers
and steiner nodes. The paths have to be disjoint, except for the depot node.
Each customer in the graph needs to be either part of a ring, or must be assigned

SET COVERING FORMULATION OF SBRP 19

to a node which is part of a ring. The total number of customers in a single ring,
plus the number of customers assigned to it cannot exceed a predefined capacity
Q. The m-CRSP considers both assignment and routing costs. Assignment
costs are incurred whenever a customer is assigned to another node in a ring.
Routing costs are incurred for the edges that are part of a ring.
Let us clarify the relation between on the one hand, MV-TPP and its special
case SBRP, and, on the other hand m-CRSP. Clearly, as described in (Riera-
Ledesma and Salazar-González, 2012), an algorithm for MV-TPP can be used to
solve instances of m-CRSP. To see this, imagine that each customer in m-CRSP
becomes a student plus a stop in MV-TPP, while a steiner node in m-CRSP
becomes a stop. Next, a solution to the resulting instance of MV-TPP which
consists of routes that visit stops to which students have been assigned, is easily
casted as a solution to m-CRSP. The reverse is true as well: MV-TPP is a
special case of m-CRSP. For each student in MV-TPP, a customer is created,
and for every stop a steiner node. Routing costs between the steiner nodes are
identical to the routing costs between the stops in MV-TPP. Routing costs of
edges incident to customers are set to infinity. In a similar fashion, assignment
costs are determined. All assignment costs are set to infinity, except for certain
customer-steiner node pairs: for a student s ∈ S and Vs, the assignment costs
are set to 0 for the corresponding customer-steiner node pairs. When the
optimal solution to the constructed m-CRSP yields an objective value smaller
than infinity, a feasible solution to MV-TPP follows directly. Note that m-CRSP
requires m, the number of rings, as input. This value is not known for MV-TPP,
but is bounded from above. Hence, an algorithm for m-CRSP can be used
to solve the MV-TPP by means of binary search on the number of vehicles.
Exact methods for m-CRSP based on integer programming formulations have
been presented in (Baldacci et al., 2007) (Branch-and-Cut) and (Hoshino and
de Souza, 2009) (Branch-and-Cut-and-Price).

2.3 Set covering formulation of SBRP

We use the following MIP formulation of the SBRP, which we will denote as
the Master Problem (MP). Table 2.1 describes the necessary variables and
parameters. For a traditional three-index MIP formulation of the SBRP, we
refer to (Schittekat et al., 2013; Riera-Ledesma and Salazar-González, 2013).

20 THE SCHOOLBUS ROUTING PROBLEM

Variable/parameter Description
zp 1 if bus schedule p ∈ P is used, 0 otherwise
V Set of bus stops (including the school v0)
S Set of students
Vs Vs ⊆ V \{school}: the set of stops student

s ∈ S can reach.
P Set of all bus schedules.
tsp 1 if student s is picked up in bus schedule p, 0

otherwise
rvp 1 if stop v is part of bus schedule p, 0 otherwise
Q Maximum capacity of the buses.
δp Cost induced by schedule p
L, U Lower and upper bound on the number of buses

Table 2.1: Parameters and variables defining the SBRP

MP : min
∑
p∈P

δpzp (2.1)

s.t.
∑
p∈P

tspzp ≥ 1 ∀s ∈ S (2.2)

∑
p∈P

rvpzp ≤ 1 ∀v ∈ V (2.3)

∑
p∈P

zp ≤ U (2.4)

∑
p∈P

zp ≥ L (2.5)

zp ∈ {0, 1} ∀p ∈ P (2.6)

In this formulation, p is an index corresponding with a bus route. More precisely,
p defines a complete, valid, bus schedule: an ordered sequence of stops the bus
driver should visit (ending at the school), and the specific students that should
be picked up at the corresponding stops. The set of all feasible bus schedules is
denoted by P . As mentioned before, we assume that all buses are identical, and
have a capacity Q. The cost δp associated with each bus schedule is the travel

COLUMN GENERATION 21

distance required to visit all stops on the schedule (notice that these travel
distances do not necessarily satisfy the triangle inequality). Constraints (2.2),
(2.3) respectively ensure that each student is picked up at some stop, and that
no stop is visited more than once. Constraints (2.2) are commonly referred to as
Set Cover constraints. Constraint (2.4) enforce bounds on the number of buses
used in the solution. Observe that formulation (2.1)-(2.6) is quite flexible in the
sense that it can accommodate all kinds of potential constraints on individual
routes. For instance, upper bounds on the length of a route, or on the number
of stops within a route, are easily incorporated.

2.4 Column Generation

Solving problem MP (Section 2.3) requires an exponentially large set of columns
P . When the integrality constraints are replaced by the weaker constraints
zp ≥ 0, we obtain a relaxation, denoted LPM, which we will solve via a column
generation (CG) procedure (see (Chvátal, 1983; Vanderbeck, 1994; Wolsey, 1998)
for details on CG). Instead of solving LPM directly, a reduced version called
the Restricted Master Problem (RMP) is solved, where the set of columns P is
replaced by a subset P ′ ⊆ P , |P ′| � |P |. Subset P ′ contains an initial feasible
solution which is produced by the heuristic proposed in Schittekat et al. (2013).
Subsection 2.4.1 describes the pricing problem and provides two algorithms to
solve it. The performance of the CG procedure is improved by using stabilization
and by adding a column pool manager. Subsection 2.4.2 compares two popular
stabilization approaches, whereas Subsection 2.4.3 elaborates on the column
pool manager.

2.4.1 Pricing Problem

The pricing problem, obtained from the dual formulation of problem MP (2.1)-
(2.6) is as follows:

∃p : qp < 0 (2.7)

qp = δp +
∑
v∈V

rvpwv −
∑
s∈S

tspus +m− n (2.8)

where wv, us, m, n are the dual variables associated with constraints (2.3),
(2.2), (2.4), (2.5), respectively.
Throughout this chapter, p∗ denotes the column which yields the most negative

22 THE SCHOOLBUS ROUTING PROBLEM

value for qp, i.e., p∗ = argmin
p∈P

{qp}, and q∗ = qp∗ is the corresponding optimal

objective value of the pricing problem.
Informally, the pricing problem involves finding a path ending at the school
such that qp yields a negative value. When the school is decoupled into a
start and end node, the problem becomes the well-known Elementary Shortest
Path Problem with Resource Constraints (ESPPRC) (Desaulniers et al., 2005).
Since ESPPRC is NP-hard, we use two different procedures to solve the pricing
problem: a fast heuristic, and a slower but exact labeling algorithm. First,
the heuristic attempts to quickly find several columns with negative reduced
cost. When this attempt fails, the exact labeling algorithm takes over. Due
to its exact nature, the labeling algorithm is guaranteed to find a negative
reduced cost column if such a column exists. Ideally, the number of times the
exact algorithm is invoked is kept to a minimum as it is relatively expensive to
execute.

A local search heuristic

Our local search algorithm is initialized with a randomly generated feasible bus
route, i.e., an ordered sequence of stops. The algorithm iteratively attempts
to improve the solution by exploring neighboring solutions. The set of feasible
neighbor solutions is defined as the union of the following three neighborhoods:

1. Insert neighborhood - an unvisited stop is inserted in the route.

2. Remove neighborhood - a stop is removed from the route.

3. Swap neighborhood - Two stops in the route are swapped, thereby changing
the order in which stops are visited.

For each route, a student assignment problem has to be solved. Due to the
presence of constraint (2.3) in the MP, certain students are forced to be part of
the route; a student s ∈ S must be picked up whenever the route visits all stops
in Vs. When there is residual bus capacity, additional students are added to
the schedule, thereby maximizing the total dual price collected by the students.
The objective value of a solution is calculated via equation (2.8). A neighboring
solution is selected over another solution if its objective value is better; only
improving moves are allowed. The algorithm terminates when there are no
more improving moves available, i.e., when a local optimum is reached.
It is known that the column generation procedure can be accelerated when the
pricing problem returns multiple columns at once. Therefore, the heuristic is
executed several times to obtain multiple solutions. To prevent the heuristic

COLUMN GENERATION 23

from returning the same solution twice, we initialize it with different routes, and
we only accept neighborhood moves resulting in solutions which are sufficiently
distinct from earlier returned solutions; a particular solution is considered
sufficiently distinct from another solution whenever the stops along its route
are not a subset of the stops visited by the other solution, or when the number
of stops visited along its route differs by at least 50%.

Labeling algorithm

To prove optimality of the column generation procedure, an exact pricing
algorithm is required. We solve the pricing problem to optimality using
a dynamic programming based approach: a labeling algorithm. In related
works, such approaches have been successfully applied to problems such as the
Pickup and Delivery Problem with Time Windows (Ropke and Cordeau, 2009;
Dell’Amico et al., 2006), the Vehicle Routing Problem with Time Windows
(Desaulniers et al., 2005), and the Capacitated Location-Routing problem
(Albareda Sambola, 2003). Alternatively, one may use the q-route approach as
presented in Fukasawa et al. (2006), as has been demonstrated for the m-CRSP
in Hoshino and de Souza (2012).
Consider the weighted, undirected, graph G = (V ′, E), V ′ = (V ∪ {t}), where
V represents the set of bus stops, t a copy of the school vertex v0, and
E = (V ×V)∪(V \v0×{t}) the set of edges. The weight on an edge (i, j) ∈ V ×V
equals cij whereas the weights on the edges (i, t), i ∈ (V \v0) are equal to civ0 .
To solve the pricing problem, the algorithm searches for a simple path from v0
to t with negative reduced cost.
The labeling algorithm starts by generating the shortest possible partial path:
[v0]. At each consecutive iteration, a partial path p′ is extended to each stop
in V not already present in p′. For efficiency reasons, partial paths are not
stored in their entirety; instead labels are used. Each label ` is associated
with a vertex v(`) ∈ V , and has a reference (pointer) to a preceding label p(`),
except if the label is associated with vertex v0. Each label ` uniquely identifies
a partial path from v0 to v(`), i.e a path p` = [v(`), v(p(`)), v(p(p(`)))..., v0] can
be reconstructed simply by following the pointers to the preceding labels. Let
S(`) be a set of students that are assigned to a stop in path p`, and let V (`) be
the set of stops in p`, i.e., V (`) = {v(`), v(p(`)), v(p(p(`)))..., v0}. The set S(`)
is calculated by selecting at most Q students, having the highest dual price;
of course, a student s ∈ S can only be selected if Vs ∩ V (`) 6= ∅. Moreover, if
Vs\V (`) = ∅, then student s must be in S(`) due to Constraint (2.3). Finally,
for each partial path denoted by label `, c(`) is the accumulated cost defined by
Equation (2.8).
When a partial path would be extended to all its unvisited neighbors, the

24 THE SCHOOLBUS ROUTING PROBLEM

algorithm would simply be an inefficient enumeration approach. To circumvent
this issue, several restrictions are applicable:

1. A path can only be extended to the school if the resulting path is of
negative reduced cost.

2. A path may not be extended to a vertex if this would result in a cycle.

3. A path is not extended to a vertex if a lower bound proves that it can
never become a negative reduced cost path. For any path identified by
label `, a lower bound on the reduced cost can be computed by taking into
account: 1) c(`), 2) a lower bound on cost required to complete the path
to vertex t, 3) an upper bound on the dual prices that can be collected by
students on the complete route.

4. A path is not extended if it is dominated by another path, i.e., if there
exists a more cost-effective route.

To determine whether a path having label `1 dominates another path having
label `2, the following domination criteria are used:

v(`1) = v(`2) (2.9)

c(`1) ≤ c(`2) (2.10)

V (`1) ⊆ V (`2) (2.11)

The above conditions intuitively state that for two paths, leading to the same
stop, the path identified by label `1 dominates the path having label `2 if its
reduced cost is better, and if path `2 has access to the same students as path
`1, i.e., S(`1) ⊆ {s ∈ S : Vs ∩ V (`2) 6= ∅}.
Clearly, it is pointless to extend a dominated label. Moreover, as a logical
consequence, all successors of a dominated label are also suboptimal. For this
reason, in our implementation we also maintain pointers from a label to its
direct successors such that we can delete or modify successors in case one of
their predecessors turns out to be suboptimal (for more details, we refer to a
discussion on label correcting algorithms, e.g., Ahuja et al. (1993)).
The labeling algorithm can be accelerated by adding an admissible heuristic.
Given the sequence of stops that make up the partial route, the heuristic first
computes an upper bound on the maximal dual price that can be incurred by
the students. Next, the heuristic computes a lower bound on the total distance
of the complete route, that is the distance traveled so far plus the minimum
distance required to extend the route to node t. Finally, via equation (2.8) the
heuristic assesses whether extending the label to a path with negative reduced

COLUMN GENERATION 25

cost is attainable.
The labeling algorithm terminates as soon as there are no more labels to extend.
If, during the course of the algorithm, no path has been found, we can positively
attest that no negative reduced cost path exists.
It should be pointed out that the order in which labels are being processed
is of importance. Preferably, labels which at a later point in time appear to
be dominated by some other label are not extended. The latter would require
that the algorithm recomputes a substantial part of the search tree. In our
implementation we experimented with three orderings in which the labels are
processed: breadth first search (BFS), depth first search (DFS) and best first
search (BEFS). In BFS the oldest unextended label gets extended first. In DFS,
the newest generated label is always extended first. Finally, BEFS extends the
label representing the path with the best objective value. Our experiments
showed that BFS slightly outperformed DFS which in turn outperformed BEFS.
Several extensions and improvements for the labeling algorithm have been
proposed in related works, some of which we have implemented to accelerate
the pricing procedure.
The labeling algorithm should not necessarily search for a column with the
best objective value. Instead of performing an exhaustive search, the algorithm
could be easily modified such that it returns a negative reduced cost column as
soon as it finds one. Notice that this modification still enables us to solve the
column generation procedure to optimality.
A second modification amounts to changing the nodes to which a label can be
extended. In the previous section, the exact labeling procedure always extends
a partial path which ends in a node v ∈ V to all its unvisited neighbors. Similar
to (Dell’Amico et al., 2006), we also implemented a k-Nearest Neighbor (k-NN)
variant where a node is only extended to its k nearest neighbors. Naturally, for
k = |V |, the search neighborhood becomes exact. We start the algorithm for
k = 2. When no solution has been found, we expand the search to k = 4 and
finally to k = |V |. This procedure is motivated by the fact that the total travel
distance is minimized for each bus tour. As a consequence of this approach, the
average number of labels generated during the labeling procedure decreased for
a number of instances.

2.4.2 Stabilization

Column generation is susceptible to degeneracy (Desaulniers et al., 2005),
a process which decreases the convergence speed of the column generation
algorithm. During several iterations, new columns are added to the master
problem, but no improvements are being made in terms of the objective function

26 THE SCHOOLBUS ROUTING PROBLEM

(plateau effect). Also, once the objective function gets closer to its optimal
value, the convergence speed decreases drastically. Sometimes many additional
iterations are needed to complete the process (tailing-off effect) (Desaulniers
et al., 2005). The slow convergence speed is partially attributed to degeneracy in
the primal. In addition, it is known that strong oscillations in the dual variables
play an important role. In a typical column generation process, it is frequently
observed that some dual variables pick up most of the dual price, whereas the
remaining variables have a near-zero value. The unbalanced distribution of
dual prices regularly causes the pricing problem to generate redundant columns
which will never be part of an optimal solution; an example of which is given in
(Rousseau et al., 2007).
To counter these issues, stabilization procedures have been developed in an
attempt to guide the search faster towards a global optimum. Many different
stabilization approaches exist, proximal-type (Merle et al. (1997); Amor and
Desrosiers (2006)), Bundle-type (Briant et al. (2008)), and Iterior Point
stabilization (Rousseau et al. (2007)) are the most prominent ones; detailed
discussions and comparisons of these methods can be found in (Lübbecke,
2010; Amor et al., 2009; Lübbecke and Desrosiers, 2002). In this work, we
compare two of the most popular stabilization approaches, namely Du Merle’s
3-piecewise proximal type stabilization (Merle et al., 1997), as well as Interior
Point Stabilization (Rousseau et al., 2007). In the next two subsections, we
apply both methods to the SBRP formulation. Numerical experiments are
reported in Section 2.6.

3-piecewise stabilization

In proximal-type stabilization methods, fluctuations in the dual solutions are
suppressed by limiting the Euclidean distance between consecutive dual solutions.
In general terms, the idea can be described as follows. First a good dual solution
is estimated, around which a hypercube is centered, thereby marking a trust
area in which dual points generated by the RMP must lie. Penalties are incurred
when the points fall outside the allotted trust region. Next, the stability center is
re-adjusted whenever a better estimate of the optimal dual solution is available.
Similarly, the hypercube can be resized and the penalty functions adjusted.
In this work we will focus on a specific proximal-type stabilization approach
proposed by Merle et al. (1997): 3-piecewise stabilization. To obtain a 3-
piecewise stabilized column generation formulation, we have added stabilization
variables y− and y+ to constraints (2.2), (2.3) and the objective function. The
resulting stabilized formulation becomes:

COLUMN GENERATION 27

min
∑
p∈P

δpzp −
∑
s∈S

δ−s y
−
s +

∑
s∈S

δ+
s y

+
s −

∑
v∈V

δ−v y
−
v +

∑
v∈V

δ+
v y

+
v (2.12)

s.t.
∑
p∈P

tspzp − y−s + y+
s ≥ 1 ∀s ∈ S (2.13)

∑
p∈P

rvpzp + y−v − y+
v ≤ 1 ∀v ∈ V (2.14)

L ≤
∑
p∈P

zp ≤ U (2.15)

y−i ≤ εi ∀i ∈ V ∪ S (2.16)

y+
i ≤ εi ∀i ∈ V ∪ S (2.17)

zp, y
+
i , y

−
i ≥ 0 ∀p ∈ P, i ∈ V ∪ S (2.18)

where δ+, δ−, ε are predefined positive parameters. Note that when δ+ = δ− =
ε = 0, the original LPM (Section 2.3) appears. Writing down the dual gives us:

max
∑
s∈S

(us − εst−s − εst+s)−

∑
v∈V

(wv + εvt
−
v + εvt

+
v)− Um+ Ln (2.19)

s.t.−
∑
v∈V

rvpwv +
∑
s∈S

tspus −m+ n ≤ δp ∀p ∈ P (2.20)

− us − t−s ≤ −δ−s ∀s ∈ S (2.21)

us − t+s ≤ δ+
s ∀s ∈ S (2.22)

− wv − t−v ≤ −δ−v ∀v ∈ V (2.23)

wv − t+v ≤ δ+
v ∀v ∈ V (2.24)

t+, t−, u, w ≥ 0 (2.25)

28 THE SCHOOLBUS ROUTING PROBLEM

where u, w, m, n, t+, t− are the dual variables associated with Constraints
(2.13)-(2.17).
As can be observed from the dual formulation, the addition of stabilization
parameters restricts the domains of the dual variables us, wv to δ−s ≤ us ≤ δ+

s ,
s ∈ S, resp. δ−v ≤ wv ≤ δ+

v , v ∈ V ; deviation of these intervals is penalized by
εiti, i ∈ V ∪ S in the dual objective. Note that the stabilized formulation does
not change the pricing problem (Equation 2.8). However, an optimal solution to
the stabilized LPM is only obtained if there are no more columns with negative
reduced cost, and y−i = y+

i = 0,∀i ∈ V ∪S. Several different update procedures
for δ and ε are proposed in (Merle et al., 1997; Oukil et al., 2007). However,
during our experiments, we obtained the best results with the following update
procedure. At iteration j + 1 set:

δ−s := ujs − δs ∀s ∈ S (2.26)

δ+
s := ujs + δs ∀s ∈ S (2.27)

δ−v := wjv − δv ∀v ∈ V (2.28)

δ+
v := wjv + δv ∀v ∈ V (2.29)

where ujs resp. wjv are the dual values, of variables us, wv, obtained at iteration
j. At iteration j = 0, we use the dual values obtained from equations (2.2) resp.
(2.3). Initially, we set δi = 0.5, εi = 0.1, ∀i ∈ S ∪ V . Whenever, at iteration j,
the pricing problem does not find any more negative reduced cost columns, we
update the values of δ and ε as follows:

εi := εi
2 ∀i ∈ U ∪ V (2.30)

δi :=
{

max{0.1, 1
δi
} if δ−i ≤ ujs(wjv) ≤ δ+

i

min{1, 2δi} otherwise
∀i ∈ U ∪ V (2.31)

Since ε is decreased at every update cycle, the y variables gradually dissipate.
The above update procedure yielded significantly better results than a procedure
which updates δ and ε during every column generation iteration.

Interior Point Stabilization

A major disadvantage of proximal-type stabilization methods is the extensive
number of parameters that have to be tuned. To our knowledge, there is no
consensus on how to select the initial parameters nor how to update them.
Furthermore, not every choice of parameters works well for each instance.
A different stabilization approach, which circumvents the issue of parameter
selection, is Interior Point Stabilization (IPS) (Rousseau et al., 2007). IPS
attempts to achieve a better dual value distribution by generating a dual
solution of the RMP that is an interior point of the optimal dual face rather

COLUMN GENERATION 29

than an extreme point. The latter is achieved by taking a convex combination
of several different optimal dual solutions. Experiments have shown that this
approach decreases the amount of columns needed to prove optimality. However,
the main argument against the use of IPS is that it requires the RMP to be
solved multiple times during each column generation iteration to obtain the
interior points. Nevertheless, in some occasions, better results are reported
compared to proximal approaches, e.g., in Dell’Amico et al. (2006).
Let P ∗ be the set of columns for which zp > 0, i.e., a subset of columns that are
in the basis. Furthermore, let V ∗ and S∗ be the sets of students resp. stops for
which constraints (2.3) resp. (2.2) are not tight. By complementary slackness
conditions, the optimal face of the dual polyhedron (D∗) corresponding to
Equations (2.1)-(2.5) is given by the following constraints (Rousseau et al.,
2007):

∑
s∈S

tspus −
∑
v∈V

rvpwv −m+ n ≤ δp ∀p ∈ P\P ∗ (2.32)

∑
s∈S

tspus −
∑
v∈V

rvpwv −m+ n = δp ∀p ∈ P ∗ (2.33)

us = 0 ∀s ∈ S∗ (2.34)

us ≥ 0 ∀s ∈ S\S∗ (2.35)

wv = 0 ∀v ∈ V ∗ (2.36)

wv ≥ 0 ∀v ∈ V \V ∗ (2.37)

m = 0 if Eq. (2.4) is tight (2.38)

m ≥ 0 otherwise (2.39)

n = 0 if Eq. (2.5) is tight (2.40)

n ≥ 0 otherwise (2.41)

An extreme point of this polyhedron can be obtained by using an arbitrary
objective function:

max
∑
s∈S

µsus −
∑
v∈V

µvwv − Um+ Ln (2.42)

Here, the vector µ is randomly generated with each term uniformly chosen from
the interval [0, 1]. Let Dµ denote the complete LP (Eq (2.32))-(2.42)) . The

30 THE SCHOOLBUS ROUTING PROBLEM

dual of Dµ, Pµ, becomes:

min
∑
p∈P

δpzp (2.43)

s.t.
∑
p∈P

rvpzp ≤ µv ∀v ∈ V \V ∗ (2.44)

∑
p∈P

tspzp ≥ µs ∀s ∈ S\S∗ (2.45)

L ≤
∑
p∈P

zp ≤ U (2.46)

zp ≥ 0 ∀p ∈ P\P ∗ (2.47)

zp ∈ R ∀p ∈ P ∗ (2.48)

When solving Pµ for different µ, several extreme points are obtained. To obtain
distant points, when we solve Pµ we also solve P−µ.
Experiments revealed that for many choices of µ, Pµ is infeasible, implying
that Dµ is unbounded. The latter can be attributed to Equation (2.44); when
comparing to Equation (2.3) in the original formulation, Equation (2.44) is
stronger when µv < 1. Fixing µv = 1 ∀v ∈ V resolved the issue while still
generating sufficiently distinct extreme points. We would like to point out that
whenever Dµ is unbounded, it would be possible to generate useful points by
taking any feasible extreme point and determining the recession direction. The
result is a ray which can in turn be used to compute an interior point of D∗.

2.4.3 Column Pool Manager

During each iteration, the pricing problem returns one or more columns, thereby
increasing the size of the master problem. When the total number of columns
in the RMP becomes too large, evaluating the master problem becomes a time
consuming process. A Column Pool Manager (CPM) is used to reduce the
number of ‘active’ columns in the RMP (see Barnhart et al. (1998)).
The CPM associates a timer with each column in the master problem. Every
CG iteration, the timers are increased by one. The timer of a column p ∈ P
is set to zero when the column is part of the basis, i.e., when a non-zero value
is associated with zp. Once the number of active columns exceeds a certain
threshold (2000 in our implementation), the patterns unused the longest are

BRANCH AND PRICE 31

removed from the master problem and stored in a pool. Each iteration, before
the pricing problem is invoked, the pool is queried to determine whether certain
columns need to be moved back into the master problem. The latter is necessary
to prevent invoking an expensive pricing problem, which could yield the same
columns. When the lookup procedure returns columns, the pricing problem is
skipped. Note that the initial columns are never removed from the active set of
columns because they ensure feasibility which could otherwise not be assured
in a stabilized master problem.
To keep the pool size reasonable, similarly to the active columns, a timer is
associated with the columns in the pool. Once the size of the pool exceeds 3000
columns, the oldest columns are permanently deleted.
In practice CPM is a powerful mechanism to limit the number of active columns.
Obviously, it is desirable to choose the number of allowed columns in the active
set as low as possible. However, when this number is set too low, patterns
are frequently swapped in and out of the pool. When a column re-enters the
active set via a lookup operation, the pricing problem is skipped and hence
no new columns are generated. This reduces the amount of fresh information
introduced to the master problem. As a consequence, when too many lookups
are performed, the convergence of the column generation algorithm stalls. To
counter this swapping behavior, the CPM keeps track of the number of successful
lookups in a given time window. When this number exceeds a threshold, the
number of allowed active columns is increased.

2.5 Branch and Price

Since the integrality constraints of the MP are relaxed in the LPM, it is
possible that the optimal solution to the LPM is fractional. A branch-and-price
framework is needed to obtain integer solutions. In this section, the necessary
branching rules are described, as well as bounds used to prune parts of the
branch tree.

2.5.1 Branching rules

Our branching strategy is based on the following lemma:

Lemma 1. Suppose that z = {z1, z2, ..., zk} is a feasible solution to LPM
(Section 2.3), is fractional, and has cost c(z). Then, either an integral solution
exists with cost c(z), or there exists an edge e ∈ V × V such that:

0 <
∑

p∈P :e∈p
zp < 1

32 THE SCHOOLBUS ROUTING PROBLEM

Proof. We will show that if
∑
p∈P :e∈p zp ∈ {0, 1} for each edge e ∈ V × V , then

an integral solution with cost c(z) exists, thereby proving the lemma. Recall
that a bus schedule p ∈ P specifies a set of stops, as well as, for each of these
stops, a set of students. Consider two schedules i and j that have a positive
value in our current solution (i.e., 0 < zi, zj < 1), and that both have an edge
in common (such a pair of schedules must exist, otherwise

∑
p∈P :e∈p zp ∈ {0, 1}

cannot hold for each edge e).
Consider the set of stops in schedule i (say stop set Si) and the set of stops
in schedule j (say stop-set Sj). Suppose Si and Sj do not coincide, i.e.,
suppose Si 6= Sj . Then stops t, u, v, w ∈ V exist s.t. (t, u) is a route segment
of both schedule i, j, (u, v) is a route segment of schedule i, and (u,w) is
a route segment of schedule j. Recall that we assumed that for each edge
e ∈ V × V ,

∑
p∈P :e∈p zp ∈ {0, 1} holds. Hence, for each route segment e ∈

{(t, u), (u, v), (u,w)} we must have that
∑
p∈P :e∈p zp = 1. That however is in

violation with constraint (2.3) for node u ∈ V . It follows that the set of stops
visited by schedule i and schedule j coincide. This implies that the fractional
solution z = {z1, z2, ..., zk} consists of schedules whose stop-sets are either
identical or disjoint. In other words, we can identify a partition of {1, . . . , k}
into α subsets such that subset Kj ⊆ {1, . . . , k} contains schedules with an
identical stop-set, j = 1, . . . , α. Now, define for each s ∈ S, j = 1, . . . , α the
presence of student s in subset Kj as:∑

l∈Kj
l contains s

zl = βjs

Since z is a feasible solution to LPM , and in particular satisfies Constraint
(2.2), we know that the βjs satisfy:

α∑
j=1

βjs = 1 ∀s ∈ S (2.49)

∑
s∈S

βjs ≤ Q ∀j = 1, . . . , α (2.50)

Due to integrality of Q, it is well-known that an integral solution to this system
must exist, thereby ensuring that a student is either present completely in some
subset Kj , or not at all. The existence of an integral solution z follows with
cost c(z).

In the following we describe the two branching rules that we use. Branching rules
are used to cut off the current fractional solution, and to partition the remaining
solution space Zu into two subsets. After a finite number of branchings, either

BRANCH AND PRICE 33

an optimal integral solution is obtained, or Zu is exhausted, proving that no
feasible integral solution exists. Notice that the above lemma guarantees that
the presence of a fractional solution either gives us a way to find an integral
solution, or we can identify a fractional edge on which we can branch. The
latter observation is used for the second branching rule described below.
Given a fractional solution z = {z1, z2, ..., zk}, where zp, p = 1, . . . , k is the
variable associated with bus schedule p ∈ P . If b =

∑
p∈P zp is fractional,

we can branch on the number of buses b, thereby creating two branches: one
where the number of buses used is at least dbe and one with at most bbc buses.
Implementing this rule is straightforward as it simply amounts to updating U
and L. Furthermore, all columns generated at the parent node can be reused at
the child nodes.
The first branching rule is not sufficient to guarantee an integral solution.
Therefore, as a second branching rule, we branch on an edge: two stops are
visited consecutively in a single route or not. Enforcing that stop vi ∈ V is not
reachable from vj ∈ V and vice versa is achieved by removing the edge (vi, vj)
from the underlying graph. Ensuring that the two stops occur consecutively in
a route requires some more effort. To accomplish this, we choose to modify the
pricing problems. In case of the heuristic pricing method, the branching rules
are easily accommodated for in the neighborhood definitions. Similarly, in the
labeling algorithm, a route cannot be extended if the resulting route violates
the branching constraints.
Strictly speaking, the second branching rule renders the first rule redundant.
However, computational experiments revealed that the use of the first branching
rule has a positive effect on the size of the tree.
In contrast to branching on the number of buses, when branching on an edge,
it is not possible to reuse all columns from the parent node. For each column
generated in the parent node, one needs to check whether the column is in
accordance with the newly created branching rule. Depending on the branching
rule, the column can either be modified to meet the new branching constraints,
or has to be removed altogether.
In our implementation, the branching rules are always employed in the order
of description. When the branching framework branches on an edge, the most
uncertain edge is selected, i.e., argmin

e∈E
(|
∑
p:e∈p zp − 0.5|). In case of ties, the

edge that occurs in most patterns is used. For alternative, more sophisticated
approaches to select a branching candidate, e.g., strong branching or branch
decisions based on pseudo-costs, we refer the interested reader to the works of
Martin (1999).
A final aspect of interest is the order in which branches are investigated. The
branch-and-price tree is explored in a depth-first-search (DFS) manner, always
starting with the most constrained branch, e.g., when branching on the number
of buses, the tightest bound is expanded first. In case of the remaining two

34 THE SCHOOLBUS ROUTING PROBLEM

branching rules, the algorithm always starts by investigating the branch which
enforces the use of an edge (vertex). The choice for DFS is based on the
observation by Martin (1999) that feasible solutions tend to lie deep in the
branch tree. Furthermore, DFS based search strategies tend to use significantly
less memory than alternative approaches such as for example breadth-first-
search.

2.5.2 Pattern initialization

At each node of the branch-and-price tree, the master problem has to be
initialized with a feasible set of columns. Alternatively, when such a set does not
exist, one needs to prove infeasibility of the master problem. The root node can
be straightforwardly initialized by any feasible solution to the SBRP, but finding
an initial feasible solution for any of its siblings tends to be difficult. Moreover,
proving that such a solution does not exist is a cumbersome task. Hence it
would be beneficial when the master problem itself could be used to prove
nonexistence of a feasible solution. With this goal in mind, artificial columns,
which together meet all the constraints of the master problem (Constraints
(2.3)-(2.6)), are introduced. Each artificial column has a cost strictly larger than
the cost of the longest feasible route; hence, the master problem favors cheaper
non-artificial columns over the artificial ones. When the column generation
procedure terminates, and the resulting solution still contains artificial columns,
one can indeed conclude that no feasible solution exists.
To generate the artificial columns, first L stops are selected which are used to
generate simple school-stop-school paths (recall that L is the lower bound on
the required number of buses). Next, each student is assigned to one of those
paths, independent of whether the student can reach the path, as the latter is
not imposed by any of the constraints in the master problem. Similarly, the bus
capacity requirements can be ignored. Finally, a large cost is assigned to the
artificial patterns. In our implementation, it usually only takes a few iterations
before the artificial columns leave the basis of the RMP.

2.5.3 Bounds

The efficiency of a branch-and-price framework is determined by two factors:
the size of the tree and the processing time required by individual nodes. As
discussed in Section 2.4.2, the processing time of a node is strongly affected
by the tailing-off effect, which, in a Branch and Price framework, could occur
at every node. Consequently, to speed up the processing times and to reduce
the size of the search tree, bounds are used. Let ZMP denote the value of

BRANCH AND PRICE 35

the optimal value of the master problem (Equations (2.1)-(2.6)) and UB an
upper bound on ZMP . Further, for some node u in the tree, let ZuLMP denote
the optimal solution of the relaxed master problem at node u, LB1u a lower
bound on ZuLMP , and ZuRMP the solution to the restricted master problem at
node u at any given iteration. By definition, the following relations must hold:
UB ≥ ZMP and ZuRMP ≥ ZuLMP ≥ LB1u. Computations at a node u can be
terminated as soon as the gap between the lower bound at node u and the
upper bound is closed, i.e., LB1u = UB, independent of whether there still
exist columns with negative reduced cost. Additionally, a node is pruned when
its lower bound exceeds the upper bound UB. Consequently, the availability of
strong bounds has a significant impact on the efficiency of our framework.
Any feasible integral solution to the master problem discovered at some node
u is an acceptable upper bound on ZMP . For SBRP, an upper bound UB is
readily available at the root node because it is initialized with a feasible solution.
In a branch-and-price tree, the root node is by definition the least constrained;
each subsequent branching will add extra constraints to the model. Hence,
the optimal objective value of a parent node is always lower or equal to the
objective of any of its siblings (in case of minimization problems) and hence
the optimal objective value of a node serves as a lower bound to its siblings.
The lower bound inherited from a parent serves as an initial lower bound for its
siblings. This lower bound can be tightened during the processing of the node
using the following equation (Lasdon (1970)):

LB1u = ZuRMP + Uq∗ (2.51)

Here, q∗ is the optimal solution to the pricing problem as defined in Section 2.4
and U the upper bound on the number of buses (Table 2.1).

A second, stronger lower bound LB2u can be deduced via Langrangian
Relaxation as demonstrated by Vanderbeck (1994). Given the original master
problem LPM as presented in Section 2.4, we can relax complicating constraints
(2.2), and (2.3) using the Lagrangian multipliers us and wv respectively, and

36 THE SCHOOLBUS ROUTING PROBLEM

drop the integrality constraints. The resulting problem becomes:

ZuLMP = min
∑
p∈P

δpzp +
∑
s∈S

us(1−
∑
p∈P

tspzp)−
∑
v∈V

wv(1−
∑
p∈P

rvpzp)

(2.52)

s.t. L ≤
∑
p∈P

zp ≤ U

=
∑
s∈S

us −
∑
v∈V

wv +min
∑
p∈P

[δp −
∑
s∈S

tspus +
∑
v∈V

rvpwv]zp (2.53)

s.t. L ≤
∑
p∈P

zp ≤ U

≥ ZuRMP + Um− Ln+min
∑
p∈P

[qp −m+ n]zp (2.54)

s.t. L ≤
∑
p∈P

zp ≤ U

≥ ZuRMP + Um− Ln+min{L(q∗ −m+ n), U(q∗ −m+ n)} (2.55)

= ZuRMP + Uq∗ + (U − L)n ≡ LB2u (2.56)

Equation (2.54) follows from the Weak Duality Theorem and the fact that
optimal Langrangian multipliers equal the dual variables of the Dual problem
(Wolsey and Nemhauser, 1988).
When compared, the second lower bound LB2u (Equation (2.56)) is stronger
than the first bound LB1u because U − L ≥ 0 and n ≥ 0.

For both bounds, it holds that the stronger the bounds L, U on the number of
buses are, the tighter the lower bound will be. The latter also motivates the use
of a branching rule that branches on the number of buses. When solving LPM
(Section 2.4), ZuRMP decreases monotonically towards its optimal value ZuLMP .
The lower bound LB2u also converges towards ZuLMP but not monotonically as
q∗ does not change monotonically at each successive iteration. As a consequence,
the computed lower bound at the latest iteration might be lower (less tight)
than a lower bound computed at an earlier iteration. It is therefore important
to store the tightest lower bound.
A clear downside to calculating the lower bounds is the need for the optimal
value of the pricing problem q∗. As elaborated in Section 2.4.1, the pricing
problem is preferably solved by a fast (local search) heuristic, and not by the
more expensive exact algorithm. The latter is worsened by the fact that one

BRANCH AND PRICE 37

might need to compute the lower bound at several iterations to obtain a tight
bound on ZuLMP . Vanderbeck (1994) points out that instead of the optimal
value of the pricing problem, also a lower bound could be used, but this usually
leads to weaker bounds.

2.5.4 Branch and Price Implementation

This section briefly discusses the course of the branch-and-price algorithm.
At each node of the branch-and-price tree, a master problem is solved. The
lower bound on the node is updated whenever the pricing problem is solved to
optimality, which we enforce at least once every 100 iterations (Section 2.4.2).
A node is pruned whenever the lower bound exceeds the upper bound. Once
the node’s master problem is solved to optimality, a branching decision is made.
Three possible scenarios exist:

1. The solution is fractional (and feasible). A branch is created.

2. The solution is an integral solution. The upper bound on the global
optimum is updated when possible.

3. The solution contains an artificial column. The solution is infeasible and
the node is pruned.

As discussed in Section 2.4.2, the occurrence of the tailing-off effect has a large
impact on the overall convergence speed, especially if this effect occurs at every
node of the branch-and-price tree. In an attempt to counter this behavior,
tailing-off is detected by measuring the relative difference (improvement) in
the objective value of the master problem over a number of iterations. If
the measured difference is less than a constant (0.1) during 20 iterations,
we conclude that tailing-off occurs. Then a lower bound on the solution is
computed and a branching decision is made. Note however that if the solution is
integral or contains an artificial column, we cannot straightforwardly terminate
computations. In such a case we store the state of the algorithm, including
all the generated columns. Solving the node to optimality is then postponed
until all remaining nodes have been evaluated. The advantage of this approach
is that when a new (better) integral solution is discovered in the meantime,
it might be possible to prune the node based on the improved bounds, which
potentially saves time.
Finally, when a new incumbent optimal solution is discovered, all nodes are
pruned, and a new branch-and-price tree is grown starting from the latter
solution and the columns already generated for this node. The philosophy
behind this pruning decision is again based on the assumption that a faster

38 THE SCHOOLBUS ROUTING PROBLEM

converge of a branch-and-price algorithm is achieved with better initial solutions.
In particular, this approach works well when the regular bound-based pruning
is ineffective due to a relatively large gap between the optimal solutions to the
MP and LPM respectively.

2.6 Computational Experiments

One aspect of instances of SBRP is that the number of students is typically
much larger than the number of stops. This feature is not present in instances of
the MV-TPP that have been used for computational testing (see Riera-Ledesma
and Salazar-González (2012)); therefore, we used instances from Schittekat et al.
(2013), and we generated new instances to focus on this property.
Computational experiments are conducted on two data sets. The first data set
(Data Set I) contains the instances 1-95 from the data set used in Schittekat
et al. (2013) 1 which have previously been used by Schittekat et al. (2013). The
easiest instance has 5 stops and 25 students, whereas the hardest instances have
40 stops and 800 students. Each instance describes the distances between the
stops, the maximum bus capacity and the maximum walking distance. The set
of reachable stops for each student follows from its location and the allowed
walking distance; the latter distance controls the average number of stops a
student is able to reach. Routing occurs in the Euclidean plane. The second,
newly generated data set (Data Set II) contains 34 instances. The problem
sizes in this class range from 20-35 stops, and up to a maximum of 450 students.
These instances are generated randomly as follows. For a given number of stops,
a complete graph is created with distances on the edges uniformly selected
from the interval [1, 21]. Similarly, the stops a student can reach are randomly
selected such that the average number of reachable stops equals a predefined
ratio. Notice that the distances in this class may violate the triangle inequality.
The exact instance characteristics for both sets are summarized in Tables 2.2
(page 43), 2.3 (page 46): the instance ID (ID), the number of stops (stop),
number of students (stud), bus capacity (cap) and the average number of stops
in the vicinity of a student (v/s), i.e.,

∑
s
|Vs|
|S| .

Per instance, we performed a number of experiments, whose results are reported
in Tables 2.2, 2.3 and are compared against the results published in Schittekat
et al. (2013):

• LBold: The best bound published in Schittekat et al. (2013).
1The instances are available online at http://antor.ua.ac.be/schoolbus-routing

COMPUTATIONAL EXPERIMENTS 39

• LBnew: The lower bound on an optimal solution obtained while solving
the branch and price tree. Bold face entries indicate an improvement
compared to LBold.

• MH: The best solution obtained by the metaheuristic as published in
Schittekat et al. (2013).

• B&P: The branch-and-price solution. This column reports the best integer
solutions which have been found within a time limit of 1 hour (3600000ms).
Bold face entries indicate an improvement compared to MH.

• gap: The gap between B&P and LBnew, computed as: 100B&P−LBnew
B&P .

• nodes: Number of nodes explored in the branch and price tree.

• t(ms): Total computation time in ms.

• tpricing(ms): Amount of time spent solving pricing problems in ms.

For the majority of instances, our branch-and-price algorithm is able to find
integer solutions, many of which have been proven to be optimal. Some of the
largest instances we solved to optimality contain 40 stops and 800 students.
Typically, the bounds computed are very strong, i.e., the average gap is less
than 1%. These bounds are much stronger than the bounds obtained by solving
the LP relaxation of the SBRP MIP model reported in (Schittekat et al., 2013).
Instances with a high v/s ratio are usually solved faster compared to instances
with a low v/s ratio. Solutions for these instances often exhibit routes with
a small number of stops, resulting in faster pricing problems. Furthermore,
the bounds for these instances are usually very strong. While comparing the
effects of the number of stops and students in the instances, we noticed that
instances with a large number of stops (and limited number of students) are
significantly harder to solve than instances with a limited number of stops and
a larger number of students; e.g., doubling the number of stops has much more
impact on the runtime than doubling the number of students.
When comparing to Schittekat et al. (2013), 26 of the instances had their bounds
improved, and better solutions were discovered for 9 instances. In addition,
note that in Schittekat et al. (2013), the exact methods to compute bounds
and optimal integer solutions were allotted a runtime of 2 hours, whereas in
this work the runtime is limited to one hour. Using a traditional MIP model in
Schittekat et al. (2013), 43 instances were solved to optimality. When comparing
their heuristic solutions to the lower bound they computed, 3 more instances
were solved to optimality, resulting in a total of 46 instances. Using our branch
and price approach, a total of 68 instances are solved to optimality.
Although no solutions for Data Set II (Table 2.2) were published in Schittekat

40 THE SCHOOLBUS ROUTING PROBLEM

et al. (2013), we were able to use their code to obtain heuristic solutions for
these instances. Using the branch and price approach, better solutions were
discovered for 9 instances. Optimality is attested for 25 of the instances. We
again observed that instances with shorter routes are generally solved faster. In
particular, if we reduce the vehicle capacity, we automatically obtain shorter
routes and, hence, better run times. The latter is indeed confirmed when we
compare the instances with vehicle capacities of 15 against instances with larger
vehicle capacities.
In summary, the exact branch and price approach presented in this chapter is
capable of producing strong lower and upper bounds for several SBRP instances.
In fact, a significant number of instances previously published in literature had
their bounds improved. When time is of the essence, and lower bounds are not
necessarily of interest, e.g. in real-time scheduling applications, the metaheuristic
presented in Schittekat et al. (2013) should however be preferred over the exact
branch and price approach. Even with a limited amount of computational time,
the metaheuristic is capable of obtaining strong, feasible solutions. Furthermore,
for instances of over 40 stops, the branch and price approach was unable to
improve upon the solutions returned by the metaheuristic.
As described in Section 2.4.2, degeneracy in column generation significantly
affects the time required to solve a branch-and-price node. To test the effects of
the stabilization mechanisms, we solved the root nodes of instances 11-51 (Data
Set I) to optimality, while measuring the required number of iterations as well
as computation times. Figure 2.1 (page 48) compares the different stabilization
approaches: IPS stabilization with resp. 20 and 50 extreme points (IPS20,
IPS50), Du Merle’s proximal type stabilization (PTS), or no stabilization at all
(No Stab). Only the PTS approach was capable of solving all instances within
a time limit of 1 hour. Both PTS and IPS reduced the number of iterations
required to solve the master problem. IPS20 needed 46% of the number of
iterations required when no stabilization was used, while this number was
43% for IPS50, and 45% for PTS. However, looking from a time perspective,
IPS20 required on average 314% of the computation time required when no
stabilization was used, IPS50 needed 710%, whereas only 22% was required for
PTS. Although IPS needs significantly more time to solve the instances, we
must note that instance 50 could only be solved if either IPS or PTS was used.
Concluding, IPS and PTS both reduce the number of iterations required, but,
from a time perspective, PTS significantly outperforms IPS.

COMPUTATIONAL EXPERIMENTS 41

Ta
bl
e
2.
2:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
I

ID
st
op

st
ud

ca
p

v/
s

L
B
o
ld

L
B
n
e
w

M
H

B
&
P

ga
p

no
de
s

t(
m

s)
t p
r
ic
in
g
(m

s)
1

5
25

25
1

14
1.
01

14
1.
01

14
1.
01

14
1.
01

0
1

17
78

13
6

2
5

25
50

1
16
1.
62

16
1.
62

16
1.
62

16
1.
62

0
2

10
4

47
3

5
25

25
1.
52

18
2.
14

18
2.
14

18
2.
14

18
2.
14

0
3

19
5

10
6

4
5

25
50

1
19
5.
8

19
5.
8

19
5.
80

19
5.
8

0
4

86
34

5
5

25
25

1.
88

11
1.
65

11
1.
65

11
1.
65

11
1.
65

0
5

15
6

72
6

5
25

50
2.
4

10
3.
18

10
3.
18

10
3.
18

10
3.
18

0
6

97
38

7
5

25
25

4.
88

7.
63

7.
63

7.
63

7.
63

0
7

41
5

8
5

25
50

4.
56

25
.6
4

25
.6
4

25
.6
4

25
.6
4

0
8

88
27

9
5

50
25

1
28
1.
49

28
6.

68
28
6.
68

28
6.
68

0
11

18
3

26
10

5
50

50
1.
4

19
7.
2

19
7.
2

19
7.
20

19
7.
2

0
12

99
28

11
5

50
25

1.
46

18
1.
02

19
3.

55
19
3.
55

19
3.
55

0
29

30
35

49
3

12
5

50
50

1.
4

21
5.
86

21
5.
86

21
5.
86

21
5.
86

0
30

72
21

13
5

50
25

1.
96

13
0.
53

13
0.
53

13
0.
53

13
0.
53

0
31

24
5

61
14

5
50

50
2.
74

96
.2
6

96
.2
6

96
.2
6

96
.2
6

0
32

11
0

40
15

5
50

25
4.
8

12
.8
9

12
.8
9

12
.8
9

12
.8
9

0
33

26
0

65
16

5
50

50
4.
42

30
.2
4

30
.2
4

30
.2
4

30
.2
4

0
34

14
5

52
17

5
10

0
25

1
36
0.
35

36
0.
35

36
0.
35

36
0.
35

0
35

94
1

18
5

10
0

50
1

29
0.
67

30
4.

