FACULTEIT ECONOMIE EN
BEDRIJFSWETENSCHAPPEN

&
29

KATHOLIEKE
UNIVERSITEIT
LEUVEN

ROUTING PROBLEMS
WITH PROFITS AND PERIODICITY

Proefschrift Voorgedragen tot
het Behalen van de Graad van
Doctor in de Toegepaste

Economische Wetenschappen
door

Sofie COENE

NUMMER 310 2009

Committee

Prof. Dr. Frits C. R. Spieksma (Advisor) Katholieke Universiteit Leuven

Prof. Dr. Carlo Filippi Universita’ degli Studi di Brescia
Prof. Dr. Peter Goos Universiteit Antwerpen

Prof. Dr. Maurice Queyranne University of British Columbia
Prof. Dr. Gerhard J. Woeginger Eindhoven University of Technology
Prof. Dr. Willy Gochet Katholieke Universiteit Leuven
Prof. Dr. Roel Leus Katholieke Universiteit Leuven

Daar de proefschriften in de reeks van de Faculteit Economie en
Bedrijfswetenschappen het persoonlijk werk zijn van hun auteurs, zijn

alleen deze laatsten daarvoor verantwoordelijk.

Acknowledgments

Deze eerste pagina‘s zijn wellicht de belangrijkste omdat iedereen ze zeker
leest. Terecht, want zonder de personen die in dit deel vermeld worden
was dit werk nooit geworden wat het nu is. Dit alles heb ik enkel kunnen
verwezelijken dankzij de hulp en steun van een aantal personen die ik bij
deze dan ook van harte wil bedanken.

Eerst en vooral gaat mijn dank uit naar mijn promotor, Frits Spieksma.
Dankjewel Frits, ik prijs mij erg gelukkig met jou als raadgever en bege-
leider. Dankjewel voor al de kansen die je mij gegeven hebt, de aangename
werksfeer, de vele conferenties waaraan ik heb mogen deelnemen, mijn
verblijf in Italié en de vrijheid om mijn weg te zoeken. Naast de tijd en
energie die je in dit werk gestoken hebt, wil ik je vooral bedanken voor
het vertrouwen dat je steeds in mij gehad hebt. Op die manier heb je het
beste in mij naar boven weten te halen.

Daarnaast wil ik ook de leden van mijn doctoraatscommissie van harte
danken. Hun opmerkingen en kritische vragen zijn dit werk zeker ten
goede gekomen. In mijn studentenjaren heb ik reeds mogen ervaren dat
Willy Gochet een groot statisticus is, maar ik heb de laatste jaren gemerkt
dat ook operationeel onderzoek weinig geheimen kent voor hem. Het was
dan ook een voorrecht hem onder de leden van mijn commissie te mogen
rekenen.

Roel Leus weet als geen ander hard werken en ontspanning te com-
bineren, hij heeft mij geleerd dat onderzoek zich niet enkel achter een
bureau afspeelt. Ik heb hem leren kennen als een erg gepassioneerd onder-

zoeker, met veel oog voor detail, zonder daarbij de realiteit uit het oog te

iii

iv Acknowledgments

verliezen. Hij heeft er dan ook voor gezorgd dat ik ondanks al die theorie
de praktijk niet vergat.

Peter Goos was reeds van bij het begin bij dit project betrokken, en het
is dan ook mede dankzij hem dat ik de kans gekregen heb dit te verwezen-
lijken. Zijn specialiteit ligt eerder bij statistiek dan bij operationeel onder-
zoek, en het is vanuit die optiek dat hij de hoofdstukken steeds grondig en
kritisch heeft gelezen. Indien dit werk ook een beetje toegankelijk is voor
niet-OR specialisten is dat vooral aan hem te danken.

I experienced what it is to take a course from Gerhard Woeginger,
and, even though I was lost several times (my fault, not his), his passion
for combinatorial optimization was really inspiring. He is a big name in
the field and I feel very privileged and thankful for his original ideas and
suggestions to this work.

I also wish to express my gratitude towards Maurice Queyranne. Al-
ready for many years he is a very respected member of the OR commu-
nity and I am very thankful that he agreed to be part of my commission.
His insightful comments and suggestions demonstrated that he read the
manuscript thoroughly.

Il quarto capitolo e stato scritto in collaborazione con Carlo Filippi e
Elisa Stevanato che ringrazio di cuore. Carlo mi ha accolto a Brescia per
qualche mese, ed ¢ stato un’esperienza molto preziosa. Grazie mille Carlo,
per le numerose discussione e per aver letto la tesi molto attentamente.

Dankzij mijn collega’s van “’t vijfde” heb ik de voorbije jaren in een
erg aangename omgeving kunnen werken. Thank you Huijuan, you were
the best office mate ever. You are not only a great colleague and chatting
partner but also a very good friend; I wish you and your family all the
best for the future. Grazie Fabrizio per le numerose chiacchiere in italiano.
Dankjewel Sarah voor al de inspirerende gesprekken, al je goede raad en
de vele uren in de klimzaal.

Ik heb de laatste 4 jaar in alle vrijheid kunnen werken mede dankzij
de financiéle steun van het Fonds voor Wetenschappelijk Onderzoek en de
KULeuven, mijn dank daarvoor.

Verder wil ik ook al mijn goede vrienden en vriendinnen bedanken, en

Acknowledgments v

in het bijzonder Laura, Saskia, en Paquita, omdat ik al zovele jaren altijd
op jullie kan rekenen. Ook mijn familie ben ik heel erg dankbaar voor hun
steun, de gezellige familiebijeenkomsten en voor al de kansen die ik steeds
gehad heb; dankjewel Mama, Papa, Hannelore, Sarah en Jonas.

Tot slot rest er mij nog één erg belangrijke persoon te bedanken. Je
geduld, vertrouwen, trots, vriendschap, maar bovenal je liefde hebben mij
doorheen deze jaren geleid en gemotiveerd. Pepijn, dankjewel dat ik bij

jou mag thuiskomen.

Sofie Coene Leuven, mei 2009.

Summary

This thesis deals with several routing problems with profit and/or period-
icity component. More in particular, routing problems with a particular
objective function and on specific network topologies are studied. Differ-
ent concepts are introduced in Chapter 1. Special attention is paid to a
customer-oriented routing problem known as the minimum latency prob-
lem or traveling repairman problem. The objective in this problem is to
minimize total waiting time of the customers and thus maximizing service
towards the customers. A setting is considered where not all customers
need to be served, but serving a customer yields a certain profit for the
server. In some settings customers require service regularly, as is the case
in a periodic routing problem. On arbitrary graphs these problems are
known to be NP-hard; looking at more restricted settings such as a line or
a tree may yield polynomial time algorithms.

Chapter 2 deals with a minimum latency problem with profits (TRPP)
on a line metric. This problem is NP-hard on a tree (Sitters (2002));
however, on the line, the problem can be solved in polynomial time by a
dynamic programming algorithm. This dynamic programming algorithm
can be extended to a problem where multiple identical servers are avail-
able. However, when servers are non-identical and there are release dates
at the customers, the problem is NP-hard. Further, it can happen that
deadlines are present at the customers. When there is a uniform deadline
for all the customers the dynamic programming algorithm is no longer ap-
plicable and the complexity is not immediately clear. Arbitrary deadlines

make the problem NP-hard. Finally, also the reverse problem is studied,

vii

viii Summary

i.e. customers need to be visited as late as possible (but before a certain
deadline).

In Chapter 3 a traveling salesman problem (TSP) with profits on a
tree metric is considered. This problem is studied from a bi-objective
point of view, meaning that at the same time costs are minimized and
profits maximized. To deal with these multiple objectives the concept of
Pareto-optimality is introduced. A solution with cost C' and profit P is
Pareto optimal if no other solution exists with ¢’ < C and P’ > P. In
this problem, not a single optimal solution is searched for but a set of
optimal solutions. It is shown that on a tree metric, determining the set
of Pareto optimal solutions of a TSP with profits is NP-hard. However,
a pseudo-polynomial algorithm exists and the efficient set can be approxi-
mated efficiently by a FPTAS. When restricting the search to a subset of
the Pareto set, i.e. the extreme supported efficient points, this set can be
determined in polynomial time. These results still hold on more general
graphs that satisfy the Kalmanson conditions.

In Chapters 2 and 3, focus is on complexity of routing problems with
profits on specific graphs. In Chapter 4 a periodicity aspect is included in
the periodic latency problem with profits. Customers require service on
a regular basis according to their personal required frequency. A route is
feasible if all customers in the route are visited according to their frequency.
Complexity of this problem is studied in several settings for profits and
frequency and in different metric spaces. It is shown that whenever a
feasible solution exists, also a periodic feasible solution exists. The periodic
latency problem with profits describes a periodic latency problem where
not all customers need to be visited, the goal is to find a route for a single
server collecting a maximal amount of profit. For arbitrary values of profits
and frequencies the problem is solvable in polynomial time on the line and
on the circle; on a star graph the problem becomes NP-hard. Only in
cases where profits and periodicities have equal values for all customers the
problem is solvable in polynomial time also on a tree. The multiple server
periodic latency problem with profits and the periodic latency problem

where the goal is to minimize the number of servers necessary to serve all

Summary ix

customers, are only solvable in polynomial time on the line and the circle.
In all other situations they are NP-hard.

A more standard periodic routing problem is described in Chapter 5,
dealing with a case study of a periodic vehicle routing problem (PVRP).
The case described is a problem encountered by a Belgium transportation
company responsible for collecting waste at slaughterhouses, butchers, and
supermarkets. Two instances are studied, an instance with 262 customers
and an instance with 48 customers. The problem is a PVRP with some
additional constraints specific to the instances; all this is translated in
a mathematical model. Due to the large amount of variables, however,
heuristics are developed to compute good feasible solutions. Applying
traditional strategies where first customers are assigned to days of the
week and then routed or vice versa, routes are obtained gaining up to
15.5% in costs compared with the original routes.

A different periodic routing problem is discussed in the final chapter.
Chapter 6 deals with a motion control problem for a placement machine.
Such a placement machine consists of three main parts, i.e. a robot arm,
a feeder, and a board, and all these parts can move. A set of components
is positioned initially in the feeder and needs to be placed by the arm
on the board. The different parts of the machine are routed such that
all components are placed onto the board as fast as possible. Often this
problem is solved using a (non-optimal) Greedy strategy. The problem,
however, can be solved optimally in polynomial time by formulating it as
a linear program (under the relevant Tchebychev metric). This LP yields

a reduction in assembly time compared to the Greedy method.

Samenvatting

Dit proefschrift behandelt verschillende routeplanning problemen met een
winst component en/of met periodiciteit. We focussen op een aantal
specifieke doelfuncties en dit op verschillende netwerk topologieén. In
Hoofdstuk 1 worden een aantal concepten toegelicht die centraal staan
in dit werk. Deze bestaan uit 4 belangrijke elementen: klantgerichte
routeplanning, winsten, periodiciteit en netwerk topologieén. In klant-
gerichte routeplanning tracht men de som van de wachttijden van de klanten
te minimaliseren om zo een optimale service te garanderen. In dit werk
komt een dergelijk probleem met winsten aan bod, i.e. met elke klant wordt
een bepaalde winst geassocieerd. De leverancier is niet verplicht al de
klanten te bedienen maar als hij een klant bedient, verzamelt hij de winst.
In verscheidene toepassingen zal een klant regelmatig bediend worden met
een bepaalde frequentie, dit wordt behandeld in periodieke routeplanning
problemen. Bovenstaande problemen zijn NP-moeilijk wanneer algemene
netwerken beschouwd worden. Beperken we ons echter tot klanten gelegen
op een lijn of op een boom, kan in vele gevallen een polynomiaal algoritme

ontwikkeld worden.

Hoofdstuk 2 handelt over het minimum latency probleem met winst-
en waarbij de klanten op een lijn liggen. Dit probleem op een boom is
NP-moeilijk (Sitters (2002)), op de lijn echter kan dit probleem met poly-
nomiale tijdscomplexiteit opgelost worden met behulp van een dynamisch
programmeringalgoritme. Dit dynamisch programmeringalgoritme kan uit-
gebreid worden naar problemen met meerdere, identieke leveranciers. Het

probleem met meerdere, niet-identieke leveranciers en klanten met “re-

xi

xii Samenvatting

lease dates” is NP-moeilijk. Ook het probleem waarbij deadlines aanwezig
zijn komt aan bod. Het dynamisch programmeringalgoritme is niet langer
bruikbaar, zelfs niet wanneer deze deadlines gelijk zijn voor al de klanten;
de complexiteit van dit probleem is nog open. Willekeurige deadlines lei-
den tot NP-moeilijkheid van het probleem. We beschouwen uiteindelijk
ook een omgekeerde situatie waarbij klanten zo laat mogelijk, maar voor
een bepaalde deadline, bezocht wensen te worden.

De aandacht in Hoofdstuk 2 gaat vooral uit naar een latency pro-
bleem met winsten in een lijn metriek; in Hoofdstuk 3 bestuderen we
een klassiek handelsreizigersprobleem maar met winsten en met klanten
gepositioneerd op een boomnetwerk. Dit probleem wordt bestudeerd als
een bi-objectief probleem: tezelfdertijd wordt getracht de kosten te mini-
maliseren en de winsten te maximaliseren. Om met deze meerdere ob-
jectieven om te gaan is het concept Pareto-optimaliteit belangrijk. Een
oplossing met een bepaalde kost C' en winst P is Pareto-optimaal als er
geen andere toelaatbare oplossing bestaat waarvoor ¢/ < C and P’ > P.
Er wordt dus niet gezocht naar één enkele optimale oplossing maar naar
een set van oplossingen. Het vinden van de Pareto-optimale oplossingen
voor het handelsreizigersprobleem met winsten in een boom metriek is
NP-moeilijk. Dit probleem is echter wel oplosbaar in pseudo-polynomiale
tijd met behulp van een dynamisch programmeringalgoritme en de set van
Pareto-optimale oplossingen kan efficiént benaderd worden met een FP-
TAS. Een subset van de Pareto-optimale oplossing, i.e. de extreem onder-
steunde efficiénte oplossingen, kan wel berekend worden door een algoritme
met polynomiale tijdscomplexiteit. Deze resultaten blijven gelden wan-
neer we meer algemene netwerktopologieén beschouwen die voldoen aan
de Kalmanson voorwaarden.

In Hoofdstukken 2 en 3 wordt de complexiteit bestudeerd van enkele
routeplanning problemen met winsten op bepaalde netwerken. In Hoofd-
stuk 4 komt hierbij nog een periodiciteitaspect in het periodiek latency
probleem met winsten. Elke klant dient regelmatig bediend te worden in
overeenstemming met zijn/haar persoonlijke vereiste frequentie. Een route

is enkel toelaatbaar indien al de klanten in de route in overeenstemming

Samenvatting xiii

met de vereiste frequenties bezocht worden. We bestuderen de complexiteit
van dit probleem voor verschillende waarden van winsten en frequenties en
op verschillende netwerken. Er wordt aangetoond dat indien er een toelaat-
bare oplossing bestaat, er ook een periodieke toelaatbare oplossing bestaat.
We beschouwen drie varianten: periodieke latency met winsten, periodieke
latency met winsten en meerdere leveranciers, en periodieke latency met
meerdere leveranciers. In het periodieke latency probleem met winsten
dienen niet al de klanten bezocht te worden en wordt een route gezocht
voor de leverancier zodat de winst gemaximaliseerd wordt. Het probleem
is oplosbaar in polynomiale tijd voor willekeurige waarden voor de winsten
en frequenties indien het onderliggende netwerk een lijn of cirkel is; op een
ster is het probleem al NP-moeilijk. Enkel indien winsten en frequenties
gelijk zijn voor al de klanten is het probleem ook op een boom oplosbaar
in polynomiale tijd. Het periodieke latency probleem met meerdere lever-
anciers is een analoog probleem waarbij voor elke leverancier een route
gezocht wordt zodat totale winst gemaximaliseerd is. Het periodieke la-
tency probleem zoekt routes waarbij al de klanten bediend worden met
een minimaal aantal leveranciers. Beide problemen zijn enkel oplosbaar in
polynomiale tijd op een lijn of een cirkel. In al de overige situaties zijn
deze NP-moeilijk.

Een meer standaard periodiek routeplanning probleem wordt beschreven
in Hoofdstuk 5. In dit hoofdstuk behandelen we een casus van een pe-
riodiek routeplanning probleem. De behandelde casus beschrijft een prob-
leem van een Belgisch transportbedrijf verantwoordelijk voor het ophalen
van slachtafval bij beenhouwers, supermarkten en slachthuizen. Er zijn 2
instanties gegeven, een instantie met 262 klanten en een instantie met 48
klanten. Het probleem is een voorbeeld van een PVRP met een aantal
extra beperkingen specifiek voor deze instanties; dit wordt vertaald in een
wiskundig model. Door het grote aantal variabelen richten we ons echter
op heuristieken om een goede toelaatbare oplossing te bekomen. Enkele
traditionele strategieén worden toegepast waarbij het probleem in twee
fasen opgelost wordt. In een eerste fase worden klanten aan dagen van

de week toegewezen en in een tweede fase worden de routes voor iedere

xiv Samenvatting

dag opgesteld; of omgekeerd. Op deze manier verkrijgen we routes die tot
15.5% goedkoper zijn vergeleken met de oorspronkelijke routes.

Tot slot wordt een heel ander periodiek routeplanning probleem be-
studeerd in Hoofdstuk 6. In dit hoofdstuk beschouwen we een motion con-
trol probleem voor een plaatsingsmachine. Een dergelijke machine bestaat
uit drie belangrijke onderdelen, i.e. een robot arm, een magazijn, en een
bord; al deze onderdelen kunnen bewegen. Initieel bevindt zich een set van
componenten in het magazijn; deze componenten worden door de arm op
bepaalde posities op het bord geplaatst. De verschillende onderdelen van
de machine dienen gerouteerd te worden zodanig dat al de componenten
zo snel mogelijk op het bord geplaatst worden. Dit probleem wordt in de
literatuur vaak opgelost met behulp van een (niet-optimale) Greedy me-
thode. We kunnen dit probleem echter optimaal oplossen in polynomiale
tijd door het te formuleren als een lineair programma (LP). Dit LP leidt
tot een reductie in assemblagetijd vergeleken met oplossingen berekend

met Greedy.

Table of contents

Committee
Acknowledgments
Summary
Samenvatting

1 Introduction
1.1 The minimum latency problem
1.2 Profits in routing problems
1.3 Periodicity in routing problems
1.4 Network topologies
1.5 Thesisoutline L.

2 Profit-based latency problems on the line

2.1 Introduction.
2.2 Literature and motivation
2.3 A polynomial algorithm for the TRPP
2.4 The complexity of MTRPP
2.5 Some observations oL

2.5.1 Deadlines,

2.5.2 The election problem in Chile
2.6 Openproblems

XV

iii

vii

xi

© 0o N ot N =

xvi

Table of contents

3 The traveling salesman problem on trees:

balancing profits and costs 31
3.1 Imtroduction. 32
3.2 T(h)ree problems 34
3.3 Problem lontrees 39
3.3.1 Complexity 39
3.3.2 A dynamic programming algorithm for Problem 1 on
trees 41
3.3.3 A FPTAS for Problem 1 on trees 44
3.3.4 Somespecialcases 50
3.4 Problem 2ontrees 54
3.5 Extension: Kalmanson matrices 60
3.5.1 Problem 1 on Kalmanson matrices 61
3.5.2 Problem 2 on Kalmanson matrices 62
3.6 Complexity classes for multi-objective optimization problems 67
3.7 Conclusions 69

4 Charlemagne’s challenge: the periodic latency problem 73

4.1
4.2
4.3
4.4

4.5

4.6
4.7

Introduction o 74
Theresults, 78
Periodicity L 78
The complexity of PLPP 81
4.4.1 PLPP on the line and the circle 81
442 PLPPonastar. 85
44.3 PLPPonatree. 87
4.4.4 PLPP on an arbitrary topology 88
The complexity of PLP 88
451 PLPontheline. 89
452 PLPonacircle. 91
453 PLPonatree. 92
Extension: the complexity of MPLPP 93
Conclusion 94

Table of contents xvii

5 The periodic vehicle routing problem: a case study 97
5.1 Imtroduction 98
52 Thecase 100

5.2.1 A general description L. 100
5.2.2 The low-risk waste instance: details 101
5.2.3 The high-risk waste instance: details 102
5.3 Model 104
5.3.1 Notation. 105
5.3.2 Themodel 106
5.4 Solution approach 108
5.4.1 First assign customers to days, then route 109

2.5

5.6

5.4.2 First route, then assign customers to days: algorithm

MR 113
Computational results 113
5.5.1 The low-risk waste instance: results 114
5.5.2 The high-risk waste instance: results 114
5.5.3 Discussion oL 117
Conclusion 118

6 On a motion control problem for a placement machine 121

6.1 Introduction. 122
6.2 A problem description, a method, and an instance 126
6.3 LP formulation L. 133
6.4 Implementation, design, and computational results 137
6.4.1 Implementation and design 137

6.42 Results 140

6.5 Conclusion oo 145
List of figures 146
List of tables 148

Bibliography 149

xviii Table of contents

Doctoral dissertations from the Faculty of Business and Eco-

nomics 163

Chapter 1

Introduction

Routing problems have become very important the last 50 years; that is
not only clear from the vast amount of research that has been done and
is still being done on the subject. The number of hits on Google Scholar
when typing “routing” amounts to 1200000 and in Google “routing” even
yields 31900000 hits. Thus, not only in academics but also in our every
day life we are confronted with routing problems. Routing does not only
refer to vehicle routing, it also occurs on computer networks, the internet,

telephone networks, in manufacturing environments and robotics.

Many have studied the vehicle routing problem (VRP) and its variants
since Dantzig and Ramser introduced the problem in 1959. The variant
with a single vehicle and unbounded capacity, i.e. the traveling salesman
problem (TSP), was already studied in 1930 by Karl Menger (Menger
(1932)). Only much more recently, especially since the paper of Afrati
et al. (1986), more research has been done on a customer-oriented variant
of the TSP, namely the traveling repairman problem (TRP), also known
as the minimum latency problem (MLT). The latency objective (explained
in 1.1) has turned out to be quite relevant in a variety of domains. It is
especially suited for measuring customer service. In particular, in routing,
apart from travel distance and travel costs, service to the customers can

be an important aspect.

Consider for instance a school bus routing problem that was described

1

2 Introduction

in a Master’s thesis by Artois (2004). Given is a school for disabled chil-
dren, each of whom needs to be picked up every morning, and brought
home every evening. It would not be convenient nor fair if some children
spend a very long time on the bus and others only a few minutes. The
aim is to find routes for a set of busses such that the maximum travel time
over the children is minimized. Optimal solutions for problems with such a
customer-oriented objective tend to differ from solutions that are found by
simply minimizing total travel time or distance. More generally, the influ-
ence of customer service on competitiveness has been clearly established,
see e.g. McMullan and Gilmore (2008).

The title of the thesis consists of three parts: routing, profits, and
periodicity. In this introductive chapter, section 1.1 further introduces the
minimal latency problem, a problem informally described in the previous
paragraph. Further, we introduce the two other keywords of this thesis,
i.e. profits and periodicity, in sections 1.2 and 1.3 respectively. In section
1.4 some attention is paid to specific network topologies considered in this
thesis, i.e. the line and tree network. Section 1.5 presents the outline of

the remainder of this thesis.

1.1 The minimum latency problem

The minimum latency problem (MLT), also known as the traveling repair-
man problem (TRP), is defined as follows: given are a set of n customers,
distances d;; between each pair of customers ¢ and j (1 < 4,5 < n), and
a server traveling at unit speed. Then, the goal is to find a route for the
server visiting all the customers such that total latency (i.e. waiting time)
for the customers is minimized. The value of a solution to this problem is
very different from the value of a solution to the classical traveling salesman
problem (TSP), see the example depicted in Figure 1.1. In this example
4 customers request service and a single server is positioned at the depot.
The route constructed in this example has a total cost of a + b+ c+ d
for the TSP, but for the MLT the cost would be much higher, namely
4xa+3xb+2xcH+d.

1.1. The minimum latency problem 3

Figure 1.1: Distance versus latency

As mentioned in the introduction, an early paper on the MLT (or TRP)
was published by Afrati et al. (1986); they developed a dynamic program-
ming algorithm for the TRP where all customers are positioned on a line.
Indeed, this is not a trivial problem as can be seen from the example in Fig-
ure 1.2. The distances between consecutive customers are indicated under
the line. Intuitively, one expects the best route to be to travel first all the
way to the left and back, or vice versa. However, in case of a latency objec-
tive that could yield a suboptimal solution. In the given example, traveling
to the right and then to the left (y1-y2-ys-ys-x1-22) yields a route with total
latency equal to 6 x 1+5x994+4 x 1043 x 10+ 2 x 130+ 1 x 190 = 1021;
vice versa (x1-To-y1-y2-y3-y4) yields a route with total latency equal to
6x1045x190+4x201+3x994+2x10+1x10 = 2141. The optimal route for
this example is first traveling to y;, then returning to serve x1, again chang-
ing direction to serve yo through y4 and finishing in zo (y1-71-y2-y3-y4-22).
Total latency is then 6 x 1+5x11+4x 11043 x10+2x 10+1 x 320 = 871.
Notice that distances traveled early in the route have a very large im-
pact on the total cost of the route. Apart from Afrati et al. (1986),

) 1 9 Y1 Yo Y3 Y4
190 10 1 99 10 10

Figure 1.2: Ezxample MLT on the line

also Minieka (1989), Wu et al. (2004), and Garcia et al. (2002) studied
exact algorithms for the MLT. Also, as MLT belongs to the class of NP-

complete problems, many authors have focused on approximation algo-

4 Introduction

rithms, see e.g. Blum et al. (1994), Goemans and Kleinberg (1998), Sitters
(2002), Arora and Karakostas (2003). Recently, Salehipour et al. (2008)
proposed a metaheuristic for the MLT. Few papers deal with the MLT
with multiple servers (kMLT), examples are Fackaroenphol et al. (2007)
and Jothi and Raghavachari (2007). Also in scheduling the latency objec-
tive is very common, the time-dependent TSP (TDTSP) is a scheduling
problem where the cost of executing a job not only depends on the pre-
ceding job but is a non-decreasing function of the completion time, see
e.g. Picard and Queyranne (1978).

In the remaining part of this section we propose a mathematical for-
mulation for both the MLT and k-MLT.

A mathematical formulation for MLT Given are a set of n customers
and a depot (N = {1,...,n}U{0}), and a set of distances d;j, 7,7 € N. A
single server travels at unit speed. x;;, is a binary variable that is equal

to 1 if customer j is visited after customer 4 at position p, 0 otherwise.
Minimize

DN dijn—p+ gy (1.1)

p=1ieN jeN

subject to
n
Zl‘ojl =1 (1.2)
j=1

n n
injp—ij,i,pH:O Vp=1,....n—1,Vj €N (1.3)
i=1 i=1

DN wip=1 Vje N (1.4)

=1 p=1
zijp € {0, 1} Vi,j € N\Vp=1,...,n (1.5)

Exactly one arc leaves the depot to a point j that will be visited in
position 1 (1.2). In every point j where an arc arrives at position p an arc

also leaves point j to a point ¢ that is then visited at position p + 1 (1.3).

1.2. Profits in routing problems 5

Every customer is visited exactly once (1.4).

A set-partitioning formulation for k-MLT Again, a set of n cus-
tomers and the inter-customer distances d;; are given. Multiple servers (k)
are available, all traveling at unit speed and with starting position at the
depot. Consider the set R of all feasible routes, where a route » € R has
an associated latency L,. Variable z, is equal to 1 if route r is selected,

and 0 otherwise.

Minimize » ° L, (1.6)
reR

subject to Z xr =1 Vie N (1.7)
reR;
> <k (1.8)
reR
z, € {0,1} VreR (1.9)

with R; = {r € R| customer 7 in route 7}, 1 <i < n.

A set of at most k routes is selected such that total latency cost is min-
imized. Constraint (1.7) ensures that each customer is in exactly one
selected route, and at most k routes can be selected due to constraint
(1.8).

These formulations are relevant for chapters 2 and 4. In a column
generation approach to solve (1.6) - (1.9), the pricing problem is equivalent
to a minimum latency problem where not all customers need to be served.
We define this problem as the minimum latency problem with profits,
which is dealt with in chapter 2. Periodic latency problems are introduced

in chapter 4.

1.2 Profits in routing problems

Routing problems with profits differ from standard routing problems in two

important aspects: (i) a profit is included for visiting a customer and (ii)

6 Introduction

not every customer must be visited. While many papers exist on routing
where all customers need to be served — we refer among others to the book
edited by Toth and Vigo (2002) and the recent book edited by Golden
et al. (2008) — the number of papers on routing problems with profits is
much more limited. In the survey of Feillet et al. (2005) on the traveling
salesman with profits (TSPP) (notice that this is the single vehicle case
with unbounded capacity), a distinction is made between three different
cases, depending on the objective function. In the Orienteering Problem
(OP) the goal is to maximize total collected profit given a constraint on
the maximal cost or distance. In the prize-collecting TSP (PCTSP) on the
other hand, the goal is to minimize total cost given a required minimal
amount of profit to be collected. The objective in the Profitable Tour
Problem (PTP) is a combination of both profits and costs. Only few
papers describe a true bi-objective approach for the TSP, e.g. Keller and
Goodchild (1988), Jozefowiez et al. (2008a), and Bérubé et al. (2009).

The vehicle routing problem with profits is dealt with in a number of
papers. Chao et al. (1996) introduced the OP with multiple tours, which
is a special case of the VRP with profits, under the name Team Orien-
teering Problem (TOP). Butt and Cavalier (1994) address the multiple
tour maximum collection problem (MTMCP) in the context of recruiting
football players from high schools. Aksen and Aras (2005) focus on the
capacitated VRP with profits and time deadlines (VRPP-TD); the capaci-
tated team orienteering and profitable tour problem is recently been dealt
with by Archetti et al. (2008). An exact algorithm for TOP is described
by Boussier et al. (2007). Jozefowiez et al. (2008b) recently published a
survey on the existing research related to multi-objective optimization in
routing problems.

Tricoire et al. (2008) describe a generalization of the TOP, i.e. the
multi-period orienteering problem with multiple time windows (MUPOPTW).
They present a problem where sales representatives have to visit customers
periodically on a long-term basis and have to acquire new customers. This
is to our knowledge the only paper dealing with profits and periodicity

simultaneously.

1.3. Periodicity in routing problems 7

In chapter 2 we deal with the traveling repairman problem with profits
on the line where in the objective function profits and costs are combined,
as in the PTP for the traveling salesman problem. In chapter 3 both
objectives are considered simultaneously in a bi-objective approach for the
TSP. In chapter 4 we introduce the periodic minimum latency problem
with profits, both for a single server and for multiple servers. We elaborate

further on periodicity in the next section.