23
30
4.
23

30
4.
23

0
38

11
1

12
19

5
10

0
25

1.
55

25
5.
93

29
4.

21
29
4.
21

29
4.
21

0
41

18
69

15
1

20
5

10
0

50
1.
37

22
9.
41

22
9.
41

22
9.
41

22
9.
41

0
43

16
27

22
6

21
5

10
0

25
2.
8

13
4.
95

13
4.
95

13
4.
95

13
4.
95

0
44

53
5

84
22

5
10

0
50

1.
84

13
9.
87

14
4.

41
14
4.
41

14
4.
41

0
47

12
97
4

95
8

23
5

10
0

25
4.
77

58
.9
5

58
.9
5

58
.9
5

58
.9
5

0
48

13
88

21
5

24
5

10
0

50
4.
58

39
.4
4

39
.4
4

39
.4
4

39
.4
4

0
49

79
1

28
7

25
10

50
25

1.
22

24
2.
85

24
2.
85

24
2.
85

24
2.
85

0
50

47
1

29
7

26
10

50
50

1.
2

28
2.
12

28
2.
12

28
2.
12

28
2.
12

0
51

32
3

17
8

27
10

50
25

1.
6

24
4.
54

24
4.
54

24
4.
54

24
4.
54

0
52

80
9

45
0

28
10

50
50

1.
26

28
8.
33

28
8.
33

28
8.
33

28
8.
33

0
53

63
2

44
4

29
10

50
25

3.
96

10
8.
95

10
8.
98

10
8.
98

10
8.
98

0
57

56
80

22
79

30
10

50
50

2.
86

15
7.
48

15
7.
48

15
7.
48

15
7.
48

0
58

40
7

31
0

31
10

50
25

9.
2

32
.2
5

32
.2
5

32
.2
5

32
.2
5

0
59

43
0

29
2

32
10

50
50

8.
96

36
.6
6

36
.6
6

36
.6
6

36
.6
6

0
60

26
0

18
3

42 THE SCHOOLBUS ROUTING PROBLEM

Ta
bl
e
2.
2:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
I

ID
st
op

st
ud

ca
p

v/
s

L
B
o
ld

L
B
n
e
w

M
H

B
&
P

ga
p

no
de
s

t(
m

s)
t p
r
ic
in
g
(m

s)
33

10
10

0
25

1.
18

40
0.
54

40
3.

18
40
3.
18

40
3.
18

0
65

83
4

24
6

34
10

10
0

50
1.
29

29
4.
11

29
6.

53
29
6.
53

29
6.
53

0
68

53
98

22
44

35
10

10
0

25
1.
25

36
9.
62

38
8.

87
38
8.
87

38
8.
87

0
19
0

20
57

8
57
04

36
10

10
0

50
1.
33

29
4.
8

29
4.
8

29
4.
80

29
4.
8

0
19
2

30
30

16
40

37
10

10
0

25
3.
98

17
8.
28

17
8.
28

17
8.
28

17
8.
28

0
19
4

29
68
1

50
27

38
10

10
0

50
3.
26

17
5.
41

17
5.

96
17
5.
96

17
5.
96

0
19
9

13
10
52

30
25
5

39
10

10
0

25
9.
18

57
.5

57
.5

57
.5
0

57
.5

0
20
0

18
19

10
69

40
10

10
0

50
9.
22

31
.8
9

31
.8
9

31
.8
9

31
.8
9

0
20
1

15
22

94
1

41
10

20
0

25
1

73
5.
27

73
5.
27

73
5.
27

73
5.
27

0
20
2

21
1

42
10

20
0

50
1

50
6.
06

50
6.
06

51
2.
16

50
6.

06
0

20
4

73
14

43
10

20
0

25
1.
85

46
3.
78

51
3

51
3.
00

51
3

0
26
1

12
46

93
97
16

44
10

20
0

50
1.
28

45
8.
17

47
5.

21
47
5.
21

47
5.
21

0
37
1

69
69

2
10
89
1

45
10

20
0

25
3.
53

33
1.
49

34
7.

29
34
7.
29

34
7.
29

0
37
4

30
21

5
40
61

46
10

20
0

50
3.
66

19
4.
66

19
4.
66

21
7.
46

21
7.
46

11
.7
1

13
6

36
00
00
0

15
57
77

47
10

20
0

25
9.
22

10
2.
93

10
2.
93

10
2.
93

10
2.
93

0
13
7

58
90

22
62

48
10

20
0

50
8.
93

55
.0
5

55
.0
5

55
.0
5

55
.0
5

0
13
8

82
01

36
94

49
20

10
0

25
1.
15

50
7.
81

50
7.
81

52
0.
24

50
7.

81
0

14
0

60
02

55
44

50
20

10
0

50
1.
17

40
6.
65

40
6.
65

42
0.
64

40
6.

65
0

14
2

29
20
37
1

29
18
92
6

51
20

10
0

25
2.
08

40
4.
78

41
9.

17
42
2.
21

41
9.

17
0

21
1

70
86

42
47
85
78

52
20

10
0

50
1.
73

35
6.
52

35
6.
52

36
0.
86

36
0.
86

1.
22

45
6

36
00
00
0

35
60
53
3

53
20

10
0

25
5.
09

24
5.
17

24
5.
17

24
5.
17

24
5.
17

0
45
8

71
45
9

37
36
0

54
20

10
0

50
6.
13

18
1.
3

18
1.
3

18
5.
06

18
5.
06

2.
08

46
2

36
00

00
0

84
80
80

55
20

10
0

25
17
.3
6

52
.5
2

52
.5
2

52
.5
2

52
.5
2

0
46
3

16
49

4
13
82
5

56
20

10
0

50
18
.4
6

19
.0
5

19
.0
5

19
.0
5

19
.0
5

0
46
4

26
66

23
34

57
20

20
0

25
1.
2

85
1.
98

87
5.

46
90
3.
84

87
5.

46
0

73
4

15
64
36
5

99
57
5

58
20

20
0

50
1.
15

47
3.
89

47
6.

05
48
5.
65

47
6.

05
0

76
6

47
21

58
31
74
36

59
20

20
0

25
1.
76

58
9.
89

59
7.

99
61
6.
93

60
6.

8
1.
47

61
5

36
00
00
0

57
72
59

60
20

20
0

50
1.
78

45
1.
09

45
1.
09

46
2.
31

46
2.
31

2.
49

80
9

36
00
00
0

81
90
42

61
20

20
0

25
5.
38

36
6.
1

36
6.
1

37
3.
21

37
3.
21

1.
94

10
62

36
00

00
0

43
74
84

62
20

20
0

50
5.
53

24
6.
49

24
6.
49

25
0.
75

25
0.
75

1.
73

13
89

36
00
00
0

62
53
20

63
20

20
0

25
18

93
.0
1

93
.0
1

93
.0
1

93
.0
1

0
13
91

62
58

6
42
40
5

64
20

20
0

50
17
.9
7

45
.4

45
.4

45
.4
0

45
.4

0
13
92

28
62

3
18
38
4

COMPUTATIONAL EXPERIMENTS 43

Ta
bl
e
2.
2:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
I

ID
st
op

st
ud

ca
p

v/
s

L
B
o
ld

L
B
n
e
w

M
H

B
&
P

ga
p

no
de
s

t(
m

s)
t p
r
ic
in
g
(m

s)
65

20
40

0
25

1.
46

12
47
.6
5

13
23

.3
5

13
23
.3
5

13
23
.3
5

0
15
35

14
46

74
4

76
93
4

66
20

40
0

50
1.
22

70
9.
87

72
0.

83
73
3.
54

72
0.

83
0

16
63

10
58
95
7

16
50
84

67
20

40
0

25
2.
48

91
1.
06

91
1.
06

97
5.
12

97
5.
12

7.
03

12
48

36
00
00
0

13
46
63

68
20

40
0

50
1.
89

59
9.
12

59
9.
12

61
4.
67

61
4.
67

2.
6

18
67

36
00
00
0

26
01
49

69
20

40
0

25
4.
58

75
6.
04

76
3.

76
76
3.
76

76
3.
76

0
19
03

31
11
86
1

13
67
52

70
20

40
0

50
7.
45

29
8.
05

29
8.
05

29
8.
47

29
8.
47

0.
14

19
15

36
00
00
0

38
46
88

71
20

40
0

25
18
.1
5

23
9.
58

23
9.
58

23
9.
58

23
9.
58

0
19
16

92
35
6

41
73
4

72
20

40
0

50
18
.1
3

84
.4
9

84
.4
9

84
.4
9

84
.4
9

0
19
17

19
02
02

62
40
1

73
40

20
0

25
1.
4

78
7.
14

78
7.
14

83
1.
94

83
1.
94

5.
69

19
36

36
00
00
0

35
27
19
5

74
40

20
0

50
1.
38

54
9.

64
59
3.
35

59
3.
35

7.
95

14
63

36
00

00
0

35
74
73
2

75
40

20
0

25
2.
57

69
6.
04

69
6.
04

72
8.
44

72
8.
44

4.
65

15
83

36
00
00
0

92
16
13

76
40

20
0

50
2.
7

47
4.

14
48
1.
05

48
1.
05

1.
46

15
84

36
00

00
0

35
43
28
3

77
40

20
0

25
9.
57

32
8.
19

32
8.
19

33
9.
75

33
9.
75

3.
52

59
36
00

00
0

24
15
22
7

78
40

20
0

50
10
.7
2

27
3.
05

27
3.
05

27
3.
88

27
3.
88

0.
31

60
36
00

00
0

35
68
53
3

79
40

20
0

25
36
.4
2

76
.7
7

76
.7
7

76
.7
7

76
.7
7

0
20
28

13
79
32

12
99
14

80
40

20
0

50
36
.3

58
.4
6

58
.4
6

58
.4
6

58
.4
6

0
20
29

33
02
40

32
25
39

81
40

40
0

25
1.
51

13
07
.5
2

13
07
.5
2

14
07
.0
5

13
94

.2
3

6.
63

22
89

36
00

00
0

60
50
95

82
40

40
0

50
1.
3

82
0.

52
85
8.
80

85
8.
8

4.
67

20
4

36
00

00
0

35
41
20
7

83
40

40
0

25
3.
23

86
9.
38

86
9.
38

89
1.
02

89
1.
02

2.
49

23
41

36
00
00
0

67
12
59

84
40

40
0

50
2.
57

72
1.

75
75
7.
42

75
7.
42

4.
94

24
7

36
00
00
0

77
98
34

85
40

40
0

25
10
.0
2

57
5.
66

57
5.
66

58
6.
29

58
6.
29

1.
85

29
4

36
00
00
0

78
93
61

86
40

40
0

50
9.
88

39
2.

06
39
5.
95

39
5.
95

0.
99

24
00

36
00

00
0

20
33
06
3

87
40

40
0

25
35
.7
4

19
5.
33

19
5.
33

19
5.
33

19
5.
33

0
24
01

33
39
85

30
48
71

88
40

40
0

50
36
.5
9

70
.7
7

70
.7
7

70
.7
7

70
.7
7

0
24
02

44
92
42

41
58
35

89
40

80
0

25
1.
33

28
01
.0
5

28
01
.0
5

29
00
.1
4

29
00
.1
4

3.
54

16
6

36
00
00
0

46
76
58

90
40

80
0

50
1.
54

12
80
.5
1

12
80
.5
1

13
45
.7
0

13
45
.7

5.
09

25
8

36
00

00
0

70
41
29

91
40

80
0

25
2.
71

21
53
.7
6

21
53
.7
6

22
00
.5
7

22
00
.5
7

2.
17

28
6

36
00
00
0

49
44
68

92
40

80
0

50
3.
08

97
8.
88

97
8.

9
10
25
.1
6

10
25
.1
6

4.
72

17
9

36
00

00
0

43
10
57

93
40

80
0

25
9.
63

14
04
.1
6

14
04
.1
6

14
04
.1
6

14
04
.1
6

0
30
3

54
26

41
20
42
34

94
40

80
0

50
10
.9
2

61
3.
72

61
3.
72

61
6.
58

61
6.
58

0.
47

1
36
00
00
0

34
67
51
1

95
40

80
0

25
36
.1
1

39
6.

92
39
6.
92

39
6.
92

0
30
5

79
05
02

70
14
00

44 THE SCHOOLBUS ROUTING PROBLEM

COMPUTATIONAL EXPERIMENTS 45

Ta
bl
e
2.
3:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
II

ID
st
op

st
ud

ca
p

v/
s

L
B
n
e
w

M
H

B
&
P

ga
p

no
de
s

t(
m

s)
t p
r
ic
in
g
(m

s)
1

20
10
0

15
4.
02

73
73

73
0

52
0

17
30
6

13
92
5

2
20

10
0

20
4.
02

60
60

60
0

33
31
53
77

11
16
98

3
20

10
0

25
4.
02

55
55

55
0

42
84
88
2

46
63
8

4
20

10
0

15
7.
72

71
71

71
0

52
2

13
24
8

10
47
2

5
20

10
0

20
7.
72

49
49

49
0

35
34
04
9

23
61
0

6
20

10
0

25
7.
72

42
42

42
0

44
33
02
8

25
31
6

7
20

20
0

15
4.
16

23
8

23
8

23
8

0
52
3

37
58

21
33

8
20

20
0

25
4.
16

10
2

10
4

10
2

0
47

96
94
66

22
62
04

9
20

20
0

15
8.
52

22
4

22
4

22
4

0
1

11
43
3

44
87

10
20

20
0

25
8.
52

86
86

86
0

48
15
68
9

10
67
3

11
25

15
0

15
4.
13

11
5.
2

12
0

12
0

4.
17

46
4

36
00
00
0

97
48
27

12
25

15
0

25
4.
13

72
.4
7

81
74

2.
12

20
3

36
00
00
0

11
13
31
2

13
25

15
0

15
8.
13

11
1

11
5

11
1

0
46
6

16
48
44

14
88
75

14
25

15
0

25
8.
13

60
62

60
0

26
0

18
38
69
8

11
40
20
6

15
25

25
0

15
4.
14

27
7

27
7

27
7

0
46
7

12
76
8

78
18

16
25

25
0

25
4.
14

12
6.
88

13
2

13
1

3.
25

30
4

36
00
00
0

12
76
48
1

17
25

25
0

15
8.
41

27
5

27
5

27
5

0
46
8

23
22
3

18
31
1

18
25

25
0

25
8.
41

11
1

12
0

11
1

0
32
6

10
68
03
9

77
50
15

19
30

30
0

15
3.
99

32
6

32
6

32
6

0
46
9

55
44
1

38
70
9

20
30

30
0

25
3.
99

15
1.
89

17
2

15
6

2.
71

34
8

36
00
00
0

32
26
40
3

21
30

30
0

15
8.
48

31
5

31
7

31
5

0
47
3

17
51
57

13
01
20

22
30

30
0

25
8.
48

12
3

13
4

12
3

0
35
6

22
78
84
1

20
12
47
5

23
30

35
0

15
3.
91

43
9

43
9

43
9

0
47
4

19
18
5

12
40
1

24
30

35
0

25
3.
91

18
6.
14

20
0

18
8

1
40
1

36
00
00
0

17
97
27
3

25
30

35
0

15
8.
39

43
9

44
0

43
9

0
47
8

92
57
3

71
37
4

26
30

35
0

25
8.
39

16
2

16
9

16
2

0
40
4

11
54
06
3

92
46
03

27
35

40
0

15
3.
92

52
1

52
1

52
1

0
47
9

49
67
7

35
51
9

28
35

40
0

25
3.
92

23
3.
07

24
4

23
7

1.
69

42
9

36
00
00
0

22
82
49
8

29
35

40
0

15
8.
63

49
8

49
8

49
8

0
48
0

67
75
5

53
35
1

30
35

40
0

25
8.
63

20
6

21
7

20
7

0.
49

45
1

36
00
00
0

30
26
44
6

31
35

45
0

15
3.
93

61
3

61
3

61
3

0
48
1

33
45
8

17
08
0

32
35

45
0

25
3.
93

27
7.
85

29
0

28
2

1.
49

50
9

36
00
00
0

63
96
39

46 THE SCHOOLBUS ROUTING PROBLEM

Ta
bl
e
2.
3:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
II

ID
st
op

st
ud

ca
p

v/
s

L
B
n
e
w

M
H

B
&
P

ga
p

no
de
s

t(
m

s)
t p
r
ic
in
g
(m

s)
33

35
45
0

15
8.
63

60
8

60
8

60
8

0
48
2

78
74
2

51
91
4

34
35

45
0

25
8.
63

25
6.
14

26
0

25
7

0.
33

51
6

36
00
00
0

31
60
98
4

CONCLUSION 47

2.7 Conclusion

In this chapter we studied the School Bus Routing Problem, a vehicle routing
problem which encompasses selecting bus stops, assigning students to the
selected stops, and finally determining the necessary bus routes, while minimizing
the routing costs. We developed an exact algorithm for the SBRP based on a
set covering formulation. This formulation enables us to solve a large number
of the SBRP instances of the benchmark released by Schittekat et al. (2013) to
optimality. For the remaining instances, lower bounds as well as some of the
integer solutions have been improved. Also, when comparing to (Riera-Ledesma
and Salazar-González, 2013), we observe that set-partitioning formulations
solve instances with large number of students more efficiently than instances
with a large number of stops. However, when the set covering formulation is
strengthened with valid inequalities, the number of stops that can be handled
increases significantly (Riera-Ledesma and Salazar-González (2013)). Thus, one
possible extension is to incorporate the separation of valid inequalities.
In this chapter, we applied several techniques which have been reported to
increase the performance of column generation, such as: exact and heuristic
pricing algorithms, bounding procedures, a column pool manager, stabilization
techniques, and a more rigid branching approach for the branch-and-price
tree. Among these approaches, bounding procedures and stabilization cause
the largest performance improvements. Two types of stabilization have been
compared: interior point stabilization and Du Merle’s proximal type stabilization.
Although both reduce the number of required iterations considerably, the
proximal type outperforms the interior point stabilization as the latter increased
the computation time per iteration significantly.

48 THE SCHOOLBUS ROUTING PROBLEM

✵

✶✵✵

✷✵✵

✸✵✵

�
�

�
✁

�
✂

�
✹

�
✺

�
✻

�
✼

�
✽

�
✾

✁
✄

✁
�

✁
✁

✁
✂

✁
✹

✁
✺

✁
✻

✁
✼

✁
✽

✁
✾

✂
✄

✂
�

✂
✁

✂
✂

✂
✹

✂
✺

✂
✻

✂
✼

✂
✽

✂
✾

✹
✄

✹
�

✹
✁

✹
✂

✹
✹

✹
✺

✹
✻

✹
✼

✹
✽

✹
✾

✺
✄

✺
�

■☎
❡
✆✝
☎✐
♦
♥
s

✞✟✠t❛✟❝✡ ✞☛

◆☞ ❙t❛✌

✞✍❙✷✵

✞✍❙✎✵

✍❚❙

(a) Iterations

✵

✶✵✵

✷✵✵

✸✵✵

�
�

�
✁

�
✂

�
✹

�
✺

�
✻

�
✼

�
✽

�
✾

✁
✄

✁
�

✁
✁

✁
✂

✁
✹

✁
✺

✁
✻

✁
✼

✁
✽

✁
✾

✂
✄

✂
�

✂
✁

✂
✂

✂
✹

✂
✺

✂
✻

✂
✼

✂
✽

✂
✾

✹
✄

✹
�

✹
✁

✹
✂

✹
✹

✹
✺

✹
✻

✹
✼

✹
✽

✹
✾

✺
✄

✺
�

■☎
❡
✆✝
☎✐
♦
♥
s

✞✟✠t❛✟❝✡ ✞☛

◆☞ ❙t❛✌

✞✍❙✷✵

✞✍❙✎✵

✍❚❙

(b) Time

Figure 2.1: Comparison of different stabilization approaches

Chapter 3

The Concrete Delivery
Problem

Abstract

From an operational point of view, Ready-Mixed Concrete Suppliers are faced
with challenging operational problems such as the acquisition of raw materials,
scheduling of production facilities, and the transportation of concrete. This
chapter is centered around the logistical and distributional part of the operation:
the scheduling and routing of concrete, commonly known as the Concrete
Delivery Problem (CDP). The problem aims at finding efficient routes for
a fleet of (heterogeneous) vehicles, alternating between concrete production
centers and construction sites, and adhering to strict scheduling and routing
constraints. Thus far, a variety of CDPs and solution approaches have appeared
in academic research. However, variations in problem definitions and the lack
of publicly available benchmark data inhibit a mutual comparison of these
approaches. Therefore, this work presents a more fundamental version of CDP,
while preserving the main characteristics of the existing problem variations.
Both exact and heuristic algorithms for CDP are proposed. The exact solution
approaches include a Mixed Integer Programming (MIP) model and a Constraint
Programming model. Similarly, two heuristics are studied: the first heuristic
relies on an efficient best-fit scheduling procedure, whereas the second heuristic
utilizes the MIP model to improve delivery schedules locally. Computational

The content of this chapter is based on joint work with T. Wauters and G. Vanden Berghe,
see Kinable et al. (2014b).

49

50 THE CONCRETE DELIVERY PROBLEM

experiments are conducted on new, publicly-accessible, data sets; results are
compared against lower bounds on the optimal solutions.

3.1 Introduction

The Concrete Delivery Problem (CDP), a combination of a scheduling and
a routing problem, encompasses the distribution of concrete to a number of
construction sites. Each construction site i ∈ C, also referred to as customer,
requests qi tons of concrete. The concrete is transported by a non-homogeneous
set of trucks K, each capable of delivering lk, k ∈ K, tons of concrete. A time
window [ai, bi] is associated with each construction site i ∈ C, denoting the
time interval during which the concrete can be delivered. Deliveries cannot
commence before ai and should be completed before bi. Due to the hard time
windows and capacity limitations of the trucks, it is often impossible to satisfy
the demand of all customers (oversubscribed scheduling problem).
The amount of concrete requested by a single customer typically exceeds the
capacity of a single truck. Hence, multiple deliveries may be required. Deliveries
for the same customer cannot overlap in time, and have to take a maximum time
lag γ into consideration; the time between two consecutive deliveries is limited
to guarantee proper bonding between the two layers of concrete. Deliveries may
not be preempted or split amongst multiple customers. The time required to
perform a delivery is truck dependent, and will be denoted by pk, k ∈ K.
The concrete is produced at several homogeneous production sites (P) which are
located some distance away from the customers. The trucks start at a central
depot and have to travel to a production plant, after which they have to unload
their cargo at one of the construction sites. Loading the concrete and traveling
between a pickup and delivery point i ∈ P, j ∈ C takes a certain amount of
time tij . Trucks are always filled to their maximum capacity. Whenever the
total amount of concrete delivered at a construction site exceeds the customer’s
demand, the excessive amount becomes waste. A summary of the notation used
throughout the paper is provided in Table 3.1.
The objective of the problem is to maximize the number of satisfied customers,
weighted by their demand. A customer i ∈ C is satisfied if at least qi tons
of concrete have been delivered. Since a concrete distributor has only finite
capacity, it is natural that some customers cannot be serviced. Rejected
customers are supposed to relax their request or to revert to a different supplier.
Concrete distributors also have the option to temporarily increase capacity
by hiring a subcontractor. Although not considered in this work, it would
be straightforward to include services by subcontractors at higher cost in the
objective function.
The CDP bares a strong resemblance with two well-studied NP-hard problems:

RELATED RESEARCH 51

the Capacitated Vehicle Routing Problem (CVRP) with Time Windows and
Split Deliveries and the Parallel Machine Scheduling Problem (PMSP) with
Time-Windows. Although efficient exact and heuristic algorithms have been
presented in the literature for both problems individually, it is not evident
how to generalize these methods to CDP. In related works (see Section 3.2 for
details), dedicated approaches are published for several variations of the CDP.
Each variation has its own unique constraints, including constraints dealing
with different types of concrete, equipment requirements (pumps, vehicle types),
and customer demands (origin of the concrete, delivery speed). Next to the
fact that some authors conduct their experiments on confidential data, the
variations in their problem descriptions render it notoriously difficult to mutually
compare their algorithms. This work addresses a more fundamental version of
the CDP, which captures the commonalities amongst the existing variations of
the problem while dropping some of the more exotic constraints. Nevertheless,
the exact and heuristic approaches presented in this work are easily modified to
incorporate the omitted constraints. To facilitate a future comparison of CDP
implementations, we publish a large number of problem instances.
The chapter is structured as follows. First, Section 3.2 provides a detailed
overview of related research. Next, in Section 3.3, three mathematical models
for CDP are presented. The first model, based on Mixed Integer Programming
(MIP), is derived from models for the CVRP and the PMSP. The second model
extends the first model by incorporating the requirement that a vehicle may
perform multiple deliveries to the same customer. Finally, the third model,
as an alternative to the second model, is based on Constraint Programming.
Section 3.4 proposes two heuristic approaches for the CDP. The first heuristic
utilizes an efficient constructive procedure, which schedules customers one-by-
one, following a best-fit policy. A meta-heuristic controls the exact order the
customers are considered for scheduling by the constructive procedure. The
second heuristic relies on the MIP model presented in Section 3.3. Instead of
solving the entire model at once, the heuristic repeatedly fixes one part of the
schedule while re-optimizing another part. To compare the various methods
discussed in this work, Section 3.5 outlines two approaches to compute bounds
on the optimal solutions. Computational results are presented in Section 3.6.
Finally, Section 3.7 offers the conclusion.

3.2 Related Research

A number of related works involving several variations of the CDP exist in the
literature. To obtain insight in the diversity in problem specifications, as well
as in the solution approaches, we provide an extensive overview of the most
recent works in this area. Table 3.2 summarizes for each of these papers the

52 THE CONCRETE DELIVERY PROBLEM

Parameter Description
P Set of concrete production sites
C Set of construction sites, also denoted as customers. |C| = n
V V = C ∪ {0} ∪ {n+ 1}
0, n+ 1 resp. the start and end depots of the trucks.
K Set of trucks
qi Requested amount of concrete by customer i ∈ C
lk Capacity of truck k ∈ K
pk Time required to empty truck k ∈ K
ai, bi Time window during which the concrete for customer i may

be delivered.
tij Time to travel from i to j, i, j ∈ V ∪ P
γ Maximum time lag between consecutive deliveries.

Table 3.1: Parameters defining the CDP

main problem characteristics and solution approaches. The abbreviations used
in the table are explained in Table 3.8. Omitted values in Table 3.2 indicate
that a certain property is not applicable, is unknown or is not considered in
this chapter.

RELATED RESEARCH 53

Solutionmethod

TimeWindows

Start/Endlocation

Productiondepots

Loading,unloading

Fleet

Instrumentation

Deliveries

Objectives

H
er
tz

et
al
.(

20
12
)

m
sv

c
he

d
he

v,
l,s
p

u,
v s
,v
c

M
isi
r
et

al
.(

20
11
)

he
hs
,p

p
he

,s
d

he
X

s,r
,v
,l,
sp

t,w
,d

Si
lv
a
et

al
.(
20
05
)

he
hd

,p
p

ho
d

ho
l,s
p

u,
o

A
sb
ac
h
et

al
.(
20
09
)

m
,h
e

hd
,p

m
he

d
he

X
s,r

,v
,l,
sp
,ss

u,
s

Ya
n
an

d
La

i(
20
07
)

m
sd
,p

p
f

ho
s,r

,l,
sp

t,d
,o
p

Li
n
et

al
.(
20
10
)

m
hd

,sv
,p

p
ho

d
ho

s,r
,l,
sp

t,d
,u
,b
,s

N
as
o
et

al
.(
20
07
)

m
,h
e

sd
,p

p
he

,s
d

ho
s,r

,l,
sp
,ss

u,
o,
d

Sc
hm

id
et

al
.(
20
09
)

hy
,h
e

sd
p

ho
d

he
X

s,r
,l,
sp

t,d
Sc
hm

id
et

al
.(
20
10
)

m
,h
y

sd
p

ho
d

he
X

s,r
,l,
sp

t,d
T
hi
s
wo

rk
m
,c
p,
he

,h
y

hd
c

ho
f

he
s,r

,l,
sp

s

Ta
bl
e
3.
2:

Su
m
m
ar
y
of

th
e
va
rio

us
C
D
P

pr
ob

le
m
s
an

d
so
lu
tio

n
ap

pr
oa
ch
es

in
re
la
te
d
lit
er
at
ur
e.

Fo
r
no

ta
tio

n,
re
fe
r
to

Se
ct
io
n
3.
8
on

pa
ge

80
.

54 THE CONCRETE DELIVERY PROBLEM

Schmid et al. (2009) and Schmid et al. (2010) consider a concrete delivery
problem with soft time windows. In contrast to our work, their objective is
to satisfy all customers, while minimizing total tardiness. Both works also
consider orders requiring vehicles with special equipment to be present during
the entire delivery process, e.g., a pump or conveyor. Hybridized solution
approaches combining MIP models and Variable Neighborhood Search heuristics
are proposed to solve the resulting optimization problems.
Schmid et al. (2009) propose a hybrid heuristic for a CDP with soft time
windows, and obligatory deliveries. The heuristic resembles a traditional Column
Generation (CG, for details refer to e.g., Desaulniers et al. (2005)) procedure.
The columns (delivery patterns), describe feasible orderings of deliveries to
satisfy specific customers. More precisely, a pattern describes exactly which
vehicles perform deliveries for a customer, and when the deliveries should
commence. A MIP approach, comparable to the master problem (MP) in a
CG, selects a delivery pattern for each customer in such a way that the selected
patterns together form a feasible solution, thereby satisfying all routing and
scheduling constraints. Next, in contrast to a traditional CG where a pricing
problem is utilized to generate new columns for the MP, new columns are created
via a Variable Neighborhood Search (VNS) procedure which is initialized with
the solution produced by the MIP model. The VNS procedure perturbates
and re-optimizes the MIP solution until a new feasible schedule is obtained
which is different from the original MIP solution. The resulting schedule is
decomposed into delivery patterns and added to the set of existing patterns in
the MIP. Finally, the MIP model is resolved and the procedure repeats until a
termination criterion is met.
An alternative procedure to Schmid et al. (2009) has been published by Schmid
et al. (2010). A VNS heuristic, very similar to the one from Schmid et al. (2009),
is deployed to generate an initial solution. Then, the solution is inserted into a
MIP model. Instead of solving the entire MIP model at once, a large number
of variables are fixed to the values of the initial solution; only a small portion
of the variables remain unfixed. The exact variables to fix are determined
by a Very Large Neighborhood Search procedure. The MIP model is solved
repeatedly, having different decision variables fixed and unfixed, always starting
from the best incumbent solution. When compared mutually, Schmid et al.
(2010) performs slightly better than Schmid et al. (2009) on small and medium
sized instances, ranging from 27 to 60 orders.

Hertz et al. (2012) discuss CDP with a strong emphasis on routing and vehicle
constraints. In contrast to our work, scheduling and sequencing of the individual
deliveries at the customers’ side is not taken into account. Furthermore, no time
windows on deliveries for a customer are imposed. Next to an exact MIP model,
Hertz et al. (2012) propose a (heuristic) decomposition of their problem into two
MIP subproblems: an assignment and a routing problem. First, the assignment

RELATED RESEARCH 55

problem is solved, thereby assigning deliveries to vehicles such that all customers
are satisfied. Next, for each vehicle, a routing problem is solved, determining
the optimal route to perform the deliveries. To improve the solution quality,
estimations of the travel costs incurred when assigning a specific delivery to a
particular vehicle are added to the assignment problem.
Lin et al. (2010) present a MIP model, using a time-indexed notation. Some
experiments are conducted and compared against man-made schedules from a
Taiwanese RMC production company. No results with respect to computation
times, bounds or comparative studies have been included; it is unclear whether
the MIP model solved the problem instance(s) to optimality.
A generalization of the present work is published by Asbach et al. (2009). Next
to the constraints discussed in Section 3.1, Asbach et al. (2009) consider vehicle
synchronization at the loading depots, vehicles with specialized equipment,
and additional time lags between deliveries for a single customer. In addition,
Asbach et al. (2009) add constraints ensuring that some customers only receive
concrete from a subset of production stations, and constraints limiting the
time that concrete may reside in the vehicle’s drum. Here we do not explicitly
consider these constraints, as they can simply be incorporated in our model
by modifying the arcs or costs in the underlying routing graph (Section 3.3).
Asbach et al. (2009) formally define their problem using a MIP model, and
establish that it is NP-Hard to solve by reduction to the Euclidean TSP problem.
Next, a heuristic is proposed to solve the CDP because solving the MIP model
is considered intractable. The heuristic, initialized with a feasible schedule,
iteratively un-schedules and re-schedules one or two customers simultaneously.
A (greedy) constructive procedure is used to reinsert the unscheduled customers
into the schedule, in an attempt to obtain a better solution. This procedure
is repeated until a local optimum is reached, or a pre-defined time limit is
exceeded. The authors do not publish bounds on the optimal solutions, and the
problem instances are inaccessible due to a non-disclosure agreement, rendering
a fair comparison to this work virtually impossible.

While in this work we consider both the routing and scheduling aspects of the
concrete production and distribution, Silva et al. (2005) focuses primarily on
the scheduling problems at the concrete production sites. A single delivery
takes a fixed amount of time which does not depend on the vehicle’s location.
Moreover, the fleet of vehicles is homogeneous, thereby simplifying the problem
considerably as the exact number of deliveries required to meet the customer’s
demand is known beforehand. Silva et al. (2005) use a Genetic Algorithm
(GA) to assign customer orders to concrete production centers. The orders are
subdivided into a number of ‘jobs’. Trucks located at the production sites are
employed to deliver the concrete in a timely manner. Assigning deliveries to
trucks is performed via an Ant Colony Optimization algorithm.
Naso et al. (2007) expand upon the work by Silva et al. (2005), adding a

56 THE CONCRETE DELIVERY PROBLEM

significant number of additional hard and soft constraints to the problem.
Contrary to our own work, deliveries are performed by a fleet of homogeneous
vehicles. Furthermore, customers require an uninterrupted flow of concrete,
meaning that the next truck must be available as soon as the previous truck
finishes unloading. All orders must be fulfilled; unfulfilled orders are covered
by external companies at a hire cost. Similar to Silva et al. (2005), Naso et al.
(2007) employ a GA to assign orders originating from construction sites to
nearby production centers. Each production center is equipped with a single
loading dock, where the produced concrete is loaded into trucks. Since each
dock can only handle a single truck at a time, sequencing of the trucks is
required. This is performed via a constructive heuristic. Once a feasible loading
sequence has been determined for each production center, another constructive
heuristic is deployed to determine the schedules and routes for the available
fleet of vehicles. This schedule must ensure that a vehicle is ready to transport
the concrete to the customers’ site as soon as the concrete for the delivery is
available at the loading dock. If no vehicle can accommodate the delivery, an
external vehicle is hired and a penalty is incurred. Computational experiments
are performed on data from a Dutch concrete supplier. The performance of
the heuristic is compared against four different scheduling policies utilized by
human schedulers; no comparisons against Silva et al. (2005) are included in
the paper.

Yan and Lai (2007) consider a heuristic approach to a CDP consisting of a
single production station and a homogeneous fleet. Next to the travel time of
vehicles, the authors include overtime of deliveries, and operation time of the
production station and construction sites in their objective function. A MIP
model is provided, modeled on a time-space network: nodes in the network
encode both time and location information, whereas arcs represent translations
in the time and space domains. A disadvantage of such a model is the fact
that the continuous time domain is discretized in fixed intervals; taking the
time intervals too small leads to an excessive number of nodes in the network,
whereas large time intervals lead to inaccurate or suboptimal solutions. Solving
the model using a MIP solver turned out intractable for their real-world problem
instances. Hence, a heuristic decomposition approach is proposed instead. This
approach first solves a relaxed version of the MIP model. The resulting solution
is then used to simplify the original MIP model by fixing a number of the
decision variables to their corresponding values in the relaxed solution. Finally,
the simplified MIP model is solved. The authors claim that the resulting
decomposition yields very good results when compared against a lower bound
obtained by a MIP solver, or solutions produced by human schedulers. However,
it must be note that their dataset is limited to just three instances; it is unclear
how any related problems or approaches would fair upon such a decomposition.

MATHEMATICAL MODELS 57

Misir et al. (2011) propose a new hyper-heuristic to the CDP. The hyper-heuristic
is initialized with both a feasible CDP solution and a set of heuristics. At each
iteration, the hyper-heuristic selects a heuristic which is used to construct a
new CDP solution based on the solution obtained during the previous iteration.
The quality of the new solution is established, and the hyper-heuristic decides
whether the new solution is accepted or rejected. The authors compare their
work against four alternative hyper-heuristics. In Durbin and Hoffman (2008) a
decision support system is presented which assists in the dispatching of trucks,
creating delivery schedules, and determining whether new orders should be
accepted. The system is designed in such a way that it can cope with uncertainty
and changes in the schedule caused by order cancellations, equipment failures,
traffic congestions. The scheduling and routing problems handled by the system
are represented by time-space networks, and are solved through MIP.

In contrast to the previous, mainly Operations Research based approaches,
Graham et al. (2006) treat CDP from a Machine Learning point of view. A
neural network is used to predict the delivery rate of concrete at a production
site, based on a set of known parameters such as the capacities of the trucks,
their average inter arrival time, designation of the concrete, season, number of
accepted and rejected deliveries, etc. Data from previous construction projects
is used to train the model. Results from this approach may be used to improve
the work flow, planning and resource utilization. As this work conceptually
deviates from the other papers discussed in this section, we did not include it
in Table 3.2.

3.3 Mathematical models

3.3.1 Integer Programming models

This section introduces two MIP models for CDP. The first one, CDP1, in section
3.3.1 shows how two well-known models for the Capacitated Vehicle Routing
Problem (CVRP) with Time Windows and Split Deliveries, and the Parallel
Machine Scheduling Problem (PMSP) with Time Windows and Maximum Time
Lags can be combined to model the CDP. Although the resulting model supports
split-deliveries, all deliveries for a single customer should be made by different
vehicles; it is not possible that a single vehicle performs two or more deliveries
to the same customer. A model (CDP2) which overcomes this limitation is
presented in Section 3.3.1.

58 THE CONCRETE DELIVERY PROBLEM

An Integer Programming Model for CDP

The concrete trucks start their trip at a central (source) depot and travel
between production sites and customers. At the end of the day, the trucks
return to an end (sink) depot (which may or may not be the same as the starting
depot). This routing problem can be modeled on a directed, weighted graph
G(V,A), consisting of vertex set V = {0} ∪ C ∪ {n+ 1}, where vertices 0 and
n+ 1 are resp. the source and sink depots. Vertices representing the production
depots are omitted. Instead, the fact that a vehicle has to reload in between
two deliveries has been accounted for in the arc costs. Optionally, a positive
load time for the vehicles can be added to the arcs between two customers. The
arc set A is defined as follows:

• the source, sink depots have outgoing resp. incoming edges to/from all
other vertices.

• there is an arc (i, j) for all i, j ∈ C, i 6= j.

The arc costs are as follows:

• c0,i = minp∈P t0,p + tp,i for all i ∈ C

• ci,j = minp∈P ti,p + tp,j for all i, j ∈ C

• ci,n+1 = ti,n+1

• c0,n+1 = 0

A solution to CDP consists of a selection of |K| source-sink paths, that
collectively satisfy the routing and scheduling constraints as outlined above.
The CDP is very similar to two well known combinatorial optimization problems:
the CVRP with Time Windows and Split Deliveries, and the PMSP with Time
Windows and Maximum Time Lags. However, there is a fundamental difference
between the CDP and CVRP with split deliveries: in CVRP with split deliveries,
the capacity of a single vehicle must be shared amongst all the customers visited
by the vehicle, whereas this is not the case in CDP. Nevertheless, the model
for a Capacitated Vehicle Routing Problem as presented by Desaulniers et al.

MATHEMATICAL MODELS 59

(2005) can be modified to meet the routing constraints of CPD as follows:

max
∑
i∈C

qiyi (3.1)

∑
k∈K

∑
j∈δ+(i)

lkxijk ≥ qiyi ∀i ∈ C (3.2)

∑
j∈δ{0}

x0jk =
∑

i∈δ{n+1}

xi,n+1,k = 1 ∀k ∈ K (3.3)

∑
j∈δ+(i)

xi,j,k =
∑

j∈δ−(i)

xj,i,k ∀i ∈ C, k ∈ K (3.4)

Cik + tij −M(1− xijk) ≤ Cjk − pk ∀i, j ∈ V, k ∈ K (3.5)

ai + pk ≤ Cik ≤ bi ∀i ∈ V, k ∈ K (3.6)

xijk ∈ {0, 1} ∀i, j ∈ V, k ∈ K (3.7)

Cik ∈ Z≥0 ∀i ∈ V, k ∈ K (3.8)

yi ∈ {0, 1} ∀i ∈ C (3.9)

In this formulation, denoted as CDP-route, xijk is a binary variable indicating
whether vehicle k travels from i to j. Integer variables Cik, i ∈ C, k ∈ K, record
the time that vehicle k finishes its delivery to customer i. Binary variable yi
denotes whether customer i ∈ C is serviced. For notation purposes, δ−(·) resp.
δ+(·) denote the incoming resp. outgoing neighborhood sets. Constraint (3.2)
ensures that sufficient concrete is delivered at construction site. Constraints
(3.3)-(3.4) determine the shape of a feasible tour: a tour starts at the source
depot, visits a number of pickup and delivery points and finally returns to the
sink depot. Constraints (3.4) are the flow preservation constraints. A customer
i ∈ C cannot be visited before ai, and deliveries have to be completed before
bi (Constraint (3.6)). Furthermore, between two consecutive visits, starting,
processing and travel times have to be taken into account (Constraint (3.5)).
The remaining constraints restrict the domains of the variables.
Although CDP-route captures many of the requirements of CDP, it cannot
express the maximum time lag requirement between multiple deliveries for
a single customer. The later concept however can be modeled using a flow
based formulation originating in the PMSP problem. To this extent, the model
of Bard and Rojanasoonthon (2006) is adapted, thereby obtaining CDP-schedule:

60 THE CONCRETE DELIVERY PROBLEM

max
∑
i∈C

qiyi (3.10)

∑
k∈K

∑
l∈K0\{k}

lkz
i
kl ≥ qiyi ∀i ∈ C (3.11)

∑
l∈K0

zik0l = 1 ∀i ∈ V (3.12)

∑
l∈K0\{k}

zikl =
∑

l∈K0\{k}

zilk ∀k, l ∈ K, k 6= l, i ∈ V (3.13)

Cik −M(1− zikl) ≤ Cil − pl ∀k, l ∈ K, k 6= l, i ∈ V (3.14)

Cil − pl ≤ Cik + γ +M(1− zikl) ∀k, l ∈ K, k 6= l, i ∈ V (3.15)

ai + pk ≤ Cik ≤ bi ∀i ∈ V, k ∈ K (3.16)

zikl ∈ {0, 1} ∀i ∈ V, k, l ∈ K (3.17)

Cik ∈ Z≥0 ∀i ∈ V, k ∈ K (3.18)

yi ∈ {0, 1} ∀i ∈ C (3.19)

The binary variable zikl is equal to one if truck k ∈ K delivers its payload
immediately before truck l ∈ K to customer i ∈ C, zero otherwise. In this
model, k0 represents a dummy truck, K0 = K ∪ {k0}.
Constraint (3.11) ensures that sufficient concrete is delivered to each customer.
Constraints (3.12)-(3.13) sequence the trucks. A truck can only be used once
for every customer, and whenever it is used, its delivery must be succeeded by
another delivery (possibly a delivery by the dummy truck k0)(Constraint (3.12)).
The dummy truck must be scheduled (Constraint (3.12)). Constraints (3.13)
are the flow preservation constraints. Together with Constraints (3.12), these
constraints enforce that all deliveries are scheduled on a ring. Each delivery
has exactly one successor and one predecessor. Constraints (3.14) link the
completion time variables Cik and the sequence variables zikl, thereby enforcing
that deliveries do not overlap in time. Additionally, Constraints (3.15) enforce
a maximum lag time between consecutive deliveries. Finally, Constraints (3.16)
ensure that deliveries are scheduled within the customer’s time window.
A feasible solution to CDP is obtained at the intersection of the CPD-route and
CPD-schedule polytopes. Connecting the two polytopes is accomplished via

MATHEMATICAL MODELS 61

the linking constraints:∑
l∈K0\{k}

zikl =
∑
j∈N

xijk ∀k ∈ K, i ∈ C (3.20)

Note that constraints (3.11), (3.16) in CDP-route are identical to Constraints
(3.2), (3.6) in CDP-schedule respectively, and are dropped as a consequence.
After removing redundant constraints and rewriting some constraints via the
linking constraints, we arrive at a model for CDP which we denote as CDP1.

An Integer Programming model for CDP with revisits

A disadvantage of CDP1 is that a single truck cannot visit the same customer
more than once. This restriction is unrealistic as often a small number of concrete
trucks drive back and forth between a production depot and a construction
site. It is however not obvious how to efficiently lift this restriction in CDP1.
Clearly, when the binary variables xijk are replaced by equivalent integer
variables indicating the number of times vehicle k travels from i to j, one can
still distinguish the routes, but expressing the scheduling constraints becomes
difficult. Two options exist: either the distinct trips made by a single vehicle are
enumerated (e.g., vehicle k travels from i to j during trip t), or the deliveries to
a specific customer are enumerated. The latter solution is applied in assignment-
based formulations for scheduling problems (see e.g., Berghman et al. (2011)).
An alternative IP formulation for CDP using this approach is presented by
Asbach et al. (2009). This model, simplified and adjusted to our notation, is
given below. Let the sets P , C be defined as before. In addition, for each
customer i ∈ C, a new ordered set consisting of deliveries, Di = {1, . . . , n(i)}, is
defined, where n(i) = d qi

min
k∈K

(lk)e is an upper bound on the number of deliveries

required to customer i. As shorthand notation, dij will be used to denote delivery
j for customer i. A time window [au, bu] is associated with each delivery u ∈ Di,
i ∈ C, which is initialized to the time window of the corresponding customer
i ∈ C, i.e., [au, bu] = [ai, bi] for all i ∈ C, u ∈ Di. Finally, D =

⋃
i∈C Di is the

union of all deliveries.
Let G(V,A) be the directed, weighted graph consisting of vertex set V =
{0} ∪D ∪ {n+ 1}. The arc set A is defined as follows:

• the source, sink depots have outgoing resp. incoming edges to/from all
other vertices.

• a delivery node dih has a directed edge to a delivery node dij if h < j,
i ∈ C, h, j ∈ Di.

62 THE CONCRETE DELIVERY PROBLEM

• there is a directed edge from diu to djv, i 6= j, except if djv needs to be
scheduled earlier than diu.

The arc costs are as follows:

• c0,di
j

= minp∈P t0,p + tp,i for all dij ∈ D

• cdiu,d
j
v

= minp∈P ti,p + tp,j for all diu, djv ∈ D, diu 6= djv

• cdi
j
,n+1 = ti,n+1

• c0,n+1 = 0

The entire model, entitled CDP2, becomes:

MATHEMATICAL MODELS 63

max
∑
i∈C

qiyi (3.21)

∑
j∈δ+(0)

x0jk =
∑

i∈δ−(n+1)

xi,n+1,k = 1 ∀k ∈ K (3.22)

∑
j∈δ−(i)

xj,i,k =
∑

j∈δ+(i)

xi,j,k ∀i ∈ D, k ∈ K (3.23)

S(i) ≤ 1 ∀i ∈ D (3.24)

S(j + 1) ≤ S(j) ∀i ∈ C, j ∈ {1, . . . , n(i)− 1} (3.25)∑
j∈Ci

lkS(j) ≥ qiyi ∀i ∈ C (3.26)

Ci −M(1− xijk) ≤ Cj − pk − cij ∀(i, j) ∈ A, i 6= 0, k ∈ K (3.27)

C0 −M(1− x0jk) ≤ Cj − c0j ∀(0, j) ∈ A, k ∈ K (3.28)

Ci − pkS(i) ≥ ai ∀i ∈ D (3.29)

Cj+1 − pkS(j + 1)− Cj ≤ γ ∀i ∈ C, j ∈ {1, . . . , n(i)− 1} (3.30)

Cj+1 ≥ Cj + pkS(j) ∀i ∈ C, j ∈ {1, . . . , n(i)− 1} (3.31)

ai ≤ Ci ≤ bi ∀i ∈ V (3.32)

xijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (3.33)

yi ∈ {0, 1} ∀i ∈ C (3.34)

Here, S(i) =
∑
k∈K

∑
j∈δ+(i) xijk, for all i ∈ D, indicates whether delivery

i ∈ D is made by any vehicle. Binary variables xijk denote whether vehicle
k ∈ K travels from i to j, i, j ∈ V . Binary variables Ci record the time that
delivery i ∈ D is completed. In addition, Cn+1 records the makespan of the
schedule. Finally, boolean variables yi, denote whether customer i ∈ C is
serviced.
Constraints (3.22)-(3.24) are the common vehicle routing constraints, defining
respectively the starting and ending location of a tour, flow preservation, and
the number of times a delivery can be made. Furthermore, Constraints (3.25)
orders the deliveries: a delivery dij+1 cannot me performed whenever delivery

64 THE CONCRETE DELIVERY PROBLEM

dij has not been made. This constraint, in conjunction with Constraint (3.30)
implements the maximum time lag between consecutive deliveries. The sum of
capacities of the vehicles performing the deliveries for customer i ∈ C should
cover the customer’s demand (Constraint (3.26)). Constraints (3.27)-(3.32)
enforce the necessary scheduling restrictions. A delivery cannot be made outside
the customer’s time window (Constraints (3.29),(3.32)), travel times need to
be accounted for (Constraint (3.27),(3.28)). Finally, Constraints (3.31) ensure
that deliveries to the same customer do not overlap in time.
Although this formulation allows a single vehicle to visit customers more than
once, it has the clear disadvantage that each customer is represented by a
possibly large set of customer nodes, especially when the bound n(i), i ∈ C, is
weak. One solution is to artificially limit the maximum value of n(i), but this
potentially cuts off the optimal solution.

A note on complexity

Theorem 1. The CDP as defined by CDP2 (Section 3.3.1) is NP-Hard.

Proof. The proof follows by reduction from the Hamiltonian Cycle (HC) problem.
Let P be an instance of the HC problem, defined on the simple, undirected,
incomplete graph G(V,E) with vertex set V and edge set E ⊂ V × V . Finding
a HC in G is NP-Complete (Garey and Johnson, 1979). Let P ′ be an instance
of CDP, as defined in CDP2 (Section 3.3.1). Instance P ′ has only one vehicle
k1, having capacity lk1 = 1 and processing time pk1 = 0. The vertex set of P ′,
say V ′, is identical to the vertex set of P , i.e., V = V ′. Designate an arbitrary
vertex in V ′ as depot; this vertex serves both as starting and ending depot.
The remaining |V | − 1 vertices become customers, each having a demand of
1. The arc set A of the routing graph G′(V ′, A), is complete, i.e. there is an
arc for every i, j ∈ V pair. The weights of the arcs are defined as follows. The
weight of an arc (i, j) resp. (j, i) is equal to 1 if there exists a corresponding
edge (i, j) ∈ E; its weight is equal to 2 otherwise. Finally, the time windows for
each customer are set to [0, |V | − 1], and the time lag γ = 1. Observe that to
satisfy the demand of a single customer, only one delivery is required, so the
time lag does not pose any restrictions on the delivery schedule. Furthermore,
in a delivery schedule where all customers are satisfied, vehicle k1 must arrive at
the last customer at time |V | − 1 at the latest. By construction of the routing
graph, this is only possible when vehicle k1 traverses arcs having weight 1 only.
It is straightforward to show that iff there exists a HC in P , then there must
exist a delivery schedule for P ′ satisfying the demand of all customers. As

MATHEMATICAL MODELS 65

each delivery for each customer may only be made once (Constraint 3.24), the
resulting delivery route for k1 must correspond with a HC.

3.3.2 Constraint Programming model

Next to MIP, Constraint Programming (CP) offers an alternative means to
model the CDP. Unfortunately, no universal CP language exist; the syntax
and expressiveness is solver dependent. In the discussion below, we only use
constraints present in IBM’s CP optimizer. However, equivalent versions of
these constraints exist in several other CP solvers.
Our model utilizes interval variables (Laborie and Rogerie, 2008; Laborie et al.,
2009). An interval variable represents an interval during which an activity is
performed. An activity, and its corresponding interval variable may be optional,
i.e., there is no obligation to schedule the activity. More formally, following the
notation from (Laborie and Rogerie, 2008), an interval variable α is a variable
where domain dom(α) is a subset of {⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e}. An interval
variable is fixed if its domain is reduced to a singleton, i.e., if either ⊥ is assigned
to α (the interval is absent) or [s, e) is assigned (the interval is present and
fixed, its start time is s, its end time is e, and its durations is e− s). An absent
interval variable is ignored by any constraint or expression. For example, a
constraint specifying that an interval α needs to end before the start of an
interval β is always satisfied if either of the intervals is absent.
For each interval variable α, a number of functions is defined: presenceOf(α)
is a function that indicates whether α is present (value 1) or absent (value
0); startOf(α) returns the start time s of α when it is present, endOf(α)
returns the end time e and dur(α) returns e − s. These functions can be
used in other constraints. The solver detects an inconsistency and backtracks
whenever it notices that endOf(α) − startOf(α) ≥ dur(α) is not satisfied.
In our model we use the shorthand α = {r, d, t, o} to express the constraints
startOf(α) ≥ s, endOf(α) ≤ e, dur(α) ≥ d, presenceOf(α) = 1 iff o = oblig
(it is unconstrained when o = opt). The remaining constraints used in this
model and supported by IBM’s CP optimizer are summarized in Table 3.3.

The CP model (Algorithm 8) relies on three hierarchical levels of optional
interval variables which are linked via the span and alternative constraints (lines
8, 10):

• A variable ci, for each customer i ∈ C (line 3).

• A variable dij for each possible delivery j ∈ Di to customer i ∈ C (line 4).

• A variable dij,k for each vehicle k ∈ K that may perform a specific delivery
j ∈ Di for customer i ∈ C (line 5).

66 THE CONCRETE DELIVERY PROBLEM

Constraint Description
span(α,B) Interval α (if present) spans over all

present intervals from the set of intervals
B, i.e., the start and end of α coincides
with resp. the first present interval and
the last present interval in B. If α is not
present, then neither are the intervals
in B.

alternative(α,B) If interval α is present, then exactly one
of the intervals in set B is present. The
start and end of interval α coincides
with the start and end of the selected
interval from set B.

endBeforeStart(α, β) endOf(α) ≤ startOf(β). Automati-
cally satisfied if either of the intervals is
absent.

startBeforeEnd(α, β, z) startOf(α) + z ≤ endOf(β). Automat-
ically satisfied if either of the intervals
is absent.

noOverlapSequence(B, dist) Sequences the intervals in set B. Ensures
that the intervals in B do not overlap.
Furthermore, the two-dimensional dis-
tance matrix dist specifies a sequence
dependent setup time for each pair of
activities. Absent intervals are ignored.

first(α,B) If interval α is present, it must be
scheduled before any of the intervals in
B.

last(α,B) If interval α is present, it must be
scheduled after any of the intervals in
B.

Table 3.3: Description of CP constraints

MATHEMATICAL MODELS 67

Algorithm 1: CP model for CDP.
Variable definitions:

1 s = {0, 0, 0, oblig.}
2 t = {0,∞, 0, oblig.}
3 ci = {ri, di, 0, opt.} ∀i ∈ C
4 dij = {ri, di, 0, opt.} ∀i ∈ C, j ∈ Di

5 dij,k = {ri, di, pk, opt.} ∀i ∈ C, j ∈ Di, k ∈ K

Objective:

6 max
∑
i∈C qi·presenceOf(ci)

Constraints:

7 forall i ∈ C
8 span(ci,

⋃
j∈Di d

i
j)

9 forall j ∈ Di

10 alternative(dij ,
⋃
k∈K d

i
jk)

11 presenceOf(ci) = (
∑
k∈K lk

∑
j∈Di presenceOf(dijk)≥ qi)

12 forall j ∈ {1, . . . , n(i)− 1}
13 endBeforeStart(dij , dij+1)
14 startBeforeEnd(dij+1, dij , −γ)
15 presenceOf(dij+1)→presenceOf(dij)

16 forall k ∈ K
17 noOverlapSequence(

⋃
i∈C,j∈Di d

i
jk ∪ s ∪ t, dist)

18 first(s,
⋃
i∈C,j∈Di d

i
jk ∪ t)

19 last(t,
⋃
i∈C,j∈Di d

i
jk ∪ s)

The Constraint on line 11 states the relation between a customer and the
customer’s deliveries: a customer may only be scheduled if sufficient concrete
is delivered. The constraints 13 - 15 take care of the scheduling requirements.
Finally, Constraints 17 - 19 deal with vehicle routing restrictions: for each
vehicle, a Hamiltonian path is created which starts and ends at resp. the source
depot s and the sink depot t, while respecting travel times between the deliveries.
To improve constraint propagation, two implicit sets of constraints are added.
Let m(i) = d qi

max
k∈K

(lk)e be a lower bound on the number of deliveries required to

satisfy customer i ∈ C. The following redundant constraints are added:

68 THE CONCRETE DELIVERY PROBLEM

1 forall i ∈ C
2 forall j ∈ {1, . . . ,m(i)}
3 presenceOf(ci)=presenceOf(dij)
4 forall j ∈ {m(i), . . . , n(i)− 1}
5 presenceOf(ci)∧(

∑
l∈{1..j},k∈K lk·presenceOf(dilk)< qi)→

presenceOf(dij+1)

The constraint on line 3 states that if customer ci, i ∈ C, is present, then at
least m(i) deliveries must be made. The constraint on line 5 ensures that if the
total amount of concrete delivered in the first j deliveries to customer i does
not suffice, at least one more delivery is made.

3.4 Heuristic models

3.4.1 Steepest Descent and Best Fit

The first heuristic is based on a steepest descent local search and a best fit
constructive procedure. The constructive heuristic (Section 3.4.1) schedules the
visits to the costumers one-by-one at the ‘best’ possible position, determined
by several heuristic criteria, e.g., the start time of the visit, and the capacity
of the vehicle. The order π the customers are processed by the constructive
procedure is controlled by a Steepest Descent heuristic (Subsection 30).

Best fit constructive heuristic

Algorithm 2 (page 78) illustrates the best fit constructive heuristic. The following
functions, omitting the implementation details for clarity, are used:

• satisfied(S , i) : returns whether customer i ∈ C is satisfied in solution
S , i.e., whether sufficient concrete is delivered for this customer.

• earliestStartT imeOfV isit(S , k, i) : searches for the earliest moment in
time vehicle k ∈ K can schedule the next delivery to customer i ∈ C given
the current solution S , and while taking travel times into consideration.
Note that deliveries for the same customer cannot overlap, so the time
returned is always later than the end time of the previous delivery for
customer i ∈ C.

HEURISTIC MODELS 69

• wasteOfV isit(S , k, i) : returns the amount of waste, 0 ≤ waste < lk,
a visit by vehicle k ∈ K would introduce to customer i ∈ C, given the
current solution S .

• endOfPreviousV isit(S , i, t) : returns the end time of the previous visit
to customer i ∈ C in S . If this is the first visit to customer i then the
value t is returned.

• scheduleV isit(S , i, bestK, start) : schedules a visit to customer i in
solution S using vehicle bestK at time start.

• attemptChaining(S , i) : this method is invoked when the next delivery
for customer i ∈ C cannot be scheduled due to the maximum time lag to
the forgoing delivery. This method tries to shift all previous scheduled
visits for customer i ∈ C in solution S to a later point in time, taking
into account the maximum timelag γ and the customer deadline bi. Next
it tries to schedule a new visit for customer i ∈ C at the earliest available
point in time, and returns true whenever this operation is successful.

• clean(S) : removes all the visits of unsatisfied customers from solution
S .

The algorithm iterates over all costumers in π. For each customer it searches
for the best vehicles to schedule the customer’s visits. First of all, to schedule
a new visit, a feasible start time must be found which respects, 1) the travel
times, 2) the maximum time lag γ with respect to the previous visit, and 3)
the customer’s deadline bi. The best vehicle to perform a visit is selected by
the following (ordered) list of criteria:

1. earliest available vehicle, counting from the moment the delivery may
commence

2. minimize waste, i.e., the amount that the vehicle’s capacity surpasses the
remaining demand of the customer

3. in case of a draw, select the largest vehicle.

These criteria have been obtained experimentally.

Steepest Descent

The quality of the schedule produced by the best-fit heuristic is largely
determined by the order π in which the customers are being processed. Different

70 THE CONCRETE DELIVERY PROBLEM

solutions may be discovered when the best-fit procedure is invoked multiple
times for different permutations of π. To this extent, a local search procedure
is used which modifies the vector π. The initial ordering of π is determined
according to the following criteria:

1. earliest deadline bi

2. highest demand qi

3. earliest release date ai

These criteria and their order have been determined empirically. At each
iteration, the steepest descent heuristic performs a full neighborhood search,
i.e., all shifts and swaps of customers in π are considered.

Heuristic limitations

A number of instances exist where the heuristic would never find the optimal
solution, independent of the order π. An example of such an instance is
depicted in Figure 3.1. Two customers (1 and 2) with demands q1 = 25
and q2 = 45 are scheduled using four vehicles (two with capacity 15 and two
with capacity 20) in time windows [a1 = 0, b1 = 40] and [a2 = 0, b2 = 60].
The maximum time lag γ = 5. The delivery times are equal to the vehicle
capacities, i.e., lk = pk, for all k ∈ K. The travel times between customers are
t11 = 18, t12 = 37, t21 = 37, t22 = 24; all other travel times are set to 0.
The heuristic fails to find the optimal solution due to the criteria used to
determine the next delivery to a specific customer. As elaborated in the
subsection 3.4.1, the vehicle performing the next delivery for a customer is
selected according to its availability, the amount of waste it produces and its size.
Only when the first criterion is replaced by ’select the vehicle which produces
the largest amount of waste’, the optimal solution for this instance is found. It
may be clear however that such a criterion is undesirable for most instances.

3.4.2 Fix-and-Optimize heuristic

The pseudo code for the fix-and-optimize heuristic is provided in Algorithm 3.
The following functions are used in this code:

• satisfied(S , i) : returns whether customer i ∈ C is satisfied in solution
S , i.e., sufficient concrete is delivered to this customer.

HEURISTIC MODELS 71

C2
[20,40]

Truck 1
(15)

Truck 2
(15)

Truck 3
(20)

Truck 4
(20)

0 60
Time

40

C2
[40,55]

C2
[0,20]

(a) Best SD-Heuristic solution

C1
[0,15]

C1
[15,35]

C2
[15,35]

Truck 1
(15)

Truck 2
(15)

Truck 3
(20)

Truck 4
(20)

Driving time: 24

0 60
Time

40

C2
[0,15]

C2
[39,54]

(b) Optimal solution

Figure 3.1: Example where the SD-heuristic does not find the optimal solution.

• calcOverlappingSet(i): Calculates the set of customers C ′ ⊂ C having
an overlap between their delivery interval and that of customer i ∈ C.
Note that |C ′| ≥ 1 as customer i must be included in C ′.

• fix(C ′,S): Fixes the variables for the customers in C ′ as stated in
schedule S . If customer j ∈ C ′ is not satisfied in schedule S , set yj = 0,
set yj = 1 otherwise. In a similar fashion, the completion variables as well
as a number of flow variables are fixed.

• reOptimize(S): Solves the resulting MIP model and updates S
accordingly.

• release(): Unfixes all fixed variables.

The algorithm is initialized with a feasible schedule S and a permutation π of
customers not satisfied in S . At each iteration of the algorithm, the fix-and-
optimize heuristic attempts to optimize part of the schedule, using the MIP
model CDP2 presented in Section 3.3.1. However, instead of solving the entire
model at once, only a small part of the problem is optimized, as most of the
variables are fixed. First, for a given customer i ∈ π, the heuristic determines
the set of customers C ′ ⊆ C having their delivery interval overlap with the
interval [ai, bi]. Next, the heuristic fixes all yi and Ci variables of the customers
not in C ′ to their corresponding values in S . Moreover, flow variables xijk that
do not affect any of the possible deliveries to customers in C ′ are fixed as well.
Finally, the heuristic solves the resulting MIP model, thereby rescheduling the
customers in C ′, while leaving the deliveries to the other customers unchanged.
The resulting schedule must be at least as good as the schedule obtained at the
previous iteration of the algorithm.
Note that the above procedure can be used to:

72 THE CONCRETE DELIVERY PROBLEM

1. improve an existing schedule, i.e., attempt to add unscheduled customers

2. construct a new schedule by starting from an empty schedule

Algorithm 3: Fix-and-Optimize heuristic.
input : A permutation of customers to schedule π, An initial schedule S
output : A feasible CDP solution

1 foreach i ∈ π do
2 if ¬satisfied(S ,i) then
3 O=calcOverlappingSet(i);
4 C ′ = {j ∈ C : j /∈ O};
5 fix(C ′,S);
6 reOptimize(S);
7 release();
8 return S

3.5 Bounds

Upper bounds, required to assess the quality of the proposed algorithms, are
obtained by solving the LP relaxation of CDP2 (Section 3.3.1). A number of
cuts are added to strengthen the bound. These cuts are calculated by solving
a number of small subproblems. First, a simple test is conducted to verify
whether there exists at least one schedule satisfying a specific customer. The
latter is achieved by solving the CDP2 (Section 3.3.1) as follows:

1. First, for a given customer i ∈ C, set yi = 1, and set yj = 0, for all
j ∈ C, j 6= i.

2. Solve CDP2. Whenever the model turns out infeasible, there exists no
schedule that accommodates customer i.

All customers who could not be accommodated in the schedule are permanently
discarded. Next, the above procedure is repeated in a similar fashion, but this
time for pairs of customers:

1. For every pair of customers i, j ∈ C, i 6= j, set yi = yj = 1, and set yk = 0,
for all k ∈ C, k /∈ {i, j}.

2. Solve the MIP model. Whenever the model turns out infeasible,
there exists no schedule in which both customers i and j are satisfied.
Consequently, the valid inequality yi + yj ≤ 1 may be added to the model.

EXPERIMENTAL RESULTS 73

Note that the above procedure identifies Minimum Infeasible Subsets (MIS) of
size two. Clearly, the procedure may be repeated to identify larger Infeasible
Subsets, this, however, quickly becomes computationally intractable.
After adding all cuts based on MIS of size two, the LP relaxation of the resulting
model is computed, strengthened by a number of cuts automatically generated
by IBM’s Ilog Cplex solver version 12.5.1.
An alternative means to calculate a valid upper bound involves solving the
following simple MIP model:

max
∑
i∈C

qiyi (3.35)

∑
i∈S

yi ≤ |S| − 1 ∀S ∈ S, S ⊆ C (3.36)

yi ∈ {0, 1} ∀i ∈ C (3.37)

Here, S is the set of all infeasible subsets. As noted before, computing the entire
set S is intractable. We therefor limit computations to |S| ≤ 3.

3.6 Experimental Results

3.6.1 Data Sets

Due to the lack of publicly available benchmark data for the CDP, two data sets
are created. Both sets, as well as code to generate new instances, are available
online at (Kinable and Wauters, 2013). A summary of the instances is provided
in Table 3.4. Data Set A contains instances with 10 to 20 customers, and 2 to 5
vehicles, whereas Data Set B contains instances with up to 50 customers and 20
vehicles. The demands of customers are always divisible by 5 and are selected
at random from the interval [10; 75]. In a similar fashion, the capacities of the
vehicles are selected between [10; 25]. It is unrealistic to have a unique capacity
for each vehicle, and therefore the number of different vehicles is bounded by
the number of vehicle classes. The processing time of a vehicle k ∈ K is set
proportional to its capacity, i.e., pk = lk for all k ∈ K. The width of the time
window of a customer i ∈ C is computed by λiqi, where λi is a scalar uniformly
selected from the interval [1.1, 2.1].
Each instance has up to 4 production stations. The locations of the start and
end depot, construction sites, and production depots, lay in the euclidean plane.
The travel time between two locations equals the euclidean distance, rounded
upwards. For simplicity, the start and end depot are the same. The distance

74 THE CONCRETE DELIVERY PROBLEM

between each station and the depot is uniformly selected from the interval
[1 − 30]. Furthermore, for each customer, there exists a production station
within a distance of [1−25]. Finally, the time lag γ is fixed to 5 for all deliveries.

3.6.2 Experiments

A number of experiments are conducted to assess the quality of the algorithms
presented in this work. To solve the MIP models, IBMś CPLEX 12.5.1 has been
used (default parameters), whereas IBMś CP Optimizer 12.5.1 has been used to
solve the CP problem (default parameters). The results of the Steepest Descent
heuristic (SD-Heuristic, Section 3.4.1), the fix-and-optimize MIP heuristic (MIP
fix & opt, Section 3.4.2), the exact MIP algorithm (MIP, Section 3.3.1) and
the CP algorithm (CP, Section 3.3.2) on Data Set A are provided in Table 3.7
in Section 3.9, page 83. The first column of Table 3.7 provides the instance
names, following a "W_x_y_z" naming scheme, where W reflects the data
set, x the number of vehicles, y the number of customers and z the number of
stations. The second column provides an upper bound on the optimal solution
values; only the best bound obtained from the two procedures discussed in
section 3.5 is shown. Per solution method, the table shows resp. the objective
value, the gap between the objective value and the bound, and the computation
time in milliseconds. Each solution method was allotted 5 minutes computation
time per instance. Furthermore, the exact MIP, CP methods, as well as the
MIP fix-and-optimize heuristic are initialized by the results obtained from
the SD-heuristic; hence, their solutions are at least as good as the solution of
the SD-heuristic. Finally, Table 3.5 displays the average gap obtained by all
methods, as well as the average computation time.
The differences in results for the various methods are relatively small when
compared on Data Set A (Table 3.7, Figure 3.2). Clearly, from an objective
point of view, CP outperforms all methods (avg. gap 4.2%), followed by the fix-
and-optimize heuristic (avg. gap 7.0%) the exact MIP procedure (avg. gap 7.3%)
and the SD-heuristic (avg. gap 9.1%). Although the SD-heuristic performs the
least in terms of objective value, it usually requires less than 50ms per instance,
whereas the other methods require significantly more time. CP solved 40 out of
64 instances to optimality, the exact MIP method 37, the fix-and-optimize MIP
heuristic 35 and the SD-heuristic 30.
The results for Data Set B are shown in Table 3.8 in 3.9. The results for the
two approaches based on the MIP formulation were omitted from the graphs
as these methods were unable to deal with the larger instance sizes. The time
limit for the remaining methods is set to 10 minutes per instance. The average
gaps obtained are resp. 12.1% for CP, and 16.3% for the SD-heuristic. Out
of 128 instances, CP solved 55 instances to optimality, versus 40 instances for

EXPERIMENTAL RESULTS 75

0

100

200

300

400

500

600

700

800

O
b

je
ct

iv
e

Instance

Best bound CP MIP SD-heuristic MIP Fix&Opt

Figure 3.2: Comparison of the different methods on Data Set A.

the SD-heuristic. Compared to Data Set A, the average gaps have increased
significantly, especially for instances with a high ratio between the number
of customers and the number of vehicles (Figure 3.3, page 76). Computing
strong bounds for these instances via the approaches elaborated in Section 3.5
is difficult and very time consuming as enumerating all infeasible subsets of
sizes 2 and 3 is computationally expensive for large numbers of customers.
Often, CP finds good solutions in relatively little time, but fails to prove
optimality. This is mainly due to the fact that most interval variables in the
CP model are declared optional, diminishing the potential amount of constraint
propagation. Typically, the smaller the initial domains of the variables (e.g.,
small time windows for the customers), the faster CP is capable of solving an
instance.
Figure 3.4 (page 76) plots the influence of the time lag on several instances.
As is visible from the monotonically increasing lines, increasing the time lag
improves the overall flexibility of the schedule, thereby enabling better quality
solutions.

76 THE CONCRETE DELIVERY PROBLEM

0

1

2

3

4

5

6

7

8

9

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

R
atio

 C
u

st./V
e

h
.

G
ap

Instance

CP SD-heuristic Ratio Cust./Veh.

Figure 3.3: Comparison of the different methods on Data Set B.

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30

O
b

je
ct

iv
e

Maximum time lag

B_8_40_3 B_6_30_3 A_4_20_3 A_2_15_1

Figure 3.4: Influence of the time lag γ. Solutions are obtained via the CP
model.

CONCLUSION 77

3.7 Conclusion

Although several variations of CDP exist in the literature, little attempts have
been made to compare the various approaches mutually. In practice, a fair
comparison is hindered by differences in problem definitions, as well as by
the lack of publicly available benchmark data. This work introduces a more
general version of CDP, bearing a strong resemblance with two well-studied
scheduling and routing problems: the Parallel Machine Scheduling Problem
and the Capacitated Vehicle Routing Problem. The problem is shown to be
NP-Hard by reduction to the Hamiltonian Cycle problem. New exact, heuristic
and hybrid solution approaches are proposed. Computational experiments are
conducted on a library of CDP instances, and compared against bounds on the
optimal solutions. The MIP model appears ineffective in solving large problem
instances, but can be used to compute bounds instead. The CP model, on the
other hand, is highly effective in finding high quality solutions in relatively little
time, or to improve existing schedules. When computation time is a limiting
factor, the Steepest-Descent heuristic is a viable choice, as it often yields good
solutions in less than a second. Finally, when compared to the traditional
MIP approach, the fix-and-optimize MIP heuristic produces, on average, better
results in less time.
The current work primarily focuses on a static scheduling problem where the
set of customers and their demands are known beforehand. Future work could
therefore be aimed at an online version of the problem with a rolling scheduling
horizon. A similar approach to the fix-and-optimize MIP heuristic may be used
to fix part of the schedule which is currently being executed, while reoptimizing
the delivery schedule towards the end of the time horizon. On a similar note,
different objective functions may be investigated. For example, deliveries for
customers which were not serviced by the concrete distributor due to a lack
of available vehicle capacity may be postponed to a later point in time, while
being treated with higher priority.

78 THE CONCRETE DELIVERY PROBLEM

Algorithm 2: The best fit construction heuristic.
input : A permutation of customers π
output : A feasible CDP solution S

1 Start with empty solution S ;
2 foreach i ∈ π do /* For each customer */
3 found← TRUE ;
4 while found and ¬satisfied(S ,i) do
5 found← FALSE ;
6 minStart←MAXV ALUE ;
7 minWaste←MAXV ALUE ;
8 bestK ← −1 ;
9 foreach k ∈ K do /* For each vehicle */

10 start← earliestStartTimeOfVisit(S ,k,i) ;
11 waste← wasteOfVisit(S ,k,i) ;
12 prevEnd← endOfPreviousVisit(S ,i,start) ;
13 if start ≤ prevEnd+ γ and start+ pk ≤ bi then
14 found← TRUE ;
15 newBest← FALSE ;
16 if start < minStart then
17 newBest← TRUE ;
18 else if start == minStart and waste < minWaste then
19 newBest← TRUE ;
20 else if start == minStart and waste == minWaste and

lk > qbestK then
21 newBest← TRUE ;
22 if newBest then
23 minStart← start ;
24 minWaste← waste ;
25 bestK ← k ;

26 if found then
27 scheduleVisit(S ,i,bestK,minStart) ;
28 else
29 found← attemptChaining(S ,i) ;

30 clean (S) ;

CONCLUSION 79

Set A Set B
Instances 64 128

Customers 10-20 20-50
Demands 10-75 10-75
Time Windows qi × [1.1, 2.1] qi × [1.1, 2.1]
Time lags 5 5

Vehicles 2-5 6-20
Capacity 10-25 10-25
Vehicle classes 2-3 3
Processing time pk = lk pk = lk

Stations 1-4 1-4
Cust.-Station 1-30 1-30
Depot-Station 1-25 1-25

Table 3.4: Data sets

Data Set A Data Set B
Gap(%) Time(ms) Gap(%) Time(ms)

CP 4.2 197012 12.1 357313
MIP 7.3 134058 - -

SD-Heuristic 9.1 23 16.3 1331
MIP Fix & Opt 7.0 100765 - -

Table 3.5: Summary (averages).

80 THE CONCRETE DELIVERY PROBLEM

3.8 Literature Summary Notation

Solution method:
• Mixed Integer Programming
(m)

The paper proposes a MIP model.

• Constraint Programming (c) The paper proposes a CP model.
• Heuristic (he) The paper proposes a heuristic ap-

proach.
• Hybrid (hy) The paper proposes an hybrid approach,

involving both exact approaches and
local search techniques.

Time windows and limits:
• Soft delivery time windows (sd) Time windows may be violated, or only

a preferred start time of the deliveries
is provided.

• Hard delivery time windows
(hd)

Deliveries must be made within a
defined time window.

• Hard delivery ready time (hs) Deliveries may not commence before a
predefined time.

• Vehicle usage time (sv) Vehicles may only be used for a certain
amount of time, or may not be available
during certain periods, e.g. due to
maintenance.

• Concrete Perish Time (p) The amount of time concrete may reside
in the truck is limited. Consequently,
customers may not be reachable from
distant depots, or deliveries are aborted
before the truck is empty as the truck’s
processing time exceeds the time limit.

Start, end location of vehicles:
• Central depot (c) All vehicles start from and/or return to

a central depot.
• Production center (p) All vehicles start from and/or return to

a (specific) production center.
• Mixed (m) A vehicle may start from and/or end at

a production center or at a depot.
Production depots:
• Homogeneous (ho) All production depots are identical.
• Heterogeneous (hs) Differences in production depots, e.g.

they produce different types of concrete,
or cannot service all customers.

LITERATURE SUMMARY NOTATION 81

• Scheduling (s) Vehicle reloads must be scheduled, e.g.
a vehicle may have to wait while another
vehicle is being loaded.

Loading and Unloading:
• Fixed rate (f) (un)loading takes a constant amount of

time.
• Dynamic rate (d) (un)loading time depends on the specific

customer, vehicle, type of concrete,
amount of concrete in the truck and/or
the production station.

Fleet:
• Homogeneous (ho) All vehicles are identical.
• Heterogeneous (he) Vehicles differ in capacity or equipment

carried.
Instrumentation:
• For some deliveries, specialized equipment must be present. Either the

delivery truck has this equipment, or an additional vehicle having this
equipment must be scheduled.

Deliveries, restrictions:
• Synchronization (s) Deliveries for the same customer must

be synchronized as they may not
overlap in time, and/or have to take
a minimum or a maximum time lag into
consideration.

• Revisits (r) A single truck may perform multiple
deliveries for the same customer, not
necessary in a consecutive order.

• Vehicle requirements (v) Not all vehicles can perform all
deliveries, e.g. because a vehicle cannot
transport the type of concrete required
by the customer, or a vehicle may be
too large for the construction site.

• Reload (l) Vehicles must reload after each delivery.
• Shared delivery (sh) A vehicle may split its content over

multiple customers without reloading
in between deliveries.

• Split delivery (sp) Customer may require multiple deliver-
ies by different vehicles.

• Single source (ss) For some customers, all concrete
delivered must originate from the same
production site.

Objectives (incl. weighted versions and composite objectives):

82 THE CONCRETE DELIVERY PROBLEM

• Minimize vehicle usage (u) The frequency a vehicle is used, or the
time that a vehicle is used, incl. travel
time, loading and unloading.

• Minimize wastage (w) Amount of concrete delivered to a
customer that surpasses the requested
amount.

• Minimize delay (d) Deviation from soft time window,
deviation from requested start time, or
vehicle overtime.

• Minimize outsourcing (o) When the schedule fails accommodate
deliveries for a particular customer, the
deliveries may be outsourced.

• Minimize operating costs (op) Operating costs incurred at the produc-
tion site or the construction sites, e.g.
the (weighted) time difference between
the start and end time of the production
of resp. the first and the last batch of
concrete.

• Maximize utilization balance (b) Ensure that vehicles are employed
equally often.

• Minimize travel time or distance (t)
• Minimize number of vehicles (vs) used in the solution
• Minimize number of vehicles (vc) used per customer
• Maximize number of satisfied customers (s)