1.3 Periodicity in routing problems

A routing problem cannot always be considered as a unique occurrence;
often there is a certain periodicity involved, meaning that customers re-
quire service a number of times within a certain period of time 7. Then,
planning of the routes occurs over a time period of several days (or even
several weeks) in which customers have different frequencies of visit. This
problem is known as the Periodic Vehicle Routing Problem (PVRP). As
in the traditional VRP, customer locations each with a given demand per
visit are given, as well as a set of (capacitated) vehicles. Each customer
requires a certain service level, that can be expressed as a number of vis-
its over a time horizon 7', as a maximal time lag between visits, or as a
predefined visit pattern. The problem consists in designing vehicle routes
that meet the given service requirements.

This problem was introduced by Beltrami and Bodin (1974) for the col-
lection of municipal waste, and it was first defined as the “Period Routing
Problem” by Christofides and Beasley (1984). Since then, many variants
to the problem have been described in literature, for an overview see Mour-
gaya and Vanderbeck (2006) and the references contained therein. Apart
from the collection of waste, many other applications occur, such as collec-
tion of raw materials for manufacturing companies (Alegre et al. (2007)),
or maintenance of elevators (Blakely et al. (2003)). The periodic vehicle
routing problem with service choice (PVRP-SC) (Francis et al. (2006))
allows more operational flexibility as it allows service frequency to be a

decision of the model.

8 Introduction

Periodic routing problems also occur in scheduling of robotic cells; Crama
and van de Klundert (1997) investigate a cyclic scheduling problem for a
robotic flowshop. The goal is to find a sequence of robot moves to maximize
the throughput rate or minimize the cycle time of the system.

Chapter 5 contains a case study of a periodic vehicle routing prob-
lem. In this case study, a vehicle can perform multiple trips per day; a
similar problem is described by Angelelli and Speranza (2002) as the pe-
riodic vehicle routing problem with intermediate facilities (PVRP-IF) and
by Alonso et al. (2008) as the site-dependent multi-trip periodic vehicle
routing problem (SDMTPVRP).

The problem dealt with in chapter 4, periodic latency problem (PLP),
allows some flexibility concerning service frequency. Every customer has an
upper bound on the period that may pass between two consecutive visits;
within that period the server is free to visit the customer as often as it suits
him. Further, the server is not required to serve all customers. Notice that
this problem contains more flexibility in service frequency compared to the
PVRP but less flexibility compared to the PVRP-SC.

In chapter 6 we describe a routing problem for different parts of a
placement machine. This type of machines is used for the assembly of
printed circuit boards (PCB). A movement pattern for the different parts
of the machine is then repeated for a whole batch of identical PCB’s.

1.4 Network topologies

Routing problems with profits and/or periodicity on arbitrary graphs are
generally NP-hard. That is why in chapters 2, 3, and 4 we focus on com-
plexity of these problems on easier network topologies. More specifically
we study situations where customers are positioned on a straight line or
on a tree network. Several routing applications exist where these net-
works are relevant. Psaraftis et al. (1990) describe “shoreline problems”
where ships that visit ports along a shoreline are scheduled. Tsitsiklis
(1992) describes an application where servers visit customers located along

a highway. These problems can be extended to problems on a tree com-

1.5. Thesis outline 9

bining the shoreline with the incoming rivers or including some side roads
of the highway (Karuno et al. (1997)). Another line-problem is a setting
where multiple elevators need to serve a set of requests (Friese and Ram-
bau (2006)). Vehicle routing problems on tree networks have been studied
in several papers, for instance, Labbé et al. (1991), Averbakh and Berman
(1996), Muslea (1997), Lim et al. (2005) and Chandran and Raghavan
(2008). Further, Karuno et al. (1997) consider routing problems in build-
ings with several floors connected by an elevator. The structure of each
floor consisting of a corridor and rooms can then be represented as a sub-
tree and the elevator joins all subtrees. This structure occurs often in
hospitals, warehouses, hotels, and offices. This setting returns in chapter 4
where we describe a problem of setting up rounds for doctors and nurses in
a hospital. A tree-shaped network is also considered in the stacker-crane
problem, see (Coja-Oghlan et al. (2006)). Stacker cranes are automated
item transportation devices that operate e.g. in warehouses. In chapter 2
we focus on problems on the line, in chapter 3 mainly problems on a tree
metric are considered. In chapter 4 we study complexity of the periodic
latency problems in different metric spaces, among which the line and the

tree.

1.5 Thesis outline

Chapters 2 and 3 focus on routing problems with profits; chapters 5 and 6
deal with periodic routing problems. The “in between” chapter 4 combines
profits and periodicity.

Chapter 2 focuses on a variant of the minimum latency problem. Profits
are associated to customers and not all customers need to be served. The
goal is to obtain a maximal amount of profit while profits at the customers
go down linearly over time as long as the customer is not served. We refer
to this problem as the traveling repairman problem with profits (TRPP).
In general TRPP is NP-hard (this follows directly from NP-hardness of the
TRP). However, when we restrict ourselves to the line as a metric space,

we show that the TRPP on the line is solvable in polynomial time using a

10 Introduction

dynamic programming algorithm. Further, we prove that TRPP on the line
with multiple identical servers is also in P. When dealing with multiple non-
identical servers and release dates the problem becomes strongly NP-hard.
This result settles an open problem in de Paepe et al. (2004). Complexity
of several other variants, including weights and repair times, is still open.
This chapter has been published in Operations Research Letters (Coene
and Spieksma (2008)).

Chapter 3 deals with a bi-objective traveling salesman problem where
the underlying graph is a tree. Not all customers need to be served, how-
ever, serving a customer yields a certain profit. We analyze this problem
from a bi-objective point of view, i.e. we simultaneously minimize cost and
maximize profit. We show that finding all efficient points is NP-hard and
we develop a fully polynomial time approximation scheme (FPTAS). For
some specific cost and profit structures though, the efficient points can be
determined in polynomial time. Further, the identification of extreme sup-
ported efficient points only takes O(n?). This chapter has been submitted.
(Coene, Filippi, Spieksma, and Stevanato (2008b)).

In chapter 4, profits and periodicity are combined in the periodic la-
tency problem with profits (PLPP). Each customer has an associated fre-
quency and profit; the goal is to find a repeatable route for the server
collecting a maximal amount of profits without violating the individual
requested frequencies of the customers visited. We also consider a prob-
lem where all customers need to be served (PLP), the goal is to minimize
the number of servers needed to serve all customers according to their fre-
quency. In the periodic latency problem with multiple servers (MPLPP),
both profits and multiples servers are combined. The goal is to find a route
for each server maximizing total collected profit. We prove that when a
feasible solution exists, it must hold that a periodic feasible solution exists
as well. We give polynomial-time algorithms and NP-hardness results for
these problems depending upon the topology of the underlying network.
(Coene, Spieksma, and Woeginger (2009))

In chapter 5 we present a case study of a periodic vehicle routing prob-

lem. It concerns a routing problem of a Belgium company collecting waste

1.5. Thesis outline 11

at slaughterhouses, butchers, and supermarkets. The problem is modeled
using an integer programming formulation. The case consists of two in-
stances with slightly different characteristics. We propose two solution
approaches dealing differently with assigning customers to the days of the
planning horizon and the routing component for every day in the plan-
ning horizon. The methods were implemented using ILOG Dispatcher.
When comparing the resulting routes with the routes constructed by the
company, considerable improvement was realized. This chapter has been
published as a research report (Coene, Arnout, and Spieksma (2008a)).

In chapter 6 we deal with a motion control problem for a placement
machine. We consider a machine that consists of 3 basic parts: a worktable,
a feeder rack and a robot arm. Components to be assembled are positioned
in the feeder rack, are picked up by the robot arm from the feeder rack
and placed upon the worktable. The goal is to find movement patterns
for each of this parts such that total time to assemble a printed circuit
board (PCB) is minimized. A popular strategy to deal with this kind of
problems is a greedy strategy. This strategy, however, does not always
yield an optimal solution. We propose an LP formulation for this motion
control problem and compare this solution strategy to Greedy. We show
that assembly times can be reduced using the LP model. This chapter has
been published in OR Spektrum (Coene, van Hop, van de Klundert, and
Spieksma (2008c)).

Chapter 2

Profit-based latency problems on

the line

The latency problem with profits is a generalization of the minimum la-
tency problem. In this generalization it is not necessary to visit all cus-
tomers, however, visiting a customer may bring a certain revenue. More
precisely, in the latency problem with profits, a server and a set of n cus-
tomers, each with corresponding profit p; (1 < i < n), are given. The
single server is positioned at the origin at time ¢ = 0 and travels with
unit speed. When visiting a customer, the server receives a revenue of
pi — t, with ¢ the time at which the server reaches customer i (1 < i < n).
The goal is to select customers and find a route for the server such that
total collected revenue is maximized. We formulate a dynamic program-
ming algorithm to solve this problem when all customers are located on a
line. We also consider the problem on the line with k servers and prove
NP-completeness for the latency problem on the line with & non-identical
servers and release dates. In this proof we also settle the complexity of an

open problem in de Paepe et al. (2004).

13

14 Chapter 2 - TRPP

2.1 Introduction

Consider the following problem. Given are a set of n customers located in
some metric space and profits p; associated with each customer i, 1 < i <
n. In addition, a single server is given, positioned at the origin at time
t = 0. The server travels at unit speed. If the server serves customer 17
at time ¢, the revenue collected by the server equals p; — t. The goal is
to select customers and to find a route for the server serving the selected
customers, such that total collected revenue is maximal. We refer to this
problem as the traveling repairman problem with profits, or TRPP for
short. We restrict ourselves here to the line as a metric space. Notice
that in the TRPP (i) not every customer needs to be served, and (ii) the
revenue collected at a customer depends on the time needed to reach that
customer.

In this chapter we show:

e how a dynamic program solves the TRPP on the line in polynomial

time, thereby generalizing a classical result from Afrati et al. (1986),

e how this result can be generalized to the problem with multiple iden-
tical servers (referred to as MTRPP on the line),

e that the problem with multiple non-identical servers and release dates

for each customer, is NP-hard.

In the proof of the latter result we settle the complexity of an open prob-
lem mentioned in de Paepe et al. (2004).

This chapter is organized as follows. In Section 2.2 we describe the liter-
ature for the traveling repairman problem and we motivate the TRPP on
the line. In Section 2.3 we describe the dynamic programming algorithm.
We settle the complexity of different variants of MTRPP in Section 2.4.
Several observations concerning deadlines are discussed in Section 2.5. In

the last section we state some open problems.

2.2. Literature and motivation 15

2.2 Literature and motivation

The TRPP is a generalization of the well-known traveling repairman prob-
lem (TRP), also known as the minimum latency problem (MLT). In this
problem, no profits are given and the goal is to serve all customers with
minimal total latency. Afrati et al. (1986) give an O(n?) dynamic program
for the TRP on the line which was later improved to O(n) by Garcia et al.
(2002). In Sitters (2004) it is proven that the TRP on the line with release
dates is (weakly) NP-hard. Minieka (1989) shows that the problem on a
tree network is polynomial for trees with unit weights and develops a poly-
nomial time algorithm for the problem on weighted trees when the number
of leaves is bounded. The TRP on weighted trees is proven to be strongly
NP-hard by Sitters (2002). The problem on the line with multiple identi-
cal servers is solvable in O(n*), see Wu (2000) and Averbakh and Berman
(1994). We refer to Wu et al. (2004) and the references contained therein
for papers dealing with exact algorithms for the TRP (i.e. the problem
with an arbitrary metric space).

In de Paepe et al. (2004) a framework is described dealing with the
computational complexity of dial-a-ride problems (which include latency
problems, and in particular latency problems on the line). However, as far
as we are aware there is no work on latency problems with profits. This is
in contrast with the situation for the traveling salesman problem (TSP),
see Feillet et al. (2005) for a survey on the TSP with profits.

Motivation

As indicated above, a variety of latency problems arise in many different
settings. However, a common characteristic is the focus on minimizing
total waiting time of the customers. Here we consider a profit-oriented
objective. In situations where a server receives some revenue by performing
a service, this objective can be more appropriate. Of course, one needs to
balance in some way the waiting times and the profits. This can be done in
various ways (bounding the total waiting time by a constant from above,

bounding the total revenue realized by a constant factor from below). Here,

16 Chapter 2 - TRPP

however, we propose to combine profit and latency in a single objective
(as described in the introduction). By doing so, it is clear that a latency
problem with a profit objective is at least as hard as the corresponding
“ordinary” latency problem.

We restrict the analysis in this chapter to a linear profit function (i.e. p;—t)
in the objective function. We use this particular function because it arises
in the pricing problem of an integer programming formulation modeling
the latency problem with multiple servers. Indeed, consider a situation
with a set K with non-identical servers (meaning that their speed may
differ) whose job is to service a set of n customers on the line. We now
describe a set-partitioning formulation for this problem. We define ¢, as
the total latency of a feasible route r (r € R; with R the set of feasible
routes) served by server k (k € K). Then, variable z,; is equal to 1 if

route r is served by server k and 0 otherwise.

Minimize Z Z Cri Tk (2.1)

reRkeK

subject to Z Z Tpp =1 fori=1,...,n; (2.2)
reR; ke K
Zxrk <1 for k € K; (2.3)
reR

Tpk € {0, 1},

with R; = {r € R| customer 7 in route r}, 1 < i < n. The objective is to
minimize total latency (2.1), there is a constraint for each customer stat-
ing that it must be served exactly once (2.2) (see also Friese and Rambau
(2006)), and every server can be used at most once (2.3). When solving the
linear programming relaxation of this integer program, the dual variables
u; (i =1,...,n) corresponding to constraints (2.2) act as the profits in the
resulting pricing problem. Indeed, verifying for a fixed server k whether a
violated dual constraint exists, amounts to minimizing ¢, — > u;. This
corresponds to the objective function in the TRPP. o

In this chapter we consider the line-metric. Practical examples where this

metric is relevant are e.g. “shoreline”-problems (Psaraftis et al. (1990)).

2.3. A polynomial algorithm for the TRPP 17

These problems arise when scheduling and routing cargo-ships to visit a
number of ports which are usually located along a shoreline. Friese and
Rambau (2006) describe a setting with multiple elevators which need to
serve a set of requests.

Summarizing, the TRPP is interesting because (i) it is a first attempt
to combine a latency objective with profits, (ii) latency problems on the
line are relevant and their complexity is often unresolved (de Paepe et al.
(2004)), (iii) the TRPP occurs as the pricing problem of an integer pro-
gramming formulation modeling the latency problem with multiple servers,

as is explained above.

2.3 A polynomial algorithm for the TRPP

We represent an instance of the TRPP on the line as depicted in Fig-
ure 2.1. The server starts in the origin g = yg = 0. In this section, we
refer to the customers left of the origin as x1,xo,...,x,, and to the cus-
tomers right of the origin as y1,¥2,...,y4. To each customer a profit p,,
resp. py; (with ¢ = 0,...,7;7 = 0,...,q) is associated. Notice that we
sometimes identify a customer with its position on the line. We make a
distinction between “served” customers and “visited” customers. A cus-
tomer is served when a server has performed a service at that customer
and has collected profit there; when the server passes a customer without
performing the service, this customer has been visited but not served. The
goal is to select customers and to find a route for the server such that to-
tal profits of the customers served minus the latency of the corresponding
route is maximal. Clearly, the TRPP on the line generalizes the traveling
repairman problem on the line: in case each of the profits is huge, it is
optimal to serve all customers, and the problem reduces to finding a route
with minimal latency. In general however, not every customer needs to be
served in the TRPP; observe however that, for those customers that are
served, it is optimal to visit the customer the first time the server passes
by. The optimal route thus has a spiral shape as illustrated in Figure 2.1
(see de Paepe et al. (2004)).

18 Chapter 2 - TRPP

[
h N
|
Ty % X1 T2 21 0 Yt Y2 . Yo Yg
% —— %% % — % |
pl‘r pxl px¢,1 pxz pxl py1 pyz pyj pyq

Figure 2.1: The TRPP on the line

Given an instance of TRPP it is not yet clear which customers, and in
particular how many customers, need to be selected. We deal with this is-
sue by proposing a procedure that keeps track of the number of customers
to be visited.

We now define the ingredients of our dynamic program (DP). A state in
our DP is denoted by [z;,y;,!] which corresponds to the situation where
the server is positioned in z; (as its leftmost visited customer), where the
rightmost visited customer is y;, and where | customers are to be served
outside that interval (0 <i<r, 0<j<gq,0<1[<r+gq). Similarly, in
the state [y;, x;,] the server is at position y; (as its rightmost visited cus-
tomer), the leftmost visited customer is x;, and [customers will be served

outside this interval.

Definition 2.1.

Vi, j,l: Plxs,y;,1 (Plyj,xi,1]) equals the maximal value of the dif-

ference between

(i) the profits of the customers served in [z;,y;] ([y;,z:]), and

(ii) the latency costs incurred for these customers served in [z;, y;]
([yj,z;]) and for the [customers that will be served outside this

interval.

We refer to Plz;,y;,1] (Ply;,xi,1]) as the revenue.

Notice that the route followed by the server after having reached state

2.3. A polynomial algorithm for the TRPP 19

[xi,yj,] does not depend on the route followed within [z;, y;,(]. Thus, only
the set of customers yielding a maximal value for P[z;, y;,] will be selected
in an optimal solution. This observation is instrumental for the correctness
of our DP algorithm, that we will now describe. First, we define t[x;, y;] as
the distance between customers x; and y; (for all 4, j). In an initialization
step we set the revenue in all states equal to —oo; then we compute the

revenue in a state as follows.

Forl=0,...,7+q:
P[z0,y0,1] = Plyo, zo,1] = 0.

Fori=0,...,r5=0,...,¢;l=1,...,7+q:

Plzi,yj,1] = max{

Plzi—1,y5,l + 1]+ pg, — (1 + 1) X tlxi—1, zi],

Plxi—1,y;,1 — (1) X tlxi—1, xi],

Plyj,wi1, U+ 1] + pay — (14 1) X ty;,],
Plyj, wi1, 1] = (1) x tlyj,z]) (2.4)

Ply;, x;, 1] = max{
Plyj—1, i, 1+ 1] +py, — (1 +1) x t[y;—1, 9],
Plyj—1, i, 1] = () x tlyj-1,],
Plai,yj—1,1+ 1] + py, — (L+ 1) x t[zg, y5],
Plei, yj1, 1] = (1) x tlai,ys]) (2.5)
Observe that Plzg,y;,l] = Plyo,xi,l] = —oo for i > 0 and j > 0. Then

total revenue is:

Total Revenue = max{max{P[x;,y;,0]},0}.
(2

),

20 Chapter 2 - TRPP

Theorem 2.2. Algorithm DP is correct.

Proof. We establish correctness of (2.4) (the arguments for (2.5) are simi-
lar) by using induction on i for a fixed j, thereby proving Theorem 2.2. Cor-
rectness of (2.4) is shown by arguing that it leads to values for P|z;,y;,!]
that satisfy Definition 2.1. In case ¢ = 0, we already observed that
Plxg,y;,l] = —oo (which is in agreement with Definition 2.1).

We will use induction and assume that Plz;_1,y;,l + 1] and Plz;—1,y;,]]
satisfy Definition 2.1. The question now is whether P[z;,y;,!] computed
using (2.4) satisfies Definition 2.1. Consider the revenue realized when the
server is positioned in x;, while y; is the rightmost visited customer. We
distinguish two cases: x; is served and z; is not served. Consider first the
case where x; is served; as it is the last customer visited, it is the last
customer served. Then, revenue can be broken down into three terms:
(i) the revenue realized after serving a set of customers in [x;_1,y;] when
I+ 1 customers will be served outside this interval, (ii) the travel time be-
tween the previous customer visited and z;, taking into account the (I+1)
customers left to be served, (iii) the profit p,,. The previous customer
visited cannot lay outside [x;,y;], in fact it is either x;_; or y; . Indeed,
all customers within [z;_1, y;] are met before x; and it is optimal to visit
them the first time the repairman passes by. Terms (ii) and (iii) are inde-
pendent of the set of customers served and thus of the revenue realized in
state [z;—1,y;,1 + 1]. As a consequence, only the set of customers yielding
the maximal revenue in [z;_1,y;, + 1] can lead to an optimal solution. It
follows that the induction hypothesis tells us that the first term is accu-
rately described by P[x;_1,y;,l+1] or by Py, z;—1,1+1]. In addition, the
second term equals (I + 1) x t[z, x;] where z denotes the previous customer
visited (2;—1 or y;), and finally the third term equals p,,. Now consider
the case where x; is not served. This means that only [customers are
left to be served outside [z;_1, yj] and no profit is realized in x;. Revenue
can be broken down into two terms: (i) the revenue realized after having

served a set of customers in [x;_1,y;] and [customers will be served out-

2.3. A polynomial algorithm for the TRPP 21

side this interval and (ii) the travel time between the previous customer
visited (z;—1 or y;) and x;, taking into account the [customers left to be
served. Again, term (ii) is independent of the set of customers served and
thus the revenue realized in state [x;_1,y;,!]. As a consequence, only the
set of customers yielding the maximal revenue in [x;_1,y;, (] can lead to an
optimal solution. It follows that the induction hypothesis tells us that the
first term is accurately described by Plz;_1,y;,(] or by Ply;,x;—1,l]. In
addition, the second term equals | x t[z, x;] where z denotes the previous
customer visited.
By taking the maximum of the four terms considered above, we see that
Plz;,yj,1] equals its definition. A similar argument holds for Ply;,x;,[].
O

To estimate the complexity of DP with n = r 4+ ¢: we have at most n?
possible states, and since every state has 4 elements in its maximization
function, the time complexity of the algorithm is O(n?), and we can state

our result.
Corollary 2.3. DP solves TRPP on the line in time O(n?).

Let us consider a number of directions in which Corollary 2.3 can be ex-
tended. First, notice that the distances t[x;, y;] need not be symmetric.
Thus, situations where the line models a river with customers located at
upstream and downstream positions are solvable by DP. Next, we can ex-
tend Corollary 2.3 to other geometries. Consider n customers and one
server positioned on a circle. Observe that in an optimal solution there
is a circle segment between two customers not traversed by the server.
Hence, by considering O(n) TRPP instances on the line we can solve the
problem on the circle.

We can also extend our result to the TRPP when the customers are posi-
tioned on the endpoints of a tree with width three and with positive real
lengths on the edges. The observation here is that, in any optimal solution,

the spokes at either end of the tree are visited in increasing order of their

22 Chapter 2 - TRPP

X1 Y1
z2 Y2
T, Yq

Figure 2.2: A tree with width three

lengths (Blum et al. (1994)). Figure 2.2 shows an example of such a tree
with 7 customers on the left side and ¢ customers on the right side of the

tree.

A state in DP [z;,y;,1] then represents the situation in which z; is the
longest spoke visited at the left side and the current position of the server,
y; is the longest spoke visited at the right side, [is the number of cus-
tomers left to be served. Similarly, we can define state [y;, z;,{] with the
current position of the server being y; and x; the longest spoke visited on
the other side. DP can now be run using the states as defined here.
Thirdly, Corollary 2.3 can be extended to the TRPP on the line with
common release dates. In this variant of the TRPP, a release date M is
associated with every customer, implying that a customer cannot be served
before t = M. Notice that, if M is large, this is equivalent to choosing a
starting location for the server, since then the server can travel and choose
the position where it will start at time ¢ = M. Of course, in any optimal
solution the server, starting at the origin at ¢ = 0, will at time M either
be in M or in —M or at one of the customers in between these two points
and wait there until the release date is reached. Thus, the server has at
most n choices for its starting position at time t = M and again DP is able
to solve this problem.

A fourth extension is the TRPP on the line with constant repair times.
Suppose that there is a repair time h at every customer which is the same
for all customers. This changes the revenue of a route only by a constant
factor %S (S 4 1)h where S is the total number of customers visited in the
route. Thus, adding constant repair times has no influence on the compu-
tational complexity of the TRPP.

2.4. The complexity of MTRPP 23

Finally, it is interesting to consider different profit functions in the objec-
tive, such as e.g. p; — t2. In DP, though, the waiting time ¢ of a customer
i is built up gradually in every iteration. In fact, one can argue that cor-
rectness of DP implies f(x +y) = f(z) + f(y), which suggests that DP
can only be applied in case of a continuous linear function f. A function
for which this property holds is p; — w;t, with w; the weight of customer 3.
DP deals with this weighted version of TRPP by making w; copies of each
customer i, each with a profit equal to 5}—2 and with a distance 0 from each
other. We solve the resulting instance using DP. An optimal solution will
have the property that either all or none of the copies of a customer ¢ will
be served. Notice that - assuming a binary encoding - this is no longer a

polynomial time procedure, but pseudo-polynomial.

2.4 The complexity of MTRPP

In this section we discuss the TRPP with multiple servers (denoted by
MTRPP). Given are the positions of n customers on the line and their
associated profits p; (1 < i < n) and k servers, characterized by a speed s;
(1 < j < k) and a starting location. The goal is to select customers and
to find k£ routes serving each selected customer, such that total collected
revenue is maximized. Recall that the revenue collected at a customer
depends on the time needed to reach that customer. Observe that, if
all servers are in the origin at t = 0 and if all servers have equal speed,
the problem becomes trivial: one server travels to the left and a second
server travels to the right, and when they meet a customer that contributes
positively to the revenue, the customer is visited. In case the starting
locations of the k servers are arbitrary (but given), and the servers have

identical speed, we claim the following:

Theorem 2.4. MTRPP on the line with multiple identical servers is solv-

able in polynomial time.

24 Chapter 2 - TRPP

Proof. We only give a short sketch of the proof since it is similar to the
proof of Wu (2000) showing polynomial time solvability of the k-traveling
repairmen problem on the line. First of all, notice that the servers will
never pass by one another because they all have the same speed. A so-
lution to the MTRPP on the line with identical servers thus consists in
a division of the line into k& consecutive intervals and solving the TRPP
on the line for each interval. Consider a line with n customers positioned
at x1,29,...,x, and k servers positioned at z1, z2,..., 2z;. An interval on
this line is denoted by I(i,7), containing customers (i,7 + 1,...,7) with
i < j. Then, define P(i,j) as the maximal revenue of a set of routes vis-
iting customers (i,7 4+ 1,...,7) by the repairmen whose origins are within
the interval I(7, j). In a first phase compute P(3, j) for each interval I(, j)
containing exactly one origin. This can be done by computing revenue
for each server k for its largest possible interval (i.e. the largest interval
containing only server k) using DP. Then, the maximal revenue for every
smaller interval containing only server k is also known. Indeed, DP com-
putes revenue for all combinations of ¢ and j with [equal to zero. Total
time complexity of this first phase is thus O(n?). In a second phase we
select one interval for every server. For 1 < ¢ < k and z; < m < z;41 we
compute P(1,m) = max,, ,<j<{P(1,7)+P(j+1,m)}, and total revenue
P(1,n) = max,, ,<j<;, {P(1,j)+ P(j+ 1,n)}. Time complexity of the
second phase is O(n?); total time complexity is thus dominated by the first
phase and equal to O(n?). O

However, when the k servers have arbitrary speeds and customers have

release dates r; > 0, we claim that:

Theorem 2.5. MTRPP on the line with non-identical servers and release

dates is strongly NP-hard.

We will prove NP-hardness for the MTRPP with non-identical servers
and release dates by settling the complexity of an open problem mentioned
in de Paepe et al. (2004), i.e. Q|s = t,r;|line|) C;. This problem is a la-
tency problem (3 C;) on the line, with £ nonidentical servers (@) and

2.4. The complexity of MTRPP 25

release dates (r;); the phrase ‘s = t’ refers to the fact that the customers
only need to be visited (there is no transportation of customers). Notice
that the customers do not have profits and each customer needs to be
served. The goal is to find routes for every server such that total latency
is minimal. Recall that the profit variant of this problem, MTRPP with
non-identical servers and release dates, is a generalization of this problem
and thus at least as hard.

We transform numerical matching with target sums (NMTS) to Q|s =
t,rjlline| Y Cj.

In an instance of NMTS we are given positive integers z; (1 < i < m), y;
(1 <j<m)and b (1 <I<m). The question is whether there exists a
collection of m triples (i, j,1) such that (i) ; +y; = b, for each triple, and
(ii) each integer in the input occurs exactly once. This problem is proven
to be NP-hard by Garey and Johnson (1979).

Proof. We construct an instance of Q|s = t,7;|line| > C; by specifying the
speeds and the starting location of the servers, and the release dates and
the location of the customers as follows. There are k := m servers, the
starting location of each server is the origin, and each server j has speed
b; (i.e. s; =bj, 7 =1,...,m). There are 2m customers, m customers are
located to the left of the origin at —z;, 1 <4 < m (the “left” customers),
and m customers are located to the right of the origin at y;, 1 < j < m
(the “right” customers). The release date of each left customer equals
M = max;x; (i.e., r; = M). The release date of each right customer equals
M +1 (ie., 7; = M +1). The question is: does there exist a solution to
Qls = t,rj|line| Y C; such that total latency is equal to mM +m(M +1)?
This completes the description of an instance of Q|s = t,r;|line|) C;.

We now establish correspondence between the two questions. Clearly, if
there exists a numerical matching with target sums, we can direct each
server j to the appropriate left location, where it waits till the release
date M, serves the customer at that location, travels to the appropriate

right location (as given by the matching), arrives at time M + 1 (due to

26 Chapter 2 - TRPP

M M M M+1M+1 M+1
w % — % % {

—Zm —x9 —x1 0 Y1 Y2 Ym

Figure 2.3: MTRPP with release dates

the existence of a matching) and serves the right customer. Total latency
equals mM +m(M + 1).

If there exists a solution with total latency mM + m(M + 1), it follows
that each customer must be served at its release date. This implies that
the m servers have to be present at ¢ = M at the locations of the m left
customers, and at ¢ = M + 1 the servers need to be present at the m right
customers. Hence, each server j travels from a unique left customer at —zx;
to a unique right customer at y; in one time unit. It follows that NMTS

has a solution. O

Corollary 2.6. Q|s = t,r;|line|)_ C; is strongly NP-hard.

Notice that Yu et al. (2004) show that NMTS remains hard even when
zi=14(i=1,...,m)and y; =7 (j =1,...,m). It follows that the TRPP

problem remains hard when the customers are one distance-unit apart.

2.5 Some observations

2.5.1 Deadlines

Consider the TRPP with a uniform deadline d, such that after a time
period t = d, all profits drop to zero and traveling is no longer profitable.
In this case elapsed travel time plays an important role and DP no longer
yields an optimal solution. This is clear from the example in Figure 2.4.
Profits are mentioned in the figure above the line, distances under the line;
four customers request service and the server starts in the origin. The
deadline is set to d = 122. The optimal value for P[ys,z1, 1] is equal to

133 with corresponding route 0 —y; —x1 —y2; total travel time is 122, which

2.5. Some observations 27

130 130 130 160

| | |
T T 1

|
f
T 10 01 y; 99 Y2 1 Y3

Figure 2.4: FExample TRPP with uniform deadlines

is equal to d. It follows that Plys,z1,0] = —oo as t > d. When considering
a suboptimal solution for Plya, 1, 1], namely route 0 — z; — y; — yo with
value 119 and total travel time 120, the optimal value for Plys,x1,0] is
found with a total value of 278 and ¢t = 121 < d. Thus, our DP cannot be
used and the complexity of this problem is not immediately clear.

The TRPP with arbitrary deadlines is a generalization of the minimum
latency problem with deadlines and is thus at least as hard. This problem is
proven to be NP-hard by Afrati et al. (1986) and they show that a pseudo-
polynomial algorithm exists. Analogue as in section 2.3, this algorithm
can be transformed to a pseudo-polynomial algorithm for the TRPP with
deadlines. More specifically, this can be done by adding an entry to each
state in the DP denoting the time elapsed.

2.5.2 The election problem in Chile

Suppose that in Chile new elections are coming up and there is, naturally, a
candidate running for president. During his or her campaign, he or she will
travel through the country (which has a long and narrow shape, reducible
to a line) and visit a number of cities. However, the closer to the election
date a city is visited, the more people in that city will stay convinced to
vote for him/her. Thus, we are given a set of cities and a single server
which starts traveling at some moment in time ¢ > 0. At every city x;,
a revenue equal to t is collected, with ¢t the number of time units passed
before city z; is reached. There is a deadline d (the election date) after
which no more revenue can be collected. The metric space is restricted to
the line. We distinguish between two cases depending on the value of d.
In the case that d is large enough, this election problem is equivalent

to the minimum latency problem. Indeed, consider an instance of MLT

28 Chapter 2 - TRPP

with n customers positioned on the line and an instance of the election
problem with the same n positions on the line. A minimum latency tour,
starting and ending in the origin, has a total cost of C' =)", ¢;, with ¢;
the time elapsed before serving customer ¢. This tour in reverse order
then is an optimal solution to the election problem with a total revenue
of P=3",(d—1t;), with d — t; the time before reaching position 7. Thus,
“d large enough” means d > t;¢, with ;¢ total travel time in the optimal
solution to MLT. Notice that in MLT customers are served the earliest
possible whereas in the election problem customers are visited the latest
possible. As a consequence, customers are certainly served the first time
the server passes by in the MLT while in the election problem this position
will only be served the last time the server passes there. Notice that, in
this case, we can add initial profits to the profit function of each city, i.e.
revenue equals p; +t;. This may take the size of a city into account. Total
profit is then equal to P =Y. p; + > _.(d — t;).

When d is restrictive, meaning that d < t;4¢, the problem can be shown
to be equivalent to the TRPP. As before, we consider an instance of the
election problem with revenue ¢ for each customer ¢, with ¢ the number of
time units passed before reaching customer i; we define a variable T" as the
total travel time of the server and the server is free to determine its starting
position. It is clear that in an optimal solution, the final customer visited
will be served at time d and the first customer at time d — T'. Consider
an instance of the TRPP with the same set of customers and with each
customer ¢ having an initial profit p; = d; the initial position of the server
is to be decided by the algorithm (this adds a factor n to the complexity of
DP). Then, in an optimal solution to the TRPP, the first customer visited
yields a profit equal to d, and the final customer visited yields a profit
equal to d — T'. Thus, an optimal solution to the election problem with a
restrictive deadline can be found by applying DP to the equivalent TRPP
instance and reversing the obtained route. Clearly, it is also in this case
possible to add an extra profit to take the size of a city into account: the
revenue then equals p; + t; for a client i. However, in the corresponding

TRPP this means that initial profits at the clients are equal to p; + d and

2.6. Open problems 29

after d time units they drop to 0; this is a TRPP with common deadlines

which we cannot solve with DP, see supra.

2.6 Open problems

The complexity of the following latency problems on the line with profits

is open at this moment:
(i) MTRPP with non-identical servers

(Notice also that the complexity of the problem without profits is still
open, even if all the servers are positioned in the origin, see de Paepe
et al. (2004)),

(ii) the weighted TRPP (we showed in Section 2.3 how DP can be used
to solve this problem in pseudo-polynomial time; this however does
not settle complexity of weighted TRPP),

(iii) it is unclear whether the O(n) algorithm for the TRP in Garcia
et al. (2002) could be used for the TRPP. Potentially, this could give
a speedup of the current O(n3) bound of DP.

Chapter 3

The traveling salesman problem
on trees:

balancing profits and costs

Traveling Salesman Problems with Profits (TSPP) are generalizations of
the traveling salesman problem (TSP) where it is not necessary to visit all
vertices. A profit is associated with each vertex. The goal consists in de-
termining a route through a subset of nodes that simultaneously minimizes
the travel cost and maximizes the collected profit. We analyze this problem
from a bi-objective point of view, focusing on problems where the under-
lying graph has a tree metric. We show that finding all efficient points is
NP-hard, and we propose a practical FPTAS for solving this problem. We
also show that finding all extreme supported efficient points can be done in
polynomial time. Finally, we show that finding a single supported efficient
point is provably easier than finding all efficient points. Some special cases
are considered where the particular profit/cost structure or graph topology

allows the efficient points to be found in polynomial time.

31

32 Chapter 3 - BOTSPP

3.1 Introduction

Traveling salesman problems with profits are bicriteria versions of the trav-
eling salesman problem (TSP), where two opposite objectives need to be
optimized, one pushing the salesman to travel (to collect profit associ-
ated with vertices) and the other inciting him or her to minimize travel
costs (with the right to drop vertices). In this light, solving TSPs with
profits should result in finding a set of feasible solutions such that nei-
ther objective can be improved without deteriorating the other. Usually
these two optimization criteria appear either in a single objective function
and/or as a constraint. For a survey on single-objective approaches see
Feillet et al. (2005). An attempt to address the traveling salesman prob-
lem with profits as a bicriteria problem was made by Keller and Goodchild
(1988), who refer to the problem as the multi-objective vending problem;
their approach consists of sequentially solving single-objective versions of
the problem. Recently Jozefowiez et al. (2008a) proposed a metaheuristic
method to build up an approximate description of the efficient solution set
and Bérubé et al. (2009) developed an exact approach. For an overview
on multi-objective routing problems we refer the reader to Ehrgott (2000)
and Jozefowiez et al. (2008b).

Relevance

In this chapter we consider the TSP with profits as a bi-objective op-
timization problem, focusing on the case where the underlying graph is a
tree. It is clear that trees are fundamental network topologies, and many
practical problems feature a tree as the underlying graph. More in particu-
lar; vehicle routing problems on trees have been discussed in, for instance,
Labbé et al. (1991), Averbakh and Berman (1996), Muslea (1997), Lim
et al. (2005), Chandran and Raghavan (2008), and the references contained
therein. Motivation for the tree topology comes usually from transporta-
tion contexts where the underlying network is a railway network (in pit
mines, for instance), a river network, or a sparse road network (in rural

areas). Karuno et al. (1997) study the problem of scheduling and routing

3.1. Introduction 33

a vehicle, such as an automated guided vehicle, in a building with a simple
structure of corridors (each floor corresponds to a subtree and each room
to a leaf vertex). In the works mentioned above it is required to visit each
location. In this work, we relax this requirement and assume that a given
profit is incurred when a customer is visited. Notice further that we deal
here with a bi-objective problem featuring a single vehicle with unbounded

capacity, i.e., featuring a traveling salesman.

Our Results
We notice that finding all efficient points (see Section 3.3) is NP-hard.

In a quite general context, approximating the set of efficient solutions
(also known as the Pareto curve) has been dealt with by Papadimitriou
and Yannakakis (2000). Their work immediately implies the existence of
a so-called FPTAS to find an e-approximate Pareto curve for our prob-
lem. We exploit the analogy between our problem and a precedence con-
strained knapsack problem studied by Johnson and Niemi (1983) to revise
a pseudo-polynomial dynamic programming approach proposed in John-
son and Niemi (1983) and adapt it to our problem. Then, we develop
a simple FPTAS for our bi-objective problem, using ideas from Erlebach
et al. (2002) for the multi-objective knapsack problem. For finding the set
of extreme supported efficient points we propose a O(n?) algorithm, where
n is the number of vertices in the tree, and we show that this is a lower
bound. Finding one supported efficient point, corresponding to a given
combination of the two objectives, takes only linear time. Thus, we prove
that, when the graph is a tree, computing the set of all efficient solutions
is more difficult than computing the set of all extreme supported efficient
solutions (assuming P # NP), which in turn is proven to be more diffi-
cult than computing a single supported efficient point. Specific complexity
classes exist for problems with multiple optimal solutions (T’kindt et al.

(2005)); we extensively come back to this in Section 3.6.

The chapter is organized as follows. In Section 3.2 we define the three
problems studied and we give some theoretical background on bi-objective

optimization. In Section 3.3 we study the complexity of finding all effi-

34 Chapter 3 - BOTSPP

cient points (referred to as Problem 1) and we develop a FPTAS for this
problem. Some polynomially solvable special cases are also analyzed. In
Section 3.4, a polynomial time algorithm is developed for finding the set
of extreme supported efficient points (Problem 2), thereby also settling
complexity of finding only one supported efficient point (Problem 3). In
Section 3.5 we explain how we can extend our results to graphs satisfying
the Kalmanson criteria. Section 3.6 deals with complexity classes specific
for multi-objective problems. We finish with a conclusion and an overview

of our results in Section 3.7.

3.2 The bi-objective TSP with profits on trees:

three problems

Let T = (V,E) be a tree where V. = {0,1,2,...,n} is a set of n + 1
vertices and E is a set of edges. We consider vertex 0 (the depot) as the
root. Let a profit p; be associated with each vertex i € V and a cost
¢ij be associated with each edge (i,7) € E. We will assume that profits
and costs are strictly positive, with the only exception that pg = 0. A
feasible subtour S = (V(S), E(S)) of T is a circuit that starts and finishes
at vertex 0, visits each vertex of V(5) C V exactly once, and consists of
the resulting edges E(S) C E. Notice that we distinguish between visiting
a customer and passing a customer. A customer is only visited when the
server collects profit at that customer and profit can only be collected
once at every customer. Feasible subtours are then identified by subtrees
containing vertex 0, where every subtree T’ corresponds to a family of
equivalent subtours, characterized by the order in which its vertices are
visited. In every subtour corresponding to T”, each edge is traversed twice,
so the cost of the subtour is twice the sum of the costs of the edges of
T’ and the profit is the sum of the vertex profits. Notice further that we
assume a given position of the salesman; this is relevant since, in contrast
to the ordinary TSP, one does not need to visit all vertices. However,

all positive results we state also hold for the case where one is allowed to

3.2. T(h)ree problems 35

choose the salesman’s position (at the expense of a factor n in the running
times).

The cost of a feasible subtour S is then

c(S)=2 Z Cij,

(i,7)€E(S)

whereas the profit of S is

p(S)= > i
)

€V (S

The goal is to find a feasible subtour that minimizes the total length of
the tour and simultaneously maximizes the profit gained. We refer to
Ehrgott (2005) and Hoogeveen (1992) for an introduction to multicriteria
optimization. Here, we review basic terminology.

A feasible subtour S is Pareto optimal if there exists no feasible subtour
S" such that ¢(S") < ¢(S) and p(S’) > p(S), and at least one inequality
is strict. A point (7, 7) € R? is an efficient point if there exists a Pareto
optimal subtour S such that ¢(S) = v and p(S) = 7. Let £ denote the set
of efficient points. In Figure 3.1 every point represents a feasible solution
associated with a subtour S. The bold dots correspond to efficient points.

An efficient point (y,7) € R? is supported if there exists a scalar
A € [0, 1] and a feasible subtour S such that S maximizes A\p(S)—(1—X)e(S)
and ¢(S) = v, p(S) = m. A supported efficient point that is an extreme
point of the convex hull of all solution points, is called an extreme sup-
ported efficient point (Ehrgott (2005)). Let SE denote the set of extreme
supported efficient points (see Figure 3.2). Clearly, S€ C €£.

The goal of our work is to investigate the difficulty of the bicriteria
TSP with profits on trees. We distinguish the following three problems.

Problem 1 (£) Find all efficient points and, for each of them, a corre-

sponding Pareto optimal subtour.

Problem 2 (S€) Find all extreme supported efficient points and, for each

of them, a corresponding Pareto optimal subtour.

36 Chapter 3 - BOTSPP

profit P }
|
|
|
|
|
|
| L]
! o
|
| L]
I e o
|
!]
:

777777777 +
(¢]
0 cost C
Figure 3.1: Pareto Optimality
profit P
e}
0 cost C

Figure 3.2: Supported Set

3.2. T(h)ree problems 37

Problem 3 For a given value of A € [0, 1], find an associated extreme sup-
ported efficient point and a corresponding Pareto optimal subtour.

(Notice that this is a mono-objective problem.)

Although the topology of our setting is restricted, the questions are ambi-
tious since —in Problems 1 and 2— we are not aiming for a single solution,
but instead for a set of solutions. Of course, in order to do so in polynomial
time, the number of points in the set should be polynomial in the input
size. Notice that the above problems are sorted by decreasing complexity.
Indeed, computing a single supported efficient point is not harder than
computing the set of extreme supported efficient points, which in turn is
not harder than computing the set of efficient solutions. We prove that
there is, from a complexity point of view, a true difference among the three
problems since it turns out that, assuming that P # NP, Problem 1 is
more difficult than Problem 2. Also, we show that Problem 2 is in fact
more difficult than Problem 3.

Problems 1, 2, and 3 are inherently related to some well-known prob-
lems in literature. The following three optimization problems with single

objective are usually considered (see also Feillet et al. (2005)).

Orienteering Problem (OP) Find a feasible subtour of maximum profit

among those with cost at most C, see, e.g., Golden et al. (1987).

Prize-Collecting TSP (PCTSP) Find a feasible subtour of minimum
cost among those with profit at least P. This problem is originally
defined by Balas (1989).

Profitable Tour Problem (PTP) Find a feasible subtour S maximiz-
ing the difference p(S) — ¢(S). This problem is defined as PTP
by Dell’Amico et al. (1995).

Notice that solving the PTP is equivalent to finding the supported efficient
point corresponding to the combination of the two objectives with A = 1/2.

Thus Problem 3 is a slight generalization of PTP.

38 Chapter 3 - BOTSPP

An algorithm for Problem 1 can be used to solve both OP and PCTSP.
An algorithm for Problem 3 can be used to solve PTP. We then have the

following.

Lemma 3.1. If either OP or PCTSP are NP-hard then Problem 1 is NP-
hard. If PTP is NP-hard then Problem 3 is NP-hard.

The inverse connection between Problem 1 on the one hand and OP
and PCTSP on the other hand is given through the following procedure,

where it is assumed, without loss of generality, that the profits are integers.

Algorithm Mono-Bi-Objective

(i) initialize the list of Pareto optima with S = () and the list of efficient
points with (0,0); set Py = > ey pi and P = 1;

(ii) find an optimal subtour S” for the PCTSP with profit at least P;
(iii) find an optimal subtour S’ for the OP with cost at most ¢(S”);

(iv) append S’ to the list of Pareto optima, and (¢(S’), p(S")) to the list
of efficient points (notice that ¢(S”) = ¢(S”)); if p(S’) < Pyt then set
P =p(S")+ 1 and go to step 2, else return the list of Pareto optima
and the list of efficient points.

Algorithm Mono-Bi-Objective builds up the set of efficient points by
solving |€| instances of PCTSP and |€| instances of OP. We thus have:

Theorem 3.2. If all of the following conditions hold:

(1) the number of efficient points is polynomial in the size of the input,
(73) problem OP is polynomially solvable,

(131) problem PCTSP is polynomially solvable,

then Problems 1 and 2 are polynomially solvable.

3.3. Problem 1 on trees 39

3.3 Problem 1 on trees

3.3.1 Complexity

We first observe here that, on trees, computing the set of Pareto optimal
points (i.e., Problem 1) is NP-hard (Theorem 3.3), and that OP on a tree
is equivalent to a knapsack problem with precedence constraints on the

items.
Theorem 3.3. Problem 1 on a tree T is NP-hard, even if T is a star.

Proof. We show this by proving that the OP on a tree is NP-hard. It
then follows from Lemma 3.1 that Problem 1 is NP-hard. Consider the
knapsack problem, defined by a set of n items and a knapsack with capacity
B. Each item i € {1,2,...,n} has associated an element weight w; and
a value ¢;. The problem consists in finding a subset S C {1,2,...,n}
of maximum value), ¢ ¢; among those with total weight) . s w; not
exceeding capacity B.

Now consider an instance of the OP on a tree consisting of n + 1 vertices
and n edges such that each edge connects the origin (vertex 0) with a
vertex i, 1 < i < n, where each vertex (except the origin) represents a
customer. Notice that the resulting graph is known as a star. Assign to
each edge (i,0) a cost ¢;o := %wi, associate with each vertex i # 0 a profit
p; := ¢;, and set the maximum allowable cost C' equal to B. Recall that
the OP consists in finding a subtour maximizing the total profit among
those with total cost not greater than C. One easily verifies that there is a
one-to-one correspondence between the solutions of the knapsack problem
and the solutions of OP. 0O

The proof of the above result suggests in fact an equivalence between
the knapsack problem and OP on a star. Thus, by using a dynamic pro-
gramming approach for the knapsack problem, we can solve Problem 1 on
a star in pseudo-polynomial time. It is then natural to ask whether the
latter is true also for an arbitrary tree.

In order to give an answer, we resort to the partially ordered knap-

sack problem, see also Johnson and Niemi (1983) and Samphaiboon and

40 Chapter 3 - BOTSPP

Yamada (2000). Partially ordered knapsack is a generalization of the knap-
sack problem that takes into account precedence relations between items.
These precedence relations are modeled using a graph where each vertex
corresponds to an item. Then, item ¢ is a predecessor of j if there is an
arc from 7 to j. An item can only be selected in the knapsack if all its pre-
decessors have been included. In particular, if the graph representing the
precedence relations is an out-tree, i.e., a directed tree where all arcs are
oriented away from a distinguished root vertex, then we have an out-tree
knapsack problem.

More precisely, let T = (V(T), A(T')) be an out-tree, and let a nonneg-
ative value ¢; and a nonnegative weight w; be associated with every vertex
j € V(T'). Furthermore, let a positive capacity B be given. A vertex sub-
set V! C V(T) is called closed under predecessor if j € V' and (i, j) € A(T)
imply ¢ € V'. The out-tree knapsack problem consists in finding a subset
V' C V(T) which is closed under predecessor, such that > jevw; < B,
and »_;cyv gj is maximized. Johnson and Niemi (1983) proposed an effi-
cient dynamic programming procedure that solves the out-tree knapsack
problem in O(nQ*) time, where n = |V(T')| and Q* is the optimal value of

a solution. We observe the following.

Proposition 3.4. The OP on a tree is equivalent to the out-tree knapsack

problem.

Proof. Consider an instance of the OP on a tree. There is a vertex ¢ with
an associated profit p; (i = 1,...,n) and there is a depot, vertex 0. Each
edge ij in the tree has a cost ¢;;, and there is a maximum cost C. The
corresponding out-tree knapsack problem has an item ¢ for each vertex
in the tree, with value ¢; := p; and weight w; := 2¢j;, where j is the
unique predecessor of i in the oriented tree (i = 1,...,n). The budget B
is equal to C. It is clear that a solution to the out-tree knapsack problem

is equivalent to a solution of OP on the original tree and vice versa. 0

A brute force approach for the solution of Problem 1 on trees is the

following. First, solve an instance of OP, for every value of cost (capacity)

3.3. Problem 1 on trees 41

between 1 and Cip = 2Z(i,j)€A ¢ij, by using Johnson and Niemi’s algo-
rithm. This results in a list of feasible solutions ordered in C. From this
ordered list we can easily select the efficient points as follows. Go through
the list in increasing order of C. Consider two neighboring points (7', ')
and (7", 7"), with cost 4" < +”. Notice that the resulting feasible solutions
all have different costs. Then, if 7’ < 7/, eliminate (7", 7") and move to
the next element in the list. If 7”7 > 7’ immediately move to the next ele-
ment in the list. Only the efficient points remain. Total time complexity is
then O(nCioPiot), which is pseudo polynomial. However, we can do better

as is explained in the following section.

3.3.2 A dynamic programming algorithm for Problem 1 on
trees

In this section we review the “left-right” dynamic programming algorithm
by Johnson and Niemi (1983) for the out-tree knapsack problem, revised
to fit Problem 1 on a tree.

Let 0,1,2,...,n be a depth first ordering of the vertices of tree T' =
(V, E), starting with the depot (the root). Let d(i) be the number of
children of node i, going away from the depot. Obviously, if the node ¢ is
a leaf then d(i) = 0.

For each i € V and 0 < s < d(i), we define T[i, s|] as the subtree of
T induced by 4, the first s children of ¢ taken in order of index, all their
successors, and all vertices in V' with index lower than i (see Figure 3.3)

We define the left-right ordering of the subtrees as follows:
(a) Ti,s] precedes T[i,s + 1] for alli € V and s € {1,...,d(i) — 1};

(b) if j is the sth child of ¢ then T'[i, s — 1] precedes T'[j,0] and T[4, d(j)]
precedes T'[i, s].

Notice that with the above ordering, every subtree contains all the
subtrees that precede it. From the initial tree T'[0,0] = {0} we gradually
expand first down the left edge of the tree and then across the tree to the

right. Notice further that some trees may be identical. More precisely,

42 Chapter 3 - BOTSPP

O
&)
ole
oo

T[7,1]

@) @\®

(L))
&

T[1,2]

/V

Figure 3.3: Ezamples of subtrees in left-right approach

if j is the sth child of ¢ then T'[j,d(j)] = T]i,s]. In other words, each
time we have to backtrack while searching the tree in depth-first order, we
replicate the same subtree. Anyway, we consider all defined subtrees as
distinct objects. As a consequence, the total number of considered subtrees

is exactly 2n + 1.

A g-subtour for T[i, s| is a feasible subtour that visits vertex i, cannot
visit vertices not in 7'[¢, s|] and has total profit equal to g. Notice that, in the
previous example, although T'[j,d(j)] = T[i, s], a g-subtour for T[j,d(j)]

must contain j, while a g-subtour for T'[7, s] needs not.

Let again Cip = 22(1-’]-)@9 cij and Pt = Y,y pi- For each triple
[i,s,q] with i € {0,1,...,n} and s € {0,1,...,d(i)} we define C[i,s,q| as
the minimum cost of a g-subtour for T'[i, s]. If there is no g-subtour for
Ti, s] then we define C[i, s, q] = oo. This obviously happens for ¢ < 0 and
q > Piot.

We compute function C' by the following algorithm, which is a restate-

ment of the left-right approach in Johnson and Niemi (1983).

3.3. Problem 1 on trees 43

Algorithm LR-DP
(i) (Initialization) C]0,0,0] = 0; C[0,0,q] = oo for ¢ =1,2,..., Pio;

(ii) (Recursion) for all subtrees T'[i, s| sorted in left-right order:
forall g =0,1,..., P

(a) if s =0 then
Cli,0,q+pi] = Clk,z — 1,q] + 2¢; (3.1)

where 7 is the zth child of k;
(b) if se{1,...,d(i)} then

where j is the sth child of 3.

The recursion step can be explained as follows. In step (ii)(a), ¢ is the
largest element in the subtree and, by definition, ¢ will be visited. Thus,
the cost of this state is equal to the cost of a subtour with profit ¢ in
the largest subtree of T not containing ¢, increased with the extra cost of
visiting 4. In (ii)(b), either the subtour with profit ¢ + p; visits the sth
child of ¢, customer j, or it does not. If j is not visited then the cost of
this subtour will be equal to the cost of a subtour with the same profit in
a subtree not containing j. If customer j is visited, then the cost of this
subtour is equal to the cost of a subtour (with the same profit) that by
definition contains j. The minimum of both determines the cost of this
state.

The advantage of algorithm LR-DP with respect to more intuitive dy-
namic programming procedures, based on a “bottom-up” search strategy
of the tree, is that the evaluation of every entry of the array C takes a
constant time. As a consequence, the complexity of LR-DP is linear in the
number of entries in C, which is (2n + 1) Py.

It is easy to verify that the values C[i, s, ¢] returned by algorithm LR-

DP satisfy the definition. As a consequence, the collection of ordered pairs

(C[O, d(0)7 0]7 0)7 (0[07 d(0)7 1]7 1)7 e (C[Ov d(O), Ptot]7 Ptot)a

44 Chapter 3 - BOTSPP

contains the efficient set £. As in the previous section, we can easily select
the efficient points from this ordered list.

In order to reconstruct the Pareto optimal subtours associated with
the efficient points just computed, we keep track of the computations done
in algorithm LR-DP by using a new function W with the same domain as
C'. More precisely, in step (ii)(a) of algorithm LR-DP, after computing the
value of C[i,0,q + p;], we set W[i,0,q + p;] = (k,z — 1,q), where i is the
zth child of k; in step (ii)(b), after computing the value of C[i, s, q + pi], if
Cli,s,q+pi] = Cli,s—1,q+p;] then we set Wi, s,q+p;| = (4,s—1,q+p;),
if Cli,s,q+pi] = C[j,d(j), q+ pi], where j is the sth child of 4, then we set
Wi, s,q+ pi] = (4,d(4),q + p;). For example, since the value of C[1,0,p1]
derives from C]0,0, 0], we set W[1,0,p1] = (0,0,0).

At the end of algorithm LR-DP, starting from an entry of W corre-
sponding to an efficient point (v, 7), we initialize a vertex subset V' = {0}.
Then, we backtrack on the entries of W until we reach the entry equal to
(0,0,0). At each step, if we find an entry (4,0, q), then we add i to V'; if we
find an entry (j,d(j),q) then we add j to V. When we reach (0,0,0), V’
contains the vertices that form the Pareto optimal subtour corresponding
to (v,).

This procedure takes at most O(n) steps for every efficient point; this
implies that, in the worst case, we can compute all Pareto optimal subtours
in O(nPot).

We summarize the above discussion by the following statement.

Theorem 3.5. Problem 1 on trees can be solved in O(nPiy) time.

3.3.3 A FPTAS for Problem 1 on trees

It is well-known that the existence of pseudo-polynomial dynamic pro-
grams lead, under certain conditions, to the existence of polynomial time
approximation schemes, see Woeginger (1999). From Papadimitriou and
Yannakakis (2000) we know that such a polynomial time approximation
scheme must exist for our bi-criterion setting. In this section we investigate

how to approximate the efficient set in an effective way. We start with a

3.3. Problem 1 on trees 45

few definitions.

For € > 0, a pair (v, 7) is called an e-approzimation of a pair (y*,7*) if
v < (14€)y* and m > 7*/(14€). A set £ of points in the cost-profit space
is called an e-approzimation of the efficient set £ if, for every (y*,7*) € €
there exists a point (y,7) € £ such that (v,7) is an e-approximation of
(v*, 7). Notice that the closer € is to zero, the better the approximation
of the efficient set.

An algorithm that runs in polynomial time in the size of the input
and that always outputs an e-approximation of the efficient set is called
an e-approximation algorithm. A polynomial time approximation scheme
(PTAS) for the efficient set is a family of algorithms that contains, for ev-
ery fixed constant € > 0, an e-approximation algorithm A.. If the running
time of A, is polynomial in the size of the input and in 1/€, the fam-
ily of algorithms is called a fully polynomial time approximation scheme
(FPTAS).

In this section we develop a FPTAS for Problem 1 on trees. We use
the standard idea for developing a FPTAS for a knapsack problem, i.e.,
we scale the profits and apply an exact dynamic programming approach
with the scaled profits. A FPTAS for the out-tree knapsack based on this
idea is suggested in Johnson and Niemi (1983). However, such a scheme
does not translate directly to a FPTAS for Problem 1 on trees. Indeed, in
Johnson and Niemi (1983) a classical partitioning of the profit space into
intervals of equal size is used, that guarantees a bound on the absolute
error on every generated point. The bound is chosen so that when the
maximum admissible cost (weight) is reached, the relative error € is guar-
anteed. However, in order to get an e-approximation of the efficient set,
we require an algorithm that computes a feasible solution with a relative
error € for every possible cost and profit value. To this end, we use the
partition of the profit space suggested by Erlebach et al. (2002) for the
multi-objective knapsack problem.

We partition the profit space in u intervals:

[(1+ &Y™, [+ V", (L+e)*7),

46 Chapter 3 - BOTSPP

(14>, (L4 ™), (L4 WD (L))

with u := [nlogy . Pit|. Notice that the union of all intervals generates
the whole profit range [1, Piyt), and that u is of order O(n(1/€)log Piot)?,
hence polynomial in the length of the input and in 1/e. We can see that in
every interval, the upper endpoint is (1 + 6)1/ ™ times the lower endpoint.
Then, we adapt algorithm LR-DP to the new interval profit space. We
consider as profits the value 0 and the u lower endpoints of the intervals.
For convenience, we denote by £,, the lower endpoints, withw = 1,2,..., u,
and we define o = 0.

A scaled q-subtour for T|i, s] is a feasible subtour that visits vertex i,
cannot visit vertices not in T[4, s| and has total profit at least q.

Instead of ', we consider a different function, denoted C. For each

triple [i, s, £, withi € {0,1,...,n},s € {0,1,...,d(i)},and w € {0,1,...,u},

we define C[i, s, £,,] as the minimum cost of a scaled £,-subtour for T'[i, s].

If there is no scaled £,-subtour for TT[i, s], then we define C[i, s, £,] = .

Algorithm Scaled-LR-DP
(i) (Initialization) C[0,0, 4] = 0; C[0,0, £y] = 0o for w =1,2, ..., u;

(ii) (Recursion) for all subtrees T'[7, s| sorted in left-right order:

forallw=0,1,...,u:
let r = max{j : {; < £y, + p;} (i.e,, ¢, is the largest lower endpoint
not greater than £,, + p;);

(a) if s =0 then

Cli,0,0,) = Clk, z — 1, 4] + 2c1. (3.3)
where i is the zth child of k;
(b) if s € {1,...,d(i)} then

Cli,s, 0] = min{Cli,s — 1,4,],C[j,d(j), 6]} (3.4)

logb .
loga

Yog, b=

limy—olog(l4+z) ==

3.3. Problem 1 on trees 47

where j is the sth child of i.

(iii) (Output) return the points

(Yo) = (C0,d(0), €], b)) (w=0,1,...).

In order to obtain the feasible subtours corresponding to the returned
points in the cost-profit space, we may use the array W already described
for algorithm LR-DP. Notice that in Scaled-LR-DP we directly return the
last row of the array C , containing only efficient points (in every state we

calculate the cost when profit is equal or larger than ¢,,).

Theorem 3.6. Algorithm Scaled-LR-DP is a FPTAS for Problem 1 on
trees with time complezity O(n%(1/¢€)log(Piot))-

Proof. This proof follows the lines used in Erlebach et al. (2002).

Let the subtrees be numbered according to the left-right ordering, i.e.,
To =T[0,0], Ty = T[1,0],..., To,—1 = T[0,d(0)].

We show that algorithm Scaled-LR-DP returns an e-approximation of the

efficient set. More precisely, we show the following claim.