COMPUTATIONAL EXPERIMENTS 83

3.9 Computational Experiments

84 THE CONCRETE DELIVERY PROBLEM

Ta
bl
e
3.
7:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
A

C
P

M
IP

SD
-h
eu
ri
st
ic

M
IP

F
ix
-O

pt
In
st
an

ce
U
B

O
bj

G
ap

T
im

e
O
bj

G
ap

T
im

e
O
bj

G
ap

T
im

e
O
bj

G
ap

T
im

e
A
_
2_

5_
1

85
85

0%
41
4

85
0%

10
55

85
0%

9
85

0%
37
5

A
_
2_

5_
2

16
0

16
0

0%
53

16
0

0%
13
9

16
0

0%
5

16
0

0%
44

A
_
2_

5_
3

10
5

10
5

0%
37

10
5

0%
39

10
5

0%
3

10
5

0%
33

A
_
2_

5_
4

10
5

10
5

0%
30
00
00

10
5

0%
10
7

10
5

0%
10

10
5

0%
53
1

A
_
2_

10
_
1

50
50

0%
21
2

50
0%

12
5

50
0%

24
50

0%
26
8

A
_
2_

10
_
2

15
0

15
0

0%
30
00
00

15
0

0%
45
87

11
0

27
%

21
14
0

7%
15
22
7

A
_
2_

10
_
3

22
0

22
0

0%
25
5

22
0

0%
37
8

22
0

0%
52

22
0

0%
26
1

A
_
2_

10
_
4

15
0

15
0

0%
30
00
00

15
0

0%
14
43

15
0

0%
50

15
0

0%
18
47

A
_
2_

15
_
1

21
5

21
5

0%
43
1

21
5

0%
61
8

21
5

0%
89

21
5

0%
13
26

A
_
2_

15
_
2

32
0

29
0

9%
30
00
00

27
5

14
%

30
00
00

24
0

25
%

15
27
5

14
%

90
67
4

A
_
2_

15
_
3

20
5

20
5

0%
30
00
00

20
5

0%
21
67

20
5

0%
12

20
5

0%
13
97
59

A
_
2_

15
_
4

25
5

25
5

0%
30
00
00

25
5

0%
49
02

25
5

0%
11

25
5

0%
49
26
6

A
_
2_

20
_
1

25
5

25
5

0%
30
00
00

25
5

0%
10
25
6

24
5

4%
52

24
5

4%
29
49
00

A
_
2_

20
_
2

27
0

27
0

0%
30
00
00

27
0

0%
76
24

27
0

0%
42

27
0

0%
20
16
15

A
_
2_

20
_
3

26
0

26
0

0%
30
00
00

26
0

0%
10
13
5

25
0

4%
27

26
0

0%
15
58
39

A
_
2_

20
_
4

38
0

35
5

7%
30
00
00

34
5

9%
30
00
00

34
5

9%
39

34
5

9%
16
23
34

A
_
3_

5_
1

20
5

20
5

0%
17
5

20
5

0%
77
6

14
5

29
%

1
20
5

0%
10
2

A
_
3_

5_
2

11
5

11
5

0%
18
7

11
5

0%
21
2

11
5

0%
0

11
5

0%
24

A
_
3_

5_
3

12
5

12
5

0%
16

12
5

0%
98

12
5

0%
0

12
5

0%
5

A
_
3_

5_
4

19
0

19
0

0%
18

19
0

0%
10
7

19
0

0%
1

19
0

0%
8

A
_
3_

10
_
1

20
5

20
5

0%
35
3

20
5

0%
27
4

20
5

0%
3

20
5

0%
22
30

A
_
3_

10
_
2

23
0

23
0

0%
26
37

23
0

0%
40
39

20
0

13
%

2
23
0

0%
23
27
8

A
_
3_

10
_
3

30
5

30
5

0%
30
00
00

30
5

0%
60
25

30
5

0%
3

30
5

0%
53
30
2

A
_
3_

10
_
4

30
0

30
0

0%
30
00
00

30
0

0%
54
3

30
0

0%
5

30
0

0%
39
4

A
_
3_

15
_
1

33
0

33
0

0%
30
00
00

33
0

0%
11
19
1

31
5

5%
44

33
0

0%
10
25
87

A
_
3_

15
_
2

42
5

39
5

7%
30
00
00

39
5

7%
30
00
00

37
5

12
%

14
39
0

8%
42
39

A
_
3_

15
_
3

33
0

29
0

12
%

30
00
00

28
0

15
%

30
00
00

28
0

15
%

9
29
0

12
%

52
87
3

A
_
3_

15
_
4

47
5

44
0

7%
30
00
00

42
0

12
%

30
00
00

39
0

18
%

16
44
0

7%
25
45
50

A
_
3_

20
_
1

34
5

34
0

1%
30
00
00

28
0

19
%

30
00
00

28
0

19
%

32
28
0

19
%

25
33
66

A
_
3_

20
_
2

41
5

41
5

0%
30
00
00

31
0

25
%

30
00
00

31
0

25
%

23
31
5

24
%

25
58
52

A
_
3_

20
_
3

36
0

33
0

8%
30
00
00

32
5

10
%

30
00
00

32
5

10
%

56
32
5

10
%

24
38
84

COMPUTATIONAL EXPERIMENTS 85

Ta
bl
e
3.
7:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
A

C
P

M
IP

SD
-h
eu
ri
st
ic

M
IP

F
ix
-O

pt
In
st
an

ce
U
B

O
bj

G
ap

T
im

e
O
bj

G
ap

T
im

e
O
bj

G
ap

T
im

e
O
bj

G
ap

T
im

e
A
_
3_

20
_
4

48
0

48
0

0%
30
00
00

43
5

9%
30
00
00

43
5

9%
35

47
0

2%
14
94
30

A
_
4_

5_
1

14
0

14
0

0%
15

14
0

0%
79

14
0

0%
0

14
0

0%
5

A
_
4_

5_
2

15
0

15
0

0%
22

15
0

0%
29
6

15
0

0%
0

15
0

0%
16

A
_
4_

5_
3

16
5

16
5

0%
16

16
5

0%
95

16
5

0%
0

16
5

0%
7

A
_
4_

5_
4

23
0

23
0

0%
21

23
0

0%
26
5

23
0

0%
0

23
0

0%
10

A
_
4_

10
_
1

31
0

31
0

0%
30
00
00

24
0

23
%

30
00
00

24
0

23
%

5
24
0

23
%

30
00
00

A
_
4_

10
_
2

37
0

37
0

0%
30
00
00

37
0

0%
51
04
1

37
0

0%
1

37
0

0%
31
2

A
_
4_

10
_
3

44
5

37
5

16
%

30
00
00

35
0

21
%

30
00
00

35
0

21
%

3
35
0

21
%

30
00
00

A
_
4_

10
_
4

28
5

28
5

0%
30
00
00

28
5

0%
65
7

28
5

0%
2

28
5

0%
40

A
_
4_

15
_
1

54
5

41
5

24
%

30
00
00

36
0

34
%

30
00
00

36
0

34
%

17
36
0

34
%

29
66
08

A
_
4_

15
_
2

61
0

47
5

22
%

30
00
00

45
5

25
%

30
00
00

45
5

25
%

31
45
5

25
%

19
22
64

A
_
4_

15
_
3

45
0

43
0

4%
30
00
00

41
0

9%
30
00
00

41
0

9%
20

41
0

9%
29
35
7

A
_
4_

15
_
4

51
5

45
5

12
%

30
00
00

43
5

16
%

30
00
00

43
5

16
%

29
43
5

16
%

28
24
56

A
_
4_

20
_
1

58
5

53
5

9%
30
00
00

48
0

18
%

30
00
00

48
0

18
%

57
48
0

18
%

19
60
31

A
_
4_

20
_
2

44
0

42
5

3%
30
00
00

40
5

8%
30
00
00

38
5

13
%

58
40
5

8%
14
77
00

A
_
4_

20
_
3

42
5

37
5

12
%

30
00
00

30
0

29
%

30
00
00

30
0

29
%

89
30
0

29
%

30
00
00

A
_
4_

20
_
4

50
0

46
5

7%
30
00
00

44
5

11
%

30
00
00

44
5

11
%

39
45
5

9%
21
52
12

A
_
5_

5_
1

20
0

20
0

0%
17

20
0

0%
11
3

20
0

0%
0

20
0

0%
7

A
_
5_

5_
2

20
0

20
0

0%
22

20
0

0%
18
7

20
0

0%
0

20
0

0%
11

A
_
5_

5_
3

22
0

22
0

0%
24

22
0

0%
23
4

22
0

0%
0

22
0

0%
14

A
_
5_

5_
4

17
5

17
5

0%
30
00
00

17
5

0%
39
0

17
5

0%
0

17
5

0%
49

A
_
5_

10
_
1

35
0

35
0

0%
62

35
0

0%
15
93

35
0

0%
3

35
0

0%
71

A
_
5_

10
_
2

34
5

34
5

0%
44

34
5

0%
83
5

34
5

0%
1

34
5

0%
36

A
_
5_

10
_
3

28
5

28
5

0%
30
00
00

28
5

0%
22
46
8

27
0

5%
3

28
5

0%
15
8

A
_
5_

10
_
4

38
0

38
0

0%
56

38
0

0%
13
00

38
0

0%
2

38
0

0%
41

A
_
5_

15
_
1

59
0

44
5

25
%

30
00
00

44
5

25
%

30
00
00

44
5

25
%

19
44
5

25
%

30
00
00

A
_
5_

15
_
2

69
5

58
0

17
%

30
00
00

49
5

29
%

30
00
00

49
5

29
%

15
52
0

25
%

24
11
35

A
_
5_

15
_
3

39
5

35
0

11
%

30
00
00

33
5

15
%

30
00
00

33
5

15
%

20
35
0

11
%

10
47
45

A
_
5_

15
_
4

52
0

50
0

4%
30
00
00

48
5

7%
30
00
00

48
5

7%
37

48
5

7%
16
82
44

A
_
5_

20
_
1

76
0

69
5

9%
30
00
00

63
5

16
%

30
00
00

63
5

16
%

49
66
5

13
%

25
33
79

A
_
5_

20
_
2

64
5

50
0

22
%

30
00
00

46
0

29
%

30
00
00

46
0

29
%

67
46
0

29
%

29
83
33

86 THE CONCRETE DELIVERY PROBLEM

Ta
bl
e
3.
7:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
A

C
P

M
IP

SD
-h
eu
ri
st
ic

M
IP

F
ix
-O

pt
In
st
an

ce
U
B

O
bj

G
ap

T
im

e
O
bj

G
ap

T
im

e
O
bj

G
ap

T
im

e
O
bj

G
ap

T
im

e
A
_
5_

20
_
3

64
5

59
5

8%
30
00
00

56
5

12
%

30
00
00

56
5

12
%

63
58
5

9%
13
63
84

A
_
5_

20
_
4

56
0

50
5

10
%

30
00
00

48
5

13
%

30
00
00

48
5

13
%

12
1

49
0

13
%

17
23
64

COMPUTATIONAL EXPERIMENTS 87

Ta
bl
e
3.
8:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
B

C
P

SD
-h
eu
ri
st
ic

In
st
an

ce
U
B

O
bj

G
ap

T
im

e
O
bj

G
ap

T
im

e
B
_
6_

20
_
1

80
5

72
5

9.
9%

60
00
00

63
5

21
.1
%

43
1

B
_
6_

20
_
2

85
5

69
0

19
.3
%

60
00
00

60
0

29
.8
%

10
3

B
_
6_

20
_
3

76
0

68
0

10
.5
%

60
00
00

65
0

14
.5
%

48
B
_
6_

20
_
4

70
5

61
5

12
.8
%

60
00
00

59
5

15
.6
%

52
B
_
6_

30
_
1

13
00

84
5

35
.0
%

60
00
00

68
0

47
.7
%

28
1

B
_
6_

30
_
2

11
40

84
5

25
.9
%

60
00
00

76
5

32
.9
%

16
0

B
_
6_

30
_
3

10
60

69
5

34
.4
%

60
00
00

63
5

40
.1
%

26
2

B
_
6_

30
_
4

10
00

62
5

37
.5
%

60
00
00

50
0

50
.0
%

35
4

B
_
6_

40
_
1

15
45

85
0

45
.0
%

60
00
00

71
0

54
.0
%

13
59

B
_
6_

40
_
2

16
35

10
15

37
.9
%

60
00
00

76
5

53
.2
%

53
4

B
_
6_

40
_
3

15
70

68
5

56
.4
%

60
00
00

62
5

60
.2
%

22
66

B
_
6_

40
_
4

14
50

79
5

45
.2
%

60
00
00

63
5

56
.2
%

85
0

B
_
6_

50
_
1

18
90

10
30

45
.5
%

60
00
00

80
5

57
.4
%

18
69

B
_
6_

50
_
2

22
50

90
0

60
.0
%

60
00
00

66
0

70
.7
%

16
87

B
_
6_

50
_
3

17
40

92
0

47
.1
%

60
00
00

64
0

63
.2
%

17
67

B
_
6_

50
_
4

20
80

98
0

52
.9
%

60
00
00

77
5

62
.7
%

25
51

B
_
8_

20
_
1

93
5

92
0

1.
6%

60
00
00

82
5

11
.8
%

44
B
_
8_

20
_
2

86
5

83
0

4.
0%

60
00
00

79
0

8.
7%

55
B
_
8_

20
_
3

65
5

65
5

0.
0%

77
47
6

62
0

5.
3%

36
B
_
8_

20
_
4

82
0

82
0

0.
0%

31
2

82
0

0.
0%

80
B
_
8_

30
_
1

10
85

93
0

14
.3
%

60
00
00

78
5

27
.6
%

25
0

B
_
8_

30
_
2

11
15

10
05

9.
9%

60
00
00

89
0

20
.2
%

28
0

B
_
8_

30
_
3

11
55

97
0

16
.0
%

60
00
00

88
5

23
.4
%

55
5

B
_
8_

30
_
4

13
20

11
20

15
.2
%

60
00
00

93
0

29
.5
%

41
0

B
_
8_

40
_
1

16
65

11
20

32
.7
%

60
00
00

10
35

37
.8
%

13
51

B
_
8_

40
_
2

14
15

11
85

16
.3
%

60
00
00

10
55

25
.4
%

77
3

B
_
8_

40
_
3

14
95

98
0

34
.4
%

60
00
00

81
5

45
.5
%

10
87

B
_
8_

40
_
4

17
30

11
00

36
.4
%

60
00
00

91
5

47
.1
%

10
24

B
_
8_

50
_
1

19
80

11
25

43
.2
%

60
00
00

93
5

52
.8
%

58
10

B
_
8_

50
_
2

19
35

11
60

40
.1
%

60
00
00

95
5

50
.6
%

46
15

B
_
8_

50
_
3

19
60

11
45

41
.6
%

60
00
00

10
15

48
.2
%

36
23

88 THE CONCRETE DELIVERY PROBLEM

Ta
bl
e
3.
8:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
B

C
P

SD
-h
eu
ri
st
ic

In
st
an

ce
U
B

O
bj

G
ap

T
im

e
O
bj

G
ap

T
im

e
B
_
8_

50
_
4

18
35

10
15

44
.7
%

60
00
00

85
5

53
.4
%

40
24

B
_
10
_
20
_
1

80
5

80
5

0.
0%

24
81
4

76
5

5.
0%

36
B
_
10
_
20
_
2

82
5

82
5

0.
0%

41
53
12

78
5

4.
8%

28
B
_
10
_
20
_
3

73
0

73
0

0.
0%

36
1

73
0

0.
0%

30
B
_
10
_
20
_
4

76
5

76
5

0.
0%

38
3

76
5

0.
0%

29
B
_
10
_
30
_
1

12
15

88
5

27
.2
%

60
00
00

84
5

30
.5
%

45
9

B
_
10
_
30
_
2

13
55

11
15

17
.7
%

60
00
00

10
45

22
.9
%

44
7

B
_
10
_
30
_
3

12
10

11
30

6.
6%

60
00
00

10
80

10
.7
%

32
7

B
_
10
_
30
_
4

12
35

11
35

8.
1%

60
00
00

10
75

13
.0
%

38
3

B
_
10
_
40
_
1

14
75

12
10

18
.0
%

60
00
00

10
75

27
.1
%

10
86

B
_
10
_
40
_
2

15
80

15
00

5.
1%

60
00
00

13
65

13
.6
%

12
95

B
_
10
_
40
_
3

16
05

13
65

15
.0
%

60
00
00

11
85

26
.2
%

12
35

B
_
10
_
40
_
4

14
55

13
45

7.
6%

60
00
00

12
15

16
.5
%

13
53

B
_
10
_
50
_
1

22
65

14
20

37
.3
%

60
00
00

13
00

42
.6
%

33
94

B
_
10
_
50
_
2

19
00

10
40

45
.3
%

60
00
00

89
0

53
.2
%

52
23

B
_
10
_
50
_
3

20
05

11
95

40
.4
%

60
00
00

97
0

51
.6
%

35
97

B
_
10
_
50
_
4

19
25

13
90

27
.8
%

60
00
00

11
60

39
.7
%

47
19

B
_
12
_
20
_
1

77
0

77
0

0.
0%

26
0

77
0

0.
0%

15
B
_
12
_
20
_
2

77
0

77
0

0.
0%

50
2

77
0

0.
0%

33
B
_
12
_
20
_
3

94
5

89
0

5.
8%

60
00
00

88
0

6.
9%

64
B
_
12
_
20
_
4

85
0

85
0

0.
0%

57
6

85
0

0.
0%

71
B
_
12
_
30
_
1

13
20

12
00

9.
1%

60
00
00

11
55

12
.5
%

32
4

B
_
12
_
30
_
2

11
85

11
85

0.
0%

91
3

11
75

0.
8%

16
8

B
_
12
_
30
_
3

95
0

95
0

0.
0%

46
56
0

91
5

3.
7%

20
9

B
_
12
_
30
_
4

11
85

11
65

1.
7%

60
00
00

11
40

3.
8%

32
7

B
_
12
_
40
_
1

14
75

13
40

9.
2%

60
00
00

13
15

10
.8
%

48
1

B
_
12
_
40
_
2

15
10

13
05

13
.6
%

60
00
00

12
75

15
.6
%

90
3

B
_
12
_
40
_
3

16
40

12
65

22
.9
%

60
00
00

11
20

31
.7
%

17
13

B
_
12
_
40
_
4

15
50

12
80

17
.4
%

60
00
00

11
60

25
.2
%

22
58

B
_
12
_
50
_
1

17
55

14
70

16
.2
%

60
00
00

14
20

19
.1
%

34
08

B
_
12
_
50
_
2

20
00

13
90

30
.5
%

60
00
00

12
45

37
.8
%

78
86

COMPUTATIONAL EXPERIMENTS 89

Ta
bl
e
3.
8:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
B

C
P

SD
-h
eu
ri
st
ic

In
st
an

ce
U
B

O
bj

G
ap

T
im

e
O
bj

G
ap

T
im

e
B
_
12
_
50
_
3

18
25

14
35

21
.4
%

60
00
00

14
15

22
.5
%

60
29

B
_
12
_
50
_
4

19
40

16
70

13
.9
%

60
00
00

14
20

26
.8
%

42
49

B
_
14
_
20
_
1

83
0

83
0

0.
0%

66
6

83
0

0.
0%

15
B
_
14
_
20
_
2

69
5

69
5

0.
0%

53
6

69
5

0.
0%

15
B
_
14
_
20
_
3

84
0

84
0

0.
0%

63
3

84
0

0.
0%

40
B
_
14
_
20
_
4

75
5

75
5

0.
0%

57
0

75
5

0.
0%

17
B
_
14
_
30
_
1

11
90

11
90

0.
0%

36
90

11
40

4.
2%

27
5

B
_
14
_
30
_
2

13
70

13
15

4.
0%

60
00
00

12
90

5.
8%

26
1

B
_
14
_
30
_
3

10
05

10
05

0.
0%

55
1

10
05

0.
0%

10
9

B
_
14
_
30
_
4

12
05

12
05

0.
0%

15
79

12
05

0.
0%

20
7

B
_
14
_
40
_
1

13
95

13
95

0.
0%

46
12

13
85

0.
7%

35
5

B
_
14
_
40
_
2

17
25

13
80

20
.0
%

60
00
00

12
75

26
.1
%

19
29

B
_
14
_
40
_
3

15
50

15
50

0.
0%

64
80
9

14
60

5.
8%

43
3

B
_
14
_
40
_
4

17
05

16
35

4.
1%

60
00
00

15
60

8.
5%

12
89

B
_
14
_
50
_
1

22
85

18
00

21
.2
%

60
00
00

16
85

26
.3
%

37
47

B
_
14
_
50
_
2

20
15

17
50

13
.2
%

60
00
00

16
45

18
.4
%

87
00

B
_
14
_
50
_
3

20
95

17
85

14
.8
%

60
00
00

16
30

22
.2
%

54
62

B
_
14
_
50
_
4

20
95

15
00

28
.4
%

60
00
00

13
50

35
.6
%

90
86

B
_
16
_
20
_
1

90
5

90
5

0.
0%

88
2

90
5

0.
0%

17
B
_
16
_
20
_
2

80
5

80
5

0.
0%

74
8

80
5

0.
0%

24
B
_
16
_
20
_
3

91
5

91
5

0.
0%

90
8

91
5

0.
0%

21
B
_
16
_
20
_
4

87
5

87
5

0.
0%

81
2

87
5

0.
0%

42
B
_
16
_
30
_
1

13
05

13
05

0.
0%

12
06
12

12
60

3.
4%

31
7

B
_
16
_
30
_
2

11
75

11
75

0.
0%

65
03

11
60

1.
3%

53
4

B
_
16
_
30
_
3

11
05

11
05

0.
0%

13
63

11
05

0.
0%

11
4

B
_
16
_
30
_
4

10
90

10
35

5.
0%

60
00
00

10
05

7.
8%

56
9

B
_
16
_
40
_
1

13
40

13
40

0.
0%

11
32

13
40

0.
0%

13
8

B
_
16
_
40
_
2

15
80

14
10

10
.8
%

60
00
00

13
85

12
.3
%

14
19

B
_
16
_
40
_
3

16
00

14
90

6.
9%

60
00
00

14
55

9.
1%

20
24

B
_
16
_
40
_
4

16
15

16
15

0.
0%

35
96

16
05

0.
6%

15
18

B
_
16
_
50
_
1

20
90

18
35

12
.2
%

60
00
00

17
35

17
.0
%

20
86

90 THE CONCRETE DELIVERY PROBLEM

Ta
bl
e
3.
8:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
B

C
P

SD
-h
eu
ri
st
ic

In
st
an

ce
U
B

O
bj

G
ap

T
im

e
O
bj

G
ap

T
im

e
B
_
16
_
50
_
2

19
30

17
75

8.
0%

60
00
00

17
05

11
.7
%

11
69

B
_
16
_
50
_
3

20
10

18
60

7.
5%

60
00
00

17
60

12
.4
%

21
63

B
_
16
_
50
_
4

19
80

19
15

3.
3%

60
00
00

18
50

6.
6%

28
31

B
_
18
_
20
_
1

82
0

82
0

0.
0%

93
5

82
0

0.
0%

24
B
_
18
_
20
_
2

74
0

74
0

0.
0%

79
9

74
0

0.
0%

16
B
_
18
_
20
_
3

77
5

77
5

0.
0%

70
4

77
5

0.
0%

15
B
_
18
_
20
_
4

84
0

84
0

0.
0%

90
0

84
0

0.
0%

17
B
_
18
_
30
_
1

10
80

10
80

0.
0%

17
27

10
80

0.
0%

15
9

B
_
18
_
30
_
2

12
05

12
05

0.
0%

20
09

12
05

0.
0%

66
B
_
18
_
30
_
3

11
55

11
55

0.
0%

16
83

11
55

0.
0%

77
B
_
18
_
30
_
4

11
25

11
25

0.
0%

17
84

11
25

0.
0%

60
B
_
18
_
40
_
1

16
70

16
70

0.
0%

43
03

16
70

0.
0%

63
3

B
_
18
_
40
_
2

16
35

16
35

0.
0%

24
09

16
35

0.
0%

36
3

B
_
18
_
40
_
3

16
10

16
10

0.
0%

38
95

16
10

0.
0%

53
9

B
_
18
_
40
_
4

16
55

15
25

7.
9%

60
00
00

14
90

10
.0
%

14
93

B
_
18
_
50
_
1

17
95

17
95

0.
0%

58
63
97

17
40

3.
1%

33
33

B
_
18
_
50
_
2

19
30

16
85

12
.7
%

60
00
00

16
30

15
.5
%

91
62

B
_
18
_
50
_
3

20
05

19
70

1.
7%

60
00
00

19
20

4.
2%

21
01

B
_
18
_
50
_
4

17
95

17
95

0.
0%

10
38
5

17
55

2.
2%

14
98

B
_
20
_
20
_
1

87
5

87
5

0.
0%

59
3

87
5

0.
0%

17
B
_
20
_
20
_
2

77
0

77
0

0.
0%

45
2

77
0

0.
0%

19
B
_
20
_
20
_
3

98
0

98
0

0.
0%

12
96

98
0

0.
0%

19
B
_
20
_
20
_
4

76
5

76
5

0.
0%

91
6

76
5

0.
0%

16
B
_
20
_
30
_
1

12
50

12
50

0.
0%

22
47

12
50

0.
0%

71
B
_
20
_
30
_
2

13
25

13
25

0.
0%

26
27

13
25

0.
0%

17
8

B
_
20
_
30
_
3

12
05

12
05

0.
0%

23
37

12
05

0.
0%

91
B
_
20
_
30
_
4

12
45

12
45

0.
0%

23
30

12
45

0.
0%

84
B
_
20
_
40
_
1

16
95

16
25

4.
1%

60
00
00

16
15

4.
7%

15
35

B
_
20
_
40
_
2

17
25

17
25

0.
0%

25
31
7

17
10

0.
9%

76
5

B
_
20
_
40
_
3

15
40

15
10

1.
9%

60
00
00

14
90

3.
2%

49
9

B
_
20
_
40
_
4

15
30

15
30

0.
0%

40
43

15
30

0.
0%

18
2

COMPUTATIONAL EXPERIMENTS 91

Ta
bl
e
3.
8:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
B

C
P

SD
-h
eu
ri
st
ic

In
st
an

ce
U
B

O
bj

G
ap

T
im

e
O
bj

G
ap

T
im

e
B
_
20
_
50
_
1

20
75

20
75

0.
0%

30
97
53

20
55

1.
0%

18
96

B
_
20
_
50
_
2

18
25

15
75

13
.7
%

60
00
00

14
95

18
.1
%

57
57

B
_
20
_
50
_
3

18
25

18
25

0.
0%

79
12

18
25

0.
0%

12
51

B
_
20
_
50
_
4

18
90

18
90

0.
0%

28
95

18
90

0.
0%

11
59

Chapter 4

A Logic Based Benders
Approach to the Concrete
Delivery Problem

Abstract

The Concrete Delivery Problem (CDP) is a complex, real world optimization
problem involving the allocation and distribution of concrete to construction
sites. The key scheduling challenge for the CDP is the need for successive
deliveries to a construction site to be sufficiently close in time. Although good
results were obtained in terms of primal solutions for the CDP as introduced
in the previous chapter, it remained difficult to close the optimality gap for
many of the instances. In an attempt to reduce this optimality gap, this chapter
presents an exact Logic Based Benders decomposition, thereby decomposing the
CDP into a master problem and a subproblem. Based on a number of problem
characteristics such as the availability of vehicles, geographical orientation
of the customers and production centers, as well as the customers’ demand
for concrete, the master problem allocates concrete to customers. Next, the
subproblem attempts to construct a feasible schedule, meeting all the routing
and scheduling constraints. Infeasibilities in the schedule are communicated
back to the master problem via a number of combinatorial inequalities (Benders
cuts). The master problem is solved through a Mixed Integer Programming

The content of this chapter is based on joint work with M. Trick, see Kinable and Trick
(2014).

93

94 A LOGIC BASED BENDERS APPROACH TO THE CONCRETE DELIVERY PROBLEM

approach, whereas the subproblem is solved via a Constraint Programming
model and a dedicated scheduling heuristic. Experiments are conducted on a
large number of problem instances, and compared against other exact methods
presented in related literature. The resulting algorithm is capable of solving
a number of previously unsolved benchmark instances to optimality and can
improve the bounds for many other instances.

4.1 Introduction

In this chapter, a logic based Benders decomposition for the CDP is presented.
The CDP, introduced in Chapter 3, comprises the allocation and distribution of
concrete to customers, under a number of routing and scheduling constraints,
while maximizing the amount of concrete delivered. Concrete is transported from
production centers to the customer’s construction sites by a set of heterogeneous
vehicles. Often, multiple deliveries for the same customer are required as the
customer’s demand exceeds the capacity of a single truck. Consequently, delivery
schedules for different trucks need to be synchronized as deliveries for the same
customer may not overlap in time. Furthermore, successive deliveries must not
differ in time too much since the concrete from an early delivery must still
be liquid when a second arrives. For a detailed description of the CDP and a
review of related works, refer to Chapter 3.
The logic based Benders procedure presented in this chapter decomposes the
CDP into a master problem and a subproblem. The master problem (MP)
allocates concrete to customers, while taking a number of resource restrictions
into consideration. The subproblem (SP) attempts to find a feasible delivery
schedule for the concrete trucks. A feasibility cut is generated and added to
the master problem whenever no such schedule exists. The master problem
and subproblem are solved iteratively, until a provable optimal (and feasible)
schedule is obtained.
In the previous chapter several solution approaches for the CDP were
investigated, including two exact approaches based on Mixed Integer and
Constraint Programming, as well as a number of heuristic approaches. The best
performance was obtained with a hybrid approach, using a dedicated scheduling
heuristic, and a CP model to improve the heuristic solutions. Although good
results were reported, the approach provided little insight as to the quality
of the solutions. Moreover, alternative approaches to compute bounds on the
optimal solution, including a Linear Programming approach could not close
the optimality gap for most instances. The approach presented in this chapter
addresses these issues, as bounds on the optimal solution are available through
the master problem.
The CDP bears strong resemblance to a number of routing and scheduling

INTRODUCTION 95

Parameter Description
P Set of concrete production sites
C Set of construction sites, also denoted as customers. |C| = n
V V = C ∪ {0} ∪ {n+ 1}
0, n+ 1 resp. the start and end depots of the trucks.
K Set of trucks
qi Requested amount of concrete by customer i ∈ C
lk Capacity of truck k ∈ K
pk Time required to empty truck k ∈ K
ai, bi Time window during which the concrete for customer i may

be delivered.
tij Time to travel from i to j, i, j ∈ V ∪ P
γ Maximum time lag between consecutive deliveries.
m(i) Lower bound on the number of deliveries required to satisfy

the demand of customer i ∈ C, i.e., m(i) = d qi
max
k∈K

(lk)e.

n(i) Upper bound on the number of deliveries required to satisfy
the demand of customer i ∈ C, i.e., n(i) = d qi

min
k∈K

(lk)e.

Table 4.1: Parameters defining the CDP

problems, including the Pickup-and-Delivery problem with Time-Windows and
Split Deliveries and the Parallel Machine Scheduling Problem with Time Lags.
Although the Benders decomposition in this work is discussed in the context of
CDP, we must note that the techniques presented are not uniquely confined
to this application. Moreover, Benders decompositions have recently been
applied to a number of related assignment, scheduling and routing problems.
Applications include Round Robin Tournament Scheduling (Rasmussen and
Trick, 2007), Tollbooth Allocation (Bai and Rubin, 2009), Parallel Machine
Scheduling (Tran and Beck, 2012), Lock Scheduling (Verstichel et al., 2013) and
Strip Packing (Côté et al., 2013).
The remainder of this chapter is structured as follows. First, Section 4.2 presents
the Benders decomposition, defining the master and subproblem in more detail,
as well as their interaction. Experiments are conducted in Section 4.3, thereby
comparing the Benders decomposition against some of the methods introduced
in the previous chapter. Finally, Section 4.4 offers the conclusions.

96 A LOGIC BASED BENDERS APPROACH TO THE CONCRETE DELIVERY PROBLEM

4.2 A logic-based Benders decomposition

To solve the CDP defined in the previous chapter, a logic-based Benders
decomposition is developed. The problem is decomposed in a master problem
and a subproblem. The master problem, guided by the objective function,
decides which customers are being serviced. To aid in this decision, a number
of high-level problem characteristics are captured in the master problem, such
as the availability of vehicles, their capacities, processing times and travel times
between the customers and production centers. For a given subset of customers
C ⊆ C selected by the master problem, the subproblem attempts to find a
feasible delivery schedule in which the demand of all customers in C is satisfied,
and all scheduling and routing constraints are met. A feasibility cut is generated
and added to the master problem, effectively forcing the master problem to
change the set C, whenever no such schedule exists. When, on the other hand,
a feasible solution to the subproblem exists, a provable optimal solution to the
CDP problem is obtained. An overview of the solution procedure is presented
in Algorithm 4.
When compared to the MIP or CP approaches presented in Chapter 3, this
decomposition approach decouples the allocation of concrete to customers from
the actual routing and scheduling problem. As a consequence, many of the
conditional constraints (big-M constraints) can be omitted or strengthened.

Algorithm 4: Combinatorial Benders Decomposition of CDP
Output: An optimal Concrete Delivery Schedule

1 repeat ← true ;
2 while repeat do
3 Solve [MP];
4 get solution (yi), i ∈ C;
5 repeat ← false ;
6 Solve [SP] for yi, i ∈ C;
7 if [SP] is infeasible then
8 repeat ← true ;
9 add feasibility cut(s) to [MP] ;

10 else
11 get solution (y, x, C);

12 return Optimal schedule (y, x, C)

A LOGIC-BASED BENDERS DECOMPOSITION 97

4.2.1 Master Problem

The master problem is defined through the following MIP model.

MP : max
∑
i∈C

qiyi (4.1)

∑
k∈K

lkzki ≥ qiyi ∀i ∈ C (4.2)

∑
i∈C

zki ≤ ∆k ∀k ∈ K (4.3)

∑
i∈S

yi ≤ |S| − 1 ∀S ∈ S, S ⊆ C (4.4)

yi ∈ {0, 1} ∀i ∈ C (4.5)

0 ≤ zki ≤ ∆ki ∀i ∈ C, k ∈ K (4.6)

Here, boolean variables yi, i ∈ C, denote whether customer i is serviced and
integer variables zki record the number of deliveries from vehicle k ∈ K to
customer i ∈ C. The auxiliary zki variables are used to produce stronger limits
on the yi variables; they are not used in the subproblem described in Section
4.2.2.
The first constraint, (4.2), links the variables yi and zki, i ∈ C, k ∈ K: a
customer is satisfied if a sufficient amount of concrete is delivered. Constraints
(4.3), (4.6) restrict the number of deliveries made by a single vehicle through
the bounds ∆ki, ∆k, for all k ∈ K, i ∈ C. ∆ki, ∆k, are resp. bounds on the
maximum number of deliveries vehicle k can make for customer i, and bounds
on the total number of deliveries a vehicle k can make. Finally, Constraints (4.4)
are the feasibility cuts obtained through the subproblem, prohibiting certain
combinations of customers.
∆ki is calculated via Algorithm 5, whereas ∆k is calculated via the recursive
Algorithm 6. The latter algorithm utilizes a sorted array of customers; a
customer i ∈ C precedes a customer j ∈ C in the array if bi < bj ∨ (bi =
bj ∧ ai ≤ aj). Computing a bound on the maximum number of deliveries a
vehicle can make, is achieved by calculating a route from the starting depot 0 to
the ending depot n+ 1 through a number of customers. At each customer, the
vehicle makes as many deliveries as possible. The exact number of deliveries it
can make for a given customer is limited by: (1) the demand of the customer, (2)
the available time to make the deliveries. In turn, the available time to perform
the deliveries is limited by the time window of the customer, the processing
time of the vehicle, and the time required to reload the vehicle. Furthermore,

98 A LOGIC BASED BENDERS APPROACH TO THE CONCRETE DELIVERY PROBLEM

whenever the vehicle completes its last delivery for a customer i at time ticompl,
deliveries for the next customer j cannot commence before ticompl + cij . The
recursive algorithm outlined in procedure 6 iterates over all possible subsets of
customers in an efficient manner. At each iteration, the algorithm tracks the
total number of deliveries made, the last location i ∈ V visited, an index to the
customer it will visit next, and the time it departed from location i ∈ V .

Algorithm 5: Calculating an upper bound on the number of deliveries vehicle
k ∈ K can make for customer i ∈ C
Input: Vehicle k ∈ K, Customer i ∈ C

1 concreteDelivered ← 0 ;
2 timeConsumed ← 0 ;
3 ∆ki ← 0 ;
4 while ai + timeConsumed + pk ≤ bi ∧ concreteDelivered < qi do
5 ∆ki ← ∆ki + 1 ;
6 concreteDelivered ← concreteDelivered + lk ;
7 timeConsumed ← timeConsumed + pk + ci,i ;
8 return ∆ki

4.2.2 Subproblem

Let yi, i ∈ C, be the optimal selection of customers obtained from problem
MP , i.e., C = {i ∈ C : yi = 1}. To assess the feasibility of this selection, a
satisfiability subproblem (SP) is solved. Whenever no feasible solution to the
subproblem exists, a cut is added to the Master problem:∑

i∈Ĉ

yi ≤ |Ĉ| − 1

,where Ĉ ⊆ C. The weakest cuts are obtained for Ĉ = C. By reducing the size
of Ĉ, stronger cuts may be obtained. The strongest cuts are based on Minimum
Infeasible Subsets. In this context, a MIS is a subset of customers that cannot
be accommodated in the same schedule; removing any of these customers from
the set would however result in a subset of compatible customers. Note however
that calculating a complete set of MIS is a difficult problem on its own.
The next paragraph outlines an exact procedure to establish the feasibility of a
set C. As this procedure is computationally expensive, we first try to solve the
subproblem through the SD-heuristic (Section 3.4). Furthermore, instead of
solving the subproblem for the entire set C at once, we first solve the problem
for a smaller set Ĉ ⊂ C. If this smaller subproblem turns out to be feasible, we

A LOGIC-BASED BENDERS DECOMPOSITION 99

Algorithm 6: Calculating an upper bound on the number of deliveries vehicle
k ∈ K can make
Input: Vehicle k ∈ K, Array of customers sortedCustomers[], sorted.
Output: ∆k

1 return maxDeliveries(k, 0, 0, 0, 0) ;
2 Function int maxDeliveries(k ∈ K, ∆k, index, i ∈ V , complTime)
3 if index = |C| then
4 return ∆k;
5 j ← sortedCustomers[index] ;

/* Determine how many deliveries vehicle k can make for
customer j */

6 concreteDelivered ← 0 ;
7 startTime ← max(aj,complTime +cij) ; /* Start time 1st delivery

for j ∈ C */
8 timeConsumed ← 0 ;
9 deliveries ← 0 ;

10 while startTime + timeConsumed + pk ≤ bj ∧ concreteDelivered < qj do
11 deliveries← deliveries + 1 ;
12 concreteDelivered ← concreteDelivered + lk ;
13 timeConsumed ← timeConsumed + pk + cjj ;
14 complTimeNew ← startTime + timeConsumed − cjj ;
15 if deliveries > 0 then
16 return max(maxDeliveries(k, ∆k+deliveries, index +1, j,

complTimeNew),
17 maxDeliveries(k, ∆k, index +1, i, complTime));
18 else
19 return maxDeliveries(k, ∆k, index +1, i, complTime);

100 A LOGIC BASED BENDERS APPROACH TO THE CONCRETE DELIVERY PROBLEM

repeatedly add customers from C to Ĉ and resolve the resulting subproblem.
A modified version of the CP model (Algorithm 8, Section 5.3) may be used to
establish the feasibility of a set C of customers:

Algorithm 7: CP subproblem
Variable definitions:

1 s = {0, 0, 0, oblig.}
2 t = {0,∞, 0, oblig.}
3 dij = {ri, di, 0, oblig.} ∀i ∈ C, j ∈ {1, . . . ,m(i)}
4 dij = {ri, di, 0, opt.} ∀i ∈ C, j ∈ {m(i) + 1, . . . , n(i)}
5 dij,k = {ri, di, pk, opt.} ∀i ∈ C, j ∈ {1, . . . , n(i)}, k ∈ K

Constraints:

6 forall i ∈ C
7 forall j ∈ {1, . . . , n(i)}
8 alternative(dij ,

⋃
k∈K d

i
jk)

9
∑
k∈K

∑
j∈{1,...,n(i)} lk· presenceOf(dijk)≥ qi

10 forall j ∈ {1, . . . , n(i)− 1}
11 endBeforeStart(dij , dij+1)
12 startBeforeEnd(dij+1, dij , −γ)
13 forall j ∈ {m(i), . . . , n(i)− 1}
14 (

∑
l∈{1..j},k∈K lk·presenceOf(dilk)< qi)→ presenceOf(dij+1,k)

15 presenceOf(dij+1)→presenceOf(dij)

16 forall k ∈ K
17 noOverlapSequence(

⋃
i∈C,j∈Di d

i
jk ∪ s ∪ t)

18 first(s,
⋃
i∈C,j∈Di d

i
jk ∪ t)

19 last(t,
⋃
i∈C,j∈Di d

i
jk ∪ s)

The CP model utilizes a number of interval variables. For each interval variable,
four parameters {a, b, d, o} are specified, where a,b indicate resp. the earliest
start time and latest completion time of the interval, and d is the minimum
length of the interval. The last parameter o dictates whether an interval must
(obligatory) or may (optional) be scheduled. For the definitions of the constraints
refer to Table 3.3 in the previous chapter.
Variables dij , i ∈ C, j ∈ {1, . . . , n(i)}, represent deliveries made for customer i.
A delivery j for customer i is made if the corresponding interval variable dij is
present; otherwise it is absent. Variables dij,k, i ∈ C, j ∈ {1, . . . , n(i)}, k ∈ K,
link deliveries and the vehicles performing these deliveries. Clearly, each delivery

COMPUTATIONAL EXPERIMENTS 101

j ∈ {1, . . . , n(i)} for a customer i ∈ C can only be made by a single vehicle
(Line (8)), and the amount of concrete delivered for a customer should cover
its demand (Line (9)). Deliveries for the same customer may not overlap (Line
(11)) and must respect a maximum time lag γ (Line (12)). Similarly, deliveries
made by a single vehicle cannot overlap in time and must comply with travel
times (Line (17)). Trucks must start their trip at the starting depot, represented
by variable s, and must return to some ending depot identified by variable t
after the deliveries are completed (Lines (18), (19)). Finally, Line (15) ensures
that deliveries are made in order, and Line (14) tightens the link between the
dij and dijk variables.

4.2.3 Generating an initial set of cuts

Before invoking the Benders procedure, first a number of initial cuts are
computed and added to thet set S in the master problem. These cuts are
generated by enumerating all Minimum Infeasible Subsets consisting of up to
three customers. In addition, the best-fit heuristic (Algorithm 2 in Chapter 3)
may be used to compute an additional set of cuts. The constructive heuristic is
initialized with an ordered set of customers. The heuristic schedules deliveries
for these customers in an iterative fashion, where the time of a delivery and
the vehicle performing the delivery are determined via a number of heuristic
criteria. If at some point, the heuristic fails to schedule the next delivery for a
customer due to the lack of an available vehicle, the heuristic would normally
remove this customer from the schedule and continue with the next customer.
Instead of simply removing the customer from the schedule, an additional check
is performed. Given the subset of customers Ĉ which have received concrete
in the partially completed heuristic schedule, an exact algorithm, e.g., the CP
model from Section 4.2.2, is used to determine whether there exists a feasible
solution where each of the customers in Ĉ is satisfied. If no such schedule
exist, a cut is generated for the customers in Ĉ and the heuristic removes the
customer it could not satisfy from the schedule. If, on the other hand, the exact
approach is capable of finding a feasible schedule satisfying all customers in Ĉ,
the heuristic continues from the schedule generated by the exact method.
Naturally, the approach outlined in the previous paragraph may be repeated
for several orderings of the customers.

4.3 Computational Experiments

To assess the performance of the Benders procedure, a number of experiments
are conducted on the data sets introduced in Section 3.6.1 (available online

102 A LOGIC BASED BENDERS APPROACH TO THE CONCRETE DELIVERY PROBLEM

(Kinable and Wauters, 2013)). The results of these experiments are reported in
Tables 4.2, and 4.3. In these tables, the first column provides the instance name,
following a "W_x_y_z" naming convention, where W identifies the data set, x
is the number of vehicles, y is the number of customers and z is the number of
concrete production stations. For each instance, we computed an initial feasible
solution using the CP procedure from Section 3.3.2. These solutions, reported
in the second column, are used to warm-start the Benders procedure. The next
5 columns provide data on our Benders procedure:
- obj: The objective of the best (feasible) solution obtained through

the Benders procedure.
- iCuts: The number of cuts added initially (Section 4.2.3)
- cuts: The number of cuts added during the Benders procedure

(Section 4.2.2)
- c-time: The Time required to obtain the initial master problem, in

seconds. This time is limited to 5 minutes, excluding the
generation of the Minimum Infeasible subsets.

- s-time: The Time required to solve the Benders problem. For data set
A, this time is limited to 10 minutes, and for data set B 15
minutes.

In Section 3.6 bounds on the optimal solutions are reported. These bounds
are computed through four different procedures, but for each instance only the
strongest bound is provided. The four different procedures are:

• Optimal MIP solution (when available)

• Optimal CP solution (when available)

• LP relaxation, strengthened with cuts from all Minimum Infeasible Subsets
(MIS) of size 2 (Section 3.5).

• Solution to the MIP problem consisting of the objective function (4.1)
and all cuts generated from MIS of size k (Constraint (4.4)), where k = 3
for data set A (Section 3.5).

The strongest of these bounds is reported in column ’bound*’. Column ’LP’
gives the objective value of the LP relaxation of the MIP model (Equations
(3.21)-(3.34) in Chapter 3), strengthened with the default cuts added by Cplex
12.5 and all MIS of up to size 3. The gaps are computed with respect to the
objective in column obj 1. Finally, the last two columns in the table provide

1Note: the computations in this chapter are performed on a different machine than the
computations from Chapter 3; to ensure consistency, all computations in a chapter are
performed on the same machine. However, as a consequence, the reported gaps in this chapter
may be different from the gaps in the previous chapter.

CONCLUSION 103

the bounds obtained through the Benders procedure.
When comparing the bounds attained through our Benders procedure with
the LP-bounds, we can observe that the LP based bounds are significantly
weaker. The average gap between the LP bounds and the best primal solutions
amounts to 9.26%, whereas the Benders procedure produces an average gap of
1.81%. This gap is also smaller than the average gap (3.62%) obtained from the
bounding procedures from Chapter 3. In fact, none of the bounds computed
through the Benders procedure are weaker than the bounds reported in column
bound*.
In summary, we reduced the average gap for the instances in data set A from
3.72% to 1.81%, 19 instances had their bounds improved, and 11 new optimal
solutions were found. For almost 65% of the instances, the optimal solutions
were already obtained at the first iteration of the master problem, i.e., no
additional cuts had to be generated.
The instances in data set B are significantly harder to solve than the instances
in data set A. Table 4.3 shows the results obtained for the instances up to
10 vehicles; no improvements could be made to the remaining instances. For
the instances in Table 4.3, the average gap induced by the Benders bounds is
10.08%, opposed to 11.32% from the bounding procedures discussed in Chapter 3.
Furthermore, optimality was attained for two additional instances; 21 instances
had their bounds improved.
Future attempts to improve the Benders decomposition approach should be
targeted at improving the runtime of the subproblem, as this procedure takes
the largest amount of time. Especially for the larger instances, solving the
subproblem is challenging.

4.4 Conclusion

In this chapter, a Logic Based Benders decomposition which decouples the CDP
into a master problem and a subproblem is presented. The master problem
allocates concrete to customers, whereas the subproblem handles the routing
and scheduling of the concrete delivery trucks. By decomposing the problem,
part of the complexity is shifted to the subproblem. Furthermore, dedicated
procedures may be used to solve these problems. Here, we solve the master
problem through MIP, whereas the subproblem is solved through a dedicated
scheduling heuristic and a CP model discussed in Chapter 3. Because the
subproblem does not have to deal with the allocation of concrete as this is being
handled by the master problem, we simplified and strengthened the latter CP
model, thereby significantly improving its performance.
Computing bounds for CDP is a non-trivial task. Linear Programming-based
bounds are generally very weak (see Section 3.6), as the problem has a large

104 A LOGIC BASED BENDERS APPROACH TO THE CONCRETE DELIVERY PROBLEM

number of conditional constraints. Furthermore, exact approaches based
on CP often provide little insight as to the quality of the solution. Our
Benders decomposition may however provide a viable alternative. Extensive
computational tests show that the bounds computed through the Benders
decomposition are consistently stronger than the bounds from Section 3.6,
which where obtained by aggregating the bounds of four different procedures.
By improving the bounds for a large number of instances, and simultaneously
improving several primal solutions, we were able to solve a number of previously
unsolved benchmark instances to optimality. To further enhance the performance
of this Benders procedure, one would have to find a way to speed up the
subproblem. One possible direction would be to decouple the subproblem
even further, for example by fixing more variables in the master problem. Or,
one could try to replace the current subproblem by a relaxation of the exact
subproblem, which is easier to solve. Using this relaxation, it could still be
possible to add a number of cuts to the master problem, thereby refining the
master problem, with significantly less computational effort. Finally, one could
also look into alternative decomposition approaches for CDP. One possible
example is provided in Appendix A.

CONCLUSION 105

Ta
bl
e
4.
2:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
A

B
en

de
rs

de
co

m
po

si
tio

n
LP

B
ou

nd
*

B
en

de
rs

In
st

an
ce

iO
bj

ob
j

iC
ut

s
cu

ts
c-

tim
e

s-
tim

e
bo

un
d

ga
p

bo
un

d
ga

p
bo

un
d

ga
p

A
_

2_
5_

1
85

85
28

0
1

0
85

0%
85

0%
85

0%
A

_
2_

5_
2

16
0

16
0

13
0

0
0

16
0

0%
16

0
0%

16
0

0%
A

_
2_

5_
3

10
5

10
5

26
0

0
0

10
5

0%
10

5
0%

10
5

0%
A

_
2_

5_
4

10
5

10
5

3
0

30
0

0
10

5
0%

10
5

0%
10

5
0%

A
_

2_
10

_
1

50
50

14
2

0
3

0
50

0%
50

0%
50

0%
A

_
2_

10
_

2
15

0
15

0
21

5
0

9
0

15
0

0%
15

0
0%

15
0

0%
A

_
2_

10
_

3
22

0
22

0
15

4
0

3
0

23
0

4%
22

0
0%

22
0

0%
A

_
2_

10
_

4
15

0
15

0
17

9
0

9
0

16
5

9%
15

0
0%

15
0

0%
A

_
2_

15
_

1
21

5
21

5
56

7
0

10
0

22
5

4%
21

5
0%

21
5

0%
A

_
2_

15
_

2
29

0
29

0
37

3
2

25
2

32
0

9%
32

0
9%

29
0

0%
A

_
2_

15
_

3
20

5
20

5
50

2
0

77
0

21
5

5%
20

5
0%

20
5

0%
A

_
2_

15
_

4
25

5
25

5
34

8
0

11
0

30
0

15
%

25
5

0%
25

5
0%

A
_

2_
20

_
1

25
5

25
5

54
9

0
38

0
26

0
2%

25
5

0%
25

5
0%

A
_

2_
20

_
2

27
0

27
0

57
5

2
33

0
28

5
5%

27
0

0%
27

0
0%

A
_

2_
20

_
3

26
0

26
0

65
1

0
15

0
28

0
7%

26
0

0%
26

0
0%

A
_

2_
20

_
4

35
5

35
5

36
5

36
0

1
49

0
28

%
38

0
7%

35
5

0%
A

_
3_

5_
1

20
5

20
5

0
0

3
0

20
5

0%
20

5
0%

20
5

0%
A

_
3_

5_
2

11
5

11
5

9
0

1
0

11
5

0%
11

5
0%

11
5

0%
A

_
3_

5_
3

12
5

12
5

0
0

0
0

12
5

0%
12

5
0%

12
5

0%
A

_
3_

5_
4

19
0

19
0

0
0

0
0

19
0

0%
19

0
0%

19
0

0%
A

_
3_

10
_

1
20

5
20

5
10

0
0

5
0

20
5

0%
20

5
0%

20
5

0%
A

_
3_

10
_

2
23

0
23

0
80

0
14

0
23

0
0%

23
0

0%
23

0
0%

A
_

3_
10

_
3

30
5

30
5

11
4

0
23

0
30

5
0%

30
5

0%
30

5
0%

A
_

3_
10

_
4

30
0

30
0

11
5

0
5

0
30

0
0%

30
0

0%
30

0
0%

A
_

3_
15

_
1

33
0

33
0

48
5

0
35

0
33

0
0%

33
0

0%
33

0
0%

A
_

3_
15

_
2

39
5

39
5

26
8

3
18

1
53

0
25

%
42

5
7%

39
5

0%
A

_
3_

15
_

3
29

0
29

0
37

8
23

49
7

43
0

33
%

33
0

12
%

29
0

0%

106 A LOGIC BASED BENDERS APPROACH TO THE CONCRETE DELIVERY PROBLEM

Ta
bl
e
4.
2:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
A

B
en

de
rs

de
co

m
po

si
tio

n
LP

B
ou

nd
*

B
en

de
rs

In
st

an
ce

iO
bj

ob
j

iC
ut

s
cu

ts
c-

tim
e

s-
tim

e
bo

un
d

ga
p

bo
un

d
ga

p
bo

un
d

ga
p

A
_

3_
15

_
4

44
0

44
0

10
15

30
6

49
55

0
20

%
47

5
7%

44
0

0%
A

_
3_

20
_

1
34

0
34

0
66

7
1

35
0

15
7

41
0

17
%

34
5

1%
34

0
0%

A
_

3_
20

_
2

41
5

41
5

28
0

51
6

0
51

0
19

%
41

5
0%

41
5

0%
A

_
3_

20
_

3
35

5
36

0
48

0
32

4
0

42
5

15
%

36
0

0%
36

0
0%

A
_

3_
20

_
4

48
0

48
0

31
0

31
9

0
59

0
19

%
48

0
0%

48
0

0%
A

_
4_

5_
1

14
0

14
0

0
0

0
0

14
0

0%
14

0
0%

14
0

0%
A

_
4_

5_
2

15
0

15
0

0
0

0
0

15
0

0%
15

0
0%

15
0

0%
A

_
4_

5_
3

16
5

16
5

0
0

0
0

16
5

0%
16

5
0%

16
5

0%
A

_
4_

5_
4

23
0

23
0

0
0

0
0

23
0

0%
23

0
0%

23
0

0%
A

_
4_

10
_

1
31

0
31

0
11

4
0

46
0

31
0

0%
31

0
0%

31
0

0%
A

_
4_

10
_

2
37

0
37

0
48

0
4

0
39

0
5%

37
0

0%
37

0
0%

A
_

4_
10

_
3

37
5

37
5

85
1

42
2

47
0

20
%

44
5

16
%

37
5

0%
A

_
4_

10
_

4
28

5
28

5
23

0
1

0
28

5
0%

28
5

0%
28

5
0%

A
_

4_
15

_
1

41
5

41
5

7
2

30
7

60
0

57
0

27
%

54
5

24
%

54
5

24
%

A
_

4_
15

_
2

47
5

47
5

4
18

31
2

60
0

65
0

27
%

61
0

22
%

52
0

9%
A

_
4_

15
_

3
43

0
43

0
36

8
0

99
0

49
5

13
%

45
0

4%
43

0
0%

A
_

4_
15

_
4

49
0

49
0

5
0

30
4

60
0

51
5

5%
51

5
5%

51
5

5%
A

_
4_

20
_

1
52

5
52

5
3

8
30

2
60

0
66

0
20

%
58

5
10

%
57

5
9%

A
_

4_
20

_
2

42
5

42
5

49
7

4
38

1
49

0
13

%
44

0
3%

42
5

0%
A

_
4_

20
_

3
37

5
37

5
40

12
82

8
60

0
53

0
29

%
42

5
12

%
40

5
7%

A
_

4_
20

_
4

46
5

46
5

18
17

18
01

3
59

0
21

%
50

0
7%

46
5

0%
A

_
5_

5_
1

20
0

20
0

0
0

0
0

20
0

0%
20

0
0%

20
0

0%
A

_
5_

5_
2

20
0

20
0

0
0

0
0

20
0

0%
20

0
0%

20
0

0%
A

_
5_

5_
3

22
0

22
0

0
0

0
0

22
0

0%
22

0
0%

22
0

0%
A

_
5_

5_
4

17
5

17
5

9
0

2
0

17
5

0%
17

5
0%

17
5

0%
A

_
5_

10
_

1
35

0
35

0
0

0
0

0
35

0
0%

35
0

0%
35

0
0%

A
_

5_
10

_
2

34
5

34
5

0
0

0
0

34
5

0%
34

5
0%

34
5

0%

CONCLUSION 107

Ta
bl
e
4.
2:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
A

B
en

de
rs

de
co

m
po

si
tio

n
LP

B
ou

nd
*

B
en

de
rs

In
st

an
ce

iO
bj

ob
j

iC
ut

s
cu

ts
c-

tim
e

s-
tim

e
bo

un
d

ga
p

bo
un

d
ga

p
bo

un
d

ga
p

A
_

5_
10

_
3

28
5

28
5

25
0

5
0

30
0

5%
28

5
0%

28
5

0%
A

_
5_

10
_

4
38

0
38

0
0

0
0

0
38

0
0%

38
0

0%
38

0
0%

A
_

5_
15

_
1

45
5

45
5

2
4

30
8

60
0

59
0

23
%

59
0

23
%

51
0

11
%

A
_

5_
15

_
2

58
0

58
0

0
0

30
1

60
0

69
5

17
%

69
5

17
%

69
5

17
%

A
_

5_
15

_
3

35
0

35
0

2
3

57
6

60
0

43
5

20
%

39
5

11
%

38
5

9%
A

_
5_

15
_

4
50

0
50

0
3

0
12

18
60

0
60

0
17

%
52

0
4%

52
0

4%
A

_
5_

20
_

1
70

0
70

5
25

2
61

24
5

53
6

90
0

22
%

76
0

7%
70

5
0%

A
_

5_
20

_
2

55
5

55
5

15
4

38
8

60
0

81
0

31
%

64
5

14
%

63
0

12
%

A
_

5_
20

_
3

59
5

59
5

8
16

30
2

60
0

69
5

14
%

64
5

8%
61

5
3%

A
_

5_
20

_
4

52
0

52
0

13
2

35
5

60
0

70
5

26
%

56
0

7%
55

7.
5

7%
AV

G
9.

26
%

3.
72

%
1.

81
%

O
pt

im
al

28
41

52

108 A LOGIC BASED BENDERS APPROACH TO THE CONCRETE DELIVERY PROBLEM

Ta
bl
e
4.
3:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
B

B
en

de
rs

de
co

m
po

si
tio

n
LP

B
ou

nd
*

B
en

de
rs

In
st

an
ce

iO
bj

ob
j

iC
ut

s
cu

ts
c-

tim
e

s-
tim

e
bo

un
d

ga
p

bo
un

d
ga

p
bo

un
d

ga
p

B
_

6_
20

_
1

72
5

72
5

0
10

2
30

1
35

6
80

5
10

%
80

5
10

%
72

5
0%

B
_

6_
20

_
2

70
0

70
0

0
31

30
0

90
0

85
5

18
%

85
5

18
%

83
0

16
%

B
_

6_
20

_
3

67
5

67
5

0
0

30
0

90
0

76
0

11
%

76
0

11
%

76
0

11
%

B
_

6_
20

_
4

61
5

61
5

0
29

30
0

90
0

70
5

13
%

70
5

13
%

68
0

10
%

B
_

6_
30

_
1

86
0

86
0

0
1

30
0

90
0

13
00

34
%

13
00

34
%

12
90

33
%

B
_

6_
30

_
2

85
0

85
0

0
34

30
0

90
0

11
40

25
%

11
40

25
%

11
05

23
%

B
_

6_
30

_
3

72
5

72
5

0
12

0
30

1
90

0
10

60
32

%
10

60
32

%
10

35
30

%
B

_
6_

30
_

4
62

5
62

5
2

1
30

2
90

0
10

00
38

%
10

00
38

%
91

3.
33

32
%

B
_

6_
40

_
1

83
5

83
5

0
23

30
2

90
0

15
45

46
%

15
45

46
%

14
31

.1
1

42
%

B
_

6_
40

_
2

10
45

10
45

0
33

30
1

90
0

16
35

36
%

16
35

36
%

14
73

.7
5

29
%

B
_

6_
40

_
3

73
5

73
5

11
79

31
5

90
0

15
70

53
%

15
70

53
%

11
91

.6
7

38
%

B
_

6_
40

_
4

75
0

75
0

2
9

30
5

90
0

14
50

48
%

14
50

48
%

10
95

32
%

B
_

6_
50

_
1

10
10

10
10

0
22

30
5

90
0

18
90

47
%

18
90

47
%

14
90

32
%

B
_

6_
50

_
2

95
5

95
5

2
25

30
7

90
0

22
50

58
%

22
50

58
%

14
95

36
%

B
_

6_
50

_
3

92
0

92
0

1
16

31
1

90
0

17
40

47
%

17
40

47
%

12
95

29
%

B
_

6_
50

_
4

10
00

10
00

1
0

38
5

90
0

20
80

52
%

20
80

52
%

13
95

28
%

B
_

8_
20

_
1

92
0

92
0

0
1

30
0

89
7

93
5

2%
93

5
2%

92
0

0%
B

_
8_

20
_

2
85

0
85

0
0

0
30

0
90

0
86

5
2%

86
5

2%
86

5
2%

B
_

8_
20

_
3

65
5

65
5

0
0

29
3

0
65

5
0%

65
5

0%
65

5
0%

B
_

8_
20

_
4

82
0

82
0

0
0

69
0

82
0

0%
82

0
0%

82
0

0%
B

_
8_

30
_

1
92

0
92

0
0

0
30

0
90

0
10

85
15

%
10

85
15

%
10

85
15

%
B

_
8_

30
_

2
10

05
10

05
0

0
30

0
90

0
11

15
10

%
11

15
10

%
11

15
10

%
B

_
8_

30
_

3
97

5
97

5
0

4
30

0
90

0
11

55
16

%
11

55
16

%
11

40
14

%
B

_
8_

30
_

4
11

10
11

10
0

0
30

0
90

0
13

20
16

%
13

20
16

%
13

20
16

%
B

_
8_

40
_

1
11

80
11

80
0

1
30

1
90

0
16

65
29

%
16

65
29

%
16

55
29

%
B

_
8_

40
_

2
11

90
11

90
0

6
30

0
90

0
14

15
16

%
14

15
16

%
14

15
16

%
B

_
8_

40
_

3
99

5
99

5
0

0
30

0
90

0
14

95
33

%
14

95
33

%
14

95
33

%

CONCLUSION 109

Ta
bl
e
4.
3:

C
om

pu
ta
tio

na
lr

es
ul
ts

D
at
a
Se

t
B

B
en

de
rs

de
co

m
po

si
tio

n
LP

B
ou

nd
*

B
en

de
rs

In
st

an
ce

iO
bj

ob
j

iC
ut

s
cu

ts
c-

tim
e

s-
tim

e
bo

un
d

ga
p

bo
un

d
ga

p
bo

un
d

ga
p

B
_

8_
40

_
4

11
05

11
05

0
0

30
1

90
0

17
30

36
%

17
30

36
%

17
30

36
%

B
_

8_
50

_
1

11
30

11
30

0
11

32
3

90
1

19
80

43
%

19
80

43
%

19
25

41
%

B
_

8_
50

_
2

11
50

11
50

0
0

30
4

90
0

19
35

41
%

19
35

41
%

19
35

41
%

B
_

8_
50

_
3

12
10

12
10

0
0

30
2

90
0

19
60

38
%

19
60

38
%

19
60

38
%

B
_

8_
50

_
4

11
05

11
05

0
0

30
3

90
0

18
35

40
%

18
35

40
%

17
40

36
%

B
_

10
_

20
_

1
80

5
80

5
0

0
11

6
0

80
5

0%
80

5
0%

80
5

0%
B

_
10

_
20

_
2

82
5

82
5

0
0

23
7

0
82

5
0%

82
5

0%
82

5
0%

B
_

10
_

20
_

3
73

0
73

0
0

0
4

0
73

0
0%

73
0

0%
73

0
0%

B
_

10
_

20
_

4
76

5
76

5
0

0
1

0
76

5
0%

76
5

0%
76

5
0%

B
_

10
_

30
_

1
91

0
91

0
0

0
30

0
90

0
12

15
25

%
12

15
25

%
12

15
25

%
B

_
10

_
30

_
2

11
70

11
70

0
0

30
0

90
0

13
55

14
%

13
55

14
%

13
55

14
%

B
_

10
_

30
_

3
11

35
11

35
0

0
30

0
90

0
12

10
6%

12
10

6%
12

10
6%

B
_

10
_

30
_

4
11

65
11

65
0

0
30

0
90

0
12

35
6%

12
35

6%
12

35
6%

B
_

10
_

40
_

1
12

10
12

10
0

0
30

1
90

0
14

75
18

%
14

75
18

%
14

75
18

%
B

_
10

_
40

_
2

14
85

14
85

0
0

30
1

90
0

15
80

6%
15

80
6%

15
80

6%
B

_
10

_
40

_
3

13
75

13
75

0
0

30
2

90
0

16
05

14
%

16
05

14
%

16
05

14
%

B
_

10
_

40
_

4
13

65
13

65
0

0
30

1
90

0
14

55
6%

14
55

6%
14

55
6%

B
_

10
_

50
_

1
14

25
14

25
0

0
30

8
90

0
22

65
37

%
22

65
37

%
22

65
37

%
B

_
10

_
50

_
2

10
10

10
10

0
0

30
2

90
0

19
00

47
%

19
00

47
%

17
45

42
%

B
_

10
_

50
_

3
12

60
12

60
0

0
30

2
90

0
20

05
37

%
20

05
37

%
20

05
37

%
B

_
10

_
50

_
4

14
55

14
55

0
0

30
3

90
1

19
25

24
%

19
25

24
%

19
25

24
%

AV
G

23
.8

3%
23

.8
3%

20
.5

1%
O

pt
im

al
6

6
8

Chapter 5

Integrating CP, LP and
Decision Diagrams for the
Time-Dependent TSP

Abstract

This chapter presents an integrated method to solve the Time-Dependent
TSP, a variation on the well-known TSP where travel times between two
cities depend on the order the cities are visited. The method proposed
relies on a generic Constraint Programming (CP) approach. To strengthen
the CP model, both continuous and discrete relaxations of the problem are
added. The discrete relaxation is obtained via a Multivalued Decision Diagram
(MDD). Through the MDD, bounds on the optimum solution can be computed,
enabling efficient pruning of the search space, which improves the domain
propagation for the CP model. This chapter furthermore shows how MDDs
can be used to consolidate the CP model by integrating structural information
from other problem relaxations, such as a Linear Programming relaxations
through the use of additive bounding. Experiments indicate that the integrated
method outperforms traditional methods based on pure CP or Mixed Integer
Programming. The proposed method is sufficiently generic to render it applicable
to a variety of related sequencing problems.