Claim 1. For everym € {1,2,...,2n+1}, let T,, = T[i, s], and let h be the
largest index of a vertex belonging to T,,. After performing the Recursion
step on TVi,s], for the optimal cost function C' and the approxzimate cost
function C there exists, for every entry Cli,s,q + pi] an entry é[i,s,fr]
such that:

((1) é[iasvgr] < C[i,s,q +p1]}
(b) (14)"t > q+ p;.

Notice that when m = 2n + 1 then T7[i,s] = T[0,d(0)], h = n, and
conditions (a) and (b) above imply that the point set returned by algorithm
Scaled-LR-DP is an e-approximation of the efficient set.

We prove the claim by induction on the tree index m.

48 Chapter 3 - BOTSPP

The basis of the induction is given by 77 = T'[1,0], where h = 1. We
distinguish between two cases:
Case ¢ = 0. We have:

C[1,0,p1] = C[0,0,0] + 2co1 = 2¢0.1 = C[0,0,0] + 2¢o1 = C[1,0,4,]
where ¢, = max{j : ¢; < p1}. This proves that property (a) holds with
equality.

Property (b) follows from the fact that p; and ¢, are in the same inter-
val, hence:

1+ > p

Case ¢ > 1. We have:
C[l7o7q +p1] = C[Ov 07 Q] + 2CO,l = 0O0.

Let r = max{j : {; < ¢+p1} and w = max{l, min{j : £, < £;+p1}}. Then,
r =max{j : {; < £, +p1} as required by step 2 of algorithm Scaled-LR-DP,
and ¢, > 1, so that

C[l, 0, &,] = C[O, 0, gw] + 2¢p,1 = 00.

Then property (a) holds. Furthermore, ¢, and ¢ + p; are in the same
interval, so that:
1+ >q+p
This ends the basis of the induction.
Assume that the claim is true for any m, 1 < m < 2n + 1 and consider

Tin+1 = Ti, s]. Again, we distinguish between two cases.

Case s = 0. In this case the highest index in T;,+1 = T'[i, 0] is given by
vertex ¢, then h = i. Property (a) follows from (3.1) and (3.3):

Cli,0,q+pi] = Clk,z — 1,q] + 2c; > Clk, 2 — 1, £y] + 2¢.; = C[i, 0,4,]

where the inequality holds by the inductive hypothesis and r = max{j :
l; < ly+p1}. Now we consider property (b). By the induction hypothesis,
the claim holds with T'[k, z — 1], where h =i — 1, then:

(14 €)=V, > q.

3.3. Problem 1 on trees 49

Hence we have:
by +pi 2 q/(L+ € i > (g+pi) /(1 + €)D"

and as ¢, and ¢, + p; are in the same interval, with £, as lower bound, it
holds that

L+)™ > by +p; > (g +pi) /(1 + €)M
From these relations property (b) follows immediately:

(L4 = q+p;

Case s > 0. From (3.2) we have C[i,s,q + p;] = Cli,s — 1,q + p;] or
Cli,s,q+ pi] = C[5,d(j), q + pil-
In the first case we have

Cliys,q+pi| =Cli,s —1,qg+pi] > C~'[i,s -1,4] > é[i,s,&«]

for some lower endpoint ¢,., where the first inequality follows from the
induction hypothesis and the second inequality follows from (3.4). This
proves property (a). Concerning property (), let k be the largest index of
a vertex in T[i, s — 1]. Clearly, h > k, so that

A+, > 1+t > q+pi

where the second inequality follows from the inductive hypothesis.

In the second case we have similarly
Cli,s,q0+ pi] = Clj,d(5), g+ pi] = Clj,d(5), 4] = Cli, s, 4]

for some lower endpoint £, where the first inequality follows from the
induction hypothesis and the second inequality follows from (3.4). This
again proves property (a). As already noticed, T'[i, s] and T'[j,d(j)] are in
fact the same tree, so that the largest index h of a vertex in both trees is the
same. Hence, property (b) follows directly from the inductive hypothesis.
From Theorem 3.5 and the bound on the number of different lower end-
points it follows that the complexity of Scaled-LR-DP is O(n?(1/€) log(Piot))-

O

50 Chapter 3 - BOTSPP

3.3.4 Some special cases

In this section we analyze some special cases of trees or cost/profit struc-

tures where Problem 1 is polynomially solvable.

Trees with equal profits or equal costs

We have proven that Problem 1 is hard, even on a star. However, Theorem
3.5 implies that in the special case where the sum of all the profits Py is
polynomial in n, Problem 1 is polynomially solvable.

If all vertex profits are equal (but the edge costs are arbitrary), we may
assume p; = 1 for all ¢ € V'\ {0}, so that P,y = n. In this case, algorithm
LR-DP solves Problem 1 in O(n?) time.

If all edge costs are equal (but the vertex profits are arbitrary), we may
assume c;; = 1 for all (¢, j) € E. In this case, the cost of a feasible subtour
is twice the number of visited vertices. Hence there are at most n + 1
efficient points (exactly n+ 1 if all vertex profits are strictly positive). For
all i € V'\ {0}, let ¢* denote the parent of ¢ along the unique path from
i to 0. Let M = max;{p;} +1. We modify the edge costs and the vertex

profits as follows:

o =—pi + M forallieV\{0},
pi=1 for all i € V' \ {0}.

C/

With the modified costs and profits we are back to the case of general
costs and equal profits considered above. It easy to see that there is a
one-to-one correspondence between the efficient points (and corresponding
feasible subtours) in the modified problem and the original one. Thus
Problem 1 in the case of equal costs and arbitrary profits on a tree can
still be solved in O(n?) time by algorithm LR-DP.

The line

Let T = (V, E) be a path, let the edge costs be arbitrary positive and let
the vertex profits be arbitrary positive (except pg = 0). We distinguish

between two cases.

3.3. Problem 1 on trees 51

The depot is an extreme vertex If the depot is an extreme point, we
may assume that the vertices are numbered from left to right, so that the
depot 0 is the leftmost vertex. Then it is easy to see that there are exactly
n+ 1 feasible subtours (from the void subpath to the whole path) and they
are all Pareto optimal. Furthermore, every feasible subtour corresponds to
a different efficient point. A feasible subtour is identified by its rightmost
vertex 1.

In this situation, both OP and PCTSP can be solved in O(n) time
(Angelelli et al. (2008)). And in fact, the more general Problem 1 can also
be solved in O(n?) time by algorithm Mono-Bi-Objective. However, the

following algorithm solves Problem 1 in O(n) time.

Algorithm Extreme Path

(i) set &€= {(70,m0)} = {(0,0)};

(ii) foralli=1,...,n set v = v—1 + 2¢;—1,; and m; = m_1 + p;; append
(’yi, 7Ti) to £.

Algorithm Extreme Path returns the ordered list of efficient points

&= {('YO,TFO)v (’Yla 77'1)7 SER) ('Yna 7[-71)}’

where the Pareto optimal subtour associated with (v;,7;) is simply the
subpath from 0 to ¢ and back (i =0,1,...,n).

The depot is an internal vertex If the depot is not an extreme point
then Problem 1 is a little less straightforward to solve. We start by defining

a lower bound on any algorithm solving this problem.

Theorem 3.7. Problem 1 on the line can have O(n?) efficient points.

Proof. Consider the following instance of Problem 1 on the line. We are
given a set of n vertices on the line and one depot positioned at the origin.
|n/2] vertices are positioned to the left of the origin and [n/2] vertices

are positioned to the right of the origin. For all consecutive vertices i and

52 Chapter 3 - BOTSPP

J to the left of the origin it holds that ¢;; = 1 and p; = 1. Let us define
d; as the distance from a customer 7 to the furthest left customer. For all
customers j to the right of the origin it holds that ¢;; > d;, where 7 is an
immediate predecessor of j. The profit of customer j, p;, is larger than the
sum of the profits of all customers on the left side of j. In this instance,
every combination of a left customer and a right customer yields a pareto

optimal solution. 0

We now describe an algorithm solving this problem. Let the depot 0
be positioned in any point of the path, so in general there are nj vertices
on the left of the depot and there are ng vertices on the right of the depot,
with ny, +nr = n. In this case, any feasible subtour S is just a subpath,
containing vertex 0, and traversed twice, from 0 to a left vertex i, then
from 7 to a right vertex j, and finally from j back to 0.

The total number of such subpaths becomes ny, - ng < n?/4 = O(n?).
We may distinguish three types of feasible subtours: those where the depot
is the leftmost vertex, those where the depot is the rightmost vertex, and
those where the depot is an internal vertex. Every subtour of the third
type is obtained by gluing a subtour of the first type and a subtour of the
second type.

In order to solve Problem 1, we then proceed as follows. In a first
phase we evaluate the costs and profits of all feasible subtours of the first
type and of the second type. In a second phase, we use this information to
evaluate all feasible subtours of the third type. In a third and final phase,
we build up the set of efficient points by sorting the feasible subtours and
eliminating non-Pareto ones.

More precisely, we suggest the following algorithm:
Algorithm Internal Path

(i) call Extreme Path to generate the list Eg of points corresponding to
feasible subtours of the first type;

(ii) call Extreme Path to generate the list £, of points corresponding to

feasible subtours of the second type;

3.3. Problem 1 on trees 53

(iii) set P = (;

(iv) for all (/,7") in € and (v”,7”) in &r: insert in P points (v, 7’),
(", 7", and (' +~", 7" +7") (the subtour correponding to the third
point is obtained by gluing the subtours corresponding to the first

and second points);

(v) sort all the points in increasing order of v and go through this list,
eliminating non-efficient points (as explained in the end of Section
3.2).

Step (i) requires O(ng) = O(n) time, step (ii) requires O(nr) = O(n) time,
step (iv) requires O(ng-ny) = O(n?) time; step (v) requires O(n?logn?) =
O(n?logn) time. Hence algorithm Internal Path solves Problem 1 in
O(n?logn) time. Recall from Theorem 3.7 that any algorithm solving

Problem 1 on the line needs at least O(n?) time.

Problem 1 on a cycle

In case G = (V, E) is a cycle, we assume that E = {(0,1),(1,2),...,(n —
1,m),(n,0)}. We traverse the cycle clockwise if we go from 0 to 1, then

from 1 to 2, and so on. There are four types of feasible subtours:

(i) tours going from 0 to ¢ (> 0) clockwise and then coming back counter-

clockwise;

(ii) tours going from 0 to i (> 0) counter-clockwise and then coming back

clockwise;

(iii) tours going from 0 to i (> 0) clockwise, coming back counter-clockwise

beyond 0 up to j (> i) and finally going back to 0 again clockwise;

(iv) the whole cycle.

Notice that in cases 1, 2 and 3 it is not necessary to travel further than half
the total cost of the cycle, otherwise it would be better to visit the whole
cycle. It is then possible to evaluate all tours and to build up the efficient

set by modifying algorithm Internal Path in a straightforward manner.

54 Chapter 3 - BOTSPP

3.4 Problem 2 on trees

In this section, we consider the identification of extreme supported effi-
cient points. Problem 3 (i.e., finding just one supported efficient point
corresponding to a given weighted sum of the objectives) can be solved in
O(n) time by using essentially the same algorithm proposed by Angelelli
et al. (2008) for PTP on a tree. We show here that Problem 2 (i.e., finding
all extreme supported efficient points) can be done in O(n?) time by solv-
ing a parametric linear program with a very special structure. A similar
result is obtained by Hoogeveen (2005) who gives an example of a bicriteria
problem where the number of efficient points is not polynomially bounded,
but the number of supported solutions is. We also show that O(n?) is a

lower bound on any algorithm for Problem 2.

Let T = (V,E) be a tree, rooted at vertex 0 (the depot). For all
i € V\ {0}, let ¢* denote the parent of i along the unique path from ¢
to 0. For all i € V, let §(i) C V be the set of children of i; if i is a leaf
then clearly 6(i) = (). We associate with every vertex i a binary variable
x;, which equals 1 if and only if ¢ belongs to a subtour. Notice that
x; = 1 implies z;x = 1. Problem 2 on a tree corresponds to the following

parametric program, where A € [0, 1] is the parameter:

max > ;e qo3 (Api — 2(1 = A)cigr)@
subject to xp =1
;i —xix <0 (i e V\{0})
x; € {0,1} (1eV)

(3.5)

Vertices are selected such that the sum of the weighted differences between
the profits and costs is maximized. A feasible solution consists in a set of
connected vertices which are also connected to the depot. This is enforced
in the constraints in (3.5). The coefficient matrix of problem (3.5) is TUM,
since it is the transpose of the node-arc incidence matrix of tree T', where
all edges are oriented to the root. Thus we may relax the integrality

constraints to nonnegativity constraints. The dual of the relaxed problem

3.4. Problem 2 on trees 55

is the following:

min Yo
subject to yg > Zjeé(o) Yj
yi = (Api = 2(1 = Neiir) + 25 ¥ (€ VA{0})
yi >0 (i€ V\{0})

(3.6)

An optimal solution of problem (3.6) can be described as follows:

yi(A) = max{0; (Ap; — 2(1 = News) + > y;(N} eV \{0}) (3.7)
j€d(i)

Indeed, yo is minimized if the sum of the y; is minimized; in an optimal

solution g; will never be bigger than needed by the model.
For any fixed value of A, the unique solution of equations (3.7) can be
computed in O(n) time going backward from the leaves to the root. By
fixing A = 1/2 we get an algorithm for PTP, as proposed in Angelelli et al.
(2008). However, we need to enumerate the solutions for all A € [0, 1].

If > ics(0)¥ = ¥o(A) = 0 then the optimal subtour is empty. Other-
wise, by complementary slackness, an optimal subtour visits all vertices
i where y;(A) > 0 and y;(A) > 0 for all ancestors of i. More precisely,
consider the set-valued function E* : [0,1] — 28 where E*()\) = {(i,7*) €
E :yi(\) > 0}, and let T(\) = (V, E*(A)). For any given A, an optimal
subtour visits the vertices belonging to the connected component of T'(\)
containing the depot (vertex 0). Thus, in order to enumerate all supported
subtours, it is sufficient to record the different values of function E*.

Suppose that we increase parameter A continuously from 0 to 1. By
expanding equation (3.7) recursively, one can see that y;(\) is a nonde-
creasing, piecewise linear and convex function of the parameter A, for all
i. As a consequence, if X < X’ then E*(X) C E*(\’). Furthermore,
E*(0) = 0 (corresponding to the trivial empty tour) and E*(1) = E (cor-
responding to the complete tour of all vertices). Thus, E* changes its value
in only K < n — 1 breakpoints, 0 < A} < do < ... < Ag < 1.

In order to compute the breakpoints of E*, we proceed as follows.
For any given N € (0,1), let R(\') € V \ {0} be the set of the roots

56 Chapter 3 - BOTSPP

of the connected components of T'()\'), excluding the depot. For all i €
R(X), let V;(X') be the vertices of the corresponding connected component.
Finally, let A” > X\ be sufficiently close to \'. By expanding equation (3.7)

recursively, we see that

yi(\) =max{0; > (Apj—2(1-N)¢;;+)} foralli € R(N), A€ [N, N
JeVi(\)
(3.8)

If we set o (X') = 2 ey, vy Py and Bi(N) = 23750y () ¢jj+ then we may

write (3.8) as

yi(A) = max{0; [a; (\') + B; (N)X = Bi(\)} for all i € R(\), A € [N, \]
(3.9)

It follows that equations (3.9) are valid as long as

. Bi(\)
)\// <
- iel}!l%I(IAl') {ozi()\’) + Bi(N)
The right hand side of the above inequality is the next breakpoint.

We search for all breakpoints and the corresponding supported subtours

by the following algorithm.
Algorithm Extreme Supported Efficient Points
(i) (Initialization)

(a) SE = {(0,0)} (list of extreme supported efficient points), S =
{{0}} (list of the vertex sets covered by the supported subtours),
R =V \{0} (set of roots), flag = FALSE (if flag = TRUE then

a new supported subtour has been found);

(b) for all € R: set a; = p; and (3; = 2¢+, and set V; = {i};
(ii) (Breakpoint computation) for all i € R:

(a) set A\; = Bi/(a; + Bi);
(b) let Apin = minieR{)\i} and Ryin = {Z ER: N\ = /\min}Q

(iii) (Connected components updating) for all i € Ruyin:

3.4. Problem 2 on trees 57

(a) set ajr = ap + ay, B = B+ + B;, and Vix = Vir U V3
(

)

b) for all j € 6(¢): set j* =1i*;

(c) remove ¢ from R and from §(i*);
)

(d) if i* = 0 then set flag = TRUE;
(iv) (Optimal subtour storing) if flag = TRUE then

(a) append (8o, ap) to SE€ and append Vj to S;
(b) flag = FALSE;

(v) (Termination test) if R #) then go to Step (iii), else return S& and
S.

Theorem 3.8. Algorithm Ezxtreme Supported Efficient Points solves Prob-

lem 2 on a tree in O(n?) time.

Proof. Correctness follows from the previous discussion. In particular, let
N . and N/

min min b€ two values of Apin computed in two successive iterations

of the algorithm. By construction, the vertex set Vj appended to S after

!/
min

the computation of A corresponds to an optimal subtour for all A €

[/ "

L A], where AL < M. . Hence, Vjj corresponds to a vertex of the

min min*
convex hull of the efficient points.

Concerning complexity, at every iteration at least one vertex is removed
from the set of roots, hence the iterations are at most n. The complexity

of every iteration is O(n). 0

Example Consider the tree given in Figure 3.4; we are given a tree with
8 vertices, vertex 0 is the root node, the other vertices have a associated
profit and distances are mentioned along the edges. We solve this example
of Problem 2 using the algorithm described above. After the initialization
step, all \; are calculated: Ay = 0.5, Ay = 0.769, A3 = 0.471, \y = 0.4,
A5 = 0.286, \¢ = 0.462, A\; = 0.5. The vertex with lowest \; (vertex
5) is added to Ry, = {5} and removed from N. All children of vertex

5 are assigned to its predecessor, vertex 2, and the values of as and s

58 Chapter 3 - BOTSPP

3

Figure 3.4: FExample: Problem 2 on a tree

are adjusted: as = a9 + a5 and By = [+ PB5. The new critical value
A2 = 0.519 and the set Vo = {5} and the tree is adjusted as in Figure
3.5(a). Vertex 5 is not connected to the origin, thus, in step 2 the new
Amin 1s calculated: Ay = 0.4 is the next minimal value for ;. Its
predecessor is vertex 1, such that A; is now equal to 0.444 and V; = 4.
The resulting tree is depicted in Figure 3.5(b). The next minimal A; is
A1 = 0.444; its predecessor is the origin which means that we go trough
step 4, where set {0, 1,4} is added to the set of supported efficient subtours,
the resulting tree is 3.5(c). We continue in this way, vertex 6 is selected
and Vo = {5, 6}, see Figure 3.5(d). Then, A3 = 0.471 is minimal and a new
supported efficient subtour {0, 1,4, 3} is found. Finally, in Figure 3.5(e)
vertices 2 and 7, both with A = 0.5 are selected, yielding a third supported
efficient subtour {0, 1,4, 3,2, 5,6, 7}. We found the set of the three extreme

supported efficient solutions.
Theorem 3.9. Solving Problem 2 on a tree has a O(n?) lower bound.

We prove this theorem by showing that an instance of Problem 2 exists
where representing the output takes O(n?). We provide an instance with
O(n) supported efficient solutions; each such a solution containing O(n)

elements.

3.4. Problem 2 on trees 59

) ©
10 10
@20 @20
3 3
@6 ®©7 @6 @6

(c) (d) ()

Figure 3.5: Ezample (contd)

Consider an instance of Problem 2 with n customers positioned on the n
spokes of a star graph, each at a distinct distance c,; from the center of
the graph, i.e. the origin. Each customer has a profit p; = 1. A solution
to this instance of Problem 2 consists of a set of supported efficient points.
Each supported efficient point represents a set, say S, of visited customers

corresponding to a certain value Aymax = max{\;|i € S}, with \; = 142_62020,.

Notice that cp; > cp; if and only if \; > A;. Now for each pair of supported
efficient points S; and Sy, with S| < |S2|, it must hold that S; C Ss.
There is one point ¢ in S that is not in any 57,517 C S99, and for such a

point ¢ it holds that A; > A; for all 7 € S;. Hence, for each supported

60 Chapter 3 - BOTSPP

efficient point S there is exactly one supported efficient point Sy visiting
exactly one element more which has a higher value for A, and thus for c,
compared to any element in Sj. It then holds that there are exactly n
different supported efficient solutions and each supported efficient solution
contains O(n) elements. This means that the output of Problem 2 takes

O(n?) O

We realize that the above argument relies on a particular format for
representing the output. Other, more compact formats are conceivable. In
particular, one might consider as an alternative format representing the set
of all supported efficient subtours as a single sequence of vertices such that
the i-th supported efficient solution consists of all vertices in the sequence
up to position i. However, we claim here that, even under this format, a
sorting step is necessary to find this sequence.

Notice that we can solve Problem 2 on the line in O(n). On a line it

holds that if you visit a vertex i, you also visited all customers between
2co;

Zogjgipj+2c()i ’

all 0 < i < n. Now, at each side of the origin it holds that if co; > co;

i and the origin. Thus, \; must be at least equal to for

and A\; < Aj, then customer j will only be visited in an efficient subtour
if customer ¢ is visited as well. Thus, those customers can be merged into
one customer with A =)\;. Finally, select the remaining customers in

increasing order of A in order to form the supported efficient subtours.

3.5 Extension: Kalmanson matrices

In this section we show that our results can be extended to problems where
the distance matrix is a Kalmanson matrix. An n x n distance matrix C

is a Kalmanson matrix if the following conditions are satisfied:

Cij + e < i + ¢y Vi<i<ji<k<l<n, (3.10)
cit + cji < cip ¢ Vi<i<j<k<l<n. (3.11)

These conditions unite two special cases of distance matrices, i.e. trees and

convex point sets in the Euclidean plane (Klinz and Woeginger (1999)).

3.5. Extension: Kalmanson matrices 61

—_
.
*w

0
n+1 4

n
n.—l

Figure 3.6: Convex point set

We can extend our results for Problems 1, 2, and 3 to distance matri-
ces satisfying the Kalmanson conditions. Deineko et al. (1995) show that
checking whether an ordering of nodes exists such that the resulting matrix

is a Kalmanson matrix can be done in O(n?) time.

3.5.1 Problem 1 on Kalmanson matrices

Problem 1 can be solved in pseudo-polynomial time when the distances
satisfy the Kalmanson conditions. Consider an instance of Problem 1 with
n customers and an n X n distance matrix C', with C' a Kalmanson matrix,
more specifically we consider a convex point set for ease of interpretation.

Kalmanson (1975) proved optimality of the TSP tour (1,2,...,n—1,n)
in case the distance matrix fulfills the conditions (3.10) and (3.11).

Theorem 3.10. Problem 1 on graphs satisfying the Kalmanson conditions

can be solved in O(n%Pyy) time.

Proof. We develop a pseudo-polynomial dynamic programming algorithm
that solves Problem 1 when the distances satisfy the Kalmanson condi-
tions. Consider for instance a convex point set with n points representing
positions of n customers. Points 0 and n + 1 represent the origin (see
Figure 3.6). Each customer ¢ has an associated profit p; and the distance
between two customers ¢ and j is given by c¢;;. In an optimal solution it
holds that if customer 7 is served, it is served before any customer j > 1.

Indeed, suppose a server serves customers ¢, i + 1, i + 2, and j (j > i) in

62 Chapter 3 - BOTSPP

sequence (4,74 2,7+ 1, j) with total cost ¢; j+2 + ¢it1,i4+2 + ciy1,j. This will
never be better then visiting the customers in sequence (i,7 + 1,7 + 2, j)
which has a cost of ¢; ;41 + ¢it1,i42 + ¢i42,5. Due to the Kalmanson con-
ditions it holds that ¢; ;41 + ciy2; < ¢iiv2 + cig2,5. Thus, an optimal tour
is always a subsequence of the optimal TSP-tour and only arcs (i, 7) with
i < j are used. We then define C[k, ¢| as the minimum cost for serving
customer set S C {0,1,...,k} with total profit equal to ¢ and customers
0 and k served. If no such g-subtour exists, Clk,q] = co. We compute

function C by the following algorithm.
(i) (Initialization) C0,0] = 0;C[0, q] = oc;
(ii) (Recursion) for all k =0,1,...,n+1; for all ¢ =0,1,..., Piy:

Clk,q+ px] = min {C[l, q] + cix} (3.12)
0<i<k

The collection of ordered pairs
(C[n + 1, 0],0), (C[n + 1, 1],].), ey (C[n + 1, Ptot]a Ptot)

then contains the efficient set £. In this algorithm O(nPy) states are
computed and each state takes O(n), yielding a total time complexity
of O(nQPtot). Notice that the algorithm described above works for any
distance matrix satisfying the Kalmanson conditions, not only for convex

point sets.]

Analogue as for Problem 1 on trees a FPTAS can be derived from this

dynamic programming algorithm.

3.5.2 Problem 2 on Kalmanson matrices

In this section we provide a parametric IP formulation for Problem 2 on
convex point sets and we propose a polynomial time algorithm. Let G =
(V, E) be a convex point set with V' = {0, 1,2,...,n,n+ 1}, where vertices
0 and n+1 both represent the origin, and E = {(4,7)|i,j € V,j > i} (recall

that only edges (7, j) with ¢ < j are used in an optimal subtour). The costs

3.5. Extension: Kalmanson matrices 63

Figure 3.7: The network

of edges (i,j) € E, are given by ¢;; and the profits associated with each
i € V\{n+1} by p;. We set pgp =0 and ¢g,+1=0. Recall that, given that
the Kalmanson conditions hold, vertices are visited in increasing order of
their index. Then, the following parametric program models Problem 2 on

a convex point set, with parameter \ € [0, 1].

min 307 Y20 Ay — (1= A)pi)a;
subject to 32" zg; =1
S g =Yg =0 (1€ V\{0,n+1})
Tij € {0, 1} (Z,] S V)
(3.13)

A feasible solution consists in a connected route from 0 to n+1. Model (3.13)
is equivalent to a network flow model, more specifically a shortest path
problem on an acyclic graph, it follows that the coefficient matrix is TUM;
we may thus relax the integrality constraints and solve the resulting LP
model. For a given value of A\, the optimal solution can be found easily by
solving this LP. Problem 3 can thus be solved in polynomial time. Find-
ing the set of optimal solutions for all A € [0, 1], comes down to solving a
parametric shortest path problem. Figure 3.7 represents the network, the
cost on each edge (,7) is given by di; = Acij — (1 — XN)p;i = A(cij +pi) — pi-
For A = 0, the shortest path is (0,1,2,...,n,n+ 1) with total cost C(0) =
— > pi. However, for A = 1, the shortest path is (0,n + 1), and total
cost is C(1) = con+1 = 0. We claim the following.

64 Chapter 3 - BOTSPP

0 1 2 3
@ I i i I
0 1/‘2\3
() | . |]
9/1\2 3
© | I ¥ {

Figure 3.8: Representation proof Proposition 3.11

Proposition 3.11. For the parametric shortest path problem in (3.13)
it holds that if customer i is not visited in an optimal solution for \;,

customer i will also not be visited in any optimal solution for X > A;.

Proof. Suppose that Proposition 3.11 does not hold. Then a vertex ¢ exists
for which z;; = 0, Vj € V, for A\; and there exists a A > \; for which
dj € V such that z;; = 1 in an optimal solution. This situation is depicted
in Figure 3.8. In this figure only 4 vertices are represented, however any
situation as described above can be reduced to Figure 3.8. The first and
last vertex represent the origin and have profit pg = 0, vertices 1 and 2
have profits p; and po, respectively. The costs on the edges are given by
dij = A(cij + pi) — pi- The route in Figure 3.8 (a) visits all vertices, this
situation is optimal for all 0 < A < A,; the route in Figure 3.8 (b) is
optimal for any A for which A\, < A < \p; the route in Figure 3.8 (c) is
then optimal for any A for which A\, < A < A\, < 0. In (a) all vertices are
visited and total cost C(\) = fo(X) = A(co1 +c12+c23+p1+p2) — (p1+p2),
in (b) vertex 2 is not visited and total cost is C'(\) = f,(A) = A(co1 +c13+
p1) — (p1), and in (c) vertex 2 is again visited but vertex 1 is not and
C(A) = fe(N) = Meoz + ca3 + p2) — (p2)- In an optimal solution it holds
that C'(A) < 0 and functions f, (), fo(A), fe(A) are linear in A. Then, for
fa(A) = fo(A) = fe(A) = 0 it must hold that Ay, < A, < Ag,, thus yielding
the following expressions for Ay, Ay, and Ay,.

3.5. Extension: Kalmanson matrices 65
Ap, = D1+ D2 (3.14)
co1 + €12 + €23 + p1 + P2
p1
Af, = — - ———— 3.15
fo co1 +c13+ 1 ()
A= —12 (3.16)
Cop2 + C23 + P2
Then,
(1) Ag, < Ap, if
p1+p2 < p1
co1 +ci2+co3+p1+p2 co1tci3+pr
C12 + c23 — C13
p<p——
co1 + €13
(ii) Ap, < Ay, if
b1 < P2
co1 +ci3+p1 co2+ c23 + P2
Cp2 + C23
11— < po
Co1 + €13
(i) & (ii)
co2 + C23 C12 + c23 — C13
D1 <p
co1 + €13 co1 + C13
co2 + c13 < ci2, (3.17)
which contradicts condition (3.11). O

C(\) is a piecewise linear and convex function of the parameter A. Let

S*(A) be the set of served customers for parameter \; S* only changes at

the breakpoints of C'(\). Thus, in order to enumerate all supported sub-

tours, it is sufficient to search for the subtours associated to the breakpoints
of C(X\). We know that C(0) = — Y7 p; with $*(0) = {0,1,2,...,n+ 1}
the set of served customers and C(1) = 0 with S*(1) = {0,n + 1}. Due

to Proposition 3.11 it follows that, for increasing A, vertices will gradually

66 Chapter 3 - BOTSPP

“drop out” of the path until for A = 1 only the depot remains. Thus,
for N < X, S*(N) D S*(\’) and the value of S* only changes at k < n
breakpoints. We develop an algorithm that can determine at which critical
values of A the optimal path changes. A direct arc (i, j) enters the optimal
path (and the vertices between i and j drop out of the path), when

j—1 j—1
D (hpsr +p)A =Y k= (cij +pi)A —pis
k=i k=i

This yields a critical value of Aj; for arc (i, j).

i—1
. _ 2 h—it1 Pk
S :
Y Y (Chgrr + pr) — cij — i

for A = Aj; arc (i, j) enters the shortest path and vertices i+ 1,...,75 — 1

drop out of the solution.
Algorithm Parametric Shortest Path

(i) (Initialization)

(a) List of extreme supported efficient points S€ = {(Piot, Ctor) },(for
Ao = 0); list of covered vertices S = {0,1,2,...,n,n+ 1}, and

the set of edges F = {(i,7)|i,j € V,j > i+ 1}
(b) The position of a vertex ¢ in the path is denoted by pos(i) = i
and the vertex at position 7 in the path is denoted by v(i) = i.
(c) For all (i,j) € E, set

0s(3)—1
% Z:pjos(i)-&-lpv(k)

ij — 0s(j)—1 '
Zi:fo)s(i) (Co(k)w(k+1) T Pu(k)) = Cij — Ppos(i)

(ii) (Breakpoint computation)

(a) Let Amin = min; ;cp{A};}, and

3.6. Complexity classes for multi-objective optimization
problems 67

(b) Ruin = {(4,4) € E = Xj; = Amin}-

(¢) Append A, with associated profit and cost to SE.
(iii) (Updating) While R, # 0, do

(a) delete all vertices at positions (pos(i) +1,...,pos(j) — 1) from

S, and all related arcs from E and from R,in;

(b) for all k > j, k € S: set pos(k) := pos(k) — (pos(j) —pos(i)) + 1
and v(pos(k)) := k

(c) recompute all \j; for arcs (I,m) € E for which [< i and m > j.