The content of this chapter is based on joint work with A. Cire and W-J. Van Hoeve,
Tepper School of Business, Carnegie Mellon University.

111

112 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

5.1 Introduction

The Time-Dependent Traveling Salesman Problem (TD-TSP) is a generalization
of the Traveling Salesman Problem (TSP) where the travel time between cities
depends on the order in which the cities are visited (sequence-dependent)
or varies over time (time-dependent). The sequence-dependent variant has
applications in the domain of machine scheduling (Picard and Queyranne
(1978); Bigras et al. (2008)), whereas the time-dependent case naturally extends
to routing problems taking common travel patterns such as congestions or
delays during rush hours into consideration (e.g., Cordeau et al. (2012)). In this
work the focus is on the sequence-dependent variant; unless stated otherwise,
any future references to the TD-TSP implicitly assume the sequence-dependent
variant.
The TD-TSP problem involves finding a Hamiltonian path of minimal cost
through a sequence of n+ 1 cities, where the travel time between two cities i, j
is given by δi,j,t, where t is the position of city i in the sequence. In contrast
to the TSP problem, for which instances of up to 100,000 nodes are solved
to optimality, only recently attempts were made to solve TD-TSP instances
containing up to 100 cities (Abeledo et al., 2013). In the past, several solution
approaches for the TD-TSP problem have been proposed, including a number
of approaches relying on Mixed Integer Programming (MIP). For an overview,
refer to Picard and Queyranne (1978); Gouveia and Voss (1995); Miranda-Bront
et al. (2010); Abeledo et al. (2013). A disadvantage of these MIP models is
that it is notoriously difficult to incorporate additional constraints such as
precedence relations or time windows, without deteriorating the quality of the
models, due to the use of conditional (big-M) constraints. In this work, we study
a Constraint Programming (CP) based approach for the TD-TSP problem. CP
is well-known for solving complex scheduling problems, including problems with
a large number of precedence relations, and has a number of advantages over
MIP in terms of expressiveness and search heuristics. However, in general pure
CP is not very suitable for solving sequencing problems like the TSP. This is
an immediate consequence of the fact that the problem structure, expressed in
terms of global constraints, is entirely decoupled from the objective function;
due to the lack of effective bounding procedures, the CP search recedes to an
inefficient exhaustive enumeration of the search space. To counteract these
issues, Multivalued Decision Diagrams (MDDs) have been incorporated in the
TD-TSP CP model through the use of a dedicated global constraint, which has
recently been proven highly effective for other sequencing problems (Ciré and
van Hoeve, 2013). MDDs provide a compact encoding of the solution space
through which both lower and upper bounds on the optimum solution can be
computed. Consequently, MDDs enable computing bounds on the objective
value at each node of the CP search tree, thereby providing a means to effectively

THE TD-TSP PROBLEM DESCRIPTION 113

prune the search tree and to guide the CP search. Moreover, the structural
information encoded in the MDDs is used to perform domain propagation.
For many optimization problems, different relaxations are available based on
various combinatorial structures of the underlying problem. Fischetti and
Toth (1989) proposed an additive bounding procedure which combines these
different relaxations to obtain a valid lower bound for the problem at hand.
The resulting bound is generally stronger than the strongest bound obtainable
from the individual relaxations. In this work, we will demonstrate how additive
bounding can be used to include bounds obtained through for example Linear
Programming relaxations into the MDDs. The resulting approach is interesting
because it opens up opportunities to integrate well-studied relaxations for
sequencing problems such as LP relaxations, the Held-Karp relaxation (Held
and Karp, 1970), Assignment Relaxation, Lagrangian relaxations into the
general framework of CP.

The remainder of this chapter is structured as follows. First section 5.2 gives
a formal description of the TD-TSP. Next, a number of mathematical models,
including two MIP models and a CP model, are provided in Section 5.3. Section
5.4 introduces MDDs and discusses how they are integrated in a CP model for the
TD-TSP. Next, Section 5.5 focuses on additive bounding, and how to consolidate
the bounds into the MDD. Computational experiments are conducted in Section
5.6, thereby comparing the MIP and CP approaches. Finally, Section 5.9 reflects
on some of the limitations and issues encountered in the current implementation
of the MDDs and the CP model. Section 5.10 offers the conclusion.

5.2 The TD-TSP problem description

Similar to related works, the TD-TSP in this chapter is treated as a scheduling
problem, instead of a routing problem. Let J = {0} ∪ {1, . . . , n− 1} ∪ {n} be a
set of n+ 1 jobs that need to be scheduled on a single machine, where job 0
must be the first job, and job n must be the last job in the sequence. Between
each pair of jobs i, j ∈ J , a sequence dependent setup time δ(i,j,t), 0 ≤ t < n, is
specified. In contrast to traditional scheduling problems, the setup time does
not only depend on the jobs i, j but also on the position t when the job is
performed. The TD-TSP problem may be modeled on a Time-Space network
as shown in Figure 5.1, where each node (i, t) represents a job i ∈ J performed
at position t. Note that in the TD-TSP, in contrast to the traditional TSP
problem, the arc costs on arcs ((i, t1), (j, t1 + 1)) and ((i, t2), (j, t2 + 1)) are not
necessarily the same.

114 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

0

1,1

2,1

3,1

4,1

1,2

2,2

3,2

4,2

1,3

2,3

3,3

4,3

1,4

2,4

3,4

4,4

5

Figure 5.1: Time Space Network (source: Picard and Queyranne (1978))

5.3 Mathematical Models

This Section formally defines the TD-TSP problem through a number of
mathematical models. First a CP model is presented, followed by a number of
MIP models.

5.3.1 Constraint Programming Model

The TD-TSP problem can be straightforwardly defined through the following
CP model:
Algorithm 8: CP model for TD-TSP
Variable definitions:

1 π0 = 0
2 πj ∈ {1, . . . , n− 1} ∀j = {1, . . . , n− 1}
3 πn = n
4 obj ∈ {0, . . . ,∞}

Objective:
5 Min obj

Constraints:
6 obj =

∑n−1
i=0 δ(πi,πi+1,i)

7 AllDiff(π0, π1, . . . , πn)

The permutation variables πi, i = 0, . . . , n represent the jobs performed at
each position i in the sequence. The AllDiff constraint ensures that each job
is performed exactly once. Note that δ(πi,πi+1,i) uses variables as subscripts.
These are efficiently handled by ’element’ constraints in CP.

MATHEMATICAL MODELS 115

5.3.2 Mixed Integer Programming models

The following MIP model, first presented by Picard and Queyranne (1978), is a
network flow model on the Time-Space network depicted in Figure 5.1.

MIP1 : min
n∑
j=1

δ(0,j,0)x
0
0,j +

∑n−2
t=1

∑n−1
i=1

∑n−1
j=1
j 6=i

δ(i,j,t)x
t
ij+ (5.1)

n∑
i=1

δ(i,n,n−1)x
n−1
i,n

s.t.
n−1∑
j=1

x0
0j = 1 (5.2)

x0
0j =

n∑
k=1
k 6=j

x1
jk ∀j = 1, . . . , n− 1 (5.3)

n−1∑
i=1
i 6=j

xtij =
n−1∑
k=1
k 6=j

xt+1
jk ∀t = 1, . . . , n− 3, j = 1, . . . , n− 1 (5.4)

n−1∑
i=1
i 6=j

xn−2
ij = xn−1

j,n ∀j = 1, . . . , n− 1 (5.5)

x0
0j +

n−1∑
t=1

n−1∑
i=1
i 6=j

xtij = 1 ∀j = 1, . . . , n− 1 (5.6)

x0
0j ∈ {0, 1} ∀j = 1, . . . , n− 1, (5.7)

xn−1
i,n ∈ {0, 1} ∀i = 1, . . . , n− 1, (5.8)

xtij ∈ {0, 1} ∀i, j = 1, . . . , n− 1, i 6= j, (5.9)

t = 1, . . . , n− 2

In this model binary variables xtij represent whether job j ∈ J is performed
immediately after job i ∈ J , which is performed at time t. Constraint (5.2)
ensures that flow leaves the source node. Next, Constraints (5.3)-(5.5) implement
flow preservation. Finally, Constraints (5.6) ensure that each job is only

116 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

performed once.
Several possible approaches to strengthen this model are presented in Gouveia
and Voss (1995) and Abeledo et al. (2013). Most notably, the Time-Dependent
TSP can be mapped to the traditional time-independent TSP through the
following relation:

xij =
n∑
t=1

(xtij + xtji) ∀i, j = 0, . . . , n (5.10)

Consequently, all valid inequalities known for the TSP can also be used to
strengthen this TD-TSP model.
A second MIP model, shown to be stronger than the aforementioned model
(Gouveia and Voss, 1995), is as follows:

MIP2 : min
n−1∑
j=1

δ(0,j,0)yj,1 +
∑n−1
i=1

∑n−1
j=1
j 6=i

∑n−2
t=1 δ(i,j,t)x

t
ij+

n−1∑
i=1

δ(i,n,n−1)yi,n−1 (5.11)

s.t.
n−1∑
t=1

yit = 1 ∀i = 1, . . . , n− 1 (5.12)

yit =
n−1∑
j=1
j 6=i

xtij ∀i = 1, . . . , n− 1, t = 1, . . . , n− 2 (5.13)

yjt =
n−1∑
i=1
i 6=j

xt−1
ij ∀j = 1, . . . , n− 1, t = 2, . . . , n− 1 (5.14)

yit ∈ {0, 1} ∀i = 1, . . . , n− 1, t = 1, . . . , n− 1 (5.15)

xtij ∈ {0, 1} ∀i, j = 1, . . . , n− 1, i 6= j, (5.16)

t = 1, . . . , n− 2

In this model, the binary variables xtij are identical to the ones in model
MIP1. In addition, there are binary variables yit indicating whether job i ∈ J
is performed at time t. Constraints (5.12) ensure that all jobs are executed.
Constraints (5.13), (5.14) link the variables.

REINFORCING THE CP MODEL 117

5.3.3 Column Generation Model

Another model for the TD-TSP, frequently occurring in literature (Picard and
Queyranne, 1978; Abeledo et al., 2013; Bigras et al., 2008), is as follows:

MIP3 : min
∑
p

δpzp (5.17)

∑
p

api zp = 1 ∀i = 1, . . . , n (5.18)

zp ∈ {0, 1} ∀p ∈ P (5.19)

Set P is the set of all feasible source-sink (s-t) paths on the Time-Space network
(Figure 5.1), i.e., all paths representing a valid sequence of jobs. Binary variables
zp indicate whether path p ∈ P is selected. Parameters δp record the cost (total
travel time) incurred on path p ∈ P , and parameter api denotes whether a
particular job i is present on path p. Clearly, in an optimal solution to MIP3,
only one zp variable equals one, whereas all the other variables equal zero.
Due to the exponentially large set of paths P , this problem is typically solved
through column generation. Abeledo et al. (2013); Bigras et al. (2008) consider
a relaxed version of this model in which set P may also contain paths visiting
the same job multiple times. As a consequence, the pricing subproblem consists
of finding the shortest (s-t) path, which can be efficiently accomplished by a
dynamic program in polynomial time. To strengthen the model, only paths
without k-cycles, for k = 2, are generated. Furthermore a number of valid
inequalities are added to the master problem.

5.4 Reinforcing the CP model

Although the CP model presented in Section 5.3.1 offers a valid formulation
for the TD-TSP, the model is too weak to solve any reasonably sized problem
instances. This can be attributed to a number of causes:

1. Each constraint in CP is comparable to a black box, implementing its
own domain filtering mechanism. Communication between constraints is
solely achieved through the variable domains. All structural relationships
among variables are projected onto the variable domains. Since variable
domains are merely represented as a set of numbers, a lot of structural
information is lost and communication between constraints will be very
limited.

118 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 5

Job Parameters

Job Release (rj) Deadline (dj) Processing (pj)

j1 2 20 3
j2 0 14 4
j3 1 14 2

Setup Times

j1 j2 j3

j1 - 3 2
j2 3 - 1
j3 1 2 -

(a) Instance data.

..r.

u1

.

u2

.

u3

.

u4

.

u5

.

t

.

j2

.

j3

.

j1

.

j3

.

j2

.

j1

.

j3

.

j1

.

j2

.

π1

.

π2

.

π3

(b) MDD.

Figure 1 Example of an MDD for a scheduling problem.

4. MDD Representation

For the purpose of this work, an MDD M is a directed acyclic graph whose paths represent the

feasible orderings of J . The set of nodes of M are partitioned into n+1 layers L1, . . . ,Ln+1, where

layer Li corresponds to the i-th position πi of the feasible orderings encoded by M, for i = 1, . . . , n.

Layers L1 and Ln+1 are singletons representing the root r and the terminal t, respectively. An arc

a = (u, v) of M is always directed from a source node u in some layer Li to a target node v in the

subsequent layer Li+1, i ∈ {1, . . . , n}. We write ℓ(a) to indicate the layer of the source node u of

the arc a (i.e., u ∈ Lℓ(a)).

With each arc a of M we associate a label val(a) ∈ J that represents the assignment of the

job val(a) to the ℓ(a)-th position of the orderings identified by the paths traversing a. Hence, an

arc-specified path (a1, . . . , an) from r to t identifies the ordering π = (π1, . . . , πn), where πi = val(ai)

for i = 1, . . . , n. Every feasible ordering is identified by some path from r to t in M, and conversely

every path from r to t identifies a feasible ordering.

Example 1. We provide an MDD representation for a sequencing problem with three jobs j1,

j2, and j3. The instance data is presented in Figure 1a, and the associated MDD M is depicted in

Figure 1b. No precedence constraints are considered. There are 4 feasible orderings in total, each

identified by a path from r to t in M. In particular, the path traversing nodes r, u2, u4, and t

represents a solution where jobs j3, j2, and j1 are performed in this order. The completion times

for this solution are cj1 = 15, cj2 = 9, and cj3 = 3. Note that we can never have a solution where j1

is first on the machine, otherwise either the deadline of j2 or j3 would be violated. Hence, there is

no arc a with val(a) = j1 directed out of r. �

Figure 5.2: Example of an MDD
(Source: Ciré and van Hoeve (2013)).

Figure 5.3: Calculating sum of setup
times on an MDD. The πi, i = 1, 2, 3
variables are the permutation variables
associated with each layer. Each arc is
associated with a job (j1, j2, j3). In

addition, the cost of traversing an arc
is stated for each arc.

2. The AllDiff constraint only ensures that each job is scheduled exactly
once, but does not take the objective function into consideration, limiting
the effectiveness of the domain filtering.

3. The CP solver has little to no means to derive strong bounds on the
optimum solution, prohibiting effective pruning of the CP search tree.

To alleviate these issues, Ciré and van Hoeve (2013) have proposed a method to
strengthen CP models for sequencing problems with Decision Diagrams, thereby
significantly improving the solver’s performance on a variety of sequencing
problems. Extending on this work, Section 5.4.1 discusses Decision Diagrams
in the context of TD-TSP. Next, Section 5.4.2 presents an extended CP model,
strengthened by the MDDs.

5.4.1 Decision Diagrams for the TD-TSP

A Multivalued Decision Diagram (MDD) is a directed acyclic graph in which
the nodes are partitioned into n+ 1 layers L = L0, . . . , Ln. An example of an
MDD is given in Figure 5.2. Each arc a ∈ A in the graph is associated with a

REINFORCING THE CP MODEL 119

particular job j ∈ J , denoted val(a). A path from the root node s in layer L0 to
the sink node t in layer Ln encodes a sequence of jobs. The number of nodes in a
layer |Li| denotes the width of the layer; the width of the MDD is the maximum
width among all layers. An MDD is exact if each s− t path corresponds to a
feasible sequence, and all feasible paths are encoded in the graph. An MDD
is relaxed if, next to all feasible paths, also a number of infeasible paths are
present, i.e., a relaxed MDD encodes a superset of all feasible orderings.
In an exact MDD, the optimal ordering with respect to the objective that
minimizes the total sum of time-dependent setup times (Equation (5.1)), can
be found in polynomial time in the size of the MDD (Ciré and van Hoeve,
2013). Let val(a) ∈ J be the job associated with a particular arc a = (u, v).
Furthermore, `(a) ∈ L is the layer containing the tail of arc a, in(u) the set of
arcs incoming in node u, out(u) the set of arcs leaving node u. Note that there
is a one-to-one correspondence between the position of a job in the sequence,
and the layers: an arc a = (u, v) in an (s, t) path corresponds to a job val(a)
at position `(a) in the sequence. Recall that δi,j,t represents the time required
to travel from i to j when city i occurs at position t in the sequence. A cost
ca, associated with each arc a = (u, v), is defined by the following recursive
relation:

ca =

0 if l(a) = L0

min
a′∈in(u)

{ca′ + δ(val(a′),val(a),l(a′))} otherwise (5.20)

The minimum sum of time-dependent setup times is given by:

min
a∈in(t)

ca (5.21)

The optimal path corresponding with this objective cost can be recovered by
traversing the tree from t to s, thereby following back the arcs that were selected
in Equation (5.20).

Example Let the time-dependent setup times δ(i,j,t), i, j ∈ J , t = 0, 1 for a set
of jobs J = {j1, j2, j3} be given by the following relation: δ(i,j,t) = δ(i,j) + t+ 1,
where δ(i,j) are the setup times defined as:

j1 j2 j3

j1 - 2 3
j2 4 - 5
j3 6 7 -

The exact MDD in Figure 5.3 specifies for each arc a = (u, v) the val(a) and
ca, where ca is calculated via Equation (5.20). For example, the cost of arc
((1, 0), (2, 0)) is given by δ(1,2,0) = 3, and the cost of arc ((2, 0), (3, 0)) is given

120 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

(a) Relaxed MDD
(width=1)

(b) Relaxed MDD
(width=2)

(c) Exact MDD
(width=3)

Figure 5.4: MDDs of different width

by min{δ(2,3,1) + 3, δ(1,3,1) + 5} = 10. The optimal path equals π = 1, 2, 3 and
has objective value 10.

Typically, an MDD provides a compact representation of all feasible orderings of
jobs. However, for many instances, an exact MDD is often too large to process
efficiently, or to fit into memory. To limit the size of the MDD, a restriction on
the width of the MDD is enforced. Figure 5.4b gives an example of an MDD
with limited width. Note that for this example, there does not exist an exact
MDD when the width is limited to 1 or 2. The procedure to calculate the
minimum sum of time-dependent setup times in an MDD as described in the
previous paragraph remains valid for relaxed MDDs. However, instead of the
optimum solution, a lower bound on the optimum solution is obtained. The
width of the MDD can be used to control the quality of the bound.

Constructing MDDs

Following the approaches outlined by Ciré and van Hoeve (2013), an MDD for
the TD-TSP can be constructed via an iterative procedure. This procedure first

REINFORCING THE CP MODEL 121

generates a relaxed MDD of width one, as depicted in 5.4a. Next, the MDD is
strengthened by applying two elementary operations: filtering and refinement.
These operations were first introduced by Andersen et al. (2007).
In the filtering process, infeasible arcs are identified and removed from the MDD.
Informally stated, an arc can be eliminated under the following conditions:

• Filtering invalid permutations. An arc can be removed if all paths through
this arc are infeasible. For example in Figure 5.4a, all arcs with val(a) = 0
below node (1, 0) may be removed as any path starting from the root
node already contains job 0, and no job may occur more than once in a
feasible permutation.

• Objective based filtering. Given is an upper bound on the optimal solution,
for example a feasible but not necessarily optimal sequence with objective
value z. An arc can be removed if all (s-t) paths through this arc have a
cost higher than z.

The filtering conditions based on invalid permutations can be formalized as
follows (Ciré and van Hoeve, 2013). Define for each node v in the MDD the
set All↓v as the set of arc labels that appear in every path from the root node r
to node v. Similarly, define Some↓v as the union the arc labels encountered in
the paths from the root node r to node v. Mathematically, All↓v and Some↓v
are defined as:

All↓root = Some↓root = ∅ (5.22)

All↓v =
⋂

a=(u,v)∈in(v)

(All↓u ∪ {val(a)}) (5.23)

Some↓v =
⋃

a=(u,v)∈in(v)

(Some↓u ∪ {val(a)}) (5.24)

Analogous, All↑v and Some↑v which are computed from the sink node s of the
MDD are defined as:

All↑sink = Some↑sink = ∅ (5.25)

All↑u =
⋂

a=(u,v)∈out(v)

(All↑v ∪ {val(a)}) (5.26)

Some↑u =
⋃

a=(u,v)∈out(v)

(Some↑v ∪ {val(a)}) (5.27)

122 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

An arc a = (u, v) is removed (filtered) from the MDD if any of the following
conditions hold:

val(a) ∈ All↓u (5.28)

|Some↓u| = `(a) ∧ val(a) ∈ Some↓u (5.29)

val(a) ∈ All↑v (5.30)

|Some↑v| = n− `(a) ∧ val(a) ∈ Some↑v (5.31)

|Some↓u ∪ {val(a)} ∪ Some↑v| < n (5.32)

For a proof of correctness of these filtering conditions, refer to Ciré and van
Hoeve (2013). Finally, the filtering condition based on the objective function is
stated mathematically as follows. For a given arc a = (u, v), let c↓a be the cost
of the cheapest partial ordering represented by a path from the root node to
node v through arc a, i.e.,:

c↓a =

0 if a ∈ out(root)

min
a′∈in(u)

val(a)6=val(a′)

{c↓a′ + δ(val(a′),val(a),l(a′))} otherwise (5.33)

Analogous, define c↑a as:

c↑a =

0 if a ∈ in(t)

min
a′∈out(v)

val(a)6=val(a′)

{c↑a′ + δ(val(a),val(a′),l(a))} otherwise (5.34)

An arc a = (u, v) is removed if the following condition holds:

c↓a + c↑a > z (5.35)

where z is a valid upper bound on the objective value. In this work, z is the
cost of the best incumbent integer solution.
The bound derived from the MDD can be directly communicated to the CP
solver through the following constraint:

obj ≥ min
a∈in(t)

c↓a (5.36)

where obj is a variable that takes the value of the objective function.

Recall that a relaxed MDD encodes a superset of all feasible orderings because
an exact representation of the solution space is often unmanageable. Intuitively,

REINFORCING THE CP MODEL 123

a relaxed MDD can be made exact by splitting nodes; compare for example
the relaxed MDD in Figure 5.4a and the exact MDD in Figure 5.4c. A node
can be split if the resulting nodes are non-equivalent. More precisely, a node
u can be split if there is a job j ∈ J that appears in some paths from the
root node to node u, but not in all paths, i.e., j ∈ Some↓u \All↓u. For example,
node (2, 1) in Figure 5.4b could be split into two nodes as job 1 meets the
aforementioned criteria. Refinement consists of identifying such nodes and
splitting them into two or more non-equivalent nodes. Note that this process
must always obey the maximum allowed width of the MDD. In practice, there
are often more candidate nodes to refine than the width of the MDD permits.
Hence, a refinement order needs to be determined, thereby prioritizing certain
nodes in the refinement process.
A node u in the MDD is exact if there does not exist a job j ∈ J s.t.
j ∈ Some↓u \ All↓u or Some↓u = All↓u. Furthermore, a layer Li in the MDD
is exact if all nodes in the layer are exact nodes, and if all layers L0, . . . , Li−1
are also exact layers. Finally, as shown by Ciré and van Hoeve (2013), a job
j ∈ J has exactly one position in all orderings identified by the MDD iff there
does not exist a node u in the MDD s.t. j ∈ Some↓u \All↓u. The latter notion is
used to determine the order in which the nodes in the MDD are refined. For
a pre-defined ordered set of jobs S = j1, j2, . . . , jn, first refine all nodes u in
the MDD for which j1 ∈ Some↓u \All↓u, then continue with the nodes for which
j2 ∈ Some↓u \All↓u, and so on.
Refinement is performed layer-by-layer in a top-down fashion. At each
layer, and for each job j in the ordered set of jobs S, the nodes in the set
{u : j ∈ Some↓u \ All↓u} are refined until the maximum width of the MDD is
reached, or until there are no more nodes to refine. In this work, S is greedily
determined as follows. Initially, let S be an empty set. For each j ∈ J \ S,
determine the average setup time to all other jobs k ∈ J \ S \ {j} over all
possible positions in the sequence. The job j with the largest average setup
time is selected and added to set S. This procedure is repeated until all jobs
are ordered (i.e., |S| = |J |). This procedure ensures that jobs with large setup
times to other jobs have a higher priority to be represented as exact activities,
which intuitively should lead to stronger bounds in the MDD.

5.4.2 CP model with MDD

The CP model from Section 5.3 is modified as follows to accommodate for the
MDD:

124 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

Variable definitions:
1 π0 = 0
2 πi = 1, . . . , n− 1 ∀i = 1, . . . , n− 1
3 πn = n
4 acti = {ri = 0, di =∞, li = 0} ∀i = 1, . . . , n− 1
5 obj = 0, . . . ,∞

Objective:
6 Min obj

Constraints:
7 AllDiff(π0, π1, . . . , πn)
8 MDDConstr(π0, . . . , πn,act0, . . . , actn, width, obj,obj_func,dist)

Similar to the CP model from Section 5.3, this model has a set of permutation
variables πi, i = 0, . . . , n. In addition a set of activities, representing the jobs,
are specified 1. This allows for a richer model in which also durations of the jobs,
as well as release times and deadlines can be specified. In the context of the
TD-TSP, a job i ∈ J does not have any restrictions in terms of the release times
(ri), deadlines (di), or duration (li). To incorporate the MDD discussed in the
previous section into the CP model, a new global constraint, MDDConstr(. . .),
is implemented. As input, the constraint takes the permutation and activity
variables, the maximum allowed width of the MDD, an objective variable, an
objective function and the Time-Dependent distance matrix. Here the objective
function is the sum of setup times; the model does not explicitly state an
objective function as this is taken care of by the MDD. In addition, the MDD
will ensure that the activities, represented as intervals, do not overlap in time,
and that the permutation variables correspond with the activities whenever they
are scheduled. Finally, note that the MDDConstr propagator does not guarantee
domain consistency w.r.t. the AllDiff constraint, so the domain propagator of
the AllDiff constraint may filter additional values. Hence it is computationally
advantageous for the CP solver to have the AllDiff constraint in the model.
Whenever the propagator of the MDD constraint is invoked, first, the domains
of the πi, i = 0, . . . , n variables and the MDD are synchronized, thereby possibly
removing arcs from the MDD. For example, if a job j ∈ J is fixed to position i
in the sequence, i.e., πi = j, then all arcs a ∈ A with `(a) 6= i and val(a) = j
can be removed from the MDD. Similarly, all arcs a ∈ A : `(a) = i, val(a) 6= j
may be removed from the MDD. Finally, an arc a = (u, v) may be removed
if either node u has no incoming, or node v has no outgoing arcs. After the
MDD propagator has synchronized the domains of the decision variables with
the MDD, the MDD is filtered and refined as discussed in the previous section.

1Note: the activities in this model are modeled as interval variables, see Section 3.3.2 for
details.

STRENGTHENING MDD PROPAGATION THROUGH ADDITIVE BOUNDING 125

Finally, the domains of the variables are re-evaluated, thereby filtering values
which are deemed infeasible by the MDD.

5.5 Strengthening MDD propagation through addi-
tive bounding

For most optimization problems, several relaxations exist based on different
underlying (combinatorial) problem structures. For instance, for the well-known
TSP, common relaxations are the Held-Karp relaxation (Held and Karp, 1970),
Assignment relaxation, or Linear Program (LP) relaxation. To obtain a valid
bound on the optimum solution, one could simply compute a bound from each
relaxation, and return the strongest resulting bound. The disadvantage of such
an approach is that the structural information of only one relaxation is used.
To resolve this issue Fischetti and Toth (1989) proposed an additive bounding
procedure, thereby aggregating the information from different relaxations to
obtain a valid bound for the given problem, which is at least as strong as the
strongest bound obtained from the individual relaxations. This Section first
recapitulates on the additive bounding procedure proposed in Fischetti and
Toth (1989). Next, we show how the additive bounding procedure can be used
to incorporate information from various relaxations into the structure of an
MDD. The resulting approach provides a number of merits:

• Integrating information from different problem relaxations into the
structure of the MDD enables additional filtering conditions.

• The MDD provides an interface to incorporate structural information
from various problem relaxations into the CP model.

• MDDs provide a discrete relaxation of the solution space; Linear
Programming based relaxations on the other hand produce a continuous
relaxation. Projecting structural information from a continuous relaxation
onto a discrete structure potentially improves the overall strength of the
relaxation, because it resembles the solution space of the original problem
better; after all, all feasible solution to a sequencing problem are discrete.

5.5.1 Additive bounding

The additive bounding procedure proposed by Fischetti and Toth (1989) offers
a means to compute a valid lower bound for a problem P by combining

126 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

multiple bounding procedures. Given a set of r (lower) bounding procedures
L1, L2, . . . , Lr for a given problem P , where P is stated as:

P : min cx (5.37)

x ∈ F (P) (5.38)

where c, x are resp. a row vector of costs, and a column vector of n variables,
and F (P) ⊂ {x ∈ Rn : x ≥ 0}. Suppose that for a given cost vector c, lower
bound procedure Lk(c), k = 1, . . . , r, produces a valid lower bound µk, as well
as a residual cost row vector ck s.t.:

ck ≥ 0 (5.39)

µk + ckx ≤ cx (5.40)

The additive bounding procedure outlined by Fischetti and Toth (1989) starts
by calculating bound µ1 and residual cost vector c1 through bounding procedure
L1(c), where c is the original cost vector in the problem instance. Next, Lk(ck−1)
for k = 2, . . . , r can be solved recursively, thereby obtaining bounds µ1, . . . , µr.
Fischetti and Toth (1989) prove that µ = µ1 + · · ·+ µr is a valid lower bound
for problem P .

5.5.2 Projecting information from the additive bounding
procedure onto the MDD

After solving the additive bounding procedure, one obtains a bound µ and a final
residual cost vector cr. In case of the TD-TSP, the cost vector c corresponds
with a cost per time-dependent arc, i.e., c = δ(i, j, t). The residual cost vector
cr defines a residual cost (δr(i, j, t)) per time-dependent arc (i, j, t). For a given
arc a = (u, v) in the MDD, let SR↓a be the sum of reduced costs incurred by the
least cost partial ordering represented by a path from the root node to node
v, through arc a, in the MDD. In this context, the least cost partial ordering
is computed in terms of reduced costs, not in terms of the original arc costs.
Mathematically stated, we have:

SR↓a =

0 if a ∈ out(root)

min
a′∈in(u)

val(a)6=val(a′)

{SR↓a′ + δr(val(a′),val(a),l(a′))} otherwise (5.41)

COMPUTATIONAL EXPERIMENTS 127

Analogous, SR↑a is calculated as:

SR↑a =

0 if a ∈ in(t)

min
a′∈out(v)

val(a)6=val(a′)

{SR↑a′ + δr(val(a),val(a′),l(a))} otherwise (5.42)

Based on the assumption in equation (5.40), we can now state the following
filtering condition for the MDD. An arc a = (u, v) must be eliminated from the
MDD if:

SR↓a + SR↑a + µ > z (5.43)

where z is a valid upper bound on the objective value. Note that the left hand
side of this equation may be rounded up if the original distance matrix contains
integer values only.
The bound derived from the MDD can be directly communicated to the CP
solver through the following constraint:

obj ≥ min
a∈in(t)

SR↓a + µ (5.44)

where obj is a variable that takes the value of the objective function.

Finally note that the additive bounding procedure can be executed as a
preprocessing step because the bounds are independent of the MDD or the CP
model. Consequently, apart from executing the additive bounding procedure,
the computational overhead is very limited: the MDD must only keep track of
the SR↓a and SR↑a values.
In this work we only consider a single bounding procedure, namely the LP
relaxation obtained from the first MIP model (equations (5.1)-(5.9)) in Section
5.3. Additional bounding procedures may be incorporated in future work.

5.6 Computational Experiments

Analogous to Abeledo et al. (2013), we conducted experiments on a number
of TD-TSP instances, derived from well-known TSPLib instances. The time-
dependent setup times δ(i,j,t) are defined as (n − t)δ̇(i,j), where δ(i,j) is the
distance between cities i and j as specified in the TSPLib instance. Furthermore,
the source node is always the first city defined in the TSPLib file. The "dTSP"
instances have been obtained through personal communication with one of the
authors of Abeledo et al. (2013). Experiments in this work are performed on
a system with an Intel Xeon CPU E5420 2.50GHz, having 4Gb RAM, using
CPLEX and CP Optimizer version 12.4.

128 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

To establish a baseline, we first compare the Mixed Integer Programming based
models, i.e. the two MIP models from Sections 5.3.2-5.3.3, based on the models
from resp. Picard and Queyranne (1978); Gouveia and Voss (1995); Abeledo
et al. (2013). Note that, in contrast to the generic methods described in this
chapter, the method presented by Abeledo et al. (2013) is a dedicated solution
approach; we add a comparison to their results merely for reference purposes.
The results are reported in Table 5.1. The column Inst gives the instance name
of the TSPLib instance used to create the TD-TSP instance. The number
in each name corresponds with the number of jobs in each instance. Column
bBound gives the strongest known lower bound for each instance. Numbers
in bold are optimal solutions. Per method, the best objective, the optimality
gap (gap between the objective and the bBound) are reported. Each method
is allotted a runtime of at most 30 minutes per instance. The actual runtime
in seconds is given in column t(s). In addition, for the two compact MIP
formulations, Picard and Queyranne (1978); Gouveia and Voss (1995), we also
report the strongest bound derived after a runtime of 30 minutes, and the gap
(lpGap) between this bound and the objective value. The results in the last
three columns in Table 5.1 have been derived from (Abeledo et al., 2013); these
computations are performed on a different machine and the authors imposed a
maximum runtime of 48 hours per instance.
While comparing the first two generic MIP approaches, no clear winner can be
indicated; neither of the models dominates the other model in terms of objective
or bounds. The third method, the dedicated column generation approach,
produces the best results, thereby solving the majority of instances (35/38) to
optimality and obtaining tight gaps (average 1.64%) for the remaining instances,
albeit with a longer runtime.
Table 5.2 compares two CP approaches. The first approach is based on the pure
CP model from Section 5.3.1, whereas the second approach (CP abMDD) utilizes
the CP model from Section 5.4.2, strengthened with the MDD and the additive
bounding procedure outlined in Section 5.5. The pure CP model (Section 5.3.1)
could not be solved directly through CP Optimizer as the 3-dimensional element
constraints in the objective function required too much memory. Therefore,
the objective function min

∑
i∈n−1 δ(πi,πi+1,i) was replaced by its equivalent

min
∑
i∈n−1(n − i)δ(πi,πi+1). Furthermore, CP Optimizer has no support for

multi-dimensional element constraints so, in the implementation, the distance
matrix is represented as a 1-dimensional array; n auxiliary variables are used to
index the array. To run the CP model, the default search options were used (8
workers). For the CP abMDD approach, Depth-First Search was used, as well as
extended inference, 1 worker and an MDD width of 128. In addition, for all
the MDD based approaches in this section, a search phase is defined, thereby
ensuring that CP optimizer only branches on the job ordering, and not on, for
example, the start times of the interval variables. Finally, note that although

COMPUTATIONAL EXPERIMENTS 129

it is possible to compute a lower bound on each node of the CP search tree
through the MDD, CP Optimizer does not allow us to iterate over the remaining
open nodes after the time limit is reached; hence, it is not possible to obtain a
valid lower bound once the CP search terminates.
The pure CP approach (Table 5.2) is unable to solve any instances to optimality.
Even though it finds feasible solutions for all instances, the optimality gap is very
large (average gap 45.02%). In contrast, the CP abMDD approach performs very
well. Through this approach, 12 instances could be solved to optimality, and an
average optimality gap of 6.49% was realized. This is significantly better than
the two generic MIP approaches compared in Table 5.1: Picard and Queyranne
(1978) and Gouveia and Voss (1995) obtained average optimality gaps of resp.
33.37% and 31.64%, while only solving 6 instances to optimality. Furthermore,
the largest instance in our data set that could be solved to optimality within
the alloted time limit (1800 seconds, see column t(s) for runtime in seconds)
through MIP contains 29 vertices (bayg29), versus 14 for the pure CP approach
(gr17), and 42 (swiss42) in CP abMDD.
In Figure 5.5 the influence of the size of the MDD is evaluated. These
experiments are conducted without additive bounding. When increasing the
size of the MDD, the number of fails decrease (Fig 5.5a), i.e., the number of
branches in the CP search tree that did not yield a solution. However, when
the size is chosen too large, the computation time increases (Fig 5.5b). Overall,
an MDD width of 64 or 128 yields the best results. Unless stated otherwise,
the remaining experiments will use an MDD width of 128.
The remaining three subsections will focus resp. on the impact of the refinement
order, different branching strategies, and the impact of the additive bounding
procedure.

130 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

Ta
bl
e
5.
1:

M
IP

co
m
pa

ris
on

P
ic
ar
d
an

d
Q
ue

yr
an

ne
(1
97
8)

G
ou

ve
ia

an
d
V
os
s
(1
99
5)

A
be

le
do

et
al
.
(2
01
3)

in
st

bB
ou

nd
ob

j
bo

un
d

lp
G
ap

ga
p

t(
s)

ob
j

bo
un

d
lp
G
ap

ga
p

t(
s)

ob
j

t(
s)

ga
p

bu
rm

a1
4

20
31

5
20
31
5

20
31
5

0.
00
%

0.
00
%

0
20
31
5

20
31
5

0.
00
%

0.
00
%

1
0

0
-

gr
17

12
99

4
12
99
4

12
99
4

0.
00
%

0.
00
%

2
12
99
4

12
99
4

0.
00
%

0.
00
%

1
12
99
4

2
0.
00
%

gr
21

24
34

5
24
34
5

24
34
5

0.
00
%

0.
00
%

4
24
34
5

24
34
5

0.
00
%

0.
00
%

3
24
34
5

4
0.
00
%

gr
24

13
79

5
13
79
5

13
79
5

0.
00
%

0.
00
%

22
13
79
5

13
79
5

0.
00
%

0.
00
%

26
13
79
5

5
0.
00
%

ba
ys
29

26
86

2
26
86
2

26
86
2

0.
00
%

0.
00
%

54
4

26
86
2

26
86
2

0.
00
%

0.
00
%

14
0

26
86
2

8
0.
00
%

ba
yg

29
22

23
0

22
23
0

22
23
0

0.
00
%

0.
00
%

53
8

22
23
0

22
23
0

0.
00
%

0.
00
%

25
5

22
23
0

15
0.
00
%

dT
SP

40
.0

10
31

1
11
50
6

87
94
.9
1

23
.5
6%

10
.3
9%

18
00

11
44
6

88
69
.7
6

22
.5
1%

9.
92
%

18
01

10
31
1

67
0

0.
00
%

dT
SP

40
.1

98
07

11
24
9

79
73
.1
4

29
.1
2%

12
.8
2%

18
01

10
76
1

84
46
.4
5

21
.5
1%

8.
87
%

18
01

98
07

82
0.
00
%

dT
SP

40
.2

95
25

11
27
5

81
58
.2
7

27
.6
4%

15
.5
2%

18
00

97
32

84
72
.7
9

12
.9
4%

2.
13
%

18
01

95
25

75
0.
00
%

dT
SP

40
.3

91
56

10
02
8

75
96
.2
9

24
.2
5%

8.
70
%

18
01

11
61
4

76
76
.4
4

33
.9
0%

21
.1
6%

18
01

91
56

36
0.
00
%

dT
SP

40
.4

90
79

10
54
2

82
32
.9

21
.9
0%

13
.8
8%

18
01

10
00
4

82
82
.5
4

17
.2
1%

9.
25
%

18
02

90
79

31
0.
00
%

dT
SP

50
.0

12
68

0
14
76
1

11
06
4

25
.0
5%

14
.1
0%

18
00

14
82
5

11
16
6.
5

24
.6
8%

14
.4
7%

18
85

12
68
0

61
0.
00
%

da
nt
zi
g4
2

12
52

8
14
46
3

10
41
8.
9

27
.9
6%

13
.3
8%

18
00

13
02
9

11
43
7.
6

12
.2
1%

3.
85
%

18
01

12
52
8

28
0.
00
%

sw
is
s4
2

22
32

7
23
30
2

19
56
7.
6

16
.0
3%

4.
18
%

18
00

22
59
5

19
95
5.
8

11
.6
8%

1.
19
%

18
01

22
32
7

20
0.
00
%

at
t4
8

20
93

20
23
01
84

18
59
55

19
.2
1%

9.
06
%

18
00

21
72
93

19
24
10

11
.4
5%

3.
67
%

18
01

20
93
20

10
3

0.
00
%

gr
48

10
23

78
11
83
46

84
18
8.
5

28
.8
6%

13
.4
9%

18
00

11
80
06

87
04

3.
4

26
.2
4%

13
.2
4%

18
00

10
23
78

76
0.
00
%

hk
48

24
79

26
27
78
65

22
21
40

20
.0
5%

10
.7
7%

18
00

27
67
82

22
40
76

19
.0
4%

10
.4
3%

18
01

24
79
26

12
4

0.
00
%

dT
SP

50
.1

12
85

3
15
41
5

10
65
4

30
.8
9%

16
.6
2%

18
01

13
55
9

10
86
8.
7

19
.8
4%

5.
21
%

18
00

12
85
3

27
5

0.
00
%

dT
SP

50
.2

12
35

7
16
20
6

99
52
.6
6

38
.5
9%

23
.7
5%

18
00

14
68
0

10
40
9.
9

29
.0
9%

15
.8
2%

18
01

12
35
7

78
0.
00
%

dT
SP

50
.3

12
72

2
16
82
6

10
58
7.
7

37
.0
8%

24
.3
9%

18
00

13
96
8

10
45
8.
5

25
.1
3%

8.
92
%

18
00

12
72
2

13
8

0.
00
%

dT
SP

50
.4

13
28

9
17
11
4

10
83
9.
1

36
.6
7%

22
.3
5%

18
00

15
19
8

10
75
3.
5

29
.2
4%

12
.5
6%

18
00

13
28
9

81
9

0.
00
%

ei
l5
1

10
17

8
11
83
9

86
88
.4

26
.6
1%

14
.0
3%

18
00

10
93
2

90
70
.5
6

17
.0
3%

6.
90
%

18
00

10
17
8

33
0.
00
%

be
rl
in
52

14
37

21
15
75
38

11
71
06

25
.6
6%

8.
77
%

18
00

19
71
85

11
61
03

41
.1
2%

27
.1
1%

18
00

14
37
21

10
4

0.
00
%

br
az
il5

8
51

23
61

15
30
46
2

41
30
56

73
.0
1%

66
.5
2%

18
00

11
54
07
3

40
97
73

64
.4
9%

55
.6
0%

18
00

51
23
61

63
3

0.
00
%

st
70

20
55

7
99
89
6

15
82
2

84
.1
6%

79
.4
2%

18
01

11
72
41

15
68

4.
6

86
.6
2%

82
.4
7%

18
00

20
55
7

28
95

0.
00
%

ei
l7
6

17
97

6
73
25
0

15
60
2.
5

78
.7
0%

75
.4
6%

18
00

73
25
0

15
63
4.
8

78
.6
6%

75
.4
6%

18
01

17
97
6

23
3

0.
00
%

pr
76

34
55

24
2

43
99
42
6

25
43

80
0

42
.1
8%

21
.4
6%

18
01

43
99
42
6

24
96

38
0

43
.2
6%

21
.4
6%

18
00

34
55
24
2

58
04
5

0.
00
%

gr
96

20
97

17
0

32
46
56
5

16
04

30
0

50
.5
8%

35
.4
0%

18
01

32
46
56
5

15
86

11
0

51
.1
4%

35
.4
0%

18
00

20
97
17
0

16
02

50
0.
00
%

ra
t9
9

49
54
5.
9

96
01
6

49
54
5.
9

48
.4
0%

48
.4
0%

18
03

96
01
6

49
48
0.
1

48
.4
7%

48
.4
0%

18
01

58
28
8

17
28
00

15
.0
0%

rd
10
0

34
00

47
26
13
10
9

26
85
84

89
.7
2%

86
.9
9%

18
02

26
13
10
9

26
68
03

89
.7
9%

86
.9
9%

18
01

34
00
47

18
58
2

0.
00
%

kr
oA

10
0

98
31

28
78
40
95
4

70
71
35

90
.9
8%

87
.4
6%

18
05

97
47
61
2

69
60
35

92
.8
6%

89
.9
1%

18
00

98
31
28

10
63

36
0.
00
%

kr
oB

10
0

98
60

08
72
92
21
5

69
83
52

90
.4
2%

86
.4
8%

18
06

78
40
29
8

67
74
93

91
.3
6%

87
.4
2%

18
20

98
60
08

76
84

0.
00
%

kr
oC

10
0

96
13

24
91
78
98
3

69
36
42

92
.4
4%

89
.5
3%

18
02

91
78
98
3

68
14
45

92
.5
8%

89
.5
3%

18
01

96
13
24

39
55
9

0.
00
%

kr
oD

10
0

68
02
65

88
43
99
8

68
02
65

92
.3
1%

92
.3
1%

18
02

88
43
99
8

67
45
45

92
.3
7%

92
.3
1%

18
01

97
69
65

17
28

00
30
.3
7%

kr
oE

10
0

97
12

66
98
52
78
0

69
18
80

92
.9
8%

90
.1
4%

18
02

98
52
78
0

68
48
34

93
.0
5%

90
.1
4%

18
01

97
12
66

11
79

65
0.
00
%

ei
l1
01

23
32
6.
7

11
48
26

23
32
6.
7

79
.6
9%

79
.6
9%

18
02

11
48
26

23
13

6.
4

79
.8
5%

79
.6
9%

18
01

27
51
9

17
28
00

15
.2
3%

lin
10
5

60
39

10
16
71
78
4

43
08
28

74
.2
3%

63
.8
8%

18
04

16
71
78
4

42
95
15

74
.3
1%

63
.8
8%

18
03

60
39
10

63
17

0.
00
%

pr
10
7

20
26

62
6

28
46
84
8

17
16

16
0

39
.7
2%

28
.8
1%

18
03

28
46
84
8

17
16

16
0

39
.7
2%

28
.8
1%

18
01

20
26
62
6

99
47

0.
00
%

COMPUTATIONAL EXPERIMENTS 131

Ta
bl
e
5.
1:

M
IP

co
m
pa

ris
on

P
ic
ar
d
an

d
Q
ue

yr
an

ne
(1
97
8)

G
ou

ve
ia

an
d
V
os
s
(1
99
5)

A
be

le
do

et
al
.
(2
01
3)

in
st

bB
ou

nd
ob

j
bo

un
d

lp
G
ap

ga
p

t(
s)

ob
j

bo
un

d
lp
G
ap

ga
p

t(
s)

ob
j

t(
s)

ga
p

So
lv
ed

6
6

35
av
g

41
.5
4%

33
.3
7%

39
.3
0%

31
.6
4%

1.
64
%

132 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

Table 5.2: CP comparison

Pure CP CPabMDD
inst bBound obj t(s) gap obj t(s) gap
burma14 20315 20315 1800 0.00% 20315 0 0.00%
gr17 12994 12994 1800 0.00% 12994 0 0.00%
gr21 24345 24498 1800 0.62% 24345 1 0.00%
gr24 13795 13863 1800 0.49% 13795 1 0.00%
bays29 26862 28690 1800 6.37% 26862 3 0.00%
bayg29 22230 23160 1800 4.02% 22230 3 0.00%
dTSP40.0 10311 14604 1800 29.40% 10311 1800 0.00%
dTSP40.1 9807 13983 1800 29.86% 9807 1538 0.00%
dTSP40.2 9525 12599 1800 24.40% 9525 914 0.00%
dTSP40.3 9156 13032 1800 29.74% 9156 1113 0.00%
dTSP40.4 9079 13475 1800 32.62% 9079 16 0.00%
dTSP50.0 12680 21277 1800 40.41% 13546 1800 6.39%
dantzig42 12528 16798 1800 25.42% 12624 1800 0.76%
swiss42 22327 32460 1800 31.22% 22327 105 0.00%
att48 209320 289997 1800 27.82% 209320 1798 0.00%
gr48 102378 179381 1800 42.93% 109569 1800 6.56%
hk48 247926 377511 1800 34.33% 286087 1800 13.34%
dTSP50.1 12853 20007 1800 35.76% 13231 1800 2.86%
dTSP50.2 12357 22013 1800 43.86% 12465 1800 0.87%
dTSP50.3 12722 20628 1800 38.33% 13085 1800 2.77%
dTSP50.4 13289 22820 1800 41.77% 14040 1800 5.35%
eil51 10178 16006 1800 36.41% 10271 1800 0.91%
berlin52 143721 219682 1800 34.58% 145824 1800 1.44%
brazil58 512361 1003840 1800 48.96% 615000 1800 16.69%
st70 20557 50666 1800 59.43% 21805 1801 5.72%
eil76 17976 46122 1800 61.03% 18969 1800 5.23%
pr76 3455242 10789626 1800 67.98% 3619821 1800 4.55%
gr96 2097170 9486169 1800 77.89% 2506860 1801 16.34%
rat99 49545.9 213637 1800 76.81% 62751 1800 21.04%
rd100 340047 1777195 1800 80.87% 386357 1800 11.99%
kroA100 983128 4718805 1800 79.17% 1143792 1800 14.05%
kroB100 986008 4927266 1800 79.99% 1178211 1800 16.31%
kroC100 961324 4620418 1800 79.19% 996577 1801 3.54%
kroD100 680265 4768584 1800 85.73% 1105147 1800 38.45%
kroE100 971266 4575812 1800 78.77% 1072258 1800 9.42%
eil101 23326.7 95771 1800 75.64% 30751 1800 24.14%
lin105 603910 3615063 1800 83.29% 672456 1800 10.19%
pr107 2026626 14155245 1800 85.68% 2197074 1801 7.76%
Solved 2 12
avg 45.02% 6.49%

5.6.1 Impact of additive bounding

This section investigates the impact of the additive bounding procedure. Recall
from Section 5.5 that the LP relaxation of the MIP model (Constraints (5.1)-
(5.9)) in Section 5.3 is used to compute a valid lower bound for the additive
bounding procedure. Table 5.3 compares the bounds obtained after solving the
root node of the CP search tree for different solution procedures. Column LP

COMPUTATIONAL EXPERIMENTS 133

100

1000

10000

100000

1e+06

2 4 8 16 32 64 128 256 512 1024

F
ai
ls

MDD width

Burma14

Gr17

Gr21

Gr24

Bayg29

Bays29

Gr48

Eil51

Eil76

(a) Number of fails, i.e., number of
backtracks.