(iv) (Output) If S # {0,n+ 1} go to (ii); else return the set of supported

efficient solutions S€.

Theorem 3.12. Algorithm Parametric Shortest Path solves Problem 2 on

Kalmanson matrices in O(n3) time.

/

Proof. Correctness follows from the previous discussion. Indeed, let A ;.

and A/ . be computed in two successive iterations of the algorithm. The
vertices visited for X/ . are optimal for any A € [A] . N 1.

Initialization takes O(n?); at every iteration at least 1 vertex is re-
moved, hence there are O(n) iterations. Every iteration requires O(n?)

due to (iii)(a) and (iii)(c). Total complexity is then O(n?). O

3.6 Complexity classes for multi-objective opti-

mization problems

In this chapter, we use basic complexity classes from single-objective opti-
mization theory to describe complexity of a bi-objective problem. However,
specific complexity classes for multi-objective optimization problems exist
and we apply these classes to our problem in this section. In multi-criteria
optimization the goal is to find a set of (Pareto) optimal solutions. In
this case, not only complexity in terms of the input, but also complexity

in terms of the output is relevant. Indeed, when an exponential number

68 Chapter 3 - BOTSPP

of optimal solutions exists, detecting a single solution in polynomial time
does not solve the whole problem in polynomial time. Specific complexity
classes for multi-criteria scheduling exist to capture these situations; for
a survey we refer to T’kindt et al. (2005). A distinction is made between
the optimization problem, counting problem and enumeration problem as-
sociated to a multi-criteria optimization problem. The optimization prob-
lem refers to the underlying single-criteria optimization problem, the basic
complexity classes apply here, i.e. P, NP, NP-complete (decision prob-
lems), and NP-hard (or NPO-complete)(optimization problems). The
counting problem is the problem of determining the number of optimal
solutions regarding the objectives of the multi-objective problem. Note
that the solution to this problem is not a solution for the original problem
but a number. A counting problem belongs to complexity class #P if the
corresponding decision or optimization problem belongs to NP or N PO
respectively. The class FP C #P denotes the class of polynomially solv-
able counting problems. In the enumeration problem the goal is to find
all optimal solutions. It is clear that enumeration is at least as hard as
counting. Several complexity classes have been dedicated to enumeration
problems, depending on the size of the input and the size of the output,
see T’kindt et al. (2005) for an overview. The class ENP is a direct gener-
alization of class N PO. Let us now apply these classes to Problem 1 and
Problem 2.

Theorem 3.13. The counting problem associated with Problem 1 is #P-

complete.

Proof. The underlying optimization problem of Problem 1, the OP on a
tree, is equivalent to the knapsack problem (section 3.3) and thus N P-
hard, which is equivalent to being N PO-complete. Ehrgott (2000) shows
that the counting problem associated with the knapsack problem is #P-
complete; the same result thus holds for the counting problem associated
with Problem 1. O

3.7. Conclusions 69

Theorem 3.14. The enumeration problem associated to Problem 1 is

EN P-complete.

Proof. For the proof of Theorem 3.14 we will use the following property.

Property 3.15. (T’kindt et al. (2005)) If an optimization problem
P is NPO-complete and its counting problem is #P-complete, then the

associated enumeration problem is EN P-complete.

The correctness of Theorem 3.14 follows immediately from Property
3.15, from the proof of Theorem 3.3 and from Theorem 3.13. It thus
holds that the enumeration problem, i.e. Problem 1 is (weakly) EN P-
complete.]

Theorem 3.16. The enumeration problem associated to Problem 2 is in

P.

Proof. We developed an algorithm solving Problem 2 on the tree in poly-

nomial time, the associated enumeration problem is thus in P. O

Given that the enumeration problem is easy it is clear that also the

counting problem is easy, so we state the following.

Corollary 3.17. The counting problem associated to Problem 2 belongs to
FP.

3.7 Conclusions

In this chapter we have studied the traveling salesman problem with profits
from a bi-objective point of view, on graphs with a tree metric. We have
considered three problems: finding all efficient points (Problem 1); finding
all extreme supported efficient points (Problem 2); finding one efficient
point, corresponding to a given combination of the two objectives (Problem
3). For every problem, we have developed efficient algorithms. Moreover,

we have analyzed some special cases, including problems on a path and

Chapter 3 - BOTSPP

70

Tree Line Kalmanson
LB UB LB UB LB UB
Problem 1 | > n¥(unless P=NP) FPTAS O(n?) O(n?logn) | > nF(unless P=NP) FPTAS
Problem 2 O(n?) O(n?) O(n) O(n?) O(n?)
Problem 3 O(n) O(n) O(n) O(n) O(n)

Table 3.1: A summary of our complexity results: LB = lower bound on the complexity of a problem; UB = upper bound
on the complexity corresponding to a proposed algorithm

3.7. Conclusions 71

we extended our results to more general graphs satisfying the Kalmanson
conditions. Table 3.1 summarizes our results.

There are some interesting extensions that could be studied in future
research. When service times are added to the customers, it no longer
holds that all predecessors of a customer i are visited when ¢ is visited.
It follows that Algorithm LR-DP can not be applied directly. A similar
argument holds when a visit consists in a trip for the customer visited
(pickup and delivery), or when time windows are added. In these cases it
can happen that a customer is not visited the first time the server passes

by, but is visited later on in the tour.

Chapter 4

Charlemagne’s challenge: the

periodic latency problem

Latency problems are characterized by their focus on minimizing total
waiting time for all customers. We consider periodic latency problems;
an extension of standard latency problems. In a periodic latency problem
each customer has to be visited regularly. More precisely, given is a server
traveling at unit speed, and a set of n customers with their positions. With
each customer ¢ a periodicity g; is associated that is the maximal amount
of time that is allowed to pass between consecutive visits of the server to
customer 7, 1 < i <n. In a problem we denote as PLPP, the goal is then to
find a repeatable route for the server visiting as many customers as possible
without violating the ¢;’s of the customers visited. Further, we consider
the PLP in which the number of servers needed to serve all customers is
minimized. We give polynomial-time algorithms and NP-hardness results

for these problems depending upon the topology of the underlying network.

73

74 Chapter 4 - PLP

Prologue

During his reign in the years 768-814, Charlemagne traveled constantly
through his empire in Western Europe. Counts had been appointed to
govern different pieces of Charlemagne’s empire (called counties). On his
travels, Charlemagne visited his counts regularly. One reason for these
visits was to ensure loyalty of his counts. Indeed, when a count was not
visited for a certain period, the count would no longer obey Charlemagne,
and declare independence, thereby rising against the emperor. Clearly, this
would force Charlemagne to act, and start an expensive war against the
rebeling count. Charlemagne’s challenge was to find a visiting sequence
of his counts so that the time elapsed between two consecutive visits to a

count would not exceed the “loyalty period” of that count.

4.1 Introduction

Consider the following problem. We are given a set of customers N =
{1,2,...,n} with their positions z1,z2,...,x, in some metric space; for
each pair of customers i,j € N, there is a distance d;;. We are also given
a server that travels at unit speed (and always at full speed). There is a
number ¢; associated with every customer ¢ which indicates the periodicity
of customer i, ¢ € N. More precisely, ¢; is the maximal amount of time
that is allowed to pass between two consecutive visits to customer i, i € N.
Each customer i € N also has an associated profit p;. A customer i is called
served when the time elapsed between each two consecutive visits does not
exceed ¢;, ¢ € N. The goal is to find a travel-plan for the server which
maximizes the total profit of the customers served. This travel plan can
be represented by a list of customers (of infinite length) that prescribes
the sequence in which the served customers are visited. Thus, in a feasible
solution, (i) each served customer is visited an infinite number of times,
and (i) the time elapsed between two consecutive visits to customer i does
not exceed ¢;, ¢+ € N. We assume that all data are integral. We call this
problem the Periodic Latency Problem with Profits (PLPP).

4.1. Introduction 75

Clearly, referring back to Charlemagne’s challenge, a count is a cus-
tomer, Charlemagne is the server, and the loyalty periods are represented
by the ¢;’s. If the profit of a customer represents the area of the county,
Charlemagne’s challenge is to maximize the size of his empire without
having to fight internal wars.

In this chapter, we also consider the problem where multiple servers
are available and all customers need to be served. We assume here that a
customer must be served by a single server; see Section 4.5 for the relevance
of this assumption. The goal is then to minimize the number of servers
required to serve all customers periodically. We call this problem the
Periodic Latency Problem (PLP). Further, we dedicate a short section to
the periodic latency problem with profits and multiple servers (MPLPP).
Here again the goal is to find routes for the servers such that total collected

profit is maximized.

Why ‘latency’?

Latency problems are characterized by their focus on total waiting time
as an objective function, see e.g. de Paepe et al. (2004) and the references
contained therein. Latency problems differ from problems where travel
time of the server is the objective. Notice that the problems that we
study here, share the same fundamental property with latency problems:
any period in time matters to all customers. That is why we refer to
the problems described here as periodic latency problems; indeed, time
matters for the customers, whereas the distance traveled by the server is

of no interest.

Related Problems

Many routing and scheduling problems require a periodic solution. In
the periodic TSP (Paletta (2002)), a set of customers each with a certain
frequency is given. Each customer needs to be visited according to its
frequency within a given planning period T'. A solution then consists in a
set of routes, one route for every day in the planning period 7T'. This setting
can be generalized to the periodic VRP, where more than one vehicle is

available and several routes can be performed each day of the planning

76 Chapter 4 - PLP

horizon 7" (Mourgaya and Vanderbeck (2006)). These problems, however,
do not belong to the class of latency problems.

Other applications of periodic scheduling problems can be found in
scheduling of robotic cells, see e.g. Crama et al. (2000); or in digital-
signal-processing, see Verhaegh et al. (2001). A signal processing algorithm
consists in elementary operations that need to be carried out repeatedly
on successive samples of a given digital signal. Korst et al. (1997) study
the problem of nonpreemptively scheduling periodic tasks on a minimum
number of identical processors. They mention an application where a num-
ber of continuous data streams must be read from a minimal number of
identical disk units. Any situation where there is a repetitive execution
of operations with strict timing requirements is relevant (Verhaegh et al.
(2001)). In these settings, precedence constraints might also be present.

A non-periodic latency problem with profits is discussed in Chapter 2.
There, a profit p; is associated with every customer ¢ and these profits go
down linearly with time, while the customer is waiting to be served. The
goal is to select customers and to find a route for the server visiting these
customers such that the collected profit is maximal. A similar problem
with time windows is described by Frederickson and Wittman (2007). Each
service request is assigned to a time window and the goal is to find a tour
that visits the maximum number of locations during their time windows.
Each request that the repairman completes yields a given profit. These
problems, however, are not periodic.

A problem that is probably closest to our setting is the problem de-
scribed in Campbell and Hardin (2005). In their problem, the number of
servers needed to serve all customers is minimized, under the assumption
that each customer ¢ € N needs to be visited precisely every g; time-units.
They show that a solution exists which is periodic (see Section 4.3) with

length 7' = lem!(q1, g2, . - . , qn)-

Motivation
We see the PLPP and the PLP as basic problems with applications in

! least common multiplier

4.1. Introduction i

diverse areas. We describe here two different fields where these periodic
latency problems occur. Several applications of PLPP and PLP can be dis-
tinguished. Recently, Studer (2008) described “rounding”, a management
process that can help to improve management and leadership skills. Studer
believes that managers should make regular rounds to check on their em-
ployees. In that way, managers find out what matters to employees, and
potential problems can be dealt with before they occur. This “round-
ing” model is based on the rounds doctors and nurses make to check on
their patients in a hospital. Dimov et al. (2007) explore a method called
“minirounds” that appears to improve physician-patient communication
and satisfaction at a hospital. Minirounds are defined as follows: “A series
of short patient encounters [each lasting about a minute| during which the
physician asks patients about any changes in their condition and provide
a concise daily update” (Dimov et al. (2007)). Efficiently organizing these
mini-rounds is an instance of PLP. Notice that the latter application sug-
gests a specific topology of the customers: in the introductive chapter we
mention the tree network as being relevant for representing the corridor
structure in hospitals and offices. We extensively study this topology in
this chapter.

Another field where periodic latency problems occur is maintenance,
more precisely preventive periodic maintenance. Machines, located at
given positions (say different plants) need to be inspected regularly. Ob-
viously, when a machine is viewed as a client, and when the periodicity of
each machine is given, the PLP arises. Although there is quite some litera-
ture on preventive periodic maintenance, (see e.g. Dekker et al. (1997) for
an overview), many contributions are stochastic, and we are not aware of
deterministic situations where distances between machines are taken into
account (see Anily et al. (1998) for a related problem).

We give an overview of our results in Section 4.2. We elaborate on
the issue of periodicity in Section 4.3. In Section 4.4 we deal with the
complexity of the single server problem, i.e., PLPP. In Section 4.5 we
deal with PLP. The results for the PLP can easily be extended to the
MPLPP, this is shown in Section 4.6. In these three sections we completely

78 Chapter 4 - PLP

classify the complexity for the following topologies: line, circle, star, tree,
general; and we consider arbitrary profits p;, versus p; = 1, and arbitrary
periodicities ¢;, versus ¢; = @, for all ¢ € N. Finally, Section 4.7 discusses

possible extensions.

4.2 The results

Figure 4.1 summarizes our results concerning the complexity of the PLPP
for different settings of p; and g;, in different metric spaces. From Theorem
4.7 and Corollary 4.9 it follows that in a general case with arbitrary profits
and frequencies (d), the PLPP on the line and the PLPP on the circle are
solvable in polynomial time. Hence, the same results hold for the more
restricted topologies in (a), (b), and (c). Figure 4.1(a) shows results for
the PLPP with unit profits and a common frequency @); this result is due
to Theorem 4.14 and Corollary 4.13. Figure 4.1(b) represents the results
for the PLPP with unit profits and arbitrary frequencies; this follows from
Theorem 4.11. Similarly, Figure 4.1(c) holds for PLPP with arbitrary
profits and a common frequency @, see Theorem 4.10.

In the PLP, the goal is to minimize the number of servers needed to
visit all customers. Profits are not applicable in this case. Results are
represented in Figure 4.2 and follow directly from Theorem 4.17, Corollary
4.18, and Theorem 4.19.

4.3 Periodicity

In this section periodicity of solutions is being analyzed. The analysis in
this section is restricted to the PLPP. However, everything also holds for
the PLP as a solution to the PLP consists in s single server solutions,
where s denotes the number of servers used.

A solution to the PLPP can be represented by an infinite sequence
of customers: customer ¢ appearing on the p-th position of the sequence

indicates that the p-th customer visited is customer i. Let L be a sequence

4.3. Periodicity

79

P / NP-complete

line —> star—> tree general

N

circle

(a) PLPP with p; =1, ¢; = Q

NP-complete

star—>» tree —> general

(¢) PLPP with arbitrary p;, ¢; = @

P NP-complete

line star—» tree —>» general

(b) PLPP with p; = 1, arbitrary g¢;

NP-complete

star—>» tree —>» general

(d) PLPP with arbitrary p; and ¢;

Figure 4.1: Complexity results PLPP

NP-complete

star—» tree —» general

Figure 4.2: Complexity results PLP

80 Chapter 4 - PLP

representing a solution to the PLPP and S the subset of customers visited.
Notice that for |S| = 1, periodicity is trivial.

We call any sequence of customers of finite length a subsequence.

Definition 4.1. A subsequence is called a k-cycle if

e the subsequence starts and ends with some customer ¢ € N not

appearing elsewhere in the subsequence, and

e each served customer j # ¢ appears with a frequency of at least 1,

and at most k, in the subsequence.

Definition 4.2. We say that a solution to PLPP is periodic if, when
viewed after some position p, the sequence representing this solution is a

concatenation of identical subsequences.

Definition 4.3. We say that a solution to PLPP is a k-cycle if, when
viewed after some position p, the sequence representing this solution is a
concatenation of identical k-cycles (where it holds that when two consec-
utive visits are performed to a single customer this can be considered a

single visit to that customer).

Clearly, from the viewpoint of implementation and optimization, peri-
odic solutions are preferable over non-periodic ones. Fortunately, we lose
nothing by restricting the search for a solution to the class of periodic

solutions:

Theorem 4.4. If there exists a feasible solution for an instance of PLPP
that visits customer-set S C N, then there exists a periodic feasible solution

visiting S.

Proof. Let Q = max;cg q;. All customers are positioned at distinct loca-
tions and d;; > 1. Consider any feasible solution to PLPP, represented by
a sequence L. Suppose that the size of the set S of served customers is

equal to 2 < |S| < n. The proof relies on the following observation.

Observation 1. L consists of infinitely many k-cycles, for some k.

4.4. The complexity of PLPP 81

To argue that this observation holds, consider any position p in the
sequence L and the customer ¢ visited at p. Then, at position p + 1, a
customer j # i is visited and, at position p 4 2, either again customer 1 is
served or a “new” customer [. At a certain position ¢ > p, |S|—1 different
customers will have been served since position p. Thus, one customer, say
customer [, will then necessarily be visited at a position ¢’ > ¢ and also
at a position p’ < p; the total number of time units elapsed between these
two visits can be no more than Q. It follows that between two consecutive
visits to this customer [, all other customers are visited at least once. Since
this holds for any position p, the observation is valid.

Now, as for a specific customer at most n® different k-cycles exist,
the total number of different k-cycles that can appear in L cannot exceed
n@tl, O

Notice that we show here that the number of k-cycles is finite given
that d;; > 1; however, when d;; < 1 the number of k-cycles will be much
larger but still finite. The observation above then implies that a same k-
cycle will appear more than once. By repeating a subsequence that starts
with this k-cycle, plus everything that followed this k-cycle up to its next

appearance, we modify L into a feasible solution that is periodic.

4.4 'The complexity of PLPP

In this section, we prove the results summarized in Figure 4.1. Section 4.4.1
deals with the PLPP on the line or on a circle, Section 4.4.2 deals with the
PLPP on a star, Section 4.4.3 deals with the PLPP on a tree, and finally,
Section 4.4.4 deals with the PLPP on a arbitrary topology.

4.4.1 PLPP on the line and the circle

Consider first an instance of the PLPP with arbitrary profits p;, and ar-
bitrary periodicities ¢; where all customers are positioned on the line. We
assume that 1 < 29 < ... < x,, and we denote the distance between z;

and z; as d;j for ¢,7 € N. We first show that for this special topology,

82 Chapter 4 - PLP

we can restrict ourselves to solutions where the server simply oscillates be-
tween two customers. In other words, there is a solution that is a 2-cycle
(see Definition 4.1).

Theorem 4.5. If there exists a feasible solution for a set of customers

S C N, then there is a 2-cycle serving customer-set S, with |S| > 2.

Proof. Consider any pair of locations x; < xj, 4,5 € S. Since 7,5 € S,
there exist two moments in time ¢; < t; such that (i) the server is at z;
at time t;, (ii) the server is at x; at time t;, and (iii) neither x; nor x;
is visited at any time ¢ with ¢; < ¢ < t;. Since ¢ € S it must be true
that ¢; > t; —t; +dj; > d;j + dj;. The first inequality is true because
being able to serve both customers ¢ and j implies that the periodicity of
customer ¢ cannot be smaller than the time the server needs to travel from
x; to x; and back (recall that we assume that the server travels at unit
speed). Thus, the time needed to travel from z; to x; is at least equal to
the distance d;;, which gives us the second inequality. Similarly, we can

argue that q; > dj; +d;;. Thus, for all customers 7 and j in S it holds that
q; = dij + dji (4.1)

and
q; > dji + d@] (4.2)

We now exhibit a 2-cycle that is able to serve the customers in S.
Indeed, consider a server that travels from the left-most customer in S to
the right-most customer in S, and back, and repeating this pattern. Each

customer ¢ € S is served as long as
q = maxjeg(dij + dﬂ) (4.3)

This, however, is implied by (4.1) and (4.2), and hence a 2-cycle serves the
customers in S. O
Using this claim it is not hard to argue that we can answer the question:
can we visit all given customers? in O(n) time. We refer to this problem
as decision-PLPP.

4.4. The complexity of PLPP 83

Corollary 4.6. Decision-PLPP on the line can be answered in O(n).

Proof. Given positions x1, ..., z, we verify whether (4.3) holds. Given the
line topology, the maximum in (4.3) can only be attained for j = 1 or

j = n. It follows that we need to verify O(n) inequalities. O

Theorem 4.7. PLPP on the line with arbitrary p; and arbitrary q; can be

solved in O(n?).

Proof. We only need to search for a best 2-cycle (Theorem 4.5). Clearly,
considering each possible combination of leftmost and rightmost customer,
and then checking for all intermediate customers whether they can be
served, yields an immediate O(n?) algorithm. We now proceed to describe

an O(n?) algorithm.

Lemma 4.8. Consider a server traveling on the interval [z;, x; + L]; this

server serves a customer j if and only if
(1) v; < xj
(it) vj <@+ L
(tit) 2L + 2x; — 2x; < gj
() 2xj — 2x; < gj.

Proof. Conditions (i) and (ii) state that point x; must be contained in
the interval [z;, z; + L]. Conditions (iii) and (iv) follow from the following
observation. The time needed for the server to travel from z; to the most
right point of the interval and back to z; (i.e. twice the distance between
xj and x; 4+ L), and the time needed to travel to the most left point of the
interval and back (i.e. twice the distance between x; and x;), respectively,

may not be larger than the periodicity g;. O

According to Lemma 4.8, a customer 5 is thus served by a server trav-
eling in [z, ; + L] if and only if z; < z; and z; > 2 — %qi and if L lies in
the “activity interval”

1

Aj = [r; — x5+ 5%~ zi).

84 Chapter 4 - PLP

The set of served customers S(L) is then the following:
) 1
S(L):={j: i <zjz;>zj— 2% and L € A;}.

Our algorithm consists of a preprocessing step and a main algorithm com-
puting the best value for L, i.e. L for which ZjeS(L) pj is maximized, and

this is done for every 1.

(Preprocessing) For every customer 4, let [(i) = x; and r(i) = z;+¢;.

Sort all values of (i) and 7(7) in a global non-decreasing list 7.

(Main algorithm) For each customer ¢ the interval [z;, x; + L] maxi-
mizing the resulting profit of the served customers can be computed

as follows.

(i) For all customers in T, select the customers j not violating
conditions z; < x; and z; > x; — 3¢; and define I'(j) = I(j) —
x; and 7'(5) = r(j) — x;; I'(j) and 7/(j) are then the leftmost
and rightmost point, respectively, of the activity interval A; of
customer j. Remark that the list containing all values I'(j) and

r'(j) is sorted, we call this set T".

(ii) The first entry in 7" will be I'(i) = 0, for the choice of L = 0
the corresponding profit P equals p;. Set Ppaz = pi.
(iii) Work through 7" and determine the profits for the correspond-

ing values of L.

(a) If the next element in 7" is a lower bound I'(j) of an activity
interval A;, set P := P + p;.

(b) If the next element in 7" is an upper bound r/(j) of an
activity interval A;, set P := P — p;

(¢) If P> P, set Ppay :== P.

Select the highest P4, over all customers 3.

The preprocessing step takes O(nlogn), the main algorithm has O(n) iter-

ations and each iteration takes O(n), yielding a total complexity of O(n?).

4.4. The complexity of PLPP 85

O

Notice that Theorem 4.7 is also valid for a server whose speed differs be-
tween traveling to the right and traveling to the left.

Consider now an instance of PLP where all customers are positioned

on a circle: we can simply extend Theorem 4.7 to this case:

Corollary 4.9. PLPP on the circle with arbitrary p;, and arbitrary q; can
be solved in O(n?).

Proof. A solution to PLPP on the circle is either a 2-cycle or the full circle
(which is actually a 1-cycle). The best 2-cycle can be found using the same
algorithm as described for the line. When fixing a leftmost customer, the
rightmost customer is found going clockwise through the circle. Thus, the
optimal solution to an instance of PLPP on the circle can be found in
O(n?). O

4.4.2 PLPP on a star

Let us consider a star graph. The customers are positioned in the end nodes
and, in addition to a profit p; and a periodicity ¢;, there is a distance d;
given which denotes the distance between the position of customer ¢ and
the center of the star, i € N.

It is easy to see that the PLPP where all p; = 1 and ¢; = @Q for all
i € N is solvable in polynomial time. Indeed, by selecting customers with
the smallest d; until the tour length exceeds), an optimal solution is found.
In fact, a more general result is shown in Section 4.4.3. In Section 4.5 we
show that adding a second server already makes the problem NP-hard.

When profits p; are arbitrary, and ¢; = @, PLPP on a star can be

shown to be equivalent to the knapsack problem.
Theorem 4.10. PLPP on a star with arbitrary profits p;, and with all
q; = Q, is NP-hard.

Proof. We reduce from knapsack, which is a weakly NP-complete problem

Garey and Johnson (1979). Consider an instance of the knapsack problem

86 Chapter 4 - PLP

with n items where each item 7 has a certain value w; and a requirement a;.
The knapsack has size B and the question is whether we can fit a subset
of the items with a total value of W in this knapsack.

Now construct an instance of PLPP on a star as follows. There are
n customers. Each customer ¢ € N has an associated weight p; := w;, a
periodicity () := B, and a distance to the center of the star d; := %ai.
Does there exist a subset of the customers with total profit equal to W
such that each customer is visited at least once within each time period
Q7

In case the instance of knapsack is a yes-instance, we can copy that
solution to the instance of PLPP: selected items correspond to selected
customers. Starting in the center, it is clear that by visiting the selected
customers in any order, and repeating that pattern gives a feasible solution.
When the instance of PLPP admits a yes, there is a set of customers that
we can apparently serve. A served customer ¢ implies a travel time of
2d; = a;. Feasibility of the PLPP-instance ensures that the corresponding
set of items fits in the knapsack. O

When we consider PLPP on a star with p; = 1, and arbitrary period-
icities g;, the problem is also NP-hard.

Theorem 4.11. PLPP on a star with all p; = 1, and arbitrary periodicities
q, 1s NP-hard.

Proof. We show that 3-Partition, which is a NP-complete problem (Garey
and Johnson (1979)), can be reduced to PLPP on a star with p; = 1, and
arbitrary periodicities ¢;. This proof is based on the proof of Korst et al.
(1997) for NP-hardness of Scheduling Periodic Tasks with Slack (PSSP).

An instance of 3-Partition consists of a set A with 3m items and a
positive integer B representing the size of the m bins. Each item a; € A
has an associated size z; for which it holds that % <z < % and > aeA B =
mB. Can A be packed into m bins, each containing three items?

We construct an instance of our special case of PLPP on a star such that
the items can be packed in m bins if the customers in the corresponding

PLPP, each with their respective periodicity, can be served by a single

4.4. The complexity of PLPP 87

server. We are given a set of n := 3m + 1 customers, each with periodicity
gi := m(B + 2) and distance d; := %zi to the center of the star, for i =
1,...,3m. Further, customer 3m + 1 has ¢3y,4+1 := B + 2 and d3p41 := 1.
The question is whether there is a solution serving all 3m + 1 customers.

If 3-Partition has a solution, it is clear how to copy that solution to
the PLPP instance, and get a solution serving all 3m + 1 customers. If the
PLPP instance has a solution in which all 3m + 1 customers are served,
then, between two consecutive visits to customer 3m + 1, there are exactly
B time units left that can be used to visit other customers. Each of the
3m customers left must be visited at least once in time period m(B + 2).
In that time period there are m available time slots of B time units. Thus,
the 3m customers can be assigned to the m different time slots if and only
if the corresponding items can be packed in m bins. O

The following holds when periods are arbitrary and distances unitary:

Theorem 4.12. PLPP on a star with unitary distances, unitary profits,

and arbitrary periodicities is solvable in polynomial time.

Proof. Consider an optimal solution visiting a maximal subset S of cus-
tomers. Set T is the set of unvisited customers, N = S + T'. It holds that
for any two customers ¢ € T" and j € S with ¢; > ¢, ¢ can be moved to
subset T and j to subset S. A new optimal solution is obtained. Thus, an
optimal solution can easily be found by selecting customers in decreasing

order of ¢ until a feasible solution is no longer obtained. O

4.4.3 PLPP on a tree

We argue here that PLPP on a tree with p; = 1 and ¢; = @ is nothing but
an orienteering problem (OP). In Chapter 3 we describe how to modify an
algorithm from Johnson and Niemi (1983) in order to solve the orienteering
problem restricted to a tree. An instance of OP on a tree consists of a set
of vertices N where each vertex ¢ € N has an associated profit p; and each
edge between two vertices ¢ and j in the tree has a cost ¢;;. A maximum

on the cost C is given. The goal is to find a route visiting a subset of

88 Chapter 4 - PLP

the vertices with cost no more than C' and collecting a maximal amount of
profit. An instance of PLPP with p; = 1 and ¢; = Q is then an orienteering
problem with p; =1 (Vi € N), ¢;; := d;;, and with C := Q. The algorithm
in Chapter 3 solves OP on a tree in O(nP;y), with P, the sum of all given
profits; since p; = 1, Vi € N, total running time for PLPP is only O(n?).

Corollary 4.13. PLPP on a tree with p; = 1 and q; = Q is solvable in
O(n?).

4.4.4 PLPP on an arbitrary topology

Theorem 4.14. PLPP with p; = 1, and ¢; = Q, is NP-hard.

Proof. We prove NP-completeness of this variant of PLPP by a reduction
from Hamiltonian cycle. An instance of the Hamiltonian cycle problem is
specified as follows: given a graph G = (V, E), does there exist a Hamilto-
nian cycle in G?

Now consider the following instance of PLPP. A node in V' corresponds
to a customer, and we set n := |V|. For each pair of customers i,j that
is connected via an edge in E we set d;; := 1, else we set d;; := 2. The
periodicity is ¢; := |V for each i € N. Now, does there exist a solution to
PLPP with value n?