0

50

100

150

200

250

300

2 4 8 16 32 64 128 256 512 1024

S
o
lv
e
T
im

e
(s
)

MDD width

Burma14

Gr17

Gr21

Gr24

Bayg29

Bays29

(b) Time to solve instances. Only
instances that could be solved within 5

min are included.

Figure 5.5: Influence of the MDD width.

gives the lower bound obtained by solving the LP relaxation of the MIP model
(Constraints (5.1)-(5.9)) in Section 5.3.2. Next, column CPMDD provides the
bounds obtained by solving the root node of the CP search tree when solving
the model from Section (5.4.2) without additive bounding. Finally, CP abMDD

provides the same bound, but this time the MDD is strengthened with the
information from the additive bounding procedure. Columns δLP and δMDD

give the percentage improvement of CP abMDD w.r.t. resp. LP and CPMDD.
As can be observed from Table 5.3, the LP bound is usually stronger than the
CPMDD bound. However, when comparing CP abMDD to both LP and CPMDD it
becomes apparent that CP abMDD is significantly stronger. The same observation
holds under different MDD widths. As a consequence, one can conclude that
the bounds obtained from the MDD and the LP relaxation indeed strengthen
each other.

Table 5.3: Lower bound on the root node of the CP search tree

MDD width: 128 MDD width: 512
inst LP CPMDD CPabMDD δLP δMDD CPMDD CPabMDD δLP δMDD
burma14 17189.2 18607 19644 12.50% 5.28% 20177 20314 15.38% 0.67%
gr17 10897.7 11733 12412 12.20% 5.47% 12960 12993 16.13% 0.25%
gr21 20378.5 13792 21779 6.43% 36.67% 17044 22649 10.02% 24.75%
gr24 11770.5 10533 12731 7.54% 17.26% 10845 12731 7.54% 14.81%
bays29 23163.1 20073 23985 3.43% 16.31% 20962 24305 4.70% 13.75%
bayg29 19319 16707 19991 3.36% 16.43% 17285 20238 4.54% 14.59%
dTSP40.0 7389.63 2981 8029 7.96% 62.87% 4069 8175 9.61% 50.23%
dTSP40.1 6739.45 3158 7022 4.02% 55.03% 3542 7196 6.34% 50.78%
dTSP40.2 6962.01 2649 7533 7.58% 64.83% 3024 7908 11.96% 61.76%
dTSP40.3 6926.59 4164 7214 3.98% 42.28% 4813 7410 6.52% 35.05%

134 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

Table 5.3: Lower bound on the root node of the CP search tree

MDD width: 128 MDD width: 512
inst LP CPMDD CPabMDD δLP δMDD CPMDD CPabMDD δLP δMDD
dTSP40.4 7347.67 4506 7925 7.28% 43.14% 5259 8000 8.15% 34.26%
dTSP50.0 10465.7 5248 10633 1.57% 50.64% 5537 10646 1.69% 47.99%
dantzig42 10135.6 7088 10362 2.18% 31.60% 7412 10362 2.18% 28.47%
swiss42 18190.1 7509 19006 4.29% 60.49% 8117 19198 5.25% 57.72%
att48 175585 107684 184220 4.69% 41.55% 113132 185178 5.18% 38.91%
gr48 81228.1 43978 84242 3.58% 47.80% 48372 84863 4.28% 43.00%
hk48 207077 140272 213943 3.21% 34.43% 156728 215777 4.03% 27.37%
dTSP50.1 10197.1 3952 10531 3.17% 62.47% 4288 10782 5.42% 60.23%
dTSP50.2 9256.64 3921 9624 3.82% 59.26% 4103 9848 6.00% 58.34%
dTSP50.3 9574.44 4898 9903 3.32% 50.54% 5025 9948 3.76% 49.49%
dTSP50.4 9726.51 3496 10335 5.89% 66.17% 3890 10394 6.42% 62.57%
eil51 8676.25 4153 9029 3.91% 54.00% 4230 9106 4.72% 53.55%
berlin52 112350 45891 116426 3.50% 60.58% 49056 119694 6.14% 59.02%
brazil58 400508 262922 421502 4.98% 37.62% 292960 433534 7.62% 32.43%
st70 15469.1 5312 15961 3.08% 66.72% 5518 16224 4.65% 65.99%
eil76 15591 8585 15791 1.27% 45.63% 8787 15832 1.52% 44.50%
pr76 2496050 2075295 2675408 6.70% 22.43% 2116910 2679143 6.83% 20.99%
gr96 1586060 578690 1614062 1.73% 64.15% 597453 1626302 2.47% 63.26%
rat99 49480.1 29108 50502 2.02% 42.36% 29266 50577 2.17% 42.14%
rd100 266791 68053 272846 2.22% 75.06% 70660 273693 2.52% 74.18%
kroA100 693870 208424 712451 2.61% 70.75% 223039 719992 3.63% 69.02%
kroB100 676886 222370 683928 1.03% 67.49% 237975 698269 3.06% 65.92%
kroC100 679173 260244 690103 1.58% 62.29% 264092 692536 1.93% 61.87%
kroD100 670646 219547 684981 2.09% 67.95% 241669 697031 3.79% 65.33%
kroE100 684831 243637 710019 3.55% 65.69% 255939 720644 4.97% 64.48%
eil101 23105.1 9177 23308 0.87% 60.63% 9392 23312 0.89% 59.71%
lin105 429496 209950 446820 3.88% 53.01% 233126 451150 4.80% 48.33%
pr107 1716160 1254562 1746088 1.71% 28.15% 1262115 1748638 1.86% 27.82%
avg 4.18% 47.76% 5.49% 44.57%

Table 5.4 compares three different procedures:

1. CP with MDD (Section 5.4.2).

2. CP with MDD and additive bounding.

3. CP with MDD, additive bounding, but no arc filtering based on the
additive bound, i.e., no arcs are filtered based on the condition stated in
equation 5.43.

From the results it can be observed that strengthening the MDD through the
additive bounding procedure significantly improves the results. Furthermore,
whenever arc filtering based on the additive bound is disabled, a clear
performance decrease is observed. The difference in performance between
the third approach (CP abMDD, no arc filtering) and the first approach (CPMDD)
can be fully attributed to the presence of constraint (5.44) in the third approach.

COMPUTATIONAL EXPERIMENTS 135

Currently, only a single LP is used for the additive bounding procedure.
Straightforwardly, the bound derived through this procedure can be improved
by adding additional bounding procedures. Furthermore, valid inequalities
can be incorporated to strengthen LP relaxation. Extensive overviews of valid
inequalities for the TD-TSP are authored by Gouveia and Voss (1995); Abeledo
et al. (2013).

136 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

Ta
bl
e
5.
4:

A
na

ly
zi
ng

th
e
im

pa
ct

of
th
e
ad

di
tiv

e
bo

un
di
ng

pr
oc
ed

ur
e.

C
P
M
D
D

C
P
a
b

M
D
D

C
P
a
b

M
D
D
,
no

ar
c
fil
te
ri
ng

in
st

be
st
B
ou

nd
ob

j
ga
p

fa
ils

tt
b(
s)

t(
s)

ob
j

ga
p

fa
ils

tt
b(
s)

t(
s)

ob
j

ga
p

fa
ils

tt
b(
s)

t(
s)

bu
rm

a1
4

20
31

5
20
31
5

0.
00
%

25
0

0
20
31
5

0.
00
%

25
0

0
20
31
5

0
25

0
0

gr
17

12
99
4

12
99
4

0.
00
%

20
0

0
12
99
4

0.
00
%

20
0

0
12
99
4

0.
00

%
20

0
0

gr
21

24
34
5

24
34
5

0.
00
%

52
1

1
24
34
5

0.
00
%

52
0

1
24
34
5

0.
00

%
52

1
1

gr
24

13
79
5

13
79
5

0.
00
%

36
1

1
13
79
5

0.
00
%

36
1

1
13
79
5

0.
00

%
36

1
1

ba
ys
29

26
86
2

26
86
2

0.
00
%

13
0

2
14

26
86
2

0.
00
%

72
2

3
26
86
2

0.
00

%
12
9

2
13

ba
yg

29
22
23
0

22
23
0

0.
00
%

18
5

2
20

22
23
0

0.
00
%

93
2

3
22
23
0

0.
00

%
18
3

2
18

dT
SP

40
.0

10
31
1

10
44
6

1.
29
%

76
18

97
0

18
00

10
31
1

0.
00
%

56
87

80
8

18
00

10
44
6

1.
29

%
78
25

91
4

18
00

dT
SP

40
.1

98
07

98
07

0.
00
%

64
79

21
1

18
00

98
07

0.
00
%

41
80

10
6

15
38

98
07

0.
00
%

67
68

19
9

18
00

dT
SP

40
.2

95
25

98
72

3.
51
%

60
81

46
3

18
00

95
25

0.
00
%

26
49

37
0

91
4

98
72

3.
51
%

66
10

42
2

18
00

dT
SP

40
.3

91
56

94
91

3.
53
%

50
84

20
9

18
00

91
56

0.
00
%

25
93

78
7

11
13

94
91

3.
53
%

53
55

19
7

18
00

dT
SP

40
.4

90
79

90
79

0.
00
%

11
96

13
51
9

90
79

0.
00
%

88
9

16
90
79

0.
00
%

97
5

12
39
1

dT
SP

50
.0

12
68
0

13
63
6

7.
01
%

75
20

13
71

18
00

13
54
6

6.
39
%

64
86

76
0

18
00

13
63
6

7.
01

%
79
74

13
39

18
00

da
nt
zi
g4
2

12
52
8

12
65
8

1.
03
%

72
85

28
1

18
00

12
62
4

0.
76
%

59
81

50
18
00

12
65
8

1.
03

%
79
64

25
4

18
00

sw
is
s4
2

22
32
7

22
32
7

0.
00
%

46
43

25
18
00

22
32
7

0.
00
%

31
6

11
10

5
22
32
7

0.
00

%
46
90

23
18
00

at
t4
8

20
93
20

22
27
60

6.
03
%

98
43

11
02

18
00

20
93
20

0.
00
%

52
56

74
0

17
98

22
27
60

6.
03
%

11
30
0

91
5

18
00

gr
48

10
23
78

11
06
15

7.
45
%

69
97

54
5

18
00

10
95
69

6.
56
%

70
16

15
77

18
00

11
06
15

7.
45
%

73
93

50
4

18
00

hk
48

24
79
26

29
57
16

16
.1
6%

78
41

66
8

18
00

28
60
87

13
.3
4%

71
65

17
87

18
00

29
57
16

16
.1
6%

85
90

60
4

18
00

dT
SP

50
.1

12
85
3

14
02
5

8.
36
%

55
06

94
5

18
00

13
23
1

2.
86
%

52
84

14
67

18
00

14
02
5

8.
36

%
59
42

84
8

18
00

dT
SP

50
.2

12
35
7

13
00
1

4.
95
%

49
44

18
4

18
00

12
46
5

0.
87
%

45
10

69
2

18
00

13
00
1

4.
95

%
53
72

16
5

18
00

dT
SP

50
.3

12
72
2

13
58
7

6.
37
%

49
60

68
2

18
00

13
08
5

2.
77
%

42
11

72
2

18
00

13
58
7

6.
37

%
51
73

65
0

18
00

dT
SP

50
.4

13
28
9

14
04
2

5.
36
%

68
89

44
18
00

14
04
0

5.
35
%

64
99

16
23

18
00

14
04
2

5.
36

%
77
30

41
18
00

ei
l5
1

10
17
8

10
34
7

1.
63
%

60
11

16
1

18
00

10
27
1

0.
91
%

39
72

62
18
00

10
34
7

1.
63

%
63
27

10
6

18
00

be
rl
in
52

14
37
21

14
58
24

1.
44
%

53
53

35
18
00

14
58
24

1.
44
%

49
59

22
18
00

14
58
24

1.
44
%

59
46

32
18
00

br
az
il5

8
51
23
61

61
57
40

16
.7
9%

70
37

15
56

18
00

61
50
00

16
.6
9%

95
58

15
12

18
00

61
57
40

16
.7
9%

75
05

14
51

18
00

st
70

20
55
7

22
04
4

6.
75
%

42
38

38
9

18
00

21
80
5

5.
72
%

33
02

11
49

18
01

22
04
4

6.
75

%
43
51

36
8

18
00

ei
l7
6

17
97
6

18
96
9

5.
23
%

33
35

21
1

18
00

18
96
9

5.
23
%

33
58

17
9

18
00

18
96
9

5.
23

%
35
13

20
1

18
00

pr
76

34
55
24
2

36
19
82
1

4.
55
%

47
93

13
0

18
00

36
19
82
1

4.
55
%

47
61

12
4

18
00

36
19
82
1

4.
55
%

49
47

12
9

18
00

gr
96

20
97
17
0

25
06
86
0

16
.3
4%

26
87

57
7

18
01

25
06
86
0

16
.3
4%

26
64

55
9

18
01

25
06
86
0

16
.3
4%

28
75

55
9

18
01

ra
t9
9

49
54
5.
9

62
75
1

21
.0
4%

34
05

35
4

18
00

62
75
1

21
.0
4%

31
82

37
5

18
00

62
75
1

21
.0
4%

34
54

37
6

18
00

rd
10
0

34
00
47

38
78
08

12
.3
2%

27
74

13
75

18
00

38
63
57

11
.9
9%

27
12

17
50

18
00

38
78
08

12
.3
2%

29
23

13
30

18
00

kr
oA

10
0

98
31
28

11
43
79
2

14
.0
5%

33
86

15
92

18
00

11
43
79
2

14
.0
5%

34
15

15
30

18
00

11
43
79
2

14
.0
5%

34
47

15
64

18
00

kr
oB

10
0

98
60
08

11
78
21
1

16
.3
1%

36
75

35
7

18
00

11
78
21
1

16
.3
1%

37
70

37
5

18
00

11
78
21
1

16
.3
1%

38
13

37
8

18
00

kr
oC

10
0

96
13
24

10
00
35
9

3.
90
%

38
46

16
97

18
00

99
65
77

3.
54
%

37
31

10
88

18
01

10
00
35
9

3.
90
%

40
34

16
37

18
00

kr
oD

10
0

68
02
65

11
05
14
7

38
.4
5%

38
70

15
41

18
00

11
05
14
7

38
.4
5%

38
06

15
23

18
00

11
05
14
7

38
.4
5%

39
05

15
33

18
00

kr
oE

10
0

97
12
66

10
72
25
8

9.
42
%

33
42

15
92

18
00

10
72
25
8

9.
42
%

33
37

13
98

18
00

10
72
25
8

9.
42
%

34
29

15
48

18
00

ei
l1
01

23
32
6.
7

30
75
1

24
.1
4%

31
15

12
98

18
00

30
75
1

24
.1
4%

32
33

91
7

18
00

30
75
1

24
.1
4%

32
09

12
75

18
00

lin
10
5

60
39
10

67
24
56

10
.1
9%

36
68

49
3

18
00

67
24
56

10
.1
9%

33
31

49
2

18
00

67
24
56

10
.1
9%

37
61

50
6

18
00

COMPUTATIONAL EXPERIMENTS 137

Ta
bl
e
5.
4:

A
na

ly
zi
ng

th
e
im

pa
ct

of
th
e
ad

di
tiv

e
bo

un
di
ng

pr
oc
ed

ur
e.

C
P
M
D
D

C
P
a
b

M
D
D

C
P
a
b

M
D
D
,
no

ar
c
fil
te
ri
ng

in
st

be
st
B
ou

nd
ob

j
ga
p

fa
ils

tt
b(
s)

t(
s)

ob
j

ga
p

fa
ils

tt
b(
s)

t(
s)

ob
j

ga
p

fa
ils

tt
b(
s)

t(
s)

pr
10
7

20
26
62
6

22
10
83
7

8.
33
%

33
30

43
0

18
01

21
97
07
4

7.
76
%

35
11

16
89

18
01

22
10
83
7

8.
33
%

34
31

46
0

18
00

av
g

7.
42
%

6.
49
%

7.
42
%

138 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

5.7 Impact of the refinement order

Section 5.4.1 describes how nodes in the MDD are selected for refinement, and
in which order, based on an ordered set of jobs S. Section 5.4.1 discusses a
greedy strategy to calculate S. Here we compare this greedy strategy against a
purely random strategy, thereby measuring the impact of the refinement order
(see table 5.5). Table 5.5 shows the results obtained after solving the root node
of the CP search tree for both the greedy and the random strategy. For the
random strategy, the root node of the CP search tree is solved 200 times with
different random orderings of S. For each instance the average, min, and max
bound are reported, as well as the standard deviation (see table 5.5).
All instances where the greedy strategy produces a stronger bound than the
average bound obtained through random ordering are marked in bold. As can
be observed from the results, for 4 out of 38 instances, the random refinement
order produces on average a better bound (column avg LB). For the majority
of instances, the best bound (max LB) observed while using a random ordering
is better than the bound obtained using the greedy procedure, indicating that
there is still room to improve the refinement ordering. It must however be noted
that fixing the refinement order to the best random ordering (i.e., the random
ordering that yielded the best bound at the root node) did not necessarily result
in a faster solve time of the instance. This suggests that one might want to
look into possibilities to change the refinement order dynamically.

Table 5.5: Refinement Order

Greedy Ref. Random Ref. (200 iterations)
inst LB min LB max LB avg LB std. dev.
burma14 19644 17202 20314 19286.6 478.82
gr17 12412 10931 12893 11985.6 397.19
gr21 21779 20802 23257 22135.2 434
gr24 12731 11771 13150 12383.8 328.75
bays29 23985 23187 25124 24155.5 373.62
bayg29 19991 19433 20753 20043 249.93
dTSP40.0 8029 7408 8762 7982.21 258.44
dTSP40.1 7022 6751 7872 7312.9 209.43
dTSP40.2 7533 7097 8087 7532.53 215.8
dTSP40.3 7214 7011 7836 7385.16 144.82
dTSP40.4 7925 7393 8095 7643.05 128.86
dTSP50.0 10633 10466 11212 10726 147.25
dantzig42 10362 10205 11024 10541 163.32
swiss42 19006 18474 20103 19144.9 310.43
att48 184220 175810 187145 180439 2487.04
gr48 84242 81278 87573 84273.9 1326.76
hk48 213943 207533 221770 213852 2755.86
dTSP50.1 10531 10241 11105 10593.4 177.55
dTSP50.2 9624 9321 10332 9753.01 183.74
dTSP50.3 9903 9672 10851 10128.2 207.35
dTSP50.4 10335 9783 10872 10195.8 191.43
eil51 9029 8760 9156 8914.5 78.54

BRANCHING RULES 139

Table 5.5: Refinement Order

Greedy Ref. Random Ref. (200 iterations)
inst LB min LB max LB avg LB std. dev.
berlin52 116426 112351 124623 118184 2502.75
brazil58 421502 401001 438189 415800 9211.83
st70 15961 15583 16655 15984.7 195.9
eil76 15791 15643 16288 15876.4 118.71
pr76 2675408 2512385 2680058 2565340 33078.9
gr96 1614062 1595063 1700845 1633590 18826.3
rat99 50502 49525 50843 50085.3 257.33
rd100 272846 267259 279549 271868 2306.96
kroA100 712451 701630 746095 719162 8865.75
kroB100 683928 683500 728790 703220 9386.01
kroC100 690103 683819 731426 705061 8977.44
kroD100 684981 672923 720513 693235 9297.49
kroE100 710019 686070 729501 702325 8752.22
eil101 23308 23161 23989 23453.1 162.22
lin105 446820 431994 452328 441044 4068.64
pr107 1746088 1716998 1769142 1744260 9226.86
best 17 21

5.8 Branching rules

In the foregoing experiments, branching is performed on the permutation
variables πj , j = 0, . . . , n. The exact variables to branch on, as well as the
values to assign to them are fully determined by CP Optimizer. To the best
of the author’s knowledge, no information is available on how CP Optimizer
selects these variables or assigns the values. In this Section, a number of
experiments are conducted with custom branching rules; a comparison of the
different methods is provided in tables 5.6, 5.7.
Branching on cheapest extension - Given a partial path represented by
fixed variables [π0, π1, . . . , πi], i < n, we can branch on the first unfixed variable
πi+1 by selecting the value j in the domain of πi+1 such that the total cost
of the permutation π0, . . . , πi+1 is minimal among all choices of value j. This
information can be obtained directly from the MDD. Two branches are created:
(1) πi+1 = j, (2) πi+1 6= j.
Branch on expected path cost - Given a partial path represented by fixed
variables, [π0, π1, . . . , πi], i < n, s.t. πi+1 is the first unfixed variable. Two
branches are created: (1) πi+1 = j, (2) πi+1 6= j, where j is selected in such a
way that the total expected cost for completing the partial path is minimized.
The expected cost of the complete path is obtained by calculating the exact cost
of the partial path [π0, π1, . . . , πi, j] plus a lower bound on the cost to complete
this path. This lower bound equals c↑a (Equation (5.34)), where a is the last
arc in the path represented by the permutation [π0, π1, . . . , πi, j] in the MDD.

140 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

Branch on job repetition: Let π = π0, π1, . . . , πn be the permutation
associated with the shortest s-t path in the MDD. If π is a feasible permutation,
i.e., there are no repeated jobs, then by definition this permutation is an optimal
solution for the current node in the search tree and all variables can be fixed
accordingly. However, when π represents an infeasible sequence, branching is
required. Let j ∈ J be the job that occurs most often in π and let t be the first
position job j occurs in π. Two branches are created: (1) πt = j, (2) πt 6= j.
In case there are two activities i, j ∈ J which are repeated equally often in π,
ties are broken by selecting the activity which occurs first in the sequence. The
rational behind this branching strategy is that the branching is guided by the
shortest path, while fixing positions of frequently re-occurring jobs first.
Branch on feasible path - Given a partial path represented by fixed variables,
[π0, π1, . . . , πi], i < n, s.t. πi+1 is the first unfixed variable. Use a greedy heuristic
on the MDD to find a feasible, but not necessarily shortest, s-t path, i.e., the
path may not have repeated jobs. Let π be the permutation corresponding to
this path. Two branches are created, thereby (1) assigning variable πi+1 its
corresponding value in permutation π, or (2) removing that value from the
domain of πi+1.

When comparing the data in Tables 5.6, 5.7, the best results are obtained by
branching on the cheapest extension, thereby obtaining an average optimality
gap of 6.48% and equally good or better results than the other branching rules
for 31 out of the 38 instances. This suggests that the MDD indeed can be
used to guide the search towards good solutions. The default branching scheme
of CP optimizer, which does not depend on the MDD, obtains slightly worse
results: an average optimality of 6.49% and equal or better results on 30 out of
38 instances. One possible explanation for the good results of the default search
could be related to implementation efficiency: the number of fails reported
per instance for the default strategy is significantly larger than the number of
fails in the corresponding columns for any of the other methods. This could
indicate that their strategy for selecting and assigning variables and values
for the branching strategy involves less computational overhead, rendering it
possible to search a much larger area of the search space.
The branching rule based on the expected path cost obtains significantly worse
results than the rule which branches on the cheapest extension. It is currently
unclear what causes this behavior because the expected cost branching rule
intuitively seems to use more accurate information when deciding on which
variable-value pair to branch than the cheapest extension rule. Similarly, the
remaining two branching rules do not perform well in practice either.
Some alternative branching strategies which may be considered in future work
are:
Branch on MDD node Given a node u in a layer l of the MDD, two branches

BRANCHING RULES 141

can be created (Bergman et al., 2013): (1) all nodes, except node u, are removed
from layer l, thereby forcing every path in the MDD through node u (2) node u
is removed from layer l.
Counting based branching Use the MDD to derive statistical information
about the variables and possible value assignments. For example, count the
number of different paths in the MDD that would assign a job j ∈ J to a
position i in the sequence and branch on the job that has the highest certainty
to be assigned to a particular position. Counting based search strategies for
CP have been applied previously, see for instance (Pesant et al., 2012).

142 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

Ta
bl
e
5.
6:

Br
an

ch
in
g
ru
le

co
m
pa

ris
on

P
ur
e
C
P

(n
o
M
D
D
)

C
P
A
B

M
D
D

(D
ef
au

lt
se
ar
ch
)

C
P
A
B

M
D
D

(C
he

ap
es
t
E
xt
en

si
on

)
in
st

ob
j

fa
ils

tt
b(
s)

t(
s)

ga
p

ob
j

fa
ils

tt
b(
s)

t(
s)

ga
p

ob
j

fa
ils

tt
b(
s)

t(
s)

ga
p

bu
rm

a1
4

20
31

5
25
28
8k

14
18
00

0.
00
%

20
31

5
25

0
0

0.
00
%

20
31

5
25

0
0

0.
00
%

gr
17

12
99

4
17
39
9k

44
18
00

0.
00
%

12
99

4
20

0
0

0.
00
%

12
99

4
18

0
0

0.
00
%

gr
21

24
49
8

11
22
6k

90
2

18
00

0.
62
%

24
34

5
52

0
1

0.
00
%

24
34

5
51

1
1

0.
00
%

gr
24

13
86
3

88
90
k

10
58

18
00

0.
49
%

13
79

5
36

1
1

0.
00
%

13
79

5
36

1
1

0.
00
%

ba
ys
29

28
69
0

57
56
k

16
69

18
00

6.
37
%

26
86

2
72

2
3

0.
00
%

26
86

2
66

3
4

0.
00
%

ba
yg

29
23
16
0

58
56
k

12
09

18
00

4.
02
%

22
23

0
93

2
3

0.
00
%

22
23

0
93

3
4

0.
00
%

dT
SP

40
.0

14
60
4

28
97
k

19
9

18
00

29
.4
0%

10
31

1
56
87

80
8

18
00

0.
00

%
10

31
1

53
49

68
3

18
00

0.
00
%

dT
SP

40
.1

13
98
3

29
52
k

13
0

18
00

29
.8
6%

98
07

41
80

10
6

15
38

0.
00

%
98

07
41
34

74
16
33

0.
00
%

dT
SP

40
.2

12
59
9

30
32
k

58
18
00

24
.4
0%

95
25

26
49

37
0

91
4

0.
00
%

95
25

26
54

39
2

96
8

0.
00
%

dT
SP

40
.3

13
03
2

29
97
k

17
92

18
00

29
.7
4%

91
56

25
93

78
7

11
13

0.
00

%
91

56
24
93

77
9

11
21

0.
00
%

dT
SP

40
.4

13
47
5

29
54
k

67
9

18
00

32
.6
2%

90
79

88
9

16
0.
00

%
90

79
88

13
19

0.
00
%

dT
SP

50
.0

21
27
7

19
75
k

17
47

18
00

40
.4
1%

13
54

6
64
86

76
0

18
00

6.
39

%
13

54
6

60
52

80
3

18
00

6.
39
%

da
nt
zi
g4
2

16
79
8

23
21
k

14
3

18
00

25
.4
2%

12
62

4
59
81

50
18
00

0.
76
%

12
62

4
56
36

66
18
00

0.
76
%

sw
is
s4
2

32
46
0

29
28
k

17
93

18
00

31
.2
2%

22
32

7
31
6

11
10
5

0.
00
%

22
32

7
31
8

15
11
2

0.
00
%

at
t4
8

28
99
97

16
09
k

60
1

18
00

27
.8
2%

20
93

20
52
56

74
0

17
98

0.
00

%
20

93
20

51
43

76
9

18
00

0.
00
%

gr
48

17
93
81

18
87
k

64
4

18
00

42
.9
3%

10
95

69
70
16

15
77

18
00

6.
56
%

10
95

69
67
12

16
49

18
00

6.
56
%

hk
48

37
75
11

18
39
k

16
39

18
00

34
.3
3%

28
60
87

71
65

17
87

18
00

13
.3
4%

28
75
03

68
01

17
44

18
00

13
.7
7%

dT
SP

50
.1

20
00
7

18
39
k

99
7

18
00

35
.7
6%

13
23
1

52
84

14
67

18
00

2.
86
%

13
13
5

39
94

29
7

18
00

2.
15

%
dT

SP
50
.2

22
01
3

19
24
k

16
48

18
00

43
.8
6%

12
46

5
45
10

69
2

18
00

0.
87

%
12

46
5

43
07

74
9

18
00

0.
87
%

dT
SP

50
.3

20
62
8

18
69
k

17
2

18
00

38
.3
3%

13
08

5
42
11

72
2

18
00

2.
77

%
13

08
5

38
44

12
19

18
00

2.
77
%

dT
SP

50
.4

22
82
0

18
94
k

41
5

18
00

41
.7
7%

14
04
0

64
99

16
23

18
00

5.
35
%

13
91

6
76
44

14
42

18
00

4.
51
%

ei
l5
1

16
00
6

20
12
k

13
21

18
00

36
.4
1%

10
27

1
39
72

62
18
00

0.
91
%

10
27

1
40
64

37
9

18
01

0.
91
%

be
rl
in
52

21
96
82

14
99
k

10
50

18
00

34
.5
8%

14
58

24
49
59

22
18
00

1.
44
%

14
58

24
47
52

32
18
00

1.
44
%

br
az
il5

8
10
03
84
0

95
4k

37
9

18
00

48
.9
6%

61
50
00

95
58

15
12

18
00

16
.6
9%

61
50
00

89
89

16
08

18
00

16
.6
9%

st
70

50
66
6

83
4k

75
2

18
00

59
.4
3%

21
80

5
33
02

11
49

18
01

5.
72
%

22
70
1

45
55

11
1

18
00

9.
44

%
ei
l7
6

46
12
2

84
3k

10
79

18
00

61
.0
3%

18
96
9

33
58

17
9

18
00

5.
23

%
18

93
6

30
79

28
3

18
00

5.
07
%

pr
76

10
78
96
26

58
0k

24
8

18
00

67
.9
8%

36
19

82
1

47
61

12
4

18
00

4.
55

%
36

19
82

1
44
24

16
5

18
00

4.
55
%

gr
96

94
86
16
9

29
4k

17
38

18
00

77
.8
9%

25
06
86
0

26
64

55
9

18
01

16
.3
4%

24
25

52
4

24
42

47
7

18
00

13
.5
4%

ra
t9
9

21
36
37

26
2k

15
54

18
00

76
.8
1%

62
75

1
31
82

37
5

18
00

21
.0
4%

63
50
0

36
98

15
23

18
00

21
.9
7%

rd
10
0

17
77
19
5

33
0k

68
8

18
00

80
.8
7%

38
63
57

27
12

17
50

18
00

11
.9
9%

37
42

74
28
73

87
7

18
01

9.
14
%

kr
oA

10
0

47
18
80
5

26
8k

17
21

18
00

79
.1
7%

11
43

79
2

34
15

15
30

18
00

14
.0
5%

11
43

79
2

29
20

17
85

18
00

14
.0
5%

kr
oB

10
0

49
27
26
6

31
3k

17
81

18
00

79
.9
9%

11
78

21
1

37
70

37
5

18
00

16
.3
1%

11
78

21
1

29
92

57
4

18
01

16
.3
1%

kr
oC

10
0

46
20
41
8

26
8k

13
44

18
00

79
.1
9%

99
65

77
37
31

10
88

18
01

3.
54
%

10
10
08
7

25
56

15
09

18
01

4.
83
%

kr
oD

10
0

47
68
58
4

32
4k

16
82

18
00

85
.7
3%

11
05

14
7

38
06

15
23

18
00

38
.4
5%

11
05

14
7

31
84

17
69

18
01

38
.4
5%

kr
oE

10
0

45
75
81
2

27
4k

16
22

18
00

78
.7
7%

10
72

25
8

33
37

13
98

18
00

9.
42
%

10
72

25
8

28
56

15
96

18
00

9.
42
%

ei
l1
01

95
77
1

35
4k

15
67

18
00

75
.6
4%

30
75

1
32
33

91
7

18
00

24
.1
4%

32
55
5

34
84

73
0

18
00

28
.3
5%

lin
10
5

36
15
06
3

24
2k

17
81

18
00

83
.2
9%

67
24

56
33
31

49
2

18
00

10
.1
9%

67
24

56
26
00

71
9

18
00

10
.1
9%

BRANCHING RULES 143

Ta
bl
e
5.
6:

Br
an

ch
in
g
ru
le

co
m
pa

ris
on

P
ur
e
C
P

(n
o
M
D
D
)

C
P
A
B

M
D
D

(D
ef
au

lt
se
ar
ch
)

C
P
A
B

M
D
D

(C
he

ap
es
t
E
xt
en

si
on

)
in
st

ob
j

fa
ils

tt
b(
s)

t(
s)

ga
p

ob
j

fa
ils

tt
b(
s)

t(
s)

ga
p

ob
j

fa
ils

tt
b(
s)

t(
s)

ga
p

pr
10
7

14
15
52
45

17
5k

17
46

18
00

85
.6
8%

21
97
07
4

35
11

16
89

18
01

7.
76
%

21
17

81
5

26
50

13
36

18
01

4.
31
%

av
g

45
.0
2%

6.
49
%

6.
48
%

be
st

2
30

31
so
lv
ed

2
13

13

144 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

Ta
bl
e
5.
7:

Br
an

ch
in
g
ru
le

co
m
pa

ris
on

C
P
A
B

M
D
D

(J
ob

R
ep

et
it
io
n)

C
P
A
B

M
D
D

(F
ea
si
bl
e
P
at
h)

C
P
A
B

M
D
D

(E
xp

ec
te
d
C
os
t)

in
st

ob
j

fa
ils

tt
b(
s)

t(
s)

ga
p

ob
j

fa
ils

tt
b(
s)

t(
s)

ga
p

ob
j

fa
ils

tt
b(
s)

t(
s)

ga
p

bu
rm

a1
4

20
31

5
4

0
0

0.
00
%

20
31

5
4

0
0

0.
00
%

20
31

5
3

0
0

0.
00
%

gr
17

12
99

4
5

0
0

0.
00
%

12
99

4
5

0
0

0.
00
%

12
99

4
1

0
0

0.
00
%

gr
21

24
34

5
9

1
1

0.
00
%

24
34

5
10

1
1

0.
00
%

24
34

5
5

1
1

0.
00
%

gr
24

13
79

5
13

1
1

0.
00
%

13
79

5
11

1
1

0.
00
%

13
79

5
7

1
1

0.
00
%

ba
ys
29

26
86

2
28

5
5

0.
00
%

26
86

2
44

6
7

0.
00
%

26
86

2
25

5
5

0.
00
%

ba
yg

29
22

23
0

31
5

6
0.
00
%

22
23

0
41

4
7

0.
00
%

22
23

0
27

5
6

0.
00
%

dT
SP

40
.0

10
67
8

45
07

17
65

18
00

3.
44
%

11
88
6

52
30

83
6

18
00

13
.2
5%

10
36
3

47
31

13
53

18
00

0.
50
%

dT
SP

40
.1

10
85
5

54
75

16
72

18
00

9.
65
%

10
78
8

65
59

11
32

18
00

9.
09
%

10
81
7

54
67

16
64

18
00

9.
34
%

dT
SP

40
.2

95
25

29
11

52
0

12
59

0.
00
%

95
25

49
48

15
58

18
00

0.
00
%

95
25

28
90

51
2

12
37

0.
00
%

dT
SP

40
.3

91
56

23
43

86
4

13
13

0.
00
%

91
56

38
74

11
08

14
45

0.
00
%

91
56

23
23

83
5

12
68

0.
00
%

dT
SP

40
.4

90
79

88
23

30
0.
00
%

90
79

17
4

38
54

0.
00

%
90

79
78

23
30

0.
00
%

dT
SP

50
.0

14
50
6

60
03

58
18
00

12
.5
9%

14
52
2

41
66

88
8

18
00

12
.6
8%

14
50
6

57
25

60
18
00

12
.5
9%

da
nt
zi
g4
2

12
84
5

55
08

95
9

18
00

2.
47
%

14
33
4

56
30

16
59

18
00

12
.6
0%

12
84
5

54
96

95
6

18
00

2.
47
%

sw
is
s4
2

22
32

7
24
61

11
70

12
07

0.
00
%

23
14
5

49
49

83
2

18
00

3.
53
%

22
32

7
24
35

11
95

12
33

0.
00
%

at
t4
8

20
93

20
23
09

39
12
83

0.
00
%

21
11
55

56
55

17
89

18
00

0.
87
%

20
93

20
22
88

39
12
89

0.
00
%

gr
48

11
58
45

54
89

13
30

18
00

11
.6
3%

11
26
10

52
14

10
78

18
00

9.
09
%

11
58
45

53
47

13
59

18
00

11
.6
3%

hk
48

25
43

30
44
79

57
2

18
00

2.
52
%

28
19
87

50
71

83
2

18
00

12
.0
8%

25
43

30
44
94

56
8

18
00

2.
52
%

dT
SP

50
.1

15
03
1

43
48

13
75

18
00

14
.4
9%

12
95

6
46
64

13
36

18
00

0.
79
%

15
03
1

41
78

14
30

18
00

14
.4
9%

dT
SP

50
.2

13
38
1

40
15

17
83

18
00

7.
65
%

14
33
1

43
28

47
18
00

13
.7
7%

13
38
1

40
01

17
74

18
00

7.
65
%

dT
SP

50
.3

14
10
1

40
68

60
2

18
00

9.
78
%

14
37
8

46
22

98
5

18
00

11
.5
2%

14
10
1

40
50

60
1

18
00

9.
78
%

dT
SP

50
.4

15
43
2

39
16

83
4

18
00

13
.8
9%

15
57
7

37
42

13
33

18
00

14
.6
9%

15
43
2

38
97

83
4

18
00

13
.8
9%

ei
l5
1

10
34
3

31
31

71
3

18
01

1.
60
%

10
64
1

45
25

13
94

18
00

4.
35
%

10
34
3

30
96

71
6

18
01

1.
60
%

be
rl
in
52

15
14
68

41
40

17
66

18
00

5.
11
%

15
45
78

44
03

15
71

18
00

7.
02
%

15
14
68

41
58

17
50

18
00

5.
11
%

br
az
il5

8
56

89
36

41
65

15
60

18
00

9.
94
%

61
87
13

44
81

15
69

18
00

17
.1
9%

56
89

36
41
66

15
46

18
00

9.
94
%

st
70

29
28
9

34
25

15
42

18
00

29
.8
1%

27
54
8

26
78

13
98

18
00

25
.3
8%

29
22
7

34
19

15
39

18
00

29
.6
6%

ei
l7
6

20
61
9

25
17

16
33

18
00

12
.8
2%

20
86
7

22
09

15
17

18
00

13
.8
5%

20
61
9

24
81

16
30

18
00

12
.8
2%

pr
76

39
62
05
7

40
92

44
8

18
00

12
.7
9%

39
12
52
2

21
14

81
5

18
00

11
.6
9%

39
62
05
7

40
57

45
4

18
00

12
.7
9%

gr
96

-
18
00

0.
00
%

32
29
80
1

17
93

10
27

18
00

35
.0
7%

-
18
00

0.
00
%

ra
t9
9

69
55
4

15
07

16
20

18
00

28
.7
7%

78
06
4

12
01

14
75

18
01

36
.5
3%

69
09
5

14
98

16
25

18
01

28
.2
9%

rd
10
0

45
87
08

18
89

15
63

18
01

25
.8
7%

53
44
74

18
15

80
2

18
00

36
.3
8%

45
87
08

18
94

15
49

18
00

25
.8
7%

kr
oA

10
0

13
46
88
8

24
20

16
45

18
00

27
.0
1%

15
44
82
4

34
86

69
5

18
00

36
.3
6%

13
46
88
8

24
13

16
41

18
00

27
.0
1%

kr
oB

10
0

16
04
74
1

17
40

15
56

18
01

38
.5
6%

15
48
20
9

15
84

56
7

18
01

36
.3
1%

16
04
74
1

17
59

15
37

18
00

38
.5
6%

kr
oC

10
0

14
62
41
6

37
09

61
4

18
00

34
.2
6%

14
42
08
9

10
41

17
73

18
00

33
.3
4%

14
62
41
6

36
19

63
5

18
00

34
.2
6%

kr
oD

10
0

14
88
61
3

23
03

13
44

18
01

54
.3
0%

15
03
00
6

19
27

16
36

18
01

54
.7
4%

14
88
61
3

22
40

13
81

18
00

54
.3
0%

kr
oE

10
0

13
09
64
2

22
70

17
66

18
01

25
.8
4%

12
97
36
4

26
13

13
10

18
00

25
.1
4%

13
15
73
1

21
70

17
95

18
00

26
.1
8%

ei
l1
01

31
66
3

21
23

14
27

18
01

26
.3
3%

34
78
1

11
09

14
00

18
01

32
.9
3%

31
57
2

20
83

14
39

18
00

26
.1
2%

lin
10
5

79
35
63

24
08

15
68

18
01

23
.9
0%

80
49
79

12
09

97
4

18
01

24
.9
8%

79
35
63

24
19

15
60

18
00

23
.9
0%

BRANCHING RULES 145

Ta
bl
e
5.
7:

Br
an

ch
in
g
ru
le

co
m
pa

ris
on

C
P
A
B

M
D
D

(J
ob

R
ep

et
it
io
n)

C
P
A
B

M
D
D

(F
ea
si
bl
e
P
at
h)

C
P
A
B

M
D
D

(E
xp

ec
te
d
C
os
t)

in
st

ob
j

fa
ils

tt
b(
s)

t(
s)

ga
p

ob
j

fa
ils

tt
b(
s)

t(
s)

ga
p

ob
j

fa
ils

tt
b(
s)

t(
s)

ga
p

pr
10
7

26
43
10
5

10
07

10
40

18
00

23
.3
2%

24
42
93
4

38
96

13
73

18
00

17
.0
4%

26
43
10
5

99
4

10
28

18
00

23
.3
2%

av
g

12
.6
6%

14
.8
0%

12
.5
6%

be
st

13
10

13
so
lv
ed

12
9

12

146 INTEGRATING CP, LP AND DECISION DIAGRAMS FOR THE TIME-DEPENDENT TSP

5.9 Implementation limitations

As stated before, the MDD technology is implemented as a special global
constraint in IBM’s ILOG CP Optimizer version 12.4. The current
implementation is however hindered by a number of limitations imposed by CP
Optimizer. Some of the main limitations are:

• Given a (heuristically obtained) feasible initial solution, it is not possible
to warm-start the CP search when MDDs are used. For efficiency reasons,
while dealing with MDDs, the CP search traverses the search nodes in a
depth-first manner. CP Optimizer ignores warm-starts all together when
depth-first search is enabled.

• During the traditional branch-and-bound search, primal heuristics can be
used to find good feasible solutions faster. For example, it is possible to
run a quick search on the MDD to find a feasible s-t path. It is however
not possible to communicate solutions discovered by a primal heuristic
back to CP Optimizer as CP Optimizer does not grant the user access to
its internal solution pool.