If a Hamiltonian cycle exists in G, there exists a tour in the PLPP
instance with length n visiting all the locations. This solution is periodic.
Vice versa, if a solution serving all customers in the PLPP instance exists,

G must contain a Hamiltonian cycle. O

4.5 The complexity of PLP

In this section we study the PLP and we prove the results summarized
by Figure 4.2. In the PLP our goal is to minimize the number of servers
needed to visit all customers. We assume that every customer must be
assigned to and served by a single server; this is a crucial assumption as

can be seen from the example in Figure 4.3. Observe that when each

4.5. The complexity of PLP 89

customer must be served by one server, three servers are needed to serve
the customers in the example. If, however, that assumption is dropped,
the three customers from the example can be served using only 2 servers,

each server alternatingly serving the middle customer.

€1 X2 3
| 1 l 1 |

q =2 g =1 q3 =2

Figure 4.3: PLP

Determining for an arbitrary topology, whether a single server suffices
to serve all customers, is NP-hard; this follows directly from Theorem 4.14.
In this section we show that a dynamic programming approach solves the
case of the line in polynomial time, whereas PLP on a star remains NP-
hard.

4.5.1 PLP on the line

We develop a dynamic programming algorithm for the PLP on the line.
Given are n customers with their positions 1 < x9 < ... < x,, on the line;
and a set of n identical servers. The goal is to minimize the number of
servers necessary to visit all customers periodically, i.e. without violating
any g;.

There exists an optimal schedule to an instance of PLP on the line of

the following shape:

e Every server s commutes between the left and the right endpoint of

its interval I.

e The intervals I; and I; of any two different servers s and t are either

disjoint, or one of them does contain the other one.

e The left endpoint of interval I, is only assigned to server s.

920 Chapter 4 - PLP

We say that in some schedule a server covers customer ¢ if the time elapsed
between two consecutive visits of this server to the customers is at most

g;- The following lemma clearly holds:

Lemma 4.15. Let a < b < ¢ < d be four request points. Assume that
server s commutes on the outer interval [a,d], and that server t commutes
on the inner interval [b, ¢|. Then every point in interval [b, | that is covered

by the outer server s will also be covered by the inner server t.

Indeed, the frequency with which any point x; within [b, ¢] is visited by
the server commuting in [b, ¢] is higher than for the server commuting in

[a, d].
A dynamic programming algorithm
The dynamic program is built around the following definition.

Definition 4.16. Let ¢ and j be integers with 1 < 4,7 < n. Let 7’ and j’
be integers such that either (i) 1 < <3 <nand 21 < zy <z <z
where z; and z; are contained in the interval [z;,z;], or such that (ii)
i'=j5"=0.

Then F[i; j;4'; j'] denotes the smallest number of servers that can serve
all customers k = 7,7+ 1,...,j with the exception of the customers that
are already covered by an external server that commutes on the interval

[z, zj]. (In the case ' = j' = 0, there is no such external server.)

Notice that in this definition we explicitly allow the situation j < i,
which yields an empty interval and an empty set of requests. We will now
compute all the values F'[i; j;4'; /] step by step and in increasing order of
j — i (the number of customers in the underlying interval).

All cases with j < ¢ have empty intervals, and hence need F[i; j;i'; j'] =
0 servers. In the remaining cases we have j > i. If the leftmost point is
already served by the external server, we may simply set F[i;j;4';5'] :=
F[i + 1;5;7;j']. Otherwise the leftmost point ¢ must be served by some
new server s. We branch into several cases that depend on the behavior of

S.

4.5. The complexity of PLP 91

Assume that the server s commutes on the interval Iy = [z;, x;] with

1 <1< j. Then we need at least
a(l) == Fli+1;1;4;1]

additional servers working and serving in interval /5. Because of Lemma 4.15,
the influence of the external server commuting on the outer interval [z, x ;]
has now become irrelevant; everything this server has covered will also be

covered by the new server s. Furthermore, we need at least
B(l) = Fll+1;5;1 5]

servers working in the remaining uncovered interval [z;41,2;]. Therefore

the smallest possible number of servers in this situation is
Flisj;ij' = min {1 + o(l) + B(1) | i <1 < j}.

In the end, the answer to the global problem can be found in F[1;n;0;0].
We have to compute O(n*) values F[i;j;i’;5'], and the computation of

each value takes linear time. Hence the overall running time is O(n®).

Theorem 4.17. PLP on the line can be solved in O(n®).

4.5.2 PLP on a circle

The algorithm for the problem on the line can be extended to the circle,

adding a factor n to the running time of the line algorithm.

Corollary 4.18. PLP on the circle can be solved in O(n").

Proof. PLP on a circle can be broken down to n instances of the problem
on the line. Solving all these line instances and selecting the best from
these n solutions, yields an optimal solution to the PLP on the circle.
Thus, the optimal solution to an instance of PLP on the circle can be
found in O(nf). O

92 Chapter 4 - PLP

4.5.3 PLP on a tree

We prove that the PLP on a star with ¢; = @ is NP-hard; NP-hardness of
the PLP on a tree with arbitrary ¢; follows immediately from this result.
In Section 4.4.2 it was shown that the periodic latency problem on a star
graph with all customers having the same profit and requiring equal fre-
quency is easy to solve; adding a second server though makes the problem

much harder to solve.

Theorem 4.19. PLP on star is NP-hard, even if for alli € N: ¢; = Q.

Proof. We reduce from partition. An instance of the partition problem has
aset X = {z1,...,x,} with > | s(x;) = 2k, where s(z;) denotes the size
of x;. Can the set X be partitioned into two sets X; and Xo such that
Y owex, S(T) = X .ex, s(r) = k and each element occurs exactly once?

An instance of PLP on a star is constructed as follows. There is a star
with n spokes, and a customer located at each spoke with distance %a:Z
from the center of the spoke, for i = 1,...,n. Each customer (spoke) has a
periodicity @ := k, meaning that the maximal time that can pass between
two consecutive visits to a customer equals k. There are two servers,
traveling at unit speed, positioned in the center of the graph. Now, does
there exist a route for each of the servers such that all customers can be

served periodically?

If a solution to partition exists, the set of customers in X7 can be
assigned to one server and the customers in Xy to the other server and
each server can visit these customers in () time units. If a solution to PLP
on the star exists, each customer is visited once within every () time units.
Since total travel time to visit all customers equals 2@, it must be the
case that every server travels exactly) time units. Customers visited by
server 1 can be assigned to one set and customers visited by server 2 to

the second set, and a solution for partition is obtained.]

As a result, PLP on a tree is NP-hard.

4.6. Extension: the complexity of MPLPP 93

4.6 Extension: the complexity of MPLPP

The complexity results from the previous section can be extended to a
periodic latency problem with profits and multiple servers, denoted by
MPLPP. As before, we are given a set of n customers with their positions
r1,T9,...,T,; and each customer ¢ has an associated profit p; and period-
icity g;. Further, S identical servers are given, with S < n. The goal is
then to find a repeatable route for each server collecting a maximal amount
of profit without violating the g;’s. We show that, when all costumers are
positioned on the line/circle the dynamic programming algorithm from the
previous section can be transformed to solve the MPLPP in polynomial
time. On a tree or a arbitrary graph the problem is NP-hard. One can
easily check that Lemma 4.15 still holds for MPLPP on the line. Then a

state in the dynamic programming algorithm is defined as follows.

Definition 4.20. Let ¢ and j be integers with 1 < ¢,j < n. Let ¢ and j’
be integers such that either (i) 1 <47 < j' <nand 2y < zy <y < 2y
where x; and z; are contained in the interval [x;,z;], or such that (ii)
i = =0.

Then Pli; j;4';j'; s] denotes the maximum profit that can be collected
serving customers in the interval [z;, z;] using s < S servers, excluding the
customers that are already covered by an external server that commutes
on the interval [z;, z;]. (In the case i’ = j' = 0, there is no such external

server.)

Now, we compute all the values of P[i;j;i’;j';s]. All cases with j < i
have empty intervals, and hence yield a profit P[i;j;4';5'; s]=0. When
j > i we can distinct several cases. If the leftmost point ¢ is covered by an
external server or is not served at all, it holds that P[i;j;i;j'; s|=P[i +
1;7;7';4";s]. Otherwise i is served by a server from s, say si, traveling
on the interval [z;,x;] with ¢ < [< j. Total profit for this state then
consists of three parts: (i) p(l) = EieS(SI)pi, the profit of the set of
customers S(s1) covered by s1; (i) «(l,s") = Pli+1,1,4,1, §'], the profit of

the servers traveling within the interval covered by s1; and (iii) 5(l,s—s') =

94 Chapter 4 - PLP

P[l+1,j,i,j,s—s —1], the profit that can be collected in the remaining

interval by the remaining servers. The optimal value is then:
Plis j; 1’5 7' s] = max{p(l) + a(l,s') + (L,)i <1 < j,0 < 5" < s}
73l

The state Pli; j; 0;0; 5] yielding maximal profit gives the optimal solution.
There are O(n*S) states to be computed and each state requires O(n29)

time. Overall running time is then O(n%5?).
Theorem 4.21. MPLPP on the line can be solved in O(n®S?).

As in the previous section, the algorithm for MPLPP on the line can

be extended adding a factor n to the running time.
Corollary 4.22. MPLPP on the circle can be solved in O(n"S?).

N P-hardness of MPLPP on a tree follows from the fact that MPLPP
on a star is N P-hard.

Theorem 4.23. MPLPP on a star is NP-hard, even if for all i € N:
¢ =Q.

Proof. 1t is easy to see that the proof of Theorem 4.19 is directly applicable
to this problem.]

It follows that the problem is N P-hard on arbitrary graphs.

4.7 Conclusion

We were able to settle complexity of a number of variants of the PLPP
and the PLP. Our results still hold when customers are weighted, as a
customer will always be served when a server passes by. However, some
interesting questions remain. It would, for instance, be interesting to study
the influence of repair times on complexity. This seems to make the prob-
lems much harder. Indeed, when repair times are added for the customers,
Lemma 4.15, which is crucial for the dynamic programming algorithm, no

longer holds. Further, it is also not clear what happens when servers have

4.7. Conclusion 95

restricted capacity. And what if servers are not identical, meaning that

they travel at different speeds or with different operating costs?

Epilogue

Almost 30 years after Charlemagne’s death, his empire was divided into
three parts (the treaty of Verdun); apparently, by that time, three servers

were needed to guarantee loyalty of all counts...

Chapter 5

The periodic vehicle routing

problem: a case study

This chapter deals with a case study which is a variant of the Periodic
Vehicle Routing Problem (PVRP). As in the traditional Vehicle Routing
Problem (VRP), customer locations each with a certain daily demand are
given, as well as a set of capacitated vehicles. In addition, the PVRP has a
horizon, say T" days, and there is a frequency for each customer stating how
often within this T-day period this customer must be visited. A solution
to the PVRP consists of T sets of routes that jointly satisfy the demand
constraints and the frequency constraints. The objective is to minimize
the sum of the costs of all routes over the planning horizon. We develop
different algorithms solving the instances of the case studied. Using these
algorithms we are able to realize considerable cost reductions compared to

the current situation.

97

98 Chapter 5 - PVRP: A Case Study

5.1 Introduction

In this chapter we study a routing problem of a Belgian company collect-
ing waste at slaughterhouses, butchers, and supermarkets. Planning of the
routes occurs over a time period of several days (time horizon) in which cus-
tomers are visited with different frequencies. For instance, supermarkets
might request service every day, while for a small butcher one collection a
week suffices. The resulting problem is a variant of the Periodic Vehicle
Routing Problem (PVRP). As in the traditional Vehicle Routing Problem
(VRP), customer locations each with a certain demand function are given,
as well as a set of capacitated vehicles. In addition, the PVRP has a hori-
zon, say 1 days, and there is a frequency for each customer stating how
often within this 7T-day period this customer must be visited. A solution
to the PVRP consists of T sets of routes that jointly satisfy the demand
constraints and the frequency constraints. The objective is to minimize
the sum of the costs of all routes over the planning horizon. Obviously,
this problem is at least as hard as the VRP.

PVRP and variants

Several variants of the PVRP are described in literature. A classifi-
cation of the different variants of the PVRP can be found in a survey by
Mourgaya and Vanderbeck (2006). Different objective functions are distin-
guished, such as minimizing the distance traveled, the driving time, or total
transportation cost; however also regionalization of routes, an even spread
of workload over the vehicles, the number of vehicles, and service quality
can be part of an optimization function. Differences also occur in the con-
straints which can be divided in three categories: constraints concerning
(i) the planning of visits (different frequencies, restrictions on certain days,
etc.), (ii) the type of demand (constant or variable; we return to this issue
later), and (iii) the vehicles. Where the PVRP is mostly situated on tac-
tical and operational level, Francis et al. (2006) include strategic decisions
in their model: frequencies of service are variables within the model, and

not given parameters. Another variant is the PVRP with intermediate

5.1. Introduction 99

facilities which is described by Angelelli and Speranza (2002), Kim et al.
(2006), and Alonso et al. (2008). Intermediate facilities are locations where
vehicles can unload (or reload) and thus renew capacity during a route;

this happens in our case, see Section 5.2.

Case studies

The PVRP is a relevant problem; it occurs for companies that have to
carry out periodic repair and maintenance activities or that collect/deliver
goods periodically. Blakely et al. (2003) describe a case for periodic main-
tenance of elevators at different customer locations. Further case studies
concerning waste collection and road sweeping can be found in Beltrami
and Bodin (1974) and Eglese and Murdock (1991). Claassen and Hendriks
(2007) describe a milk collection problem where it is important that the
goods are collected when fresh. For the collection of raw materials for a
manufacturer of auto parts, on the contrary, a very long time horizon is
considered, see Alegre et al. (2007). Hemmelmayr et al. (2008) investigate
the periodic delivery of blood products to hospitals by the Austrian Red
Cross. In this case, the regularity of deliveries is of utmost importance.
Many other case studies are described in Francis et al. (2008) and the

references contained therein.

Solution methods

The PVRP is situated on the border between tactical and operational
planning, combining the classical VRP with planning over a time hori-
zon. That is why solution methods often consist of two phases. Beltrami
and Bodin (1974) consider two approaches. In a first approach, routes are
developed and then assigned to days of the week; in a second approach
customers are assigned to days in a first phase and in a second phase the
routing problem for every single day is solved using classical techniques
for solving VRPs. This second approach is used in many papers, such as
Tan and Beasley (1984), Christofides and Beasley (1984), and Baptiste
et al. (2002). Tan and Beasley (1984) first solve an assignment problem to
assign customers to days such that total demand in each day does not ex-

ceed demand capacity while taking pairwise distances between customers

100 Chapter 5 - PVRP: A Case Study

into account. After that stage they solve a VRP for each day in the plan-
ning horizon. Thus, they approach this problem as an extension of the
assignment problem with a routing component. Christofides and Beasley
(1984) on the other hand formulate the PVRP as a routing problem with
a selection decision. Customers are ordered in descending order of “im-
portance”, depending on the demands, and then selected for a route on a
certain day depending on the increase in total cost for the whole period.
These approaches are the more classical solution strategies. Recent PVRP
literature has focused on metaheuristic methods and mathematics- based
approaches to solve the problem; we refer to Francis et al. (2008) for an
overview.

The rest of this chapter is structured as follows. In section 5.2 we de-
scribe the case under consideration in further detail. In section 5.3 we give
a mathematical formulation. In section 5.4 we propose a solution method
and in section 5.5 we report some computational results and formulate a

conclusion.

5.2 The case

5.2.1 A general description

As mentioned, we study a problem faced by a Belgium transportation com-
pany, which is responsible for the collection of waste at slaughterhouses,
butchers, and supermarkets. This company, which we call company A for
confidentiality reasons, has customers all over Belgium and in some areas
of northern France.

Legislation that originated from the BSE-epidemic (Bovine Spongiform
Encephalopathy, commonly known as mad-cow disease) in the nineties,
stipulates that (i) there are 3 categories of animal waste, depending on
the risk of containing BSE; (ii) waste from different categories has to be
collected separately. Company A only collects waste from two categories:
category 1 (high-risk waste) and category 3 (low-risk waste). All high-risk

waste is collected in order to be destroyed, while low-risk waste can be

5.2. The case 101

further processed into e.g. pet food. Vehicles assigned to collect high-risk
waste cannot be used to collect low-risk waste and vice versa. In fact, this
implies that company A has to solve two different instances; one instance
for the periodic collection of high-risk waste and a second instance for the
periodic collection of low-risk waste.

In the current planning process of company A, routes are constructed man-
ually on a regular basis, e.g. every month, and, during that period minor
modifications to the routes can be made depending on changes in the set
of customers. Company A wishes to decrease the dependence upon human
expertise and wants to automatize the planning procedure. Also, the man-
agement of company A wishes to plan the routes more efficiently in order
to reduce travel time and travel distance. Several opportunities need to
be explored: (i) can total driving time be decreased? (ii) can the routing
be done using smaller vehicles? and (iii) is it possible to decrease the ve-
hicle fleet? All of this could be possible through more efficient planning,
but obviously, the same level of service towards the customers should be
retained. All this also has environmental consequences due to a reduction
in petrol and in vehicle use. It is clear that it would not be possible to
change the vehicle fleet whenever the routing plan changes. Our routing
plan, however, should allow the management to “assemble” a good vehicle
fleet in the long term. In the short term, the current vehicle fleet must be

respected when constructing a routing plan.

5.2.2 The low-risk waste instance: details

Here we describe some properties of the instance corresponding to the
low-risk waste. First notice that the company could only provide us the
addresses of the customers; using the Shortrec software (Ortec (2007)) the
travel distances between the customers were computed and Figures 5.1
and 5.2 were generated. For the low-risk waste instance there are 48 cus-
tomers, spread out over Belgium and northern France (see Figure 5.1). The
planning period is one week (actually 6 days), and each customer requires

a certain frequency of visit over the planning period. Table 5.1 gives an

102 Chapter 5 - PVRP: A Case Study

overview of how often each frequency occurs. How these frequencies can be
obtained is explained in Section 5.3. There are 5 different frequencies and

a frequency of 4 days does not occur. Company A has 3 trucks available

Frequency (nr of visits required) | 1 2 3 5 6
nr of customers 21 15 5 5 2

Table 5.1: Frequencies low-risk waste

for collecting low risk waste; with capacities 12, 22, and 26 tons respec-
tively. Some customers are located in the center of a city and cannot be
reached by a truck of 22 tons or bigger. There is a central depot where
each route starts in the morning and ends in the evening. When a truck
is fully loaded, the driver can unload at a disposal facility and continue
his route. Notice that these disposal facilities can be seen as intermediate
facilities, see Angelelli and Speranza (2002). Trucks do not need to return
empty in the evening, they can also dispose of their load during the tour
of the following day. Only when a truck does not drive on the following
day it has to be emptied before returning to the depot. An affiliated com-
pany processes the waste and has one disposal facility where the trucks
can unload 24 hours a day. Loading and unloading times depend on the
volume. Legally, the maximum driving time for a driver is restricted to 90
hours within two weeks and the company restricts the daily driving hours
to 10 hours. Notice that these are only driving hours, they do not include

loading and unloading times.

5.2.3 The high-risk waste instance: details

The instance corresponding to the collection of high-risk waste contains 262
customers, distributed all within Belgium (see Figure 5.2). The planning
period is 2 weeks (10 days), and again customers have certain frequencies
of visit within that period. In Table 5.2 we give an overview of the different
frequencies for the high-risk waste instance. The capacities of the three

trucks available are 9, 12, and 12 tons respectively. The collected waste

5.2. The case

103

Figure 5.1: Customers of category 3: instance 1

Frequency (nr of visits required)

1

2

4

nr of customers

62

186

14

Table 5.2: Frequencies high-risk waste

Aty gipen

Sohagrbese

104 Chapter 5 - PVRP: A Case Study

L3 - . ®
- -
- - * * . & dhaarbeak
. . P . e
. -~ »
. s L T L i b A
o L. 2ass {.ﬂ o &
or . .
* s . * - % * . i . =
P
" » = .® -
I3
o ‘&",o: » * - 2 " X
. - - % - - : "
o . . . S
CLon = o . 2 -
}..‘c* . -", * 5 . W
% b, e

Figure 5.2: Customers of category 1: instance 2

must be delivered at two disposal facilities of an external company. Notice
that time windows apply to these facilities. Loading and unloading times
are constant, 10 resp. 30 minutes. Restrictions on driving hours and depot

locations are the same as for low-risk waste.

5.3 Model

An important aspect of our model are the “visit-frequencies”. Based on
historical data, it can be accurately predicted how much waste a customer
produces per day, and how much waste can be stored at a customer’s site.
On the basis of these data and in consultation with the customer, a visit-
frequency is computed for each customer: the number of times a collection
is done during the planning period. We also compute a demand (g;) de-
pending upon this frequency. As an example, consider some customer ¢
that generates 10 tons of waste per day, and has a storage capacity of 30
tons, while the planning period is T' = 5. We compute the corresponding

visit-frequency f; for this customer i as follows: f; = [%1 = 2. More

5.3. Model 105

in particular, the visits must be spread well-balanced over the planning
period. Hence, this customer can be visited on days 1 and 3, but also on
days 1 and 4, 2 and 4, 2 and 5, and 3 and 5; but not on any two consecutive
days. The demand of this customer equals ¢; = 1%’ = 25. Notice that
the actual amount of waste collected at customer i may differ from the
predicted amount g;.

For every frequency, we define all possible combinations of days in the
planning period, and we call them scenarios. Then, for every customer we
need a constraint that selects exactly one scenario from the set of feasible
scenarios. How exactly the scenarios are assigned to customers will become

clear further in this section. We first give some notation.

5.3.1 Notation

We define the network G = (V, A). The customers to be visited are
represented by vertices 1 to IV, the depot is represented by node 0 and
the disposal facilities by nodes N + 1 to N + M. Thus vertex set V =
{0,1,2,...,N,N +1,...,N + M} and A is the arc set with for each arc
(i,7) a travel distance d;; and a travel time ¢;; (i,j € V). The planning
period has a length of T days and a customer is visited within this period
according to a certain scenario ¢ € C'. Essentially, a scenario is a set of
days within 7 = {1,...,T}; choosing a scenario for a customer means that
the customer is visited during these days. We let f¢ equal the number of
visiting days in scenario ¢. We are given a number of vehicles K, each with
a certain capacity Q. For each customer i € N = {1,..., N}, a frequency
fi, a quantity ¢; and a loading time [; are given. Quantity g; is the quantity
to be collected at each visit; this number is based on the average amount
of waste that is collected at each visit (see our discussion earlier). We can
use this average amount to approximate reality because visits are spread
evenly over the planning period. Further, a driver may not drive longer
than D; hours a day, and no longer than D7 hours in the total planning
period of T days. Disposal facilities can only be visited within their time
windows [ry, s;], 1 € M ={N +1,...,N + M}. Finally, a. is equal to 1 if

106 Chapter 5 - PVRP: A Case Study

day t € 7 is visited within scenario ¢ € C' and 0 otherwise. We then define
the following five sets of variables: x;;1; is a binary variable which is equal
to 1 if customer 7 € V is visited after customer j € V' by vehicle k € IC at
day t € 7, 0 otherwise; y;. is a binary variable which is 1 if customer i € V
is visited according to scenario ¢ € C and 0 otherwise; let L;;; and Tj; be
the total load and the total travel time, respectively, of vehicle k € K at
day t € T after having visited customer ¢ € V; and finally, the load of a
vehicle k € K = {1,2,..., K} at the beginning of day t € 7 is denoted by
S1kt and the load at the end of the day by Sox.

5.3.2 The model

(PVRP) Minimize » > Y "> " dijajne (5.1)

i€V jEV keK teT

Sokt =0

Sort < Qr2kt

Vt € {fridays};Vk € KC, (5.15)

5.16

5.3. Model 107
subject to
> pe=1 Vie N, (5.2)
CGC:fCZfi
Z Z Tijkt — Zactyic =0 Vie N;Vie T, (5.3)
JEV ke ceC
> ikt — Y njre =0 Vh e V;Vk € KVt €T, (5.4)
icV jev
> moie <1 Vke K:VteT, (5.5)
JEN
Z Z Zdzjiﬂz‘jkt <Dr Vk e K, (5.6)
iV jeV teT
Z Z dijTijee < Dy Vke K;vteT, (5.7)
iV jev
SN wi <ISI-1 Vk € K3Vt € T;S C N
i€S jeS
S| >2, (5.8)
(szt +q; — L]kt) (1 — xZ]kt)Qk Vk € K;Vt € T; Vl,j € N ()
Lt < Q1 Vi e N;Vk € K;Vt € T, (5.10)
L.t =0 Vie M;Vk e KVt € T, (5.11)
Sgkt = Slk(t+l) Vk € K:;Vt € {1, .. .,T — 1} (5 12)
Lt — Sop < (1 — szkt)Qk Vi e V,Vk € IC;Vt S T (5 13)
Strt — Ljre < (1 — 2jie) Qk VjeViVk e KVt € T, (5.14)
(
(
(5

1- Z Tojk(t+1) < 1 — 2kt

jEV
Tige + Ui + cij — Thre < (1 — wj0) M
riTije < Tigt < SiTijkt
Tijkes 2k € {0,1}
Yic € {0,1}
Lit, Tikt, S1kt, Sokt > 0

Vk e K;vte{1,...,T — 1},)
Vke K;Vte {1,...,T 1, (5.17)
Vk e K;Vt € T;Vi,j €V, (5.18)
Vk e K;Vt € T;Vi,j € N, (5.19)
Vi,j € V;Vk e KVt € T, (5.20)
Vi e N;Ve e C, (5.21)

Vie Vi;Vk e KVt € T. (5.22)

108 Chapter 5 - PVRP: A Case Study

This model finds a scenario for every customer and a set of routes for
each day of the planning period such that total travel distance is minimized.
The first constraints (5.2) make sure that exactly one scenario is selected
for every customer and in such a way that within this scenario the cus-
tomer is visited according to its frequency. A customer then will be visited
on the days of the selected scenario; this is ensured by constraints (5.3).
Constraints (5.4) make sure that when a vehicle arrives at a customer, it
also leaves from that customer. Constraints (5.5) impose that each vehi-
cle can be used at most once every day. Constraints (5.6) and (5.7) keep
the number of driving hours for every vehicle within the restrictions for
the whole planning period, and within the daily restrictions, respectively.
Constraints (5.8) are subtour elimination constraints. Correct counting of
vehicle loads is ensured by constraints (5.9), and constraints (5.10) keep
the vehicle load within the capacity. Constraints (5.11) impose that vehi-
cles are empty when they have visited a disposal facility. A vehicle does
not need to dispose of all of its load at the end of the day. It follows that
the load of a vehicle at the end of a day needs to be equal to the load of
that vehicle at the start of the following day, this is ensured by constraints
(5.12) to (5.14). At certain moments in the week though vehicles do need
to unload at the end of the day, e.g at the end of the week (5.15) and when
a vehicle is not used on the next day, see constraints (5.16) and (5.17).
Equations (5.18) and (5.19) make sure that time windows for the disposal
facilities are not violated. Finally, constraints (5.20) through (5.22) impose
binary conditions and nonnegativity conditions on the variable set.

Solving this model in order to obtain an optimal solution for a small
data set of less than 10 customers already takes a very long time. That is

why in the following section we develop a heuristic solution approach.

5.4 Solution approach

We study methods that consist of two phases: first, customers are assigned
to days, and second, a VRP-instance is solved. In subsection 5.4.1 we

investigate methods that first assign customers to days, and next solve

5.4. Solution approach 109

a VRP-instance. We consider two ways of assigning customers to days,
namely striving for an “even spread” of the number of visits on a day,
or use a geographically based clustering approach. Finally, we describe
how we use ILOG Dispatcher to solve a VRP-instance. In subsection 5.4.2
we describe a method that first solves a VRP-instance, and then assigns

customers to days.

5.4.1 First assign customers to days, then route
Assigning customers to days: algorithm ES

Here, we focus on the spread of visits over the planning horizon. We solve
the following problem (problem ES). We are given a set V' of customers,
and each customer ¢ has an associated frequency f;. Further we have a
set C' of scenarios, where a scenario consists of a set of f¢ days, meaning
that in that scenario c¢ visits are performed on f¢ different days. These
scenarios need to be assigned to customers such that the frequency of each
customer equals the frequency of the scenario assigned to the customer and
the maximum number of customers visited on each day of the planning
horizon is minimized. We refer to this problem as problem ES and we

claim the following.

Fact 5.1. Problem ES is NP-hard.

Proof. We prove NP-hardness of problem ES by a reduction from Exact
Cover by 3-sets (X3C) to the decision problem of ES. In X3C a finite set
X containing 3n elements and a collection C' of 3-element subsets of X
are given. The question is whether there exists a subset C’ of C' such that
every element of X occurs in exactly one triple of C’. This problem has
been proven to be NP-complete by Garey and Johnson (1979). For every
instance of X3C we can create an instance of problem ES as follows. There
are n customers, each with frequency f; equal to 3. The planning period
lasts 3n days and each triple from C corresponds to a scenario consist-
ing of three days corresponding to the elements of the triple. Now, if an

assignment of scenarios to customers can be found such that exactly one

110 Chapter 5 - PVRP: A Case Study

customer is visited on each day (evenly spread), then also a solution for

X3C exists, and vice versa. O

Thus, this proves that in general problem ES is a hard problem to solve.
However, for our purposes, due to the relatively small size of the problem
(we have T =5, |C| = 15, N = 48 for the low-risk waste instance; T' = 10,
|C| =20, N = 262 for the high-risk waste instance) we can solve problem
ES in reasonable time using the following integer program (IP). We define
parameter a.t, which is equal to 1 if day t is visited in scenario ¢, and 0
otherwise. Variable y;. is equal to 1 if customer i is assigned scenario ¢ and
0 otherwise. The variable z; is an integer variable representing the number

of customers visited on day t.

Minimize w (5.23)

subject to
w>z VteT, (5.24)
> =1 Vie N, (5.25)

S>> tavie=u VieT, (5.26)

eV CECZfC:fi
Yic € {0, 1} Vi € N;Ve e C, (5.27)
2, w €L VieT. (5.28)

The goal of this IP is to assign a scenario to every customer such that visits
are spread evenly over the planning period. We enforce this by minimizing
the maximal number of customers visited on a day during the planning
period (5.24). In that way we will visit more or less the same number of
customers on each day. Constraint (5.25) makes sure that every customer
is visited according to exactly one scenario that matches its frequency. We
can solve this IP optimally using ILOG Cplex 10.2.

Notice that the location of the customers is completely ignored in this ap-

proach. Clearly, this implies that there is a risk that customers positioned

5.4. Solution approach 111

close to each other are scheduled on different days. In the next section,
we assign scenarios to customers such that this disadvantage is taken into

account.

Assigning customers to days: algorithm CL

In a second approach, algorithm CL (CLuster), we partition the customers
using the “k-medoids clustering” algorithm before assigning scenarios to
customers. This clustering algorithm partitions the locations into k£ clus-
ters and attempts to minimize the squared error, i.e. the squared distances
between points labeled to be in a cluster and a point designated as the
center of that cluster. The k-medoids approach chooses data points as
centers. We prefer to use this particular clustering method because we
start from a given distance matrix rather than from the locations. We use
the k-medoid method as it is defined in the C Clustering Library by de
de Hoon et al. (2008). The algorithm starts with an arbitrary selection of
k data points that will act as centers (medoids) and then tries to improve
by swapping the medoids with other points.

We apply this method for several values of k, and then we solve (5.29)-
(5.32) (which is a modification of (5.23)-(5.28)), which takes clusters into
account when assigning customers to days. Define parameter o;;, which is
equal to 1 if customer 7 € N isin cluster [€ 1,..., k, with k& the number of
clusters, and 0 otherwise. z; is a variable which is equal to 1 if and only if
a customer of cluster [is visited on day ¢t. Now, our goal is to minimize the
total sum of the number of clusters visited each day. A cluster is visited if
a customer of that cluster is visited. Customers that belong to the same

cluster will thus be assigned to the same day as much as possible.

Minimize >, > 2z (5.29)
teT 1e{l,. k)

112 Chapter 5 - PVRP: A Case Study

subject to

Y =1 VieN, (5.30)
ceC:fe=f;

AetVicon < 2 Vie N;Vee CVte T;VL e {1,. ..k}, (5.31)
Yiey2y € {0,1} Vie N;Vee O3Vt € T;VL € {1,...,k}. (5.32)

Notice that a potential risk associated to the outcome of model (5.29)-
(5.32) is that the driving time needed to visit all the customers assigned to
a certain day exceeds Dy. To prevent this, a constraint on the number of
customers visited on each day is added; we return to this issue in section
5.2.

Routing using ILOG Dispatcher

Having assigned all customers to scenarios, either using ES or CL, we know
which customers need to be visited every day. Thus, for each day in the
planning horizon we now need to solve a, more or less standard, VRP.
Some specific constraints do need to be taken into account, such as the
facts that vehicles have different capacities, vehicles can dispose of their
load during the day and then continue the route (they can collect more
than their capacity on one day), some customers can only be reached by
small vehicles, vehicles do not need to unload at the end of the day, and the
number of driving hours per vehicle per day is limited. A solution algorithm
for this VRP is implemented using ILOG Dispatcher 4.4, which is a C++
library based on ILOG Solver and which offers features specifically adapted
to solving problems in vehicle routing. We implement all the standard VRP
constraints, as well as the problem-specific constraints mentioned above.
In the resulting routing algorithm, an initial solution to the VRP is
constructed using a standard savings heuristic, which makes a trade off
between more vehicles with shorter routes and fewer vehicles with longer
routes. Then, ILOG Dispatcher performs neighborhood search to improve
this solution. Both intra-route and inter-route neighborhoods are consid-

ered. As intra-route neighborhoods, 2-Opt and Or-Opt are implemented.

5.5. Computational results 113

¢

ILOG Dispatcher also interchanges between routes: the “relocate” neigh-
borhood (inserting a customer in another route); the “exchange” neigh-
borhood (swapping two customers from different routes); and the “cross”
neighborhood (exchanging the ends of two routes). We refer to ILOG Dis-
patcher user’s manual (ILOG (2005)) for a more elaborate description. We

have restricted ourselves here to these methods to improve the routes.

5.4.2 First route, then assign customers to days: algorithm
MR

In this approach, called algorithm MR (Mega Route), we first construct
large routes visiting all the customers and the disposal facilities. To ac-
complish this, we use the same VRP heuristic as described in the previous
section. Then, on the basis of these routes, customers are assigned to days
using model (5.29)-(5.32). Customers belonging to the same route are then
visited on the same day as much as possible. Then, we resolve a VRP for
each day in the planning horizon in order to obtain better routes. Algo-
rithm MR is similar to algorithm CL, where we first cluster the customers,
since geographically close customers tend to end up being visited on a same

day. Routing can yield a very different grouping of the customers though.

5.5 Computational results

The different algorithms were implemented in Microsoft Visual C++ 2005,
in combination with ILOG CPLEX 10.2 and ILOG Dispatcher 4.4. All
algorithms were run on a personal computer with a 2.80 GHz Intel Pentium
IV processor and 504 MB of RAM. Notice that we have not been concerned
with running times of our approach. This is mostly because the application
did not enforce strong limitations on the amount of computing time used.
In subsections 5.5.1 and 5.5.2 computational results are given for the low-
risk waste instance and for the high-risk waste instance, respectively. In
subsection 5.5.3 we discuss the performance of the different methods for

the two instances.

114 Chapter 5 - PVRP: A Case Study

5.5.1 The low-risk waste instance: results

In Table 5.3 some computational results are shown. Applying algorithm
ES, we find a set of routes requiring 3 vehicles. On several days only 2
of them are being used. Notice that visits are well spread over the week,
as each day a comparable distance is traveled. Between vehicles though,
there is a rather uneven workload. Total traveling time is 5859 minutes in
6 days.

As can be seen in Table 5.3, a solution by algorithm CL is obtained
using all three vehicles. Comparing this solution with the previous one we
can see that the variation in route length over the days is higher and that
total traveling time decreased to only 5551.

The last columns in Table 5.3 show the results of algorithm MR. Here
also three vehicles are used and the total traveling distance is rather high
(5934). Thus, routing the customers before assigning them to the differ-
ent days in the planning horizon does not yield a good solution for this
instance.

Concluding, this suggests that using the geographic structure yields a bet-
ter routing plan. Running times vary from about 1 hour for ES, to a few
hours for CL and up to 48 hours for MR. We experience a large variation
in time needed by the VRP solver. Finally notice that the current routes
used in practice have a total traveling time of 6565; using algorithm CL

we could improve them with 15.5%.

5.5.2 The high-risk waste instance: results

Let us now apply the same algorithms to the instance for collection of high-
risk waste. The results are summarized in Tables 5.4 and 5.5. Using the ES
algorithm, every day the same number of customers is visited, unloading
only occurs once in two days and on Fridays and only two vehicles are
required. Total travel time is then 10272 for two weeks.

Applying algorithm CL, two large clusters are obtained. Based on
these clusters we assign all the customers to the days of the planning

horizon. This results in a very uneven spread of the customers; on some

115

5.5. Computational results

(sagnuaws ur dwiry bupans)) 93sDM YS1U-MO] SINSIY :€'G SR,

€69 16469 6589

8G¢C 84¢C 8G¢C 84¢C 8G¢C 84¢C 9
SIvl Tce 019 ¥8¢ 60T 907y €91 09y | OVIT 43574 199 g
766 9.L¢C ¥9¢ ¥4¢ 00TT vIic vLe CIS 68TT c8y 08¢ LTv 14
(SR 884G 88¢C 66V | ¢60T L€C 667 91¥V | 6CIT 0ve 8LE 119 S
118 0cc (4514 6€6¢ 889 6.¢C 607 | 090T 149 609 4
71T 199 Gee 6€¢ ¥8¢T 9Ly €1¥ G6% | €80T 0ve 16€ (45174 T

Ae(q
LOL 19¢ JI1c¢¢ 121 | LOL 19¢ J1c¢c Icl | LOL 19¢ 12¢ ICT | 9PILA
"IN TO SH

116 Chapter 5 - PVRP: A Case Study

Algorithm ES CL
Vehicle 9T 12T TOT | 9T 9T 12T TOT
Day
1 558 350 908 | 311 385 696
2 662 495 1157 | 387 495 882
3 596 342 938
4 587 570 1157 | 579 583 398 1560
5 450 549 999 | 551 551
6 308 599 907 445 423 868
7 641 434 1075 | 494 619 115 1228
8 599 334 933
9 592 607 1199 | 585 577 356 1518
10 450 549 999 | 311 116 427
10727 7730

Table 5.4: Results high-risk waste (traveling time in minutes)

Algorithm | CL-limited customers per day | MR-limited customers per day
Vehicle 9T 9T 12T TOT 9T 12T TOT
Day
1 540 279 819 527 527
2 510 655 1165 452 673 1125
3 506 225 731 504 504
4 538 675 1213
5 544 675 1219
6 541 289 830 577 577
7 551 203 519 1273 455 673 1128
8 542 228 770 546 546
9 514 686 1200
10 591 615 1206 257 578 835
8013 7655

Table 5.5: Results high-risk waste (traveling time in minutes)(contd.)

5.5. Computational results 117

days 100 customers are visited, and as a result 3 vehicles are required, and
on other days no customers are visited. Total traveling time is then 7730,
which is clearly much better than ES; however, this leads to the usage of
3 vehicles. In order to see whether the instance could be solved using two
vehicles only, we add a constraint to (5.29)-(5.32) bounding the number of
customers assigned to one day. Solving this model, we obtain routes with
a total travel time of 8013 and using only 2 vehicles on most days.
Finally, we also apply algorithm MR to this instance. We create 2 giant
routes, visiting all the customers and the disposal facilities. Again, when
dividing the customers over the days, we obtain a highly uneven spread
of customers. Visits are only performed on 4 of the 10 days, with up to
171 customers on one day. In fact, as mentioned as a potential risk in
section 5.4.1, this is not feasible given the available driving time; if we
relax these constraints total distance traveled is 6591. Again, we need to
limit the number of customers visited per day, and we set this limit equal
to 75, which is more or less the amount of customers that can be served
on one day by 2 vehicles. This yields a total traveling time of 7655 and
utilizes 2 vehicles. More details are shown in Table 5.5.

Concluding, for this instance it is important to take into account geography.
Running times are limited to seconds for all three algorithms. Compared to
the original routes which take 8434 minutes, algorithm ES performs badly;

MR improves the currently used routes with 9% and uses one vehicle less.

5.5.3 Discussion

Depending on the instance, the methods used above perform differently.
Clustering the customers yields a better result for both instances compared
to algorithm ES, but the effect is larger for the high-risk waste instance.
Algorithm MR performs comparably as CL for this instance but a lot
worse than ES and CL for the low-risk waste instance. The reason for this
phenomenon is that there are customers in the low-risk instance with a
very high frequency (see Table 5.1) and these customers are rather spread

over the country (see Figure 5.1). Ignoring the geographic locations has

118 Chapter 5 - PVRP: A Case Study

then only a small impact on the solutions, as on each day the vehicles
have to travel in different directions anyway. There is a large difference
in the frequencies of the high-risk waste instance compared to the low-risk
waste instance (see Tables 5.1 and 5.2). Many customers require the same
frequency, and no customer has a very high frequency (maximally 4 visits
in 10 days). Together with the fact that the instance is larger, this explains
why clustering has a vast effect on the solutions.

As mentioned before, we obtain routes that might yield a rather uneven
workload for the different vehicles. Company A does not consider this as
being a problem. We propose routes using three vehicles for the small
instance. Not every day, though, all vehicles are needed, thus it might be
interesting to consider renting a vehicle and driver at an external company
for the days necessary. Changing the volume of the vehicles in order to
diminish the number of vehicles does not seem really useful. For the low-
risk waste instance a vehicle with capacity of 12 tons must be available
for customers not reachable with a larger vehicle. For the high-risk waste
instance, the volumes to be picked up are rather small and unloading is
only necessary after two days. It is not the volume but the time restrictions
that have the highest impact on travel times. That is also the reason why
running times of the algorithms differ a lot between the low-risk waste
instance and high-risk waste instance. In the low-risk waste instance the
volumes to be picked up are higher such that vehicles unload several times
during the day. This complicates the VRP model and increases running

times.

5.6 Conclusion

We consider a problem occurring in practice, and we modeled it as a PVRP.
Using different approaches (including ILOG’s dispatcher), we were able to
improve the current routes of Company A, using 1 vehicle less for one of
the instances. This not only means a reduction in cost due to the gain
in travel time, but also a reduction in wage costs and material costs. We

use rather simple algorithms to assign the customers to the days and to

5.6. Conclusion 119

solve the VRP’s. The use of clustering customers depends highly on the
dispersion of the customers and on their frequencies. We deal with this
instance of the PVRP by considering the problems of assigning customers
to days and routing the customers independently.

For those interested to further study the problem, the instances can be
found on the following website:
http://www.econ.kuleuven.ac.be/public/N05012/.

Chapter 6

On a motion control problem for a

placement machine

Assembling printed circuit boards efficiently using automated placement
machines is a challenging task. Here, we focus on a motion control problem
for a specific type of placement machines. More specifically, the problem
is to establish movement patterns for the robot arm, the feeder rack, and -
when appropriate - the worktable, of a sequential pick-and-place machine.
In this chapter we show that a (popular) greedy strategy may not always
yield an optimum solution. However, under the relevant Tchebychev met-
ric, as well as under the Manhattan metric, we can model the problem as
a linear program, thereby establishing the existence of a polynomial time
algorithm for this motion control problem. Finally, we give experimental
evidence that computing optimal solutions to this motion control prob-
lem can yield significantly better solutions than those found by a greedy
method.

121

122 Chapter 6 - MCP

6.1 Introduction

Assembling printed circuit boards efficiently using automated placement
machines is a challenging task. The ever increasing need for competi-
tiveness means that improving the throughput of production lines is an
important topic in this industry. It follows that investigating optimiza-
tion problems for whole production lines as well as for individual machines
remains a relevant task.

There are many types of different placement machines; for a more ex-
tensive discussion of different types of machines we refer to Grunow et al.
(2004), and Egbelu et al. (1996), where a classification is proposed de-
pending upon which parts of the machine can move. One possible cate-
gorization is to divide placement machines into two categories: sequential
machines (machines in which each component is handled sequentially) and
concurrent machines (machines in which components can be handled con-
currently). For instance, machines featuring a rotating turret or carousel
fall under the latter type. We restrict our attention here to sequential
placement machines. This type of placement machines can be described

as follows. It consists of 3 basic parts:

e a worktable. The worktable carries the printed circuit board and is
able, in its most general form, to move in the z-direction and in the

y-direction.

e a feeder rack. The feeder rack is a bar that contains feeders in which
the components are stored. Notice that a feeder stores components

of a single type. The feeder rack can move in the z-direction only.

e a robot arm. This is a device that transports the components from
the feeder rack to the appropriate location above the board; it is able

to move in the z-direction and in the y-direction.

Such a placement machine is described in, for instance, Ayob and Kendall
(2005) (where the worktable can only move in the z-direction) and in
Altinkemer et al. (2000) (where the worktable is stationary).

6.1. Introduction 123

Now, in order to operate any placement machine, several decisions must
be made. There are various hierarchies of decision making, see Crama et al.
(2002) for a discussion of this subject. However, given a single machine

and a single board, three basic problems need at least be addressed:

e the component sequencing problem: determine a sequence of the

given locations on the board where the components will be placed,

e the feeder assignment problem: determine where the feeders are lo-

cated in the feeder rack, and

e the component retrieval problem: determine for each component to

be placed, from which feeder it will be retrieved.

Each of these problems has been studied extensively in the literature:
early references to each of these three problems include Ball and Mag-
azine (1988), Leipéld and Nevalainen (1989), Crama et al. (1996); we refer
to Crama et al. (2002) and the references contained therein for more in-
formation concerning these problems.

In this chapter we focus on a motion control problem for a sequential
placement machine as described earlier. Thus, we will assume that each
of the problems mentioned above has been solved. In addition, we assume
(unless explicitly stated otherwise) that the robot arm can carry at most
one component at any given moment in time. At first sight one may then
wonder what is left to decide. However, before the machine starts actually
inserting components, we need to establish the movement patterns of the
3 parts that are capable of moving: the robot arm, the feeder rack, and
the worktable of the machine. This should be done in such a way that the
machine finishes its last operation as soon as possible. We call this problem
the motion control problem. Thus, the motion control problem for a single
sequential pick-and-place machine that we address in this chapter can be
described as follows. Given the locations on a board and a corresponding
placement sequence, and given the location of each component in the feeder

rack, the problem is to determine pick positions and place positions so that

124 Chapter 6 - MCP

the last placement operation is executed as soon as possible. Our goal is
to minimize the total assembly time for a single board.

Of course, for some sequential machines this problem is nonexistent.
Indeed, if both the feeder rack and the worktable cannot move, movement
of the robot arm is completely dictated by the solution to the three prob-
lems described above. Also, if the machine’s technology is such that it
features a fixed pick position and a fixed place position (i.e., each compo-
nent is picked (placed) at the same prescribed position) the movement of
the robot arm easily follows, as well as the movement of the worktable and
the feeder rack. However, the motion control problem becomes interesting
when there are no fixed pick and place positions, and at least two of the
three parts are capable of moving. Indeed, in Su et al. (1995), a so-called
dynamic pick and place model is introduced in which the possibility of
dynamic pick and place positions is investigated.

Notice that we do not address a specific placement machine; to achieve
competitive advantages, the technologies for pick-and-place operations are
subject to constant change and refinement. Instead, our results apply to
any (hypothetical) sequential placement machine featuring multiple mov-
ing parts. More generally, any situation where a transporting device needs
to bring a set of items able to follow some movement pattern to a given
set of locations also able to follow some movement pattern, falls under our

scope.

Related literature

As mentioned, the problem of finding good operational solutions for a
single placement machine has been actively investigated in literature. The
motion control problem is first described in Su et al. (1995) who take
into account the possibility of not restricting the pick positions and the
place positions to given locations. They propose a greedy strategy to solve
the resulting motion control problem and give computational evidence for
the gain of this dynamic pick and place model compared to the setting
with fixed pick and place positions. Further studies, that also involve the

computation of a feeder assignment and a component placement sequence,

6.1. Introduction 125

are presented in Su and Fu (1998), Su et al. (1998), Wang et al. (1998), and
van Hop and Tabucanon (2001b). van Hop and Tabucanon (2001a) and
Ayob and Kendall (2005) each further develop a method for the motion
control problem based on dynamic pick and place positions.

Motion planning has also received significant attention from the field
of robotics, see e.g. Latombe (1991) for an overview. Here the emphasis
is often on finding a motion plan (or a path) for a robot in some envi-
ronment. Also, there is some literature that deals with classical routing
problems such as the TSP, where the customers to be visited are known to
move, and the salesman needs to take this into account, see for instance
Helvig et al. (2003), and the references contained therein. Asahiro et al.
(2005), inspired by an application in robot navigation, deal with a similar
problem, a variant of the Vehicle Routing Problem where moving elements
need to be grasped one by one before they move out of the reachable region
of the robot arm. The goal is to pick as many elements as possible. As
far as we are aware however, the complexity of the specific motion control

problem discussed here has not been answered before.

Our contribution

(i) We provide an example in which it is beneficial for a (moving) feeder
rack to wait, thereby postponing the next picking moment. This ex-
ample shows that GREEDY methods (see Section 6.2) do not always
yield an optimal solution to the motion control problem (even in the
case of a stationary worktable). The example is valid for each dis-
tance metric (dz? 4 dy?)/P with p > 0 (where dz (dy) is the distance
traveled in the z (y) direction), more specifically, the example is valid
for p = 1 (the Manhattan norm), for p = 2 (the Euclidean norm),
and for p = oo (the Tchebychev norm). Notice that the latter norm

is quite common for placement machines.

(ii) We show that the motion control problem is solvable in polynomial

time for the relevant T'chebychev norm by formulating the problem as

126 Chapter 6 - MCP

a linear program. We also exhibit a special case of the motion control

problem where a GREEDY method delivers an optimal solution.

(ili) We demonstrate that for randomly generated instances there is a
significant difference between optimal solutions and solutions found
by GREEDY methods. This difference partly depends on the ratio
of the speed of the robot arm and the feeder rack. For some of the
instances we considered the quality of a solution found by a GREEDY

method may be significantly worse than the value of the optimum.

Remark

In our attempt to model the moving parts of a placement machine, we
make assumptions that are not precisely fulfilled in practice. For instance,
we assume a constant speed for each moving part; hence, we do not account
for effects resulting from acceleration, and deceleration. For a description
of the technical issues related to operating a placement machine we refer
to van Gastel et al. (2004).

6.2 A problem description, a method, and an in-

stance

In this section we further describe the problem, and we sketch a class of
solution methods for the motion control problem that we call GREEDY
methods. Recall that we assume that the component sequencing problem,
the feeder assignment problem, and the component retrieval problem have
been solved. In other words, the input to the motion control problem
consists of (i) a sequence of n locations on the board, (ii) the position
of the corresponding components in the feeder rack, and (iii) the starting
configuration as well as the speeds of the robot arm, feeder rack, and
worktable.

To facilitate the problem description we assume in this section that
times needed for picking a component and times needed for placing a com-
ponent can be ignored (notice that it is not difficult to include nonnega-

tive picking and placing times in our methods and models, see sections 6.3

6.2. A problem description, a method, and an instance 127

and 6.4). We assume that all movements occur in two-dimensional space,
and hence, a position is completely specified by its z-coordinate and its
y-coordinate. Also, we assume that the feeder rack coincides with the a-
axis, i.e., all y-coordinates of picking positions equal zero. Finally, in order
to facilitate the description of a GREEDY method, we first assume here
that there are no physical obstructions for the movement patterns of robot
arm, feeder rack, and worktable; we will come back to this issue later. We

use the following notation:
fori=1,2,...,n:

o (xp;,yp;): i-th placement position, i.e., the position where compo-

nent ¢ is placed by the robot arm onto the board,

e (xs;,0): i-th pick position, i.e., the position where component i is

picked by the robot arm from the feeder rack, and

o ¥ lace (¢ “k): moment in time when component i is placed (picked).

A feasible solution to the motion control problem amounts to finding val-
ues for these variables that correspond to achievable movement patterns.

Further we use the following notation:
fori=1,2,...,n:

o (xbi(t),ybi(t)): the position of the location on the board where com-

ponent ¢ needs to be placed at time ¢,

o (xfi(t),yfi(t)): the position of the location where component i is

stored in the feeder rack at time ¢, and
o Vo (Vi,V3): speed of the robot arm (feeder rack, board).

We call a method for the motion control problem a GREEDY method
when, given the moments in time when the previous events occurred, the
next event occurs as soon as possible. There are 2n + 1 ordered events
in the motion control problem: picking component i, placing component ¢

(i =1,...,n), and returning to the starting position for the robot arm.

128 Chapter 6 - MCP

To describe a GREEDY method, let us for the moment assume that,
for some i, 1 < i < n, we know the i-th placement position (zp;,yp;),
Place, and that we also know the (i + 1)-st pick

the corresponding time 2,

position (xs;41,0), and its corresponding time tfff . Observe that we then
! ! ick ick\y
also know (zbi1(t] "), ybi+1 (8] *)) and (zfir2(t17), yfira (7)), i,
the position of the location where the (i + 1)-st component needs to be
placed at time t = tf lace, and the location in the feeder rack of component

(i +2) at time ¢ = 717"

Given the i-th placement position, and its corresponding time, and
given the (i + 1)-st picking position, and its corresponding time, we now
show how a GREEDY method computes the (i + 1)-st placement posi-
tion, the (i + 2)-nd picking position, as well as their corresponding times.
Applying this computation, starting with a given initial state, for i =
1,2,...,n — 1 iteratively, gives us a solution to the motion control prob-
lem. This is done as follows. At ¢ = ¢¥ lace ' we let the worktable move such
that the location of the (i 4+ 1)-st placement location travels towards the
(1 + 1)-st picking position. There are two possibilities. Either the board
location arrives at the (i + 1)-st picking position (zs;11,0) on or before
t= tficf , 1.e., the board location arrives there before the robot arm (recall
that we, for the moment, ignore potential physical obstructions). In that
case, the board stops and waits for the robot arm to arrive. It follows
then that (tfj_alce, (xpit1, ypit1)) = (tfff, (8i41,0)). Or, the board and
its (¢ + 1)-st placement location is unable to reach the (i 4+ 1)-st picking
ffff , and given the pick occurring at ¢ = tfflk , a place-

ment position and time are computed by having the robot arm and board

position before t =t
travel directly towards each other. This determines (tf_li_af “(xpit1, ypit1))-
To express this in mathematical terms, let f be a function which takes as
input two states, each state corresponding to an object, where a state is
specified by (time, location, speed). The function f then outputs the time

and the location where the two objects meet, provided they travel directly

6.2. A problem description, a method, and an instance 129

towards each other. Thus:

lace ic
(tf_;,_l s (xpi+17 ypi+1)) = f((tf-ylk) ($Si+1, 0)’ Va)7
(#2179 (wbygn (£71°°°), ybig1 (££9°°)), V3)). (6.1)

place
ti—i—l ’

lows. At t = tficf , the feeder rack location of component (i + 2) starts to

Next, given ((Tpit1,ypit+1)), we compute a minimal tf_g“ as fol-
move towards the position on the x-axis where the robot arm can reach
component (i 4+ 2) as quickly as possible after having placed the (i + 1)-st
component. We express this using a function g that takes as input two
states, each state corresponding to an object, where a state is again spec-
ified by (time, location, speed). The function g then outputs the minimal
time and the corresponding location where the two objects meet, given

that the second object moves only in the z-direction. Thus:

(tfj_cgka ($Si+2, O)) = g((tzpj-alce7 (xpi-i-h ypi-i—l)) VCL)7
ick ick ick
(7 @ fia (B35 yfira (7)), V). (6.2)

Equations (6.1) and (6.2) show how the (i + 1)-st placement position,
and the (i 4+ 2)-nd picking position, as well as their corresponding times
can be computed when knowing the i-th placement position, the (i + 1)-
st picking position and the corresponding times. By viewing the starting
configuration as the 0-th placement position, and by computing (zsq,0)
and a minimal £2*"
GREEDY method. We refer to the example below, and the corresponding
figure for an illustration of a GREEDY method.

Notice that we have not specified the precise form of the functions f

given the starting configuration, we have specified a

and g; they depend on the particular distance metric used. We use f to
find the meeting place, and meeting time for two objects that each can
move in both the z and y-direction, and we use g when one of the two
objects can only move horizontally. Thus, in case the board is restricted
to move only in the z-direction (see Ayob and Kendall (2005)), this is
easily accommodated by replacing f by ¢ in (6.1). Notice further that we

130 Chapter 6 - MCP

assumed in the description above that there are no physical constraints for
any of the moving parts. These constraints, however, are present in exist-
ing placement machines (although one could envision a technology where
the feeder racks are above the board, and the board could travel beneath
the rack without any physical constraints). Then, since the board should
not collide with the rack, the board will not be able to reach a picking loca-
tion. In the case these physical constraints play a role, we let a moving part
(e.g., the work table) travel to the location that is closest to the location
(under the appropriate norm) that was aimed for in case of the absence
of these constraints. Observe also that, in case of the Tchebychev norm,
there may be multiple locations each of which achieves a minimal time.
We come back to this issue in Section 6.4. Finally, notice that GREEDY
has the property that at any moment in time the robot arm moves (apart

from the time spent in picking and placing the components).

Let us now proceed by sketching an example that shows that a GREEDY

method may not always give an optimal solution.

Example

Let us consider the following instance where we first assume a Tchebychev
metric. The speed of the robot arm (denoted by V) equals 4 (measured
in distance-units per time-unit), the speed of the feeder rack (denoted by
V) equals 1, and the speed of the board (denoted by V) equals 0 (i.e.,
the board is stationary in this example). Let us assume that picking times
and placing times can be ignored. Suppose further that at time ¢t = 0 the
robot arm is positioned at (0,0) and that it has to place two identical com-
ponents that are stored in the feeder rack, currently positioned at (20,0).
The first component has to be placed at (20,1) and the second at (20, 2).
The example instance is depicted in Figure 6.1. The starting configuration
of the instance is as follows: tglace = tgidc = 0, (zso,ys0) = (xpo,ypo) =
(0,0),Va = 4,Vy =1 and V, = 0. Applying GREEDY to this instance
yields the following:

6.2. A problem description, a method, and an instance 131

t =4 : The robot arm meets the first component at (16,0), and picks it
up. Using terminology introduced above, this is computed as follows:
(7, (ws1,0)) =
gl(85, (@po, ypo), Va), (66", (2 fu () w1 (15)), Vi),

Making g explicit we compute xs; and t’fmk as follows:

since ypo < |zpo — x f1 (tglace)\

zs1 = fi(85°) = (Jwpo — 2 fi(th ")/ (Va + Vi) x Vi =20 = (|0 —
20|/(1+4)) x1=16

and

ik — qPick g py (7Y — 251 |)V = 0+ |20 — 16]/1 = 4.

Thus

9(0,(0,0),4),(0,(20,0),1)] = (4,(16,0)).

t =5 : The robot arm reaches the first placing location, and places the
first component at (20,1):
(8 (ap1,yp1)) =
FIERTE, (ws1,0), Va), (85, (b (¢°), yba (£5°)), Vb))-
Making f explicit we compute tﬁ’lace and (xp1,yp1) as follows:
golace — Pk L ag(|asy—apy|/Va, yp1 /Va) = 4+(]16—20/4,1/4) = 5
and, as the board is stationary,
(ep1,yp1) = (@b (65°°), ybr (t6°°°)) = (20, 1).
Thus
f[(4,(16,0),4), (0, (20,1),0)] = (4+(20—16)/4,(20,1)) = (5, (20, 1)).

t = 5.6 : The robot arm meets the second component at (17.6,0), and picks
it up:
(85, (252,0)) =
gL, (@pr, ypr), Va), (B, (@ fo ('), y f2(6175)), V)]
= ¢[(5,(20,1),4), (4,(16,0),1)] = (5.6, (17.6,0)).

t = 6.2 : The robot arm places the second component at (20, 2):

(t’él“fe, (zp2, yp2)) =
FIUEEE (252, 0), Va), (519, (wba (17°°), yba (179°°)), V3)]
= f[(5.6,(17.6,0),4), (5,(20,2),0)] = (5.6 + (20 — 17.6) /4, (20,1)) =

132 Chapter 6 - MCP

y 4 board

\k arm

(20.2)

/(201)

e
[T T T T T KT KT T [T T
(0,0) (16,0) (20,0) feeder rack

Figure 6.1: Graphical Representation of the Example

(6.2, (20,2)).

t =11.2 : The robot arm arrives at (0,0).

Summarizing, robot arm and feeder meet for the first time at t = 4
at position (16,0) where the picking of the first component occurs. The
robot arm then travels to the first placing position (20, 1) and places the
first component at ¢ = 5. The picking of the second component takes place
at time ¢ = 5.6 at position (17.6,0) and the placing at t = 6.2 at position
(20,2). Finally, the arm needs another 5 time units to return to (0, 0) such
that total assembly is finished at ¢ = 11.2.