• At each node of the CP search tree, a lower bound on the objective
value can be calculated through the MDD. Whenever the CP search
terminates before a proof of optimality is established, the weakest lower
bound incurred over all unexplored search nodes is a valid bound on the
optimal solution. Naturally this bound is often stronger than the bound
obtained at the root node of the CP search tree. Currently CP Optimizer
does not provide access to the individual search nodes so it is not possible
to compute this bound.

• The MDD implementation is not thread safe; hence only 1 worker (thread)
can be used in the CP search.

5.10 Conclusion

In this chapter, the TD-TSP problem is solved through an integrated Constraint
Programming approach. Since CP models are often ineffective in solving
sequencing problems like the TSP, MDDs are incorporated to strengthen the
model. By integrating the MDDs, significantly more information about the
problem structure and solution space are consolidated into the CP model.
Furthermore, since bounds on the optimal solution can be computed through
the MDDs, domain propagation is improved, the search tree can be pruned more

CONCLUSION 147

effectively, and computational effort required to prove optimality is reduced.
Finally we show how structural information from different problem relaxations
can be incorporated into the MDD through additive bounding.
Computational experiments clearly show that the integrated approach
outperforms both traditional MIP and CP formulations for the TD-TSP problem,
as it finds better solutions in less time. The additional filtering induced by
the MDD propagator significantly reduces the size of the search tree. For
a number of instances, the traditional CP approach could find the optimal
solution, but failed to prove optimality in a reasonable amount of time. Due to
the bounds calculated by the MDD propagator, the integrated approach could
attest optimality for these instances in a matter of seconds.
A major drawback of current CP implementations, is the fact that CP does not
provide any insight as to the quality of an incumbent solution. MDDs provide
an outcome here, as lower bounds on the optimal solution are derived from
the MDD at each node of the search tree. Additionally, MDDs can be used
to formulate branching decisions, thereby guiding the search of the CP solver.
Finally, we have shown how MDDs can be used to accommodate structural
information from various problem relaxations into the CP search.
The approach presented in this work is generic in the sense that it hardly relies
on problem-specific information. Therefore, future research could be aimed at
expanding this work to related sequencing problems. Alternatively, one could
attempt to include existing dedicated solution approaches for the TD-TSP into
the current framework to improve its overall performance.

Chapter 6

The Balanced Traveling
Salesman Problem

Abstract

Given a weighted graph G(V,E), the 2-Balanced Traveling Salesman Problem
(2-BTSP) asks for two perfect weighted matchings in G such that (1) the two
matchings together form a Hamiltonian cycle in G and (2) the absolute difference
in costs between the two matchings is minimized. The problem is shown to
be NP-Hard, even when the graph is complete. Mixed Integer Programming
models are presented to solve the 2-BTSP problem, as well as the more general
k-BTSP problem for 2 ≤ k ≤ |V |. One model is solved through branch-bound-
cut, whereas the other model is solved through a branch-price-cut framework.
Computational experiments are conducted on TSPLib instances for k = 2. For
this particular data set, the branch-bound-cut achieves superior results over the
branch-and-price approach, showing that decomposing a problem is not always
beneficial. Future research should reveal whether these results are also valid for
different instance classes, or for the general case where 2 ≤ k ≤ |V |.

The content of this chapter is based on joint work with Bart Smeulders and Frits Spieksma,
Faculty of Economics and Business, KU Leuven

149

150 THE BALANCED TRAVELING SALESMAN PROBLEM

6.1 Introduction

Given is a graph G(V,E) where V is the set of vertices, E a set of weighted
edges, and a set of k salesmen; we will assume that |V | is a multiple of k. In the
traditional Traveling Salesman Problem, the objective is to find a Hamiltonian
cycle in a graph G(V,E) while minimizing the total length of the cycle. In this
work we study the problem of finding a Hamiltonian Cycle in graph G(V,E)
to be traversed by k salesmen as follows. The salesmen alternatingly traverse
in a fixed order a single edge of the Hamiltonian Cycle. The distance traveled
by a salesman equals the sum of distances of its edges. The objective is to
minimize the difference between the maximum distance traveled by a salesman,
and the minimum distance traveled by a salesman. Henceforth we will refer to
this problem as the k-Balanced Traveling Salesman Problem (k-BTSP). Special
cases of this problem arise when k = 2 or k = |V |. In the former case, the
problem requires to find 2 edge-disjoint, weighted, perfect matchings in graph
G(V,E) such that the edges form a Hamiltonian cycle, while minimizing the
absolute difference between the matchings’ weights. In the latter case, the
problem asks to find a Hamiltonian cycle in the graph while minimizing the
difference between the longest and shortest edge in the tour. The problem for
k = |V | has been studied by Larusic and Punnen (2011). In this work we will
primarily focus on the problem for k = 2, first studied by Delcour (2012), but
models for the general case will be presented as well (Appendix B). An example
of a 2-BTSP instance is given in Figure 6.1.
The BTSP is an example of a larger class of balancing problems where an equal
or fair distribution of resources is pursued. The general mathematical form of
these problems can be stated as:

minimize
S∈F

{max
s∈S

w(s)−min
s∈S

w(s)} (6.1)

where F is a family of feasible subsets (solutions) of some superset S , and w(s)
a cost (weight) function which assesses the cost (weight) of element s ∈ S . For
instance, in the context of 2-BTSP, superset S encompasses all possible perfect
matchings in a graph G(V,E) and F comprises of all subsets S ⊆ S s.t. |S| = 2
and the matchings in S form a Hamiltonian cycle. The objective function in
(6.1) minimizes the imbalance: the absolute difference in costs between the most
expensive and least expensive element in the solution.
The general class of balancing optimization problems as defined by equation
(6.1) has been characterized first by Martello et al. (1984). Many optimization
problems identified in literature can be reduced to the aforementioned structure.
A number of examples can be found in Martello et al. (1984); Camerini et al.
(1986); Katoh and Iwano (1994); Cappanera and Scutellà (2005); Zeitlin (1981);
Berežný and Lacko (2005).
The k-BTSP problem studied in this work is a direct extension of the work

COMPLEXITY ANALYSIS 151

of Larusic and Punnen (2011) which focuses on the special case of |V |-BTSP.
Larusic and Punnen (2011) developed several heuristics, mainly relying on
lower and upper bounding procedures, to solve |V |-BTSP. Larusic and Punnen
(2011) argue that their algorithms can be used to solve an optimization problem
originating in the maintenance of aircraft engines.
Another optimization problem related to BTSP is discussed by Bassetto and
Mason (2011), who explore a periodic routing problem, asking to find two tours
of minimal total length through a number of nodes (customers). Some customers
must occur in both tours, others must occur in exactly one tour. The absolute
difference between the number of customers in each tour is restricted from
above, thereby obtaining two balanced tours. Unlike the balanced optimization
problems discussed before, Bassetto and Mason (2011) do not consider reducing
the imbalance between the two tours as part of their objective function; instead,
the maximum allowed imbalance is part of the problem input and enforced
through a constraint in the model.
The last problem, which structurally bears strong resemblance to the BTSP
problem, is the Market-Split problem (Cornuéjols and Dawande, 1998; Aardal
et al., 2000). The Market-Split problem attempts to minimize the total amount
of slack (positive and negative) which has to be added to a set of diophantine
equations to make the system feasible. The problem is often introduced with
the example of a company having two sales divisions responsible for supplying
retailers with products. The objective is to allocate each retailer to either one
of the divisions such that each division controls a predefined fraction of the
market for a given product; deviation of these predefined fractions should be
minimized. A similar structure will be used to model the k-BTSP problem.
The remainder of this chapter is structured as follows. Section 6.2 analyzes
the complexity of the k-BTSP problem, showing that the problem, including
some special cases, is NP-Hard. Section 6.3 introduces several Mixed Integer
Programming formulations for the 2-BTSP problem, including a column
generation model. A branch-and-price framework to solve the column generation
model is outlined in Section 6.4. Details with respect to the implementation of
the models presented in the aforementioned sections are provided in Section
6.5. Experiments for 2-BTSP are reported in Section 6.6. Finally, Section
B.1 extends the models presented in Section 6.3 for k = 2 to the general case.
Section 6.7 offers the conclusion.

6.2 Complexity Analysis

In this section we analyze the computational complexity of the k-BTSP, k ≥ 2.
We show that deciding whether a feasible solution exists to an instance of
k-BTSP is NP-complete, and we show that, even for a complete graph, it is

152 THE BALANCED TRAVELING SALESMAN PROBLEM

1 2

34

1

2

3

4

5 6

Figure 6.1: Example of a 2-BTSP solution. The blue salesman travels a
distance of 1 + 3 = 4, whereas the red salesman travels 2 + 4 = 6. The

objective of the solution equals |4− 6| = 2

NP-hard to find an optimum solution.
Let us formally state the decision version of k-BTSP:

Input: an undirected, weighted graph G = (V,E), an integer k ≥ 2, with |V |
a multiple of k.

Goal: do there exist k disjoint edge sets E1, E2, . . . , Ek with Ei ⊂ E, |Ei| = |V |
k

for i = 1, . . . , k such that the edge sequence e1, e2, . . . , e|V |, with ei ∈ Ei
(modulo k), forms a Hamiltonian Cycle (HC) in G.

It is not difficult to verify that for each fixed k ≥ 2, the decision version of
k-BTSP is at least as hard as deciding whether a graph whose number of nodes
is a multiple of k admits a HC. Hence we can state the following theorem:

Theorem 2. The decision version of k-BTSP is NP-complete for each k ≥ 2.

The optimization version of k-BTSP, simply referred to as k-BTSP, involves a
cost ce ≥ 0 for each edge e ∈ E. Again, let us formally state the problem:

Input: an undirected, weighted graph G = (V,E), with edge costs ce ≥ 0 for
all e ∈ E, an integer k ≥ 2, with |V | a multiple of k.

Goal: find k disjoint edge sets E1, E2, . . . , Ek with Ei ⊂ E, |Ei| = |V |
k for

i = 1, . . . , k such that the edge sequence e1, e2, . . . , e|V |, with ei ∈ Ei
(modulo k), forms a HC in G and such that maxi w(Ei) − mini w(Ei)
is minimal, where w(Q) is defined as w(Q) =

∑
e∈Q ce for some subset

Q ⊆ E.

Even for complete graphs, k-BTSP is a difficult problem:

FORMULATIONS FOR 2-BTSP 153

Theorem 3. The k-BTSP is NP-hard for complete graphs, for k ≥ 2.

Proof. We prove the theorem for k = 2. Again we use a reduction from HC:
given an undirected graph H = (W,F), does H contain a HC? Here it is
assumed wlog. that |W | is even. We now build the complete, edge-weighted
graph G = (V,E) that corresponds to an instance of 2-BTSP. Let V = W , and
for each edge e ∈ F , we introduce an edge e ∈ E, with edge cost de = 0. Consider
now the edges not in F ; we denote them by {e1, e2, . . . , ep}, with p = |E \ F |.
Each of these edges is also present in E; we set dej = 2j , j = 1, . . . , p. This
completes the instance of 2-BTSP.
Observe that every edge e ∈ E \ F has a unique cost, and that the largest edge
cost in a set of edges that correspond to a solution of 2-BTSP, exceeds the
sum of the costs of all other edges in that solution. We now argue that the
existence of a HC is equivalent to the instance of 2-BTSP having an optimum
solution with value 0. Clearly, if there is a HC then the two salesmen each have
a matching with cost 0, leading to a difference of 0. On the other hand, suppose
that the difference between the costs of the two matchings forming a HC equals
0. Consider the most expensive edge in this pair of matchings, and denote its
cost by dmax. If dmax > 0, then, by choice of the edge-weights, the sum of the
edge-weights in the other matching will be less than dmax. Hence, no solution
with value 0 exists. It follows that dmax = 0, which implies that all edges in
the two matchings that form a HC have cost 0, leading to a HC in the graph
H.

The complexity of 2-BTSP for complete graphs with edge costs in {1, 2} remains
open.

6.3 Formulations for 2-BTSP

In case of two salesmen, the problem involves selecting two edge-disjoint perfect
matchings in an undirected, weighted graph. We will treat a slightly more
general problem where the edges (and their costs) which may be used by a
particular salesman are not necessarily the same. More precisely, we define a
graph G = (V,E1 ∪ E2), where E1 is the set of edges that may be used for the
first matching, and E2 the set of edges that may be used for the second matching.
For identification purposes, the first (second) matching will be referred to as
the blue (red) matching. Let M1 (M2) refer to the set of perfect matchings in
(V,E1) ((V,E2)), and M = M1 ∪M2. Each edge e in M1 (M2) has a cost dbe
(dre). The cost of a matching m ∈M1 is defined as cbm ≡

∑
e:e∈m d

b
e. We write

‘e ∈ m’ to denote that edge e is in matching m. Analogous, the cost crm of a

154 THE BALANCED TRAVELING SALESMAN PROBLEM

matching m ∈ M2 is
∑
e:e∈m d

b
e. Note that this problem definition does not

require that E1 ∩ E2 = ∅. Furthermore, a single edge e ∈ E1 ∩ E2 may have
different weights in the red or the blue matching (cbe = cre does not necessarily
hold). Finally, let E = E1∩E2 be the set of edges that can be traversed by both
salesmen and define δ(S), S ⊆ V as the set of edges having exactly one endpoint
in S. Additionally, δ(v), v ∈ V is used as shorthand notation for δ({v}). The
following two models, F0 and F1, define the 2-BTSP problem:

F0 : min |g| (6.2)

s.t.
∑

e∈δ(i)∩E1

xbe = 1 ∀i ∈ V (6.3)

∑
e∈δ(i)∩E2

xre = 1 ∀i ∈ V (6.4)

xbe + xre ≤ 1 ∀e ∈ E1 ∩ E2 (6.5)∑
e∈E1

dbex
b
e −

∑
e∈E2

drex
r
e = g (6.6)

∑
e∈δ(S)∩E1

xbe +
∑

e∈δ(S)∩E2

xre ≥ 2 ∀S ⊂ V, |S| ≥ ∅ (6.7)

g ∈ R (6.8)

xe ∈ {0, 1} ∀e ∈ E1 ∪ E2 (6.9)

Model F0 uses binary variables xe indicating whether edge e ∈ E1 ∪E2 is used
in the solution. Constraints (6.3) and (6.4) ensure that each vertex is incident
to exactly one red edge and one blue edge. Furthermore, each edge may only be
assigned to a single salesman (Constraint (6.5)). Constraint (6.6) models the
objective function, and Constraints (6.7) implement the subtour elimination
constraints.

FORMULATIONS FOR 2-BTSP 155

F1 : min |g| (6.10)

s.t.
∑
m∈M1

zbm = 1 (6.11)

∑
m∈M2

zrm = 1 (6.12)

∑
m∈M : e∈m

(zbm + zrm) ≤ 1 ∀e ∈ E (6.13)

∑
m∈M1

cbmz
b
m −

∑
m∈M2

crmz
r
m = g (6.14)

∑
e∈δ(S)

∑
m∈M :e∈m

zbm + zrm ≥ 2 ∀S ⊂ V, |S| ≥ 3 (6.15)

zbm ∈ {0, 1} ∀m ∈M1 (6.16)

zrm ∈ {0, 1} ∀m ∈M2 (6.17)

g ∈ R (6.18)

Model F1 explicitly selects a perfect matching for each salesman. A single
matching needs to be assigned to each salesman (Constraints (6.11), (6.12)). An
edge may only be traversed by a single salesman (Constraints (6.13)). Finally,
Constraint (6.14) implements the objective function and Constraints (6.15)
eliminate subtours.
Each of the above models is non-linear; linearizing them is however
straightforward by replacing every occurrence of |g| by g1 +g2, every occurrence
of g by g1 − g2, and setting g1, g2 ≥ 0. The continuous relaxations of the
linearized models F0 resp. F1 will be referred to as LPF0 resp. LPF1.
Both models F0 and F1 contain an exponentially large set of subtour elimination
constraints (Constraints (6.7) resp. (6.15)). When solving these models, initially
only a subset of these constraints will be considered; additional constraints are
separated following a cutting plane approach. More details with respect to the
cutting plane procedure can be found in Section 6.5.

156 THE BALANCED TRAVELING SALESMAN PROBLEM

6.4 Column generation

While model F0 can be solved through a traditional branch-bound-cut (BBC)
procedure, doing so for model F1 is not straightforward due to the possibly
exponentially large set of variables. Therefore, model F1 is solved through a
branch-price-cut (BPC) framework.

6.4.1 Pricing Problem

The dual of LPF1, the LP relation of model F1, is given as follows. Associate
dual variables v, w, u, y, ζ with resp. constraints (6.11)-(6.15). The dual of LPF1
becomes:

F1dual : max v + w +
∑
e∈E

ue + 2
∑
S⊂V
|S|≥3

ζS (6.19)

s.t. v +
∑
e∈m

ue + cbmy+

∑
S⊂V
|S|≥3

|δ(S) ∩m|ζS ≤ 0 ∀m ∈M1 (6.20)

w +
∑
e∈m

ue − crmy+

∑
S⊂V
|S|≥3

|δ(S) ∩m|ζS ≤ 0 ∀m ∈M2 (6.21)

− 1 ≤ y ≤ 1 (6.22)

ue ≤ 0 ∀e ∈ E (6.23)

ue = 0 ∀e ∈ (E1 ∪ E2) \ E (6.24)

ζS ≥ 0 ∀S ⊂ V, |S| ≥ 3 (6.25)

Solving the pricing problem for this problem amounts to computing a maximum
weight perfect matching in graphs G(V,E1), G(V,E2) resp. with modified edge
costs. For salesman t = 1 the modified edge costs δe, e ∈ E1 are defined as

COLUMN GENERATION 157

follows:

δe = ue + dbey +
∑
S⊂V
|S|≥3

ae(S) ∀e ∈ E1

where ae(S) = 0 if e /∈ δ(S), ζS otherwise, for all e ∈ Et, t ∈ T , S ⊂ V , |S| ≥ 3.
The pricing problem for salesman t = 1 then amounts to finding a perfect
matching m ∈M1 s.t.: ∑

e∈E1: e∈m
δe > −v (6.26)

Similarly, for salesman t = 2 we have:

δe = ue − dbey +
∑
S⊂V
|S|≥3

ae(S) ∀e ∈ E2

resulting in the problem of finding a perfect matching m ∈M2 s.t. :∑
e∈E2: e∈m

δe > −w (6.27)

6.4.2 Branching

After solving LPF1 to optimality, the resulting zrm, zbm variables may be
fractional. Hence a branching framework is required. If there is a fractional
solution, then there is an edge e = (i, j) such that either 0 <

∑
m∈M1: e∈m z

b
m <

1 or 0 <
∑
m∈M2: e∈m z

r
m < 1 holds, or both. Indeed, one easily verifies that

integrality of the zrm, zbm variables implies that each edge is either part of the
blue or red matching or not used at all. Suppose that 0 <

∑
m∈M1: e∈m z

b
m < 1

holds (analogous for 0 <
∑
m∈M2: e∈m z

r
m < 1). There exist two possibilities:

in an optimal solution edge e = (i, j) is part of the blue matching, or it is not.
In the former case all edges incident to vertices i, j can be removed from E1,
except edge (i, j), and edge (i, j) may be removed from set E2. In the latter
case, edge e is removed from set E1.

6.4.3 Initialization

Each node of the BPC tree must be initialized with a feasible subset of columns
M ′ ⊆ M which together satisfy the constraints (6.11)-(6.15) in LPF1, or one
must prove that such a set of columns does not exist, rendering the node
infeasible. Due to the special objective function of the BTSP, it is not obvious

158 THE BALANCED TRAVELING SALESMAN PROBLEM

whether the techniques described in Section 2.5.2 can be reused to generate a set
of artificial columns with a high price as a starting solution because it is hard to
guarantee that the artificial columns will price out if there exists a non-artificial
solution. Furthermore, due to the subtour elimination constraints and the fact
that the graphs may be incomplete, it may prove difficult to generate a set of
artificial columns which collectively satisfy constraints (6.11)-(6.15). And even
if this would be possible, then this would require to solve a separate subproblem
at each node of the BPC tree to establish a feasible initial solution. Fortunately,
all these issues can be avoided by using an approach very similar to the one
used in Phase I of the Simplex algorithm (Chvátal, 1983). Instead of solving
LPF1 directly, we will work with a model LPF1’ which relaxes a number of the
constraints in model LPF1. Indeed, by replacing hard constraints (6.11), (6.12),
(6.15) by soft constraints, a model is obtained for which a trivial initial solution
exists. Model LPF1’ is defined as follows:

LPF1′ : min g1 + g2 + λU (6.28)

s.t.
∑
m∈M1

zbm + λ = 1 (6.29)

∑
m∈M2

zrm + λ = 1 (6.30)

∑
m∈M : e∈m

zrm + zbm ≤ 1 ∀e ∈ E (6.31)

∑
m∈M1

cbmz
b
m −

∑
m∈M2

crmz
r
m − g1 + g2 = 0 (6.32)

∑
e∈δ(S)

∑
m∈M :e∈m

zbm + zrm + 2λ ≥ 2 ∀S ⊂ V, |S| ≥ 3 (6.33)

λ ≤ 1 (6.34)

zbm ≥ 0 ∀m ∈M1 (6.35)

zrm ≥ 0 ∀m ∈M2 (6.36)

g1, g2, λ ≥ 0 (6.37)

In this model, constraints (6.11), (6.12), (6.15) may be violated, but any
violation is penalized in the objective, where λU > 0 is the penalty incurred
when λ > 0, with U being a fixed constant.
Associate dual variables v, w, u, y, ζ, µ with resp. constraints (6.29)-(6.34). The

COLUMN GENERATION 159

dual of LPF1’ becomes:

LPF1′dual : max v + w +
∑
e∈E

ue + µ (6.38)

s.t. v +
∑
e∈m

ue + cbmy+ ∀m ∈M1 (6.39)

∑
S⊂V
|S|≥3

|δ(S) ∩m|ζS ≤ 0

w +
∑
e∈m

ue − crmy+ ∀m ∈M2 (6.40)

∑
S⊂V
|S|≥3

|δ(S) ∩m|ζS ≤ 0

− 1 ≤ y ≤ 1 (6.41)

v + w + µ+
∑
S⊂V
|S|≥3

2ζS ≤ U (6.42)

µ ≤ 0 (6.43)

ue ≤ 0 ∀e ∈ E (6.44)

ue = 0 ∀e ∈ (E1 ∪ E2) \ E (6.45)

ζS ≥ 0 ∀S ⊂ V, |S| ≥ 3 (6.46)

From the construction of model LPF1’ is is apparent that it always has a
feasible solution having objective value U with zrm = zbm = 0 for all m ∈ M ,
and λ = 1. Furthermore, by comparing the dual formulations of models LPF1
and LPF1’, it is clear that the pricing problem can be solved through the same
algorithmic implementation. Finally observe that by setting λ = 0, LPF1’
becomes identical to LPF1. In fact, LPF1’ only yields a feasible solution to
LPF1 iff λ = 0. To prove infeasibility of LPF1, we must guarantee that any
solution in LPF1’ with λ > 0 is more expensive in terms of the objective value
than any solution to LPF1’ with λ = 0. This can be achieved by setting U to
a large value. However, it is well known that this reduces the stability of the
column generation procedure and potentially introduces numerical issues while

160 THE BALANCED TRAVELING SALESMAN PROBLEM

implementing the model. Recall that a node in the BPC tree can be pruned if
either of the following conditions holds:

1. the node is infeasible

2. the lower bound on the node exceeds the upper bound, i.e., the best
incumbent integer solution.

Hence it suffices to ensure that there does not exist a solution to LPF1’ with
λ > 0 having an objective value less than W , where W is the value of the
best incumbent integer solution or any other valid upper bound on the optimal
objective value. The latter can be achieved by the following procedure:

Algorithm 9: Penalty update procedure for LPF1’
1 U=W
2 repeat
3 solve LPF1’. Let ω be the resulting objective value
4 if λ = 0 then
5 Feasible solution for LPF1 has been found with objective value ω
6 else /* 0 < λ ≤ 1 */
7 U := U

λ /* Increase penalty */

8 until λ = 0 ∨ ω ≥W

When the procedure terminates, either a solution to LPF1’ with λ = 0 is
discovered, or a solution with λ > 0, ω ≥W is obtained in which case the node
can be pruned.
Note that the same technique can be used at the root node of the BPC tree
if no (heuristically obtained) feasible solution is available. In this case, W is
initialized to a feasible upper bound on the objective value, e.g.,:

W = max{ max
m∈M1

cbm − min
m∈M2

cbm, max
m∈M2

crm − min
m∈M1

crm} (6.47)

This bound is easy to calculate by computing both a min cost and a max cost
perfect matching on graphs G(V,E1) and G(V,E2).
Finally note that the structure of LPF1’ and its dual bares close resemblance to
Du Merle’s 3-piecewise stabilization method outlined in Section 2.4.2. Indeed,
the introduction of the soft constraints in LPF1’ adds a certain amount of
stabilization to the model.

COLUMN GENERATION 161

Example

An example of the procedure outlined in the previous paragraph is shown below.
For each iteration of Algorithm 9, the resulting columns for LPF1’ are reported.

• Iteration 1 of Algorithm 9:

Variable Variable Matching
Value Cost

zb1 0.09346 1632
zb2 0.85981 1684

zr1 0.04673 1871
zr2 0.90654 1669

|g| = 0.09346× 1632 + 0.85981× 1684− 0.04673× 1871− 0.90654× 1669 = 0

U = W = 86

λ = 0.04673

ω = |g|+ λU = 0.04673× 86 = 4.01869

ω < W so update U → U = 86
0.04673 = 1840.4

• Iteration 2 of Algorithm 9:

Variable Variable Matching
Value Cost

zb1 0 1632
zb2 1 1684

zr1 0 1871
zr2 1 1669

U = 1840.4

|g| = |1684− 1669| = 15

λ = 0

ω = |g|+ λU = 15.0

A feasible solution for LPF1 with value 15 has been found.

162 THE BALANCED TRAVELING SALESMAN PROBLEM

6.5 Some implementation details

The implementation of the BPC framework is fully deterministic and relies
on reversible data structures. Instead of copying entire MIP models, graph
structures, etc, each branch in the BPC tree introduces a number of reversible
changes to the underlying data structures. When backtracking in the BPC tree,
changes are automatically reverted. Since changes can be made locally, this is
much cheaper and faster than copying and modifying entire data structures,
especially if only small changes need to be made. Furthermore, this makes
it much easier to implement different search strategies based on for example
Depth First Search, Breadth First Search or Strong Branching techniques. In
this work we use Depth First Search to minimize the overhead involved when
backtracking.
When solving the pricing problem for the column generation procedure, a pricing
problem is solved for every salesman. Strictly speaking it suffices to halt the
pricing problem after the first negative reduced cost column is discovered, but
in practice better results are obtained when multiple columns are returned
simultaneously. Hence, computations for the pricing problem are carried out
for every salesman.
While running the BBC procedure, a trade-off must be made between generating
columns and generating cuts. In this work, we only generate subtour elimination
constraints; no other cuts are separated. Three alternative approaches are
considered:

1. Generate cuts each time the master problem is solved.

2. Generate cuts as soon as the pricing problem fails to identify columns
with negative reduced cost or when the solution of the master problem
equals the lower bound of the BPC node.

3. Generate cuts each time the master problem is solved and yields an integer
solution.

Sorted in descending order, the above methods invoke the separation routines
from often to least often. Clearly, invoking the separation routines often increases
the computational overhead, but this may help in cutting off infeasible regions
of the search space early in the process. In the next Section, a comparison of
these three different approaches is included.
For the BBC approach, separation is only performed whenever an integer
solution is encountered; computational experiments indicate that performing
separation at every node of the BBC tree, including all fractional nodes, is
computationally too expensive.

COMPUTATIONAL EXPERIMENTS FOR 2-BTSP 163

6.6 Computational Experiments for 2-BTSP

6.6.1 Instances

All instances used for the computational experiments are based on TSPLib
instances. Recall that the number of vertices in each instance needs to be
divisible by k = 2, the number of salesmen. If this is not the case for a
particular TSPLib instance, vertices are removed, starting from the last vertex,
until this condition holds. In the experiments, the edge sets E1 and E2 are
identical. For a number of instances, a percentage p of the most expensive edges
are removed, thereby obtaining an incomplete graph. To guarantee a certain
amount of connectivity in the graph, an edge is only removed if its adjacent
vertices have a degree larger than two. The exact number of edges removed
equals bp×|E|100 c, where |E| equals the number of edges in the complete graph.

6.6.2 Experimental Results for 2-BTSP

Experiments are conducted on TSPLib instances, ranging from 14 to 318 nodes.
In Table 6.2 the performance of model F0 (equations (6.2)-(6.9)), solved through
BBC, is compared against model F1 which is solved through BPC (equations
(6.10)-(6.18)). For each instance, an extensive number of statistics, summarized
in Table 6.1, are reported. When solving the problem instances, a time limit of
600 seconds was enforced. Only the instances which were solved in less than 600
seconds (column t(ms)) are solved to optimality. Instances with "inf" in column
obj are infeasible or no feasible solution could be found within the allotted
time. The lower bound reported for the BPC method is calculated by taking
the weakest bound over all open (unexplored) nodes; the lower bound reported
for the BBC method is acquired directly from Cplex. All computations are
performed with IBM ILOG Cplex 12.6.

When comparing the results reported in Table 6.2, it is apparent that the
BBC approach significantly outperforms the BPC method. With BBC, all 45
instances were solved to optimality, whereas BPC could only solve 36 instances
within the allotted time. For the hardest instances having 264 or more nodes,
BPC could not find a single feasible solution. When comparing the instances
which were solved by both BPC and BBC, BBC solved the instances significantly
faster.
When studying the performance of the BPC approach in more detail, a number
of observations can be made:

164 THE BALANCED TRAVELING SALESMAN PROBLEM

Name TSPLib instance name (number indicates number of vertices)
red Percentage of edges removed.
LB Lower bound on optimal value
obj Objective value of best solution
nodes Number of nodes in the BPC tree which have been solved (closed)
t(ms) instance solve time
tmaster time spent solving master and invoking separation routines.
tpricing time spent solving pricing problems
it total number of column generation iterations performed (summed

over all b&p nodes)
rest total number of times the penalty coefficient is increased.
cols total number of columns generated (summed over all b&p nodes)

Table 6.1: Column abbreviations in computational results

• The majority of time is spent on solving pricing problems. Currently,
the pricing problems are implemented as MIP problems. These could be
replaced by more efficient, dedicated implementations for max weighted
matchings. However, in order to obtain better results than the BBC
method, such implementation must be at least 100-1000 times faster.

• Although not apparent from the results in Table 6.2, the lack of strong
bounds forms a major bottleneck for the BPC approach. Quite often, a
branch in the BPC tree is fully explored. At each non-leave node, a lower
bound of zero is encountered. Only at the leaves, non-zero integer solutions
are discovered. Consequently it is very difficult to guide the search or to
cut of branches due to the weak lower bounds. Note that, based on their
experiments, Cornuéjols and Dawande (1998) drew the same conclusion,
explaining why their traditional BBC approach performed poorly for the
related Market-Split problem.

• A branching decision is made as soon as the master problem reaches a
feasible solution equal to the lower bound of the BPC node. Typically, this
often happens after only a few iterations. Hence, the number of iterations,
as well as the number of generated columns per BPC node is very low.

• The penalty update scheme (Algorithm 9) works well: the number of
penalty updates is significantly lower than the number of nodes in the
BPC tree, meaning that for the majority of nodes no updates are required.
This approach is computationally much cheaper than using a dedicated
method to generate a feasible initial solution at each node of the tree (or
to prove that such a solution does not exist).

COMPUTATIONAL EXPERIMENTS FOR 2-BTSP 165

• Some instances are determined to be infeasible without performing any
column generation iterations (0 nodes or iterations). This is due to the
fact that an initial upper bound on the optimal solution (see equation
(6.47)) is calculated. If for a given salesman t ∈ T and corresponding
edge set Et no perfect matching exists, than the instance is infeasible per
definition.

As elaborated in Section 6.5, there are multiple moments during the column
generation process when cuts can be generated. In Tables 6.2, 6.3, 6.4 we
compare three different approaches for generating the cuts. In the BCP results
in Table 6.2, cuts are generated each time the master problem is solved. In Table
6.3, cuts are generated when the column generation procedure ends (i.e., when
there are no more negative reduced cost columns). Finally, in Table 6.4 cuts
are generated only when the master problem yields an integer solution. Clearly,
the best results are obtained when cuts are generated each time the master
problem is solved, both in terms of solution speed and number of instances
solved. Generating cuts only when the master problem yields an integer solution
requires the least number of invocations of the separation algorithms, but the
BPC tree becomes significantly larger as fewer solutions are being cut-off during
the search process.
Although in the experiments reported in this section BCP obtains superior
results over the BPC approach, a number of remarks are in place. The variety
of instances used in the experiments is fairly limited. All but two instances in
our benchmark set have an optimal objective of zero, or are simply infeasible.
All instances are based on TSPLib instances and hence are defined in the
Euclidean plane. It turns out to be difficult to generate feasible instances with
a non-zero objective; simply reducing the number of arcs in an instance or
assigning randomly selected edge weights does not suffice. It remains to be seen
how BBC and BPC compare on problem instances with different characteristics.
The poor performance of BPC for 2-BTSP could however be more fundamental in
nature. First of all, splitting a problem into a master problem and a subproblem
introduces a certain amount of overhead. In addition, by splitting the problem
into two problems, the interaction or connectivity between the problems is
weakened. A complex problem should only be split into multiple parts if the
resulting parts are somehow easier or more efficient to solve. In case of 2-BTSP,
splitting-off an easy matching problem does not seem to benefit the master
problem sufficiently.

166 THE BALANCED TRAVELING SALESMAN PROBLEM

Ta
bl
e
6.
2:

Br
an

ch
-B

ou
nd

-C
ut

ve
rs
us

Br
an

ch
-P

ric
e-
C
ut

B
ra
nc
h-
an

d-
bo

un
d

B
ra
nc
h-
pr
ic
e-
cu

t
N
am

e
re
d(
%
)

L
B

ob
j

t(
m
s)

L
B

ob
j

no
de

s
t(
m
s)

t m
a
s
t
e
r
t p
r
i
c
i
n
g

it
re
st

co
ls

bu
rm

a1
4

50
0

0
37
3

0
0

18
6

37
34

64
0

25
74

49
0

22
34

7
bu

rm
a1
4

60
22

22
89

22
22

71
22
15

13
7

19
37

21
1

11
19
4

bu
rm

a1
4

70
in
f

12
in
f

1
54

1
49

3
0

2
bu

rm
a1
4

75
in
f

9
in
f

1
17

1
14

3
0

2
bu

rm
a1
4

80
in
f

1
in
f

1
28

2
24

5
1

4
ul
ys
se
s1
6

50
0

0
57

0
0

98
10
96

16
2

80
2

21
1

3
12
2

ul
ys
se
s1
6

60
0

0
15
5

0
0

14
58

19
08
0

22
62

15
05
9

36
92

14
2

23
79

ul
ys
se
s1
6

70
1

1
52

1
1

17
7

51
26

35
3

45
34

66
3

59
53

4
ul
ys
se
s1
6

75
in
f

8
in
f

1
54

2
49

5
0

6
ul
ys
se
s1
6

80
in
f

6
in
f

1
29

1
24

5
0

6
ul
ys
se
s2
2

50
0

0
29
8

0
0

87
4

10
80
0

18
38

77
29

22
37

40
14
13

ul
ys
se
s2
2

60
0

0
39
1

0
0

12
1

23
41

30
3

18
74

34
9

8
24
1

ul
ys
se
s2
2

70
in
f

18
in
f

1
20
0

3
19
3

7
0

10
ul
ys
se
s2
2

75
in
f

2
in
f

0
2

0
0

0
0

0
ul
ys
se
s2
2

80
in
f

1
in
f

0
2

0
0

0
0

0
be

rl
in
52

50
0

0
96
2

0
0

13
8

59
00

16
39

37
49

33
0

4
25

5
be

rl
in
52

60
0

0
66
3

0
0

35
3

17
83
8

39
60

12
74
4

12
43

70
88
2

be
rl
in
52

70
in
f

7
in
f

1
24
7

2
23
9

4
1

4
be

rl
in
52

75
in
f

6
in
f

1
30
7

1
30
0

4
1

4
be

rl
in
52

80
in
f

5
in
f

0
3

0
0

0
0

0
ei
l7
6

50
0

0
29
52

0
0

13
7

14
99
3

44
41

95
85

34
5

0
27
0

ei
l7
6

60
0

0
14
89

0
0

11
8

12
39
9

31
63

85
34

26
5

0
24
8

ei
l7
6

70
0

0
12
88

0
0

69
12
02
5

35
63

80
90

20
6

0
21

5
ei
l7
6

75
0

0
31
3

0
0

12
3

98
69

35
14

58
32

29
4

0
23

9
ei
l7
6

80
0

0
97
3

0
0

86
13
68
6

46
98

86
43

32
6

0
32

0
gr
96

50
0

0
13
46
7

0
0

18
98

11
93
96

60
00
6

41
49
5

47
23

56
29
07

gr
96

60
0

0
45
12
9

0
0

14
63

90
05
1

42
31
3

36
20
4

34
59

36
20
77

gr
96

70
0

0
88
96

0
0

31
9

38
97
3

14
19
2

22
69
7

81
0

0
60
9

gr
96

75
0

0
11
69
6

0
0

51
26

22
95
77

12
00
08

82
18
4

11
97
5

21
0

72
87

gr
96

80
0

0
21
62
1

0
0

61
3

42
89
5

18
91
7

21
06
4

13
07

0
97
0

gi
l2
62

50
0

0
17
11
12

in
f

17
4

60
03
87

11
14
74

45
68
06

46
3

0
50
2

gi
l2
62

60
0

0
18
95
02

0
0

32
8

53
82
98

15
75
28

35
30
61

82
1

0
74
9

gi
l2
62

70
0

0
11
51
02

0
0

26
1

45
97
05

12
03
43

32
36
74

64
0

0
66
4

gi
l2
62

75
0

0
12
04
70

0
0

31
5

59
81
94

19
68
24

38
66
05

92
3

0
89
0

gi
l2
62

80
0

0
60
45
7

0
0

27
2

56
06
91

18
57
58

36
48
04

87
4

0
88
3

pr
26
4

50
0

0
24
11
30

in
f

3
60
00
39

55
14

49
58
17

16
0

26
pr
26
4

60
in
f

10
26
4

in
f

1
15
75
14

13
00

15
61
12

7
0

12
pr
26
4

70
in
f

63
38

in
f

0
60
22
09

0
0

0
0

0

COMPUTATIONAL EXPERIMENTS FOR 2-BTSP 167

Ta
bl
e
6.
2:

Br
an

ch
-B

ou
nd

-C
ut

ve
rs
us

Br
an

ch
-P

ric
e-
C
ut

B
ra
nc
h-
an

d-
bo

un
d

B
ra
nc
h-
pr
ic
e-
cu

t
N
am

e
re
d(
%
)

L
B

ob
j

t(
m
s)

L
B

ob
j

no
de

s
t(
m
s)

t m
a
s
t
e
r
t p
r
i
c
i
n
g

it
re
st

co
ls

pr
26
4

75
in
f

28
95
1

in
f

1
37
00
40

79
5

36
91
37

5
0

8
pr
26
4

80
in
f

29
20
2

in
f

0
62
40
55

0
0

0
0

0
lin

31
8

50
0

0
18
93
06

in
f

25
60
00
50

26
11
9

55
34
27

57
0

64
lin

31
8

60
0

0
19
57
16

in
f

8
60
00
27

12
91
9

53
48
59

31
0

46
lin

31
8

70
0

0
44
47
62

in
f

12
60
01
51

19
54
7

54
45
68

41
0

58
lin

31
8

75
0

0
25
78
85

in
f

18
60
00
42

22
16
7

54
08
19

56
0

76
lin

31
8

80
0

0
25
56
0

in
f

10
60
00
51

20
54
6

38
42
47

45
0

70
T
ot
al
:

21
96
69
6

87
64
39
0

11
66

95
6

57
60
15
8

37
15
1

66
4

25
59
5

O
pt
:

45
36

168 THE BALANCED TRAVELING SALESMAN PROBLEM

Table 6.3: Branch-Price-Cut (Cuts calculated when column generation
terminates.)

Branch-price-cut
Name red(%) LB obj nodes t(ms) tmaster tpricing it rest cols
burma14 50 0 0 180 3681 155 2603 550 24 333
burma14 60 22 22 71 2205 78 1900 249 11 193
burma14 70 inf 1 62 0 58 5 0 4
burma14 75 inf 1 23 1 16 5 0 4
burma14 80 inf 1 36 2 29 5 1 4
ulysses16 50 0 0 98 1069 63 770 240 3 122
ulysses16 60 0 0 1027 14501 825 11454 3308 70 1737
ulysses16 70 1 1 177 5170 204 4606 759 59 534
ulysses16 75 inf 1 53 2 49 6 0 6
ulysses16 80 inf 1 28 1 25 6 0 6
ulysses22 50 0 0 721 8924 470 6438 2018 9 1051
ulysses22 60 0 0 195 2870 140 2175 545 3 281
ulysses22 70 inf 1 215 1 208 8 0 10
ulysses22 75 inf 0 3 0 0 0 0 0
ulysses22 80 inf 0 2 0 0 0 0 0
berlin52 50 0 0 106 4930 140 3439 321 0 197
berlin52 60 0 0 90 6877 162 5418 337 0 220
berlin52 70 inf 1 244 1 237 4 1 4
berlin52 75 inf 1 452 1 444 4 1 4
berlin52 80 inf 0 3 0 0 0 0 0
eil76 50 0 0 128 10416 301 7014 373 4 238
eil76 60 0 0 125 14722 457 9861 615 2 362
eil76 70 0 0 123 12876 329 9193 492 2 291
eil76 75 0 0 88 10165 155 7614 309 0 250
eil76 80 0 0 137 20092 437 15296 792 24 514
gr96 50 0 0 2438 137883 8487 49626 7343 108 3739
gr96 60 0 0 9068 410411 23563 132888 25512 31 12587
gr96 70 0 0 3034 171873 8426 59504 10409 155 5015
gr96 75 0 0 3473 157793 7036 49868 9832 0 4525
gr96 80 0 0 3286 167763 6348 66411 9898 73 4809
gil262 50 inf 123 600828 4142 520407 471 0 372
gil262 60 0 1 303 600702 8003 473659 1116 0 851
gil262 70 0 1 333 600192 7591 453585 1386 0 1010
gil262 75 0 0 253 537214 5028 438046 1042 0 858
gil262 80 0 0 276 422336 4236 321094 1023 0 734
pr264 50 inf 5 600047 551 517620 66 0 34
pr264 60 inf 1 288164 111 286794 17 0 18
pr264 70 inf 0 622053 0 0 0 0 0
pr264 75 inf 0 609757 0 0 0 0 0
pr264 80 inf 0 604529 0 0 0 0 0
lin318 50 inf 21 600043 926 565766 69 0 64
lin318 60 inf 7 600040 626 453164 65 0 46
lin318 70 inf 15 600283 1049 574250 130 0 96
lin318 75 inf 29 600019 709 571987 103 0 78
lin318 80 inf 26 600054 827 562291 139 0 110
Total: 9651603 91584 6185807 79572 581 41311
Opt: 33

COMPUTATIONAL EXPERIMENTS FOR 2-BTSP 169

Table 6.4: Branch-Price-Cut (Cuts calculated when master problem yields
integer solution.)

Branch-price-cut
Name red(%) LB obj nodes t(ms) tmaster tpricing it rest cols
burma14 50 0 0 779 9179 500 7287 1548 53 799
burma14 60 22 22 371 7042 341 6184 1043 89 741
burma14 70 inf 1 50 1 46 3 0 2
burma14 75 inf 1 17 1 13 3 0 2
burma14 80 inf 1 28 1 24 5 1 4
ulysses16 50 0 0 8985 81225 4991 66949 20698 1092 12127
ulysses16 60 0 0 94 1010 58 846 201 8 131
ulysses16 70 1 1 249 3725 184 3316 653 42 437
ulysses16 75 inf 5 95 6 81 14 0 13
ulysses16 80 inf 3 68 4 60 12 1 11
ulysses22 50 0 0 1479 10999 765 8423 2746 13 1439
ulysses22 60 0 0 1036 11550 749 9585 2106 29 1176
ulysses22 70 inf 1293 48255 2219 44439 3238 2 2755
ulysses22 75 inf 0 2 0 0 0 0 0
ulysses22 80 inf 0 2 0 0 0 0 0
berlin52 50 0 0 9403 97749 8559 56704 16899 114 8652
berlin52 60 0 0 133 4635 396 3828 273 0 211
berlin52 70 inf 1 248 1 241 4 1 4
berlin52 75 inf 1 285 0 279 4 1 4
berlin52 80 inf 0 4 0 0 0 0 0
eil76 50 0 0 176 10820 1399 8216 378 1 292
eil76 60 0 0 95 10221 1131 8493 249 1 211
eil76 70 0 0 8255 129048 14022 79932 15174 175 8581
eil76 75 0 0 126 8200 931 6754 305 3 249
eil76 80 0 0 791 23984 2584 18853 1720 67 1127
gr96 50 0 1 30984 600024 57896 230197 54741 249 27255
gr96 60 0 0 7541 133530 13579 56544 13086 0 5607
gr96 70 0 0 9941 190095 17626 111362 16852 0 8632
gr96 75 0 1 28344 600013 66951 379861 55651 490 29992
gr96 80 0 0 1850 50229 5174 36600 4801 429 2776
gil262 50 0 10 460 600243 82356 467455 974 0 845
gil262 60 0 0 393 436243 57485 345910 847 0 776
gil262 70 0 0 365 441617 69906 350732 806 0 747
gil262 75 0 0 656 425033 72862 325917 1375 8 1034
gil262 80 0 0 269 403318 64087 328919 706 0 713
pr264 50 inf 22 600052 4095 562508 55 0 66
pr264 60 inf 28 600026 3585 584608 67 0 78
pr264 70 inf 0 608043 0 0 0 0 0
pr264 75 inf 1 601923 509 334252 5 0 8
pr264 80 inf 0 602474 0 0 0 0 0
lin318 50 inf 26 600330 7220 556223 60 0 68
lin318 60 inf 19 600027 6001 574171 47 0 56
lin318 70 inf 12 600032 3373 571599 30 0 36
lin318 75 inf 8 601443 3738 147634 19 0 22
lin318 80 inf 11 600462 3537 269335 29 0 36
Total: 10353598 578823 6564380 217427 2869 117715
Opt: 32

170 THE BALANCED TRAVELING SALESMAN PROBLEM

6.7 Conclusion

In this chapter a first attempt has been made to solve the 2-Balanced TSP, a
special case of k-BTSP. In k-BTSP, k salesmen alternatingly traverse edges in a
weighted graph until a tour (Hamiltonian cycle) is completed. The objective is
to find a tour such that each salesman travels approximately the same distance.
The k-BTSP belongs to a hard class of optimization problems where equity
or fairness in the distribution of shared resources is aspired. We show that
the problem is NP-Hard, even when the graph is complete. Two models are
presented for the 2-BTSP; one can be solved through a traditional branch-bound-
cut approach, whereas the other is embedded in a branch-price-cut framework.
Experiments conducted for the special case where k = 2 indicate that the best
results are obtained with the branch-bound-cut approach. Although column
generation methods in general produce strong bounds, this does not seem to be
the case for 2-BTSP. Due to the inability to prune the search tree effectively,
each branch of the branch-and-price tree is almost always fully explored, thereby
reducing the efficiency of the branch-and-price approach significantly.
The pricing problem in the branch-and-price approach amounts to finding a
maximum weight matching in an arbitrary graph. In the current implementation,
this problem is solved through Mixed Integer Programming. We anticipate
that a performance increase can be realized when the pricing problem is solved
through a dedicated matching algorithm. Furthermore, additional experiments
should be conducted on a wider variety of problem instances, and for different
values of k, to assess whether the results obtained for 2-BTSP are also valid for
different instance classes.

Chapter 7

Conclusion

Many of today’s real world optimization challenges do not involve merely a
single problem; they often encompass a multitude of interconnected problems.
Although many of these optimization problems can be formulated through Mixed
Integer or Constraint Programming models, solving them to optimality is only
possible for moderately small problem instances. The dependencies between the
subproblems often yield an excessive number of conditional constraints, which
deteriorate the quality of the model significantly. Furthermore, MIP and CP
solvers often make poor branching decisions, due to the solvers’ unawareness
of the underlying problem structure. A major challenge lies in the design of
decomposition procedures having the capacity to cope with the aforementioned
problems efficiently. However, in practice it is often unclear how to decompose
a problem in such a way that the resulting components can be solved more
efficiently, without breaking the problem’s structure, while, at the same time,
rendering the decomposition sufficiently robust to handle changes to the problem
definition. Moreover, desirably, a decomposition approach must preserve some
notion of optimality, i.e., it must provide insight into the quality of a solution.

In this thesis, three decomposition approaches have been studied for four
optimization problems: the School Bus Routing Problem, the Concrete Delivery
Problem, the Time-Dependent TSP and the Balanced TSP. The first chapter
of this thesis dealt with the SBRP for which a CG procedure has been
developed. This procedure decouples the SBRP into a master problem and
a subproblem: the subproblem generates bus schedules, whereas the master
problem selects a set of compatible schedules and assigns them to the available
buses. Real world applications of the SBRP are more involved than the
problem considered in Chapter 2. Nevertheless, the CG framework proposed

171

172 CONCLUSION

in this chapter is sufficiently robust to incorporate a number of additional side
constraints frequently encountered in real world applications. For instance, the
pricing problem, currently solved through a Labeling algorithm, could easily
accommodate time windows on the pickup times of students, or precedence
relations. Similarly, the master problem could account for differences in
vehicle capacities, or the availability of equipment on board the vehicles
for students with special needs. Computational results on a large data set
indicate that the proposed decomposition obtains significantly stronger lower
and upper bounds for a large number of instances than alternative methods
from related work. Furthermore, the branch-and-price framework used to solve
the instances combines well with existing (heuristic) solution approaches. In
fact, warm-starting the branch-and-price approach decreases computation times
considerably.

The CDP was introduced in Chapter 3. The chapter provides an extensive
literature comparison, proves that CDP is NP-hard, and presents a number
of exact and heuristic approaches for CDP. Despite the fact that the various
exact and heuristic algorithms are capable of obtaining good primal solutions,
it remains challenging to establish the quality of the solutions due to the lack of
strong bounding procedures. The latter is a direct consequence of the number of
conditional constraints in CDP. To address this issue, Chapter 4 proposes a logic
based Benders decomposition for CDP. Similar to CG procedures, the Benders
decomposition decouples the problem into a master problem and a subproblem.
Based on a number of problem characteristics such as travel distances to the
customers, requested amount of concrete, available vehicles, their capacities and
processing times, the master problem selects a number of customers to service.
In turn, the subproblem attempts to establish a feasible delivery schedule for
the selected customers. Cuts are added to the master problem when such a
schedule does not exist. Computational experiments show that strong bounds
can be acquired through this approach. For a number of instances, optimality
could be attested; a reduction of the optimality gap was realized for many of
the remaining instances.
Benders decompositions can be very powerful for solving large scale optimization
problems. Nevertheless some important remarks should be made. A Benders
procedure primarily functions as a bounding procedure. Whenever the Benders
decomposition is terminated prematurely, for example due to a time limit,
the procedure may only output a bound, and not necessarily a primal feasible
solution. In practice this can often be alleviated by integrating a primal heuristic
into the Benders procedure. Finally, in contrast to e.g., CG procedures which
can be warm-started by strong primal solutions, it often proves difficult to
derive a strong set of initial cuts for Benders procedures.

CONCLUSION 173

An integrated CP approach for the TD-TSP is developed in Chapter 5. MIP
based approaches typically search over the solution space of a problem, or
a relaxation thereof, in an attempt to find a globally optimal solution. In
contrast, CP based techniques rely on a localized strategy where constraints are
considered one-by-one, filtering inconsistent values from the variable domains
until a fixed point is reached. Such an approach has the advantage that
each constraint can be implemented independently through some specialized
algorithm, thereby exploiting combinatorial substructures in the problem.
Conversely, CP implementations are likely to miss out on certain global
properties of a problem due to the fact that these properties cannot be captured
through domain propagation. Similarly, communication between the constraints
is restricted to the information that can be conveyed through the variable
domains. When insufficient information is encoded into the variable domains,
structural relations within the problem may be lost. An example of the latter
problem is observed in Chapter 5.
Experiments in Chapter 5 showed that pure CP approaches for the TD-TSP
perform poorly due to the fact that the constraints modeling the solution space
cannot take the quality of a solution into consideration. By incorporating
significantly more structural information into the CP model through the use
of an MDD, considerable performance improvements are realized. MDDs
model a relaxation of the solution space and, as such, are used to improve
domain propagation or to guide the search. Furthermore, MDDs enable a
much tighter coupling between the problem structure and its objective function.
Consequently, bounds on the objective value can be derived from the MDD
during the CP search, which makes efficient pruning of the search space possible.
Finally, the same bounds may be used to provide insight into the quality of
an incumbent solution whenever the search is terminated before optimality
is established. To strengthen the bounds derived from the MDDs, Chapter 5
shows how structural information from other relaxations, such as for example
Linear Program relaxations, can be projected onto the MDD via an additive
bounding procedure.
The CP approach discussed in Chapter 5 is very robust because it hardly relies
on any problem-specific knowledge. Consequently, changes in the problem
formulation can be easily accounted for. Unlike several dedicated solution
approaches for TD-TSP, the CP approach can easily accommodate time-windows,
precedence relations, time lags or even resource constraints. In fact, adding
additional constraints to the problem may very well increase domain propagation.

Chapter 6, and by extension Appendix B, compares two models for the k-BTSP:
one relies on branch-bound-cut (BBC), whereas the other uses a branch-price-cut
(BPC) approach. The experimental results indicate that for the 2-BTSP, BBC
obtains superior results over BPC. Although for many optimization problems

174 CONCLUSION

CG based approaches produce strong bounds, as can for example be observed
from Chapter 2, this is not the case for 2-BTSP. Often, entire branches of the
search tree are explored, while only the leaf nodes yield non-zero lower bounds.
Without stronger bounds it is not possible to prune the search tree efficiently.
Future experiments for BTSP should reveal whether the current results for
2-BTSP also extend to different problem classes, and to different values of k.
We do anticipate that there are problem instances, possibly for larger values
of k where BBC encounters the same drawbacks as the BPC approach. This
would be in line with the findings reported by Cornuéjols and Dawande (1998)
who treat an optimization problem with similar characteristics.
Decompositions based on column generation work well if the original (hard)
problem can be split into two easier subproblems, preferably in such a way that
the pricing problem has a special structure, or can be solved by efficient dedicated
algorithms. In case of the CG approach for the BTSP, the pricing problem
is indeed a matching problem which can be solved efficiently in polynomial
time by a dedicated algorithm. However, the master problem does not offer
sufficient guidance to steer the algorithm quickly towards good solutions. This
problem is partially inherent to the solution space of BTSP. For the standard
TSP problem, good solutions in terms of the objective value usually are very
similar, that is, near optimal solutions usually bear strong resemblance to the
optimal solutions. Contrastingly, this does not hold for k-BTSP where a near
optimal solution may be very different from any optimal solution. When good
solutions are scattered scarcely over the search space, it becomes much harder
to find them, both heuristically as well as with exact methods.

Decomposition approaches offer many advantages when it comes to solving
complex, real world optimization challenges. Often, large problems can
be split into smaller subproblems which can be solved efficiently through
dedicated algorithms. Simultaneously, strong bounds may be derived from
the underlying subproblems by exploiting their structural properties. Finally,
smart decompositions may lead to reductions in development time when code
can be reused for re-occurring subproblems. However, care must be taken
while implementing decomposition techniques. By decoupling a problem into
multiple components, structural relations between the components may be lost
or severely weakened. Moreover, communication between the subproblems may
cause computational overhead or could lack sufficient structural information.
Lastly, it may be difficult to infer sufficient information from each of the
subproblems to obtain a solution for the original problem when the relations
between the components are weak.
An exiting, but very challenging road lays ahead in terms of future developments
for optimization methodologies. Techniques from different areas will become
more and more entangled into integrated optimization methods, thereby

CONCLUSION 175

combining the strengths from various disciplines. To some extent this can
already be observed in today’s mathematical solvers, as they no longer rely on
a single algorithm, but employ a vast array of analytical and combinatorial
techniques to solve optimization problems. Next generation solvers are likely
to perform automated analysis of the problem structures, while decomposing
them without human interference. Similarly, programming paradigms such as
CP will play a crucial role when it comes to rapid development and prototyping
of optimization strategies, especially due to their expressive power and solid
computational performances.

Appendix A

Extension: A Column
Generation Approach to the
Concrete Delivery Problem

In Chapter 4 a Benders decomposition is presented for the Concrete Delivery
Problem (CDP) which decomposes the problem into a master problem and
a subproblem: the master problem assigns concrete to customers, whereas
the subproblem establishes a feasible schedule satisfying all scheduling and
routing constraints. An alternative decomposition can be realized through
Column Generation (CG). As a possible extension to the current work, this
appendix presents a reformulation of model CDP2 (Constraints (3.21)-(3.34))
in Chapter 3 which can be solved through CG. As a result, the problem is
decomposed into a master problem and a separate subproblem per vehicle. The
subproblems independently generate feasible schedules for each vehicle, while
the master problem attempts to select a set of compatible schedules such that
they collectively satisfy all scheduling constraints.

177

178 EXTENSION: A COLUMN GENERATION APPROACH TO THE CONCRETE DELIVERY PROBLEM

Parameter Description
C Set of customers
K Set of heterogeneous vehicles
pk Processing time of truck k ∈ K
qi Requested amount of concrete by customer i ∈ C
n(i) Upper bound on the number of deliveries required to satisfy

the demand of customer i ∈ C
[ai, bi] Interval during which concrete may be delivered for customer

i ∈ C
γ Maximum allowed time lag between two consecutive

deliveries
Rk Set of all feasible delivery schedules for a vehicle k ∈ K
R

⋃
k∈K Rk

qri Total amount of concrete delivered to customer i ∈ C in
route r ∈ Rk

drij Binary parameter indicating whether delivery j ∈
{1, . . . , n(i)} for customer i ∈ C is made in route r ∈ Rk

crit Binary parameter indicating whether concrete for customer
i ∈ C is delivered at time t ∈ [ai, bi] in route r ∈ Rk

trij Integer parameter indicating when delivery j ∈ {1, . . . , n(i)}
for customer i ∈ C is made in route r ∈ Rk

Table A.1: Parameters used in the master problem reformulation for CDP

EXTENSION: A COLUMN GENERATION APPROACH TO THE CONCRETE DELIVERY PROBLEM 179

The master problem is as follows:

max.

∑
i∈C

qiyi (A.1)

s.t.
∑
k∈K

∑
r∈Rk

q
r
i zrk ≥ qiyi ∀i ∈ C (A.2)

∑
r∈Rk

zrk = 1 ∀k ∈ K (A.3)

∑
k∈K

∑
r∈Rk

d
r
ijzrk ≤ 1 ∀i ∈ C, j ∈ {1, . . . , n(i)} (A.4)

∑
k∈K

∑
r∈Rk

c
r
itzrk ≤ 1 ∀i ∈ C, t ∈ [ai, bi] (A.5)

∑
k∈K

∑
r∈Rk

t
r
ijzrk+pk+γ ≥

∑
k∈K

∑
r∈Rk

t
r
ij+1zrk ∀i ∈ C, j ∈ {1, . . . , n(i)− 1} (A.6)

∑
k∈K

∑
r∈Rk

d
r
iuzrk ≥

∑
k∈K

∑
r∈Rk

d
r
ivzrk ∀i ∈ C, u, v ∈ {1, . . . , n(i)}, u < v (A.7)

zrk ∈ {0, 1} ∀r ∈ Rk, k ∈ K (A.8)

yi ∈ {0, 1} ∀i ∈ C (A.9)

Two sets of binary variables are used in this model. The zrk variables assign
a route r ∈ Rk to a vehicle k ∈ K, selected from the set of all feasible routes
Rk for this particular vehicle. The yi, i ∈ C, variables indicate whether
customer i receives its requested amount of concrete. The objective function
(Equation (A.1)) maximizes the number of satisfied customers, weighted by their
demand. A customer is satisfied if at least its demand in concrete is delivered
(Constraints (A.2)). A valid delivery schedule must be assigned to each vehicle
k ∈ K (Constraints (A.3)). The schedules assigned to the vehicles need to be
synchronized. A particular delivery j ∈ {1, . . . , n(i)} for a customer i ∈ C may
only be made once (Constraints (A.4)), deliveries for the same customer may
not overlap in time (Constraints (A.5)), and consecutive deliveries for the same
customer must adhere to the maximum allowed time lag (Constraints (A.6)).
Finally, a delivery v ∈ {2, . . . , n(i)} for customer i ∈ C cannot be made if a
delivery u ∈ {1, . . . , n(i)− 1}, u < v has not been made (Constraints (A.7)).
The linear relaxation of the model stated above can be solved through Column

180 EXTENSION: A COLUMN GENERATION APPROACH TO THE CONCRETE DELIVERY PROBLEM

Generation. The dual of the linearized model is as follows:

min.

∑
k∈K

βk+

∑
i∈C

[∑
j∈{1,...,n(i)}

δij +
∑

t∈[ai,bi]

εit − (
∑
k∈K

pk + γ)
∑

j∈{1,...,n(i)−1}

λij

]
(A.10)

s.t.
∑
i∈C

[
q
r
i αi +

∑
j∈1,...,n(i)

d
r
ijδij +

∑
t∈[ai,bi]

c
r
itεit

]
+

∑
i∈C

[∑
j∈1,...,n(i)−1

t
r
ijλij − t

r
ij+1λij

]
+

∑
i∈C

 ∑
u,v∈{1,...,n}

u<v

d
r
iuµiuv − d

r
ivµiuv

 ≥ −βk ∀k ∈ K, r ∈ Rk (A.11)

αi ≤ −1 ∀i ∈ C (A.12)

βk ∈ R ∀k ∈ K (A.13)

δij ≥ 0 ∀i ∈ C, j ∈ {1, . . . , n(i)} (A.14)

εit ≥ 0 ∀i ∈ C, t ∈ [ai, bi] (A.15)

λij ≤ 0 ∀i ∈ C, j ∈ {1, . . . , n(i)− 1} (A.16)

µij ≤ 0 ∀i ∈ C (A.17)

Notice that in the dual formulation there exists a constraint per vehicle.
Consequently, the pricing problem decouples into |K| different subproblems,
each of which can be solved independently on a time-space network. Future
research should indicate whether the resulting procedure yields stronger bounds
than, for example, the Benders’ procedure from Chapter 4, or perhaps even
better primal solutions.

Appendix B

Extension: Generalizing
2-BTSP

B.1 k-balanced TSP

Naturally, the models presented in Chapter 6 can be generalized from 2 salesmen
to k salesmen, where 2 ≤ k ≤ |V |. Although we do not intend to include
computational results for the general case, for completeness sake we cover the
mathematical models for k-BTSP in this appendix.
In contrast to 2-BTSP, the k-BTSP for 2 < k < |V | has to be defined on a
directed graph G(V,A), where V is the set of vertices, and A the set of weighted
arcs. Let T be an ordered set of k salesmen, and At the set of arcs that may be
used by salesman t ∈ T , with A =

⋃
t∈T At. While solving the k-BTSP for k > 2,

the problem no longer amounts to finding k perfect matchings which collectively
form a Hamiltonian Cycle. Instead, the problem requires to find k matchings,
each consisting of exactly |V |k arcs, which together form a Hamiltonian Cycle.
It must be emphasized that the salesmen traverse arcs alternatingly, so the
cycle is strictly traversed in the order [t1, t2, . . . , tk, t1, t2, . . . , tk], ti ∈ T . Mt

for t ∈ T is defined as the set of matchings in (V,At) consisting of exactly |V |k
arcs, and M =

⋃
t∈T Mt.

To simplify notation, two sets of parameters are introduced: uim, for i ∈ V ,
m ∈ M and vam for a ∈ A, m ∈ M . uim equals 1 if matching m ∈ M is
incident to vertex i ∈ V , 0 otherwise. Similarly, vam equals 1 if arc a ∈ A
occurs in matching m ∈M , 0 otherwise. Finally, δ+(S) resp. δ−(S) are used to
denote the set of arcs having resp. either their tail or their head in S ⊆ V , and

181

182 EXTENSION: GENERALIZING 2-BTSP

δ(S) = δ+(S) ∪ δ−(S).

B.1.1 MIP model with |E|k variables

Model F0 (Equations (6.2)-(6.9)) for 2-BTSP, solvable through branch-bound-
cut, can be extended to k salesmen as follows:

F2 : min w (B.1)

s.t. w ≥
∑
a∈A

dsaxas − dtaxat ∀s, t ∈ T (B.2)

∑
t∈T

∑
a∈δ+(i)

xat = 1 ∀i ∈ V (B.3)

∑
e∈δ+(i)

xat =
∑

a∈δ−(i)

xa(t+1)%k ∀i ∈ V, t ∈ T (B.4)

∑
t∈T

∑
a∈δ(S)

xat ≥ 2 ∀S ⊂ V, S 6= ∅ (B.5)

xat ∈ {0, 1} ∀t ∈ T, a ∈ At (B.6)

Here, binary variable xat indicates whether salesman t ∈ T travels along arc
a ∈ A. It is assumed that xat = 0 for all t ∈ T, a /∈ At. The ‘%’ sign in Equation
(B.4) is the modulus sign.

K-BALANCED TSP 183

B.1.2 Column generation model for 2 ≤ k < |V|

Model F1 (Equations (6.10)-(6.18)), solvable through branch-price-cut, is
extended to the general case as follows:

F 3 : min c+ − c− (B.7)

s.t.
∑
m∈M

cmztm ≤ c+ ∀t ∈ T (B.8)

∑
m∈M

cmztm ≥ c− ∀t ∈ T (B.9)

∑
m∈M

ztm = 1 ∀t ∈ T (B.10)

∑
m∈M

∑
t∈T

uimztm = 2 ∀i ∈ V (B.11)

∑
m∈M

∑
t∈T

vamztm ≤ 1 ∀a ∈ A (B.12)

∑
m∈M

∑
a∈δ−(i)

vamztm =
∑
m∈M

∑
a∈δ+(i)

vamz
(t+1)%k
m ∀i ∈ V, t ∈ T (B.13)

∑
t∈T

∑
a∈δ(S)

∑
m∈M

vamztm ≥ 2 ∀S ⊂ V, S 6= ∅ (B.14)

ztm ∈ {0, 1} ∀t ∈ T, m ∈Mt (B.15)

c+, c− ≥ 0 (B.16)

In the above model, ztm is a boolean variable indicating whether matching
m ∈ M is assigned to salesman t ∈ T . It is assumed that ztm = 0 for all
t ∈ T,m ∈ M \Mt. The objective function (Equation (B.7)) calculates the
absolute difference between the most expensive and the least expensive matching
assigned to the salesmen. Constraints (B.8), (B.9) are used to calculate the
absolute value in the objective function. The remaining constraints model the
problem. First, Constraints (B.10) ensure that exactly one matching is assigned
to each salesman. Next, Constraints (B.11) and (B.12) require resp. that each
city i ∈ V is visited, and that each arc is used at most once. Each segment of the
route must be covered by a different salesman, i.e if salesman t ∈ T travels from
i to j, then salesman (t+ 1) must travel from j to k, i, j, k ∈ V . This behavior
is implemented by Constraints (B.13). Subtour elimination is performed by
Constraints (B.14). Recall the DFJ subtour elimination constraints present in

184 EXTENSION: GENERALIZING 2-BTSP

the first model (Constraints (B.5)):∑
t∈T

∑
a∈δ(S)

xat ≥ 2 ∀S ⊂ V, S 6= ∅ (B.17)

where xat is a boolean variable indicating whether salesman t ∈ T covers arc
a ∈ A. Notice that the following relation holds due to Equations (B.12) and
(B.15):

0 ≤ xat =
∑
m∈M

vamz
t
m ≤ 1 ∀t ∈ T, a ∈ A (B.18)

By substituting Equation (B.18) into Equation (B.17), Equation (B.14) is
obtained.
Finally, notice that Constraints (B.11), and (B.12) may be omitted as they are
implied by Constraints (B.10), (B.14); nevertheless they reinforce the model
when only a subset of the subtour elimination constraints are present.

Dual model

Associate the following dual variables with constraints (B.8)-(B.14) respectively:

α+
t , α

−
t , βt ∀t ∈ T Eq : (B.8)− (B.10) (B.19)

γi ∀i ∈ V Eq : (B.11) (B.20)

δa ∀a ∈ A Eq : (B.12) (B.21)

εit ∀i ∈ V, t ∈ T Eq : (B.13) (B.22)

ζS ∀S ⊂ V, S 6= ∅ Eq : (B.14) (B.23)

K-BALANCED TSP 185

Following the same notation as before, let LPF3 be the linear program relaxation
of model F3. The dual of LPF3 becomes:
LPF3dual : max

∑
i∈V

2γi −
∑
a∈A

δa + 2
∑
S⊂V
S 6=∅

ζS +
∑
t∈T

βt (B.24)

s.t. − cmα+
t + cmα

−
t + βt −

∑
a∈A

vamδa +
∑
a∈δ(S)
S⊂V
S 6=∅

vamζS+

∑
i∈V

uimγi +
∑

a∈δ−(i)

vamεit −
∑

a∈δ+(i)

vamεit

 ≤ 0
∀m ∈M,

t ∈ T
(B.25)

∑
t∈T

α
+
t ≤ 1 (B.26)

∑
t∈T

α
−
t ≥ 1 (B.27)

α
+
t , α

−
t ≥ 0 ∀t ∈ T (B.28)

δa, ζS ≥ 0
∀a ∈ A,

S ⊂ V, S 6= ∅
(B.29)

βt, γi, εit ∈ R ∀t ∈ T, i ∈ V (B.30)

Pricing Problem

Let G(V,A) be the directed, weighted graph on which k-BTSP is defined, where
the travel cost dta of arc a ∈ A depends on the salesman t ∈ T traversing the
arc. For a given salesman t ∈ T , define the modified arc cost as:

c
t
a = d

t
aα
−
t − d

t
aα

+
t − δa + γi + γj − εit + εjt +

∑
S⊂V
S 6=∅

ba(S) ∀t ∈ T, a = (i, j) ∈ At

where ba(S) = 0 if a /∈ δ(S), and ba(S) = ζS otherwise, for all a ∈ A,
S ⊂ V, S 6= ∅.
Recall that a matching m ∈M consists of a set of |V |k arcs, none of which share
a start or end vertex. For a given salesman t ∈ T , the pricing problem now
amounts to finding a matching m ∈M s.t.:∑

a∈A
vamc

t
a > −βt (B.31)

186 EXTENSION: GENERALIZING 2-BTSP

The MIP model of the pricing problem for a salesman t ∈ T :

PR : max
∑
a∈A

ctaxa (B.32)

s.t.
∑
a∈A

xa = |V |
k

(B.33)

∑
a∈δ(i)

xa ≤ 1 ∀i ∈ V (B.34)

xa ∈ {0, 1} ∀a ∈ At (B.35)

xa = 0 ∀a ∈ A \At (B.36)

B.1.3 Special case |V| = k

When k = |V |, the pricing problem simplifies to selecting a single arc. The ztm
variables can then be translated to assigning an arc to a salesman, which renders
them identical to the xat variables in the model presented in Section B.1.1.
Therefore, one should not solve this special case through column generation
but use the branch-bound-cut approach instead. Also note that, similar to the
k-BTSP problem with k = 2, the problem of |V | = k can be modeled on an
undirected graph.

Bibliography

K. Aardal, R. E. Bixby, C. A. J. Hurkens, A. K. Lenstra, and J. W. Smeltink,
“Market split and basis reduction: Towards a solution of the Cornuéjols-
Dawande instances,” INFORMS Journal on Computing, vol. 12, no. 3, pp.
192–202, 2000.

H. G. Abeledo, R. Fukasawa, A. A. Pessoa, and E. Uchoa, “The time dependent
traveling salesman problem: Polyhedra and algorithm,” Math. Program.
Comput., vol. 5, no. 1, pp. 27–55, 2013.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993, ch. 5.

M. Albareda Sambola, “Models and algorithms for location-routing and related
problems,” Ph.D. dissertation, Universitat Politècnica de Catalunya, June
2003.

H. B. Amor and J. Desrosiers, “A proximal trust-region algorithm for column
generation stabilization,” Computers and Operations Research, vol. 33, pp.
910–927, April 2006.

H. B. Amor, J. Desrosiers, and A. Frangioni, “On the choice of explicit stabilizing
terms in column generation,” Discrete Applied Mathematics, vol. 157, no. 6,
pp. 1167 – 1184, 2009.

H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann, “A constraint
store based on multivalued decision diagrams,” in Proceedings of the
13th International Conference on Principles and Practice of Constraint
Programming, ser. CP’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp.
118–132.

L. Asbach, U. Dorndorf, and E. Pesch, “Analysis, modeling and solution of the
concrete delivery problem,” European Journal of Operational Research, vol.
193, no. 3, pp. 820 – 835, 2009.

187

188 BIBLIOGRAPHY

L. Bai and P. A. Rubin, “Combinatorial Benders cuts for the minimum tollbooth
problem.” Operations Research, vol. 57, no. 6, pp. 1510–1522, 2009.

R. Baldacci, M. Dell’Amico, and J. S. González, “The capacitated m-ring-star
problem,” Operations Research, vol. 55, no. 6, pp. 1147–1162, 2007.

J. F. Bard and S. Rojanasoonthon, “A branch-and-price algorithm for parallel
machine scheduling with time windows and job priorities,” Naval Research
Logistics (NRL), vol. 53, no. 1, pp. 24–44, 2006.

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and
P. H. Vance, “Branch-and-price: Column generation for solving huge integer
programs,” Operations Research, vol. 46, no. 3, pp. pp. 316–329, 1998.

T. Bassetto and F. Mason, “Heuristic algorithms for the 2-period balanced
traveling salesman problem in euclidean graphs,” European Journal of
Operational Research, vol. 208, no. 3, pp. 253 – 262, 2011.

J. Benders, “Partitioning procedures for solving mixed-variables programming
problems,” Numerische Mathematik, vol. 4, pp. 238 – 252, 1962.

Š. Berežný and V. Lacko, “The color-balanced spanning tree problem,”
Kybernetika, vol. 41, no. 4, pp. 539–546, 2005.

L. Berghman, R. Leus, and F. Spieksma, “Optimal solutions for a dock
assignment problem with trailer transportation,” Annals of Operations
Research, pp. 1–23, 2011.

D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker, “Discrete
optimization with decision diagrams,” Carnegie Mellon University, Tech.
Rep., 2013. [Online]. Available: http://www.andrew.cmu.edu/user/vanhoeve/
papers/discrete_opt_with_DDs.pdf

M. Bergner, A. Caprara, A. Ceselli, F. Furini, M. Lübbecke, E. Malaguti,
and E. Traversi, “Automatic Dantzig–Wolfe reformulation of mixed integer
programs,” Mathematical Programming, pp. 1–34, 2014.

L.-P. Bigras, M. Gamache, and G. Savard, “The time-dependent traveling
salesman problem and single machine scheduling problems with sequence
dependent setup times.” Discrete Optimization, vol. 5, no. 4, pp. 685–699,
2008.

L. Bodin and L. Berman, “Routing and scheduling of school buses by computer,”
Transportation Science, vol. 13, no. 2, pp. 113–129, 1979.

http://www.andrew.cmu.edu/user/vanhoeve/papers/discrete_opt_with_DDs.pdf
http://www.andrew.cmu.edu/user/vanhoeve/papers/discrete_opt_with_DDs.pdf

BIBLIOGRAPHY 189

R. Bowerman, B. Hall, and P. Calami, “A multiobjective optimization
approach to urban school bus routing : Formulation and solution method,”
Transportation Research: Part A, Policy and Practice, vol. 29, pp. 107–123,
1995.

O. Briant, C. Lemaréchal, P. Meurdesoif, S. Michel, N. Perrot, and
F. Vanderbeck, “Comparison of bundle and classical column generation,”
Mathematical Programming, vol. 113, pp. 299–344, January 2008.

P. M. Camerini, F. Maffioli, S. Martello, and P. Toth, “Most and least uniform
spanning trees,” Discrete Applied Mathematics, vol. 15, no. 2–3, pp. 181 –
197, 1986.

P. Cappanera and M. G. Scutellà, “Balanced paths in acyclic networks: Tractable
cases and related approaches,” Netw., vol. 45, no. 2, pp. 104–111, Mar. 2005.

L. Chapleau, J.-A. Ferland, and J.-M. Rousseau, “Clustering for routing in
densely populated areas,” European Journal of Operational Research, vol. 20,
no. 1, pp. 48–57, April 1985.

V. Chvátal, Linear Programming. W. H. Freeman, 1983, ch. 13.

A. A. Ciré and W. J. van Hoeve, “Multivalued decision diagrams for sequencing
problems,” Operations Research, vol. 61, no. 6, pp. 1411–1428, 2013.

G. Codato and M. Fischetti, “Combinatorial Benders’ cuts for mixed-integer
linear programming,” Operations Research, vol. 54, no. 4, pp. 756–766, 2006.

M. Conforti, G. Cornuejols, and G. Zambelli, Integer programming, ser. Graduate
Texts in Mathematics. Springer, 2014, to appear in Fall 2014.

J.-F. Cordeau, G. Ghiani, and E. Guerriero, “Analysis and branch-
and-cut algorithm for the time-dependent travelling salesman problem,”
Transportation Science, vol. 48, no. 1, pp. 46–58, 2012.

G. Cornuéjols and M. Dawande, A Class of Hard Small 0—1 Programs, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1998, vol.
1412, pp. 284–293.

J.-F. Côté, M. Dell’Amico, and M. Iori, “Combinatorial Benders’ cuts for
the strip packing problem,” Interuniversity Research Centre on Enterprise
Networks, Logistics and Transportation and Department of Computer
Science and Operations Research, Université de Mon (CIRELT), Tech. Rep.
CIRRELT-2013-27, April 2013.

E. Delcour, “Two salesmen and a bike,” Master’s thesis, Faculty of Economics,
KU Leuven, 2012.

190 BIBLIOGRAPHY

M. Dell’Amico, G. Righini, and M. Salani, “A branch-and-price approach to
the vehicle routing problem with simultaneous distribution and collection,”
Transportation Science, vol. 40, pp. 235–247, May 2006.

G. Desaulniers, J. Desrosiers, and M. Solomon, Eds., A Primer in Column
Generation. Springer US, 2005.

J. Desrosiers, J. Ferland, J.-M. Rousseau, G. Lapalme, and L. Chapleau,
“TRANSCOL - a multiperiod school bus routing and scheduling system,”
Delivery of Urban Services - TIMS Studies in the Management Sciences 22,
pp. 47–71, 1986.

G. Dulac, J. A. Ferland, and P. A. Forgues, “School bus routes generator in
urban surroundings,” Computers and Operations Research, vol. 7, no. 3, pp.
199 – 213, 1980.

M. Durbin and K. Hoffman, “OR Practice - The Dance of the Thirty-Ton
Trucks: Dispatching and Scheduling in a Dynamic Environment.” Operations
Research, vol. 56, no. 1, pp. 3–19, 2008.

M. Fischetti and P. Toth, “An additive bounding procedure for combinatorial
optimization problems,” Operations Research, vol. 37, no. 2, pp. pp. 319–328,
1989.

R. Fukasawa, H. Longo, J. Lysgaard, M. P. de Aragão, M. L. Reis, E. Uchoa,
and R. F. F. Werneck, “Robust branch-and-cut-and-price for the capacitated
vehicle routing problem,” Mathematical Programming, vol. 106, no. 3, pp.
491–511, 2006.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

A. Geoffrion, “Generalized Benders decomposition,” Journal of Optimization
Theory and Applications, vol. 10, pp. 237 – 260, 1972.

——, “Lagrangean relaxation for integer programming,” in Approaches to
Integer Programming, ser. Mathematical Programming Studies, M. Balinski,
Ed. Springer Berlin Heidelberg, 1974, vol. 2, pp. 82–114.

L. Gouveia and S. Voss, “A classification of formulations for the (time-dependent)
traveling salesman problem,” European Journal of Operational Research,
vol. 83, no. 1, pp. 69 – 82, 1995.

L. D. Graham, D. R. Forbes, and S. D. Smith, “Modeling the ready mixed
concrete delivery system with neural networks,” Automation in Construction,
vol. 15, no. 5, pp. 656 – 663, 2006.

BIBLIOGRAPHY 191

M. Held and R. M. Karp, “The traveling-salesman problem and minimum
spanning trees,” Operations Research, vol. 18, no. 6, pp. 1138–1162, 1970.

A. Hertz, M. Uldry, and M. Widmer, “Integer linear programming models for
a cement delivery problem,” European Journal of Operational Research, vol.
222, no. 3, pp. 623 – 631, 2012.

J. Hooker, “Planning and scheduling by logic-based benders decomposition,”
Operations Research, vol. 55, pp. 588 – 602, 2007.

——, “Lecture notes in linear programming,” Lecture Notes, 2013.

E. A. Hoshino and C. C. de Souza, “A branch-and-cut-and-price approach for
the capacitated m-ring-star problem,” Discrete Appl. Math., vol. 160, no. 18,
pp. 2728–2741, Dec. 2012.

——, “A branch-and-cut-and-price approach for the capacitated m-ring-star
problem,” Electronic Notes in Discrete Mathematics, vol. 35, pp. 103 – 108,
2009.

N. Katoh and K. Iwano, “Efficient algorithms for minimum range cut problems,”
Networks, vol. 24, no. 7, pp. 395–407, 1994.

J. Kinable, F. Spieksma, and G. Vanden Berghe, “School bus routing—a column
generation approach,” International Transactions in Operational Research,
vol. 21, no. 3, pp. 453–478, 2014.

J. Kinable, T. Wauters, and G. Vanden Berghe, “The concrete delivery problem,”
Computers and Operations Research, vol. 48, pp. 53–68, 2014.

J. Kinable and M. Trick, A Logic Based Benders’ Approach to the Concrete
Delivery Problem, ser. Lecture Notes in Computer Science. Springer
International Publishing, 2014, vol. 8451, pp. 176–192.

J. Kinable and T. Wauters, “CDPLib.” https://sites.google.com/site/cdplib/,
2013.

P. Laborie and J. Rogerie, “Reasoning with conditional time-intervals,” in
FLAIRS Conference, 2008, pp. 555–560.

P. Laborie, J. Rogerie, P. Shaw, and P. Vilím, “Reasoning with conditional time-
intervals. part ii: An algebraical model for resources,” in FLAIRS Conference,
2009.

J. Larusic and A. P. Punnen, “The balanced traveling salesmanproblem,”
Computers and Operations Research, vol. 38, no. 5, pp. 868–875, May 2011.

https://sites.google.com/site/cdplib/

192 BIBLIOGRAPHY

L. S. Lasdon, Optimization theory for large systems, ser. Macmillan series in
operations research. Macmillan, 1970.

P.-C. Lin, J. Wang, S.-H. Huang, and Y.-T. Wang, “Dispatching ready mixed
concrete trucks under demand postponement and weight limit regulation,”
Automation in Construction, vol. 19, no. 6, pp. 798 – 807, 2010.

M. E. Lübbecke, “Column generation,” Wiley Encyclopedia of Operations
Research and Management Science (EORMS), 2010.

M. E. Lübbecke and J. Desrosiers, “Selected topics in column generation,”
Operations Research, vol. 53, no. 6, pp. 1007–1023, 2002.

S. Martello, W. Pulleyblank, P. Toth, and D. de Werra, “Balanced optimization
problems,” Operations Research Letters, vol. 3, no. 5, pp. 275 – 278, 1984.

A. Martin, “Integer programs with block structure,” Konrad-Zuse-Zentrum für
Informationstechnik Berlin, Preprint SC 99-03, 1999, habilitation Thesis.

O. D. Merle, D. Villeneuve, J. Desrosiers, and P. Hansen, “Stabilized column
generation,” Discrete Math, vol. 194, pp. 229–237, 1997.

J. J. Miranda-Bront, I. Méndez-Díaz, and P. Zabala, “An integer programming
approach for the time-dependent tsp,” Electronic Notes in Discrete
Mathematics, vol. 36, pp. 351–358, 2010.

M. Misir, W. Vancroonenburg, K. Verbeeck, and G. Vanden Berghe,
“A selection hyper-heuristic for scheduling deliveries of ready-mixed
concrete,” in Proceedings of the 9th Metaheuristics International Conference,,
L. Di Gaspero, A. Schaerf, and T. Stützle, Eds., Jul. 2011, pp. 289–298.

D. Naso, M. Surico, B. Turchiano, and U. Kaymak, “Genetic algorithms for
supply-chain scheduling: A case study in the distribution of ready-mixed
concrete,” European Journal of Operational Research, vol. 177, no. 3, pp. 2069
– 2099, 2007.

A. Oukil, H. B. Amor, J. Desrosiers, and H. E. Gueddari, “Stabilized column
generation for highly degenerate multiple-depot vehicle scheduling problems,”
Computers and Operations Research, vol. 34, no. 3, pp. 817 – 834, 2007.

J. Park and B.-I. Kim, “The school bus routing problem: A review,” European
Journal of Operational Research, vol. 202, no. 2, pp. 311 – 319, 2010.

J. Park, H. Tae, and B.-I. Kim, “A post-improvement procedure for the mixed
load school bus routing problem,” European Journal of Operational Research,
vol. 217, no. 1, pp. 204 – 213, 2012.

BIBLIOGRAPHY 193

G. Pesant, C.-G. Quimper, and A. Zanarini, “Counting-based search:
Branching heuristics for constraint satisfaction problems,” Journal of Artificial
Intelligence Research, vol. 43, pp. 173–210, 2012.

J. C. Picard and M. Queyranne, “The Time-dependent Traveling Salesman
Problem and its Application to the Tardiness Problem in One-machine
Scheduling,” Operations Research, vol. 26, no. 1, pp. 86–110, 1978.

R. Rasmussen and M. Trick, “A Benders approach for the constrained minimum
break problem,” European Journal of Operational Research, vol. 177, no. 1,
pp. 198–213, 2007.

C. R. Reeves, Ed., Modern Heuristic Techniques for Combinatorial Problems.
New York, NY, USA: John Wiley & Sons, Inc., 1993.

J. Riera-Ledesma and J. J. Salazar-González, “Solving school bus routing using
the multiple vehicle traveling purchaser problem: A branch-and-cut approach,”
Computers and Operations Research, vol. 39, no. 2, pp. 391 – 404, 2012.

——, “A column generation approach for a school bus routing problem with
resource constraints,” Computers and Operations Research, vol. 40, no. 2, pp.
566 – 583, 2013.

S. Ropke and J.-F. Cordeau, “Branch and cut and price for the pickup and
delivery problem with time windows,” Transportation Science, vol. 43, pp.
267–286, August 2009.

L. Rousseau, M. Gendreau, and D. Feillet, “Interior point stabilization for
column generation,” Operations Research Letters, vol. 35, no. 5, pp. 660–668,
Sep. 2007.

P. Schittekat, J. Kinable, K. Sörensen, M. Sevaux, F. Spieksma, and J. Springael,
“A metaheuristic for the school bus routing problem with bus stop selection,”
European Journal of Operational Research, vol. 229, pp. 518–528, 2013.

V. Schmid, K. F. Doerner, R. F. Hartl, M. W. P. Savelsbergh, and W. Stoecher,
“A hybrid solution approach for ready-mixed concrete delivery,” Transportation
Science, vol. 43, no. 1, pp. 70–85, Feb. 2009.

V. Schmid, K. F. Doerner, R. F. Hartl, and J.-J. Salazar-González,
“Hybridization of very large neighborhood search for ready-mixed concrete
delivery problems,” Computers and Operations Research, vol. 37, no. 3, pp.
559 – 574, 2010.

C. Silva, J. M. Faria, P. Abrantes, J. M. C. Sousa, M. Surico, and D. Naso,
“Concrete Delivery using a combination of GA and ACO,” in Decision and

194 BIBLIOGRAPHY

Control, 2005 and 2005 European Control Conference. CDC-ECC ’05. 44th
IEEE Conference on, 2005, pp. 7633–7638.

T. T. Tran and J. C. Beck, “Logic-based Benders decomposition for alternative
resource scheduling with sequence dependent setups.” in ECAI, ser. Frontiers
in Artificial Intelligence and Applications, vol. 242. IOS Press, 2012, pp.
774–779.

F. Vanderbeck, “Decomposition and column generation for integer programs,”
Ph.D. dissertation, Louvain-La-Neuve, September 1994.

J. Verstichel, J. Kinable, G. Vanden Berghe, and P. De Causmaecker, “A
combinatorial Benders decomposition for the lock scheduling problem,”
KU Leuven, Tech. Rep., September 2013, http://allserv.kahosl.be/~jannes/
lockscheduling/combinatorialBenders_19112013.pdf.

L. A. Wolsey and G. L. Nemhauser, Integer and Combinatorial Optimization.
Wiley-Interscience, 1988, pp. 323 – 337.

L. A. Wolsey, Integer programming. Wiley-Interscience, 1998.

S. Yan and W. Lai, “An optimal scheduling model for ready mixed concrete
supply with overtime considerations,” Automation in Construction, vol. 16,
no. 6, pp. 734 – 744, 2007.

Z. Zeitlin, “Minimization of maximum absolute deviation in integers,” Discrete
Applied Mathematics, vol. 3, no. 3, pp. 203 – 220, 1981.

http://allserv.kahosl.be/~jannes/lockscheduling/combinatorialBenders_19112013.pdf
http://allserv.kahosl.be/~jannes/lockscheduling/combinatorialBenders_19112013.pdf

List of Publications

IT (Articles in internationally reviewed academic
journals)

Wauters, T., Kinable, J., Smet, P., Vancroonenburg, W., Vanden Berghe, G.,
Verstichel, J. (2015). The Multi-Mode Resource-Constrained Multi-Project
Scheduling Problem: The MISTA 2013 challenge. Journal of Scheduling.

Verstichel, J., Kinable, J., De Causmaecker, P., Vanden Berghe, G. (2015).
A Combinatorial Benders’ decomposition for the lock scheduling problem.
Computers & Operations Research, 54, 117-128. (most recent IF: 1.72).

Kinable, J., Wauters, T., Vanden Berghe, G. (2014). The Concrete Delivery
Problem. Computers & Operations Research, 48, 53-68. (most recent IF: 1.72).

Kinable, J., Spieksma, F., Vanden Berghe, G. (2014). School bus Routing -
A Column Generation Approach. International Transactions in Operational
Research, 21 (3), 453-478. (most recent IF: 0.48).

Schittekat, P., Kinable, J., Sörensen, K., Sevaux, M., Spieksma, F., Springael,
J. (2013). A metaheuristic for the school bus routing problem with bus stop
selection. European Journal of Operational Research, 229 (2), 518-528. (citations:
3) (IF publication year: 1.84) (most recent IF: 1.84).

Kinable, J., Orestis, K. (2011). Malware classification based on call graph
clustering. Journal in Computer Virology, 7 (4), 233-245.

195

196 LIST OF PUBLICATIONS

IC (Papers at international scientific conferences and
symposia, published in full in proceedings)

Kinable, J., Trick, M. (2014). A Logic Based Benders’ Approach to the
Concrete Delivery Problem. In Lecture Notes in Computer Science: Vol.
8451. International Conference on Integration of Artificial Intelligence (AI)
and Operations Research (OR) techniques in Constraint Programming. Cork,
19-23 May 2014 (pp. 176-192) Springer.

IMa (Meeting abstracts, presented at international
scientific conferences and symposia, published or not
published in proceedings or journals)

Kinable, J., Cire, A., Van Hoeve, W-J. (2014). Integrating CP, MIP and Decision
Diagrams for the Time-Dependent TSP. INFORMS 2014. San Francisco, 9-12
November 2014.

Kinable, J., Wauters, T. (2013). Crux 25 - Circle Packing. INFORMS 2013.
Minneapolis, 6-9 October 2013.

Kinable, J., Wauters, T. (2013). Crux 25 - Circle Packing. International
Conference on Mathematics in Sport. Leuven, Belgium, 5-7 June 2013.

Kinable, J., Spieksma, F., Vanden Berghe, G. (2012). School Bus Routing - A
Column Generation Approach. INFORMS 2012. Beijing, 23-27 Juni 2012.

Schittekat, P., Kinable, J., Sörensen, k., Sevaux, M., Spieksma, F., Springael, J.
(2012). An efficient metaheuristic for the school bus routing problem. Recherche
Opérationnelle et d’Aide à la Décision (ROADEF). France, 11-13 April 2012.

Orestis, K., Kinable, J., Mahmoudi, H., Mustonen, K. (2011). Improved call
graph comparison using simulated annealing. SAC ’11 Proceedings of the
2011 ACM Symposium on Applied Computing. ACM Symposium on Applied
Computing. Taiwan, 21-24 May 2011, 1516-1523.

LIST OF PUBLICATIONS 197

IMa-p (Meeting abstracts, presented at international
professionally oriented conferences and symposia,
published or not published in proceedings or journals)

Wauters, T., Kinable, J., Vanden Berghe, G. (2013). Using Advanced Algorithms
to Optimize Concrete Delivery. iMinds The Conference. Brussels, Belgium, 5
December 2013.

AMa (Meeting abstracts, presented at other sci-
entific conferences and symposia, published or not
published in proceedings or journals)

Kinable, J., Spieksma, F., Vanden Berghe, G. (2012). School Bus Routing -
A column generation approach. ORBEL 2012. Belgium, Ghent, 2-3 February
2012.

Kinable, J. (2009). Trust Management Framework for Multi-level Clustered
Wireless Sensor Networks. Current Internet Trends - Seminar on Internetwork-
ing. Current Internet Trends - Seminar on Internetworking. Finland, Espoo,
20 April 2009.

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

COMBINATORIAL OPTIMISATION AND DECISION SUPPORT (CODES)
Celestijnenlaan 200A box 2402

B-3001 Heverlee
joris.kinable@kuleuven.be

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	The Schoolbus Routing Problem
	Introduction
	Problem description and related research
	Set covering formulation of SBRP
	Column Generation
	Pricing Problem
	Stabilization
	Column Pool Manager

	Branch and Price
	Branching rules
	Pattern initialization
	Bounds
	Branch and Price Implementation

	Computational Experiments
	Conclusion

	The Concrete Delivery Problem
	Introduction
	Related Research
	Mathematical models
	Integer Programming models
	Constraint Programming model

	Heuristic models
	Steepest Descent and Best Fit
	Fix-and-Optimize heuristic

	Bounds
	Experimental Results
	Data Sets
	Experiments

	Conclusion
	Literature Summary Notation
	Computational Experiments

	A Logic Based Benders Approach to the Concrete Delivery Problem
	Introduction
	A logic-based Benders decomposition
	Master Problem
	Subproblem
	Generating an initial set of cuts

	Computational Experiments
	Conclusion

	Integrating CP, LP and Decision Diagrams for the Time-Dependent TSP
	Introduction
	The TD-TSP problem description
	Mathematical Models
	Constraint Programming Model
	Mixed Integer Programming models
	Column Generation Model

	Reinforcing the CP model
	Decision Diagrams for the TD-TSP
	CP model with MDD

	Strengthening MDD propagation through additive bounding
	Additive bounding
	Projecting information from the additive bounding procedure onto the MDD

	Computational Experiments
	Impact of additive bounding

	Impact of the refinement order
	Branching rules
	Implementation limitations
	Conclusion

	The Balanced Traveling Salesman Problem
	Introduction
	Complexity Analysis
	Formulations for 2-BTSP
	Column generation
	Pricing Problem
	Branching
	Initialization

	Some implementation details
	Computational Experiments for 2-BTSP
	Instances
	Experimental Results for 2-BTSP

	Conclusion

	Conclusion
	Extension: A Column Generation Approach to the Concrete Delivery Problem
	Extension: Generalizing 2-BTSP
	k-balanced TSP
	MIP model with |E|k variables
	Column generation model for 2k <|V|
	Special case |V|=k

	Bibliography
	List of Publications