Notice what would happen if we, starting with the initial configuration
at t = 0, let the feeder rack move only 1 distance unit and wait with the
feeder rack in (19,0) for the robot arm to arrive: then at ¢ = 4.75, the
robot arm would pick its first component at (19,0), place this component
at time ¢ = 5, return to (19,0) to pick the second component and place it
at t = 5.75 and finally return to arrive at (0,0) at time ¢ = 10.75, which
is faster than GREEDY’s solution. Indeed, in this setting it is beneficial
to wait with the feeder rack instead of moving it (one also can exhibit
examples in which it is beneficial to wait with the robot arm instead of
the feeder rack). The idea behind this example is that postponing the

picking moment can actually decrease the time from place point to next

6.3. LP formulation 133

place point. This can happen when the robot arm moves faster than the
feeder rack. In this case it may be advantageous to travel with the robot
arm only, instead of traveling with both of them. More generally, when
the speeds of two moving parts differ, GREEDY may not always find an
optimal solution. Thus, intuitively, it can be better to use the ”fast”
moving piece and wait with the ”slow” moving piece of equipment instead
of moving them both. Under Manhattan metric this example yields similar
results. Using GREEDY, the robot arm picks at ¢ = 4 the first component
at (16,0), places it at t = 5.25, returns to (18,0) at t = 6 to pick the second
component and place it at ¢ = 7 to finally arrive in (0,0) at t = 12.5. If
we would allow the feeder rack to wait at (20,0), the first pick moment
would only occur at ¢t = 5 and the first component would be placed at
t = 5.25 but the second component would be picked at ¢t = 5.5, yielding a
total assembly time ¢ = 11.5. Notice that the example is valid under an
Euclidean metric as well, and, in fact, for any other metric (da? 4 dyp)l/ p
with p > 0.

Obviously, we do not claim that this is a realistic, or a worst-case
example; the sole purpose of this example is to illustrate that GREEDY

may not yield an optimum solution.

6.3 LP formulation

In this section we show that the motion control problem is solvable in
polynomial time by formulating the problem as a linear program under the
Tchebychev metric as well as the Manhattan metric. We assume (without
loss of generality) that the rack has y-coordinate 0, and that all other y-
coordinates are nonnegative; we also assume positive speeds for each of
the moving elements. Further, we start from a situation (at t = 0) where
the robot arm is located at (0,0), and we impose that the robot arm has
to return to (0,0) after all components have been placed. We now state
all variables and parameters we need to describe the model. We use the

following variables, for i € N = {1,...,n}:

134 Chapter 6 - MCP

e 1s;: x-coordinate of the pick position of component ¢,
e 1p;: x-coordinate of the place position of component 7,
e yp;: y-coordinate of the place position of component 7,

Til: time between picking component ¢ and placing it,

° TZ-Q: time between placing component ¢ and picking component i + 1.

(Notice that we let T2 correspond to the time the robot arm needs between

placing component n and returning to (0,0).) Finally, let
e Tj: time needed before picking component 1.
We use the following parameters:
e V,: speed of the robot arm,
e V4 speed of the worktable,
e Vy: speed of the feeder rack.
Further, for each component i to be placed (i = 1,...,n) we have:
e pk;: time needed to pick component i,
e pc;: time needed to place component i.

Also, for any pair of locations ¢ and ¢ 4+ 1 to be visited consecutively (i =
1,...,n—1), let

e dx;: be the difference in z-coordinate,
e dy;: be the difference in y-coordinate,

e d;: be the difference (in z-coordinate) between the feeder from which
component % is retrieved and the feeder from which component i + 1

is retrieved.

Finally, let

6.3. LP formulation 135

e do: the distance (at t = 0) between (0,0) and the feeder holding the

first component,

e (x1,y1): the z,y-coordinates of the location of the first component
(at t =0), and

o z5p41 =0.

n
Minimize Th + > (T} + T7) (6.3)
=1
. 1 Ypi ; .
subject to T; > Z— Vie N; (6.4)
Va
ﬂzgi:@l Vi€ N; (6.5)
Va
T2 > Vi e N; (6.6)
Va
T? > lzsiv1 — api] Vi€ N; (6.7)
Va

|zs; + d; — x8i11]

pei + T+ T2 > Vie N\ {n}; (6.8)

Vi
4 dri — s
Phiss + T2 + T}, > 2Pt ”?/ it e N {n): (6.9)
b
4 dus — ums
Phiss + T2 +T), > WPiT yv vpicl e N {n);
b
(6.10)
‘do — x81|
Ty > —— 6.11
vz (6.11)
ﬁzﬁﬁ (6.12)
a
phy + Ty + 7L > [Tl (6.13)
Vb
zm+%+ﬂ2@5ﬂﬂ (6.14)
Vb
all variables > 0. (6.15)

Notice that since the sum of all picking times and all placing times is a

constant, the objective is formulated with (6.3). Constraints (6.4) imply

136 Chapter 6 - MCP

that the time needed between picking component i and placing it (the left
hand side) is at least equal to the time needed to travel with the robot arm
in the y-direction to the y-coordinate of the next place position. In a similar
fashion, constraints (6.5), (6.6) and (6.7) can be explained. Constraints
(6.8) state that the amount of time needed between two consecutive picking
operations (the left hand side) must be at least the time needed for the
feeder rack to arrive at the position where the next component will be
picked (notice that xs; + d; reflects the position where component i + 1
is at the time when component i is picked). Constraints (6.9) and (6.10)
ensure that the board has enough time between two consecutive placement
operations to arrive at the next placement operation. Finally, constraints
(6.11)-(6.14) deal with the time needed for the first placement.

We make the following remarks:

e Strictly speaking, the model above is not a linear program due to
the occurrence of absolute values. However, standard reformulation

techniques can resolve this issue.

e Notice that this formulation can easily be modified for a Manhattan
metric. Constraints (6.4) and (6.5) can be replaced by a single con-
straint: Ti1 > %, and a similar operation can be applied to
constraints (6.6) and (6.7), constraints (6.9) and (6.10), (6.13) and
(6.14).

e This model can easily be modified for the case of a stationary work-
table. Indeed, by dropping constraints (6.9) and constraints (6.10)
and by turning the xp; and yp; from variables into parameters, we ob-
tain a model for the case of a stationary worktable. Also, the model
is easily adapted to deal with the case of a worktable being only able
to move in the z-direction (see e.g. Ayob and Kendall (2005)).

e Notice that in the description of this model we assume a single feeder
rack. However, one easily generalizes this model to a setting where
there are two feeder racks alongside the machine (or, even more gen-

eral, when each component has its own specific travel characteristics,

6.4. Implementation, design, and computational results 137

see Asahiro et al. (2005)).

e In case there are limits for the robot arm, feeder rack, and board on
the locations they can reach, one can add linear constraints ensuring

these limits.

Finally, there are two important directions in which model (MCP) can
be generalized. First, when a point is characterized by d coordinates (in-
stead of two), the model can be easily adapted to deal with this situation.
Second, in a setting where the robot arm has a capacity ¢ > 1, the for-
mulation remains valid. Indeed, it is not unnatural to assume that the
robot arm can hold more than a single component (see e.g. Altinkemer
et al. (2000)), and as long as the sequence is specified with which these
components need to be picked, and need to be placed, the model remains

valid.

6.4 Implementation, design, and computational

results

6.4.1 Implementation and design

We first describe how we implemented a GREEDY method, and next, we
discuss the design of the experiments.

As described in Section 6.2, a GREEDY method for the motion control
problem consists in iteratively minimizing time between picking and plac-
ing a component and between placing a component and picking the next
component. Indeed, suppose that the robot arm and the feeder rack meet
each other somewhere on the x-axis to pick a component. From that point
on the robot arm moves towards the placing position of that component
(assuming a stationary worktable). The feeder starts moving at the same
time with the next component to be picked in the direction of the next
picking position. After placing, the robot arm returns to the z-axis and
robot arm and feeder will meet as soon as possible. Because we are using

the Tchebychev metric, this meeting point is not always uniquely deter-

138 Chapter 6 - MCP

(zpi, ypi)

(xpi + ypi, 0)
(@ fisr (7F), 0)

(l“pi+1a ypz’+1)

Figure 6.2: GREEDY for the Tchebychev Metric

mined, as is shown in Figure 6.2. The robot arm can reach every point in
the interval [(zp; — ypi,0), (zp; + yp;, 0)] in the same minimal timespan.

Suppose now that at t = ¢¥ ek the feeder location of component i + 1
is to the right of (zp; + yp;, 0), as indicated in Figure 6.2. Suppose further
that the feeder rack can reach up to (z,0) before the robot arm returns to
the z-axis. It follows that every position in the interval [(z,0), (xp;+ypi, 0)]
is a meeting point for robot arm and feeder rack achieving minimal time.
In our implementation of a GREEDY method under a Tchebychev metric
we choose as a meeting point the point which causes a minimal distance
for the feeder rack to travel. Thus, we use as a secondary criterion the
distance traveled by the feeder rack. In the example depicted in Figure 6.2
this would amount to (zp; + ypi,0) as a meeting point.

Obviously, using knowledge of the next placement points may result
in a better solution. Indeed, referring again to Figure 6.2, given place-
ment position (zp;+1,ypi+1), (2,0) may be a better meeting point than
(xpi +ypi, 0) when it comes to minimizing total time needed. However, we
decided in our implementation of a GREEDY method not to use any infor-
mation from upcoming placement positions, and instead use as a secondary
criterion the feeder distance traveled.

A GREEDY algorithm for the motion control problem is much more

straightforward in the case of a Manhattan metric. Robot arm and feeder

6.4. Implementation, design, and computational results 139

meet in a unique point, i.e., starting from a pick position the robot arm
moves towards the placement position, returns to the z-axis and moves in
the direction of the feeder; in the meantime the feeder moves with the next

component in the direction of the robot arm until they meet.

The setting of our experiment is as follows: consider a board of length
1000 and width 500 with n randomly generated placing positions on this
board. We generated for m different component types a position on a feeder
rack of length 3000. For each of the n components we uniformly selected
a component type. The robot arm can move in the z- and y-direction, the
feeder rack can move in the z-direction only, and the board is stationary.
To completely specify an instance of the motion control problem, we took a
random sequence of locations as the solution to the component sequencing
problem, and we took a random assignment of feeders to positions in the
rack as a feeder rack assignment. In addition, we assumed that there is
precisely one feeder for each type of components, and hence, the component
retrieval problem vanishes. As pointed out by a referee, the fact that these
solutions are not found by some heuristic, may adversely affect the results
of a GREEDY method, when compared to an optimum solution to the

motion control problem.

Different experiments were executed by changing (i) the number of
components to be placed (n = 40,80,160), (ii) the number of compo-
nent types (m = 10,20), (iii) the relative speeds of feeder and robot arm
(V§/Va =0.25,0.5,1,2,4), and (iv) the capacity c of the head of the robot
arm (c = 1,4); see Table 6.1 for an overview. In our choice for some of

these parameter values, we used van Gastel et al. (2004).

We implemented a GREEDY strategy in Ot language and we solved
the LP’s using ILOG CPLEX 8.1.0, OPL Studio 3.6.1. The tests were
performed on a personal computer with a 2.8 GHz Intel(R)Pentium(R) IV
with 504 MB of RAM. Since all computation times are within two seconds,

we have not reported them.

140 Chapter 6 - MCP

6.4.2 Results

The results for the Tchebychev metric are summarized in Tables 6.2 and
6.3. Each number is the average over the results of 10 different randomly
generated instances.
Table 6.2 gives the percentage deviation! of the GREEDY heuristic from
an optimal solution for a machine with a robot arm carrying at most one
component. It is clear that for a slow moving feeder rack (slow compared
to the robot arm), the deviation of GREEDY’s solutions from an optimal
solution is relatively small. This is to be expected: in an extreme case
of a stationary feeder rack, a solution found by a GREEDY method and
an optimal solution coincide. However, GREEDY’s performance deterio-
rates when the ratio Vy/V, increases. Indeed, the slower the robot arm
is (compared to the feeder rack) the larger the interval becomes where all
meeting points have a minimal time between placing component ¢ and pick-
ing component i + 1. Also, the effect of the density (n/m) on GREEDY’s
performance seems relatively small.

In Table 6.3 the percentage deviation of GREEDY’s solutions from

optimal solutions is given when the head of the robot arm can carry at

assembly time GREEDY - optimal assembly time)

1 /__
(=100 x optimal assembly time

number of components 40/80/160

number of component types 10/20

length of the board 1000 (in distance units)
width of the board 500 (in distance units)
length of the feeder rack 3000 (in distance units)

speed feeder rack/speed robot arm | 0.25/0.5/1/2/4
time needed to pick a component | 0.8 (in time units)
time needed to place a component | 0.8 (in time units)

capacity of head 1/4

Table 6.1: Ezperimental design

6.4. Implementation, design, and computational results 141

n | m Vi/Va

0.25 0.5 1 2 4
40 | 10 | 5.599 | 5.843 | 7.971 | 16.218 | 20.398
80 | 10 | 6.512 | 6.675 | 8.108 | 14.674 | 19.965
160 | 10 | 6.769 | 6.735 | 8.194 | 16.895 | 21.690
40 | 20 | 7.436 | 7.114 | 8.544 | 16.941 | 20.552
80 | 20 | 6.984 | 6.825 | 8.149 | 16.602 | 20.457
160 | 20 | 7.046 | 7.240 | 8.544 | 16.018 | 19.636

Table 6.2: Percentage deviation of GREEDY from the optimum under a

Tchebychev metric, head carries 1 component

n | m Vi/Va

0.25 0.5 1 2 4
40 | 10| 1.470 | 1.791 | 2.469 | 5.624 | 7.668
80 | 10 | 1.844 | 2.069 | 2.600 | 5.862 | 7.566
160 | 10 | 1.861 | 1.990 | 2.616 | 6.352 | 7.988
40 | 20| 1.476 | 1.754 | 2.100 | 5.621 | 7.501
80 | 20 | 2.021 | 2.281 | 2.563 | 6.549 | 8.182
160 | 20 | 1.773 | 1.983 | 2.375 | 6.132 | 7.470

Table 6.3: Percentage deviation of GREEDY from the optimum under a

Tchebychev metric, head carries 4 components

142 Chapter 6 - MCP

most four components, meaning that it can pick up four components before
it travels to the board for placing. These results follow the same trend as
the results in Table 6.2, namely a small deviation for a fast moving arm
(compared to the feeder) which becomes larger as Vy/V, increases. But,
the percentage deviations in Table 6.3 are smaller than in the previous
table. This can be explained by the fact that both a GREEDY solution
and an optimal solution follow the same movement pattern during the time
that the arm needs to pick up four components; only when the arm travels
to the board to place the four components and then returns to the z-axis to
pick the next component, differences may occur. And since the number of
times the robot arm has to return to the feeder rack is now much smaller,
the deviation of GREEDY’s solutions compared to optimal solutions will

be smaller.

n | m Vi/Va

0.25 0.5 1 2 4
40 | 10 | 3.669 | 1.319 | 0.000 | 3.426 | 2.084
80 | 10 | 3.900 | 1.776 | 0.000 | 3.396 | 1.791
160 | 10 | 4.183 | 2.098 | 0.000 | 3.515 | 1.580
40 | 20 | 4.322 | 2.507 | 0.000 | 2.982 | 0.809
80 | 20 | 4.206 | 2.273 | 0.000 | 3.205 | 0.923
160 | 20 | 4.085 | 2.183 | 0.000 | 3.062 | 1.060

Table 6.4: Percentage deviation of GREEDY from the optimum under a

Manhattan metric, head carries 1 component

Similar experiments have been carried out for the Manhattan metric,
and the results are summarized in Tables 6.4 and 6.5. We first consider the
case where the robot arm carries at most one component (Table 6.4). Here,
the picture is somewhat different compared to the Tchebychev metric: al-
though it is still true that for small ratio’s of V¢/V,, GREEDY’s deviations
from the optimum are relatively small, GREEDY’s results improve up to

Vf/ Vo = 1. Indeed, when Vy = V, the values of the two solutions are

6.4. Implementation, design, and computational results 143

identical; we claim the following.

Claim 2. When V, = V¢, Vj, = 0, and when using a Manhattan metric,
GREEDY gives an optimal solution to the motion control problem.

Argument: We first argue that - in case V, = V;,V,, = 0 and under a
Manhattan metric - there exists an optimal solution to the motion control

problem that satisfies the following two properties:

Property 1: between two consecutive placements, the robot arm travels,
directly after placing component i, from (zp;, yp;) to (zp;,0), travels
towards the appropriate location on the feeder rack until it meets
this location at (zs;4+1,0), where it picks up component i + 1 (notice
that this location may coincide with (zp;,0)), and finally the robot
arm travels via (zp;4+1,0) to (xp;+1, ypi+1) where it places component
i+1(1<i<mn),and

Property 2: the feeder rack, after the picking of component ¢, moves in
a way that the location of component i 4+ 1 travels to (xp;,0), and
the feeder rack only stops when this location reaches this position,

or when it meets the robot arm (1 < i < n).

To see that property 1 is valid, consider an optimal solution in which

n | m Vi/Va

0.25 0.5 1 2 4
40 | 10 | 0.300 | 0.089 | 0.000 | 6.517 | 9.690
80 | 10 | 0.763 | 0.209 | 0.000 | 6.992 | 10.099
160 | 10 | 0.775 | 0.201 | 0.000 | 7.212 | 10.218
40 | 20 | 0.472 | 2.066 | 0.000 | 6.979 | 10.282
80 | 20 | 0.871 | 0.142 | 0.000 | 7.577 | 10.830
160 | 20 | 0.870 | 0.101 | 0.000 | 7.315 | 10.323

Table 6.5: Percentage deviation of GREEDY from the optimum under a

Manhattan metric, head carries 4 components

144 Chapter 6 - MCP

the robot arm deviates from the sketched procedure. More specifically,
consider an optimal solution in which the robot arm after having placed
component ¢, and after having traveled to (xp;,0), does not travel towards
the appropriate location on the feeder rack. Then an alternative optimal
solution can be constructed with identical picking moments and placing
moments that involves waiting time for the robot arm. We further modify
this alternative optimal solution by ‘collecting’ the waiting time, and ‘shift’
it to the first picking moment that follows, say at ¢ = ¢¥ “k Thus, in this
optimal solution the robot arm waits until the feeder rack arrives, and the
pick occurs at t = ¢! kTt is clear that, instead of the robot arm having
to wait until the feeder rack arrives, we can also let the robot arm travel
towards the feeder rack, meet the feeder rack halfway, and, after having
picked this component, return, together with the feeder rack to be back at

t = tfiCk at the original picking location. Thus, this alternative solution

has at ¢t = t’i’iCk the robot arm and the feeder rack at exactly the same
location as in the original optimal solution, and, the remaining part of the
solution is identical to the original optimal solution. Thus, any optimal
solution not satisfying Property 1, can be modified into one that does.

Property 2 is valid for a similar reason. Suppose, after the picking of
component ¢, the location of component ¢ 4+ 1 in the feeder rack waits at
a position different from (xp;,0) until the robot arm arrives. Again, as
above, an alternative optimal solution would be to travel with the feeder
rack meeting the robot arm, and return to the original position at the same
time.

Properties 1 and 2 together precisely yield GREEDY. O

Notice also that for further increasing values of the ratio V;/V, GREEDY’s
results first deteriorate, however then improve again for a faster moving
feeder rack. Finally, the effect of the density (n/m) on GREEDY’s perfor-
mance seems again relatively small.

When the head can carry up to four components, the results found
by GREEDY improve (compared to the setting where the head carries a
single component) as long as V;/V, < 1 (see Table 6.5). When Vy > V,,

6.5. Conclusion 145

GREEDY'’s results are worse than in the setting with a single component.
This is explained by the observation that the robot arm is forced - when
picking up four components - to spend time traveling along the z-axis.
This may be done in a suboptimal way leading to the results in Table 6.5.
This contrasts with the case of the head carrying at most one component:
in that case, the rack is waiting for the robot arm when it needs to pick up
a component, and hence the robot arm spends its time exclusively placing
the components.

Notice that there is a difference here compared to the Tchebychev met-
ric, where results of GREEDY improve overall when going from a capac-
ity of the arm of 1 to a capacity of 4. The effect as described above
for GREEDY also holds for a Tchebychev metric but is overruled by an-
other effect. Remember that in the implementation of GREEDY under a
Tchebychev metric we used as a secondary criterion the distance traveled
by the feeder rack. As a consequence, a fast feeder (compared to the arm)
might spend a lot of time waiting in a suboptimal position every time the
robot arm is placing components on the board. As this happens more of-
ten when the arm can carry only one component, GREEDY will perform

worse than in the case that the robot arm has a capacity of 4.

6.5 Conclusion

We investigated the problem of how to determine movement patterns for
the moving parts of an automated placement machine. We showed that a
straightforward greedy strategy to establish these patterns may not give
an optimal solution. However, at least under a Tchebychev metric and
under a Manhattan metric the problem is solvable in polynomial time by
formulating it as a linear program. Both for a Tchebychev metric and a
Manhattan metric, we showed that a reduction in assembly times is possi-
ble by using the LP-model.

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3

5.1
5.2

6.1

Distance versus latency
Example MLT on the line

The TRPP ontheline 18
A tree with width three 22
MTRPP with release dates 26
Example TRPP with uniform deadlines 27
Pareto Optimality 36
Supported Set 36
Examples of subtrees in left-right approach 42
Example: Problem 2onatree. 58
Example (contd) L. 59
Convex point set 61
Thenetwork 63
Representation proof Proposition 3.11 64
Complexity results PLPP 79
Complexity results PLP 79
PLP . . . e 89
Customers of category 3: instance 1 103
Customers of category 1: instance 2 104
Graphical Representation of the Example 132

147

148 List of Figures

6.2 GREEDY for the Tchebychev Metric 138

List of Tables

3.1

5.1
5.2
5.3
0.4
2.5

6.1
6.2

6.3

6.4

6.5

A summary of our complexity results 70
Frequencies low-risk waste 102
Frequencies high-risk waste 103
Results low-risk waste (traveling time in minutes) 115
Results high-risk waste (traveling time in minutes) 116

Results high-risk waste (traveling time in minutes)(contd.) . 116

Experimental design Lo 140
Percentage deviation of GREEDY from the optimum under
a Tchebychev metric, head carries 1 component 141
Percentage deviation of GREEDY from the optimum under
a Tchebychev metric, head carries 4 components 141
Percentage deviation of GREEDY from the optimum under
a Manhattan metric, head carries 1 component 142
Percentage deviation of GREEDY from the optimum under

a Manhattan metric, head carries 4 components 143

149

Bibliography

Afrati, F., Cosmadakis, S., Papadimitriou, C. H., Papageorgiou, G., Pa-
pakostantinou, N., 1986. The complexity of the traveling repairman

problem. Informatique Théorique et Applications 20, 79-87.

Aksen, D., Aras, N., 2005. Customer selection and profit maximization
in vehicle routing problems. Operations Research Proceedings 2005, Se-
lected Papers of the Annual International Conference of the German
Operations Research Society (GOR), 37-42.

Alegre, J., Laguna, M., Pacheco, J., 2007. Optimizing the periodic pick-up
of raw materials for a manufacturer of auto parts. European Journal of
Operational Research 179, 736-746.

Alonso, F., Alvarez, M. J., Beasley, J. E., 2008. A tabu search algorithm
for the periodic vehicle routing problem with multiple vehicle trips and
accessibility restrictions. Journal of the Operational Research Society
59, 963-976.

Altinkemer, K., Kazaz, B., Koksalan, M., Moskowitz, H., 2000. Optimiza-
tion of printed circuit board manufacturing: Integrated modeling and

algorithms. European Journal of Operational Research 124, 409-421.

Angelelli, E., Speranza, M. G., 2002. The periodic vehicle routing problem
with intermediate facilities. European Journal of Operational Research
137, 233-247.

151

152 BIBLIOGRAPHY

Angelelli, E., Speranza, M. G., Tuza, Z., 2008. Notes on the TSP with

profit, manuscript.

Anily, S., Glass, C. A., Hassin, R., 1998. The scheduling of maintenance
service. Discrete Applied Mathematics 82, 27-42.

Archetti, C., Feillet, D., Hertz, A., Speranza, M. G., 2008. The capac-
itated team orienteering and profitable tour problems. Journal of the

Operational Research Society, 1-12.

Arora, S., Karakostas, G., 2003. Approximation schemes for minimum
latency problems. SIAM Journal on Computing 32, 1317-1337.

Artois, P., 2004. Routeplanning bij het Koninklijk Instituut Woluwe, mas-
ters thesis, KULeuven (in Dutch).

Asahiro, Y., Miyano, E., Shimoirisa, S., 2005. Pickup and delivery for
moving objects on broken lines. Lecture Notes in Computer Science 3701,
36-50.

Averbakh, 1., Berman, O., 1994. Routing and location-routing p-

deliverymen problems on a path. Transportation Science 28, 162—-166.

Averbakh, I., Berman, O., 1996. A heuristic with worst-case analysis for
minimax routing of two traveling salesmen on a tree. Discrete Applied

Mathematics 68, 17-32.

Ayob, M., Kendall, G., 2005. A triple objective function with a cheby-
chev dynamic pick-and-place point specification approach to optimise
the surface mount placement machine. European Journal of Operational
Research 164, 609-626.

Balas, E., 1989. The prize collecting traveling salesman problem. Networks
19, 621-636.

Ball, M., Magazine, M., 1988. Sequencing of insertions in printed circuit
board assembly. Operations Research 36, 192—201.

BIBLIOGRAPHY 153

Baptiste, S., Oliviera, R. C., Zuquete, E., 2002. A period vehicle routing
case study. European Journal of Operational Research 139, 220-229.

Beltrami, E. J., Bodin, L. D., 1974. Networks and vehicle routing for mu-

nicipal waste collection. Networks 4, 65-94.

Bérubé, J., Gendreau, M., Potvin, J., 2009. An exact e-constraint method
for bi-objective combinatorial optimization problems - application to
the traveling salesman problem with profits. European Journal of Oper-
ational Research 194, 39-50.

Blakely, F., Bozkaya, B., Cao, B., Hall, W., Knolmajer, J., 2003. Optimiz-
ing periodic maintenance operations for Schindler Elevator Corporation.
Interfaces 33, 67-79.

Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan,
P., Sudan, M., 1994. The minimum latency problem. Proceedings of
the twenty-sixth annual ACM symposium on the theory of computing
(STOC), 163-171.

Boussier, S., Feillet, D., Gendreau, M., 2007. An exact algorithm for team
orienteering problems. 40R 5, 211-230.

Butt, S. E., Cavalier, T. M., 1994. A heuristic for the multiple tour maxi-
mum collection problem. Computers and Operations Research 21, 101-
111.

Campbell, A. M., Hardin, J. R., 2005. Vehicle minimization for periodic
deliveries. European Journal of Operational Research 165, 668—684.

Chandran, B., Raghavan, S., 2008. Modeling and solving the capacitated
vehicle routing problem on trees. In: Golden, B., Raghavan, S., Wasil,
E. (Eds.), The Vehicle Routing Problem. Springer, pp. 239-261.

Chao, I. M., Golden, B., Wasil, E. A., 1996. The team orienteering problem.
European Journal of Operational Research 88, 464-474.

154 BIBLIOGRAPHY

Christofides, N., Beasley, J. E., 1984. The period routing problem. Net-
works 14, 237-256.

Claassen, G. D. H., Hendriks, T. H. B., 2007. An application of special
ordered sets to a periodic milk collection problem. European Journal of
Operational Research 180, 754-769.

Coene, S., Arnout, A., Spieksma, F. C. R., 2008a. The periodic vehicle
routing problem: a case study. FEB Research Report 0828.

Coene, S., Filippi, C., Spieksma, F. C. R., Stevanato, E., 2008b. The trav-

eling salesman problem on trees: balancing profits and costs. Submitted.

Coene, S., Spieksma, F. C. R., 2008. Profit-based latency problems on the
line. Operations Research Letters 36, 333-337.

Coene, S., Spieksma, F. C. R., Woeginger, G. J., 2009. Charlemagne’s

challenge: the periodic latency problem, manuscript.

Coene, S., van Hop, N., van de Klundert, J., Spieksma, F. C. R., 2008c. A
note on a motion control problem for a placement machine. OR Spek-

trum 30, 535-549.

Coja-Oghlan, A., Krumke, S. O., Nierhoff, T., 2006. A heuristic for the
stacker crane problem on trees which is almost surely exact. Journal of
Algorithms 61, 1-19.

Crama, Y., Flippo, O. E., van de Klundert, J. J., Spieksma, F. C. R., 1996.
The component retrieval problem in printed circuit board assembly. In-

ternational Journal of Flexible Manufacturing Systems 8, 287-312.

Crama, Y., Kats, V., van de Klundert, J., Levner, E., 2000. Cyclic schedul-
ing in robotic flowshops. Annals of Operations Research 96, 97-124.

Crama, Y., van de Klundert, J., 1997. Cyclic scheduling of identical parts
in a robotic cell. Operations Research 45, 952-965.

BIBLIOGRAPHY 155

Crama, Y., van de Klundert, J. J., Spieksma, F. C. R., 2002. Production
planning problems in printed circuit board assembly. Discrete Applied
Mathematics 123, 339-361.

de Hoon, M., Imoto, S., Miyano, S., 2008. The C Clustering Library.

de Paepe, W. E., Lenstra, J. K., Sgall, J., Sitters, R. A., Stougie, L.,
2004. Computer-aided complexity classification of dial-a-ride problems.
INFORMS Journal on Computing 16, 120-132.

Dekker, R., van der Duyn Schouten, F. A., Wildeman, R. E., 1997. A
review of multi-component maintenance models with economic depen-
dence. Mathematical Methods of Operations Research 45, 411435.

Dell’Amico, M., Maffioli, F., Varbrand, P., 1995. On prize-collecting tours
and the asymmetric traveling salesman problem. International Transac-
tions in Operational Research 2, 297-308.

Deineko, V. G., Rudolf, R., van der Veen, J. A. A., Woeginger, G. J., 1995.
Three easy special cases of the Euclidean traveling salesman problem.
SFB Report 17, Institut fiir Mathematik, TU Graz, Austria.

Dimov, V., Kumar, A., Hebbar, R., Fares, W., Sharma, P., 2007. Mini-
rounds improve physician-patient communication and satisfaction (ab-
stract). Journal of Hospital Medicine, SHM Annual Meeting 2, 48.

Egbelu, P. J., Wu, C., Pilgaonkar, R., 1996. Robotic assembly of printed
circuit boards with component feeder location consideration. Production
Planning and Control 7, 162-175.

Eglese, R. W., Murdock, H., 1991. Routing road sweepers in a rural area.
The Journal of the Operational Research Society 42, 169-194.

Ehrgott, M., 2000. Approximation algorithms for combinatorial multicri-
teria optimization problems. International Transactions in Operational
Research 7, 5-31.

Ehrgott, M., 2005. Multicriteria Optimization. Springer.

156 BIBLIOGRAPHY

Erlebach, T., Kellerer, H., Pferschy, U., 2002. Approximating multiobjec-
tive knapsack problems. Management Science 48, 1603-1612.

Fackaroenphol, J., Harrelson, C., Rao, S., 2007. The k-traveling repairman
problem. ACM Transactions on Algorithms 3, Article No. 40.

Feillet, D., Dejax, P., Gendreau, M., 2005. Traveling salesman problems
with profits. Transportation Science 39, 188-205.

Francis, P., Smilowitz, K., Tzur, M., 2006. The period vehicle routing

problem with service choice. Transportation Science 40, 439-454.

Francis, P., Smilowitz, K., Tzur, M., 2008. The period vehicle routing
problem and its extensions. In: Golden, B., Raghavan, S.; Wasil, E.
(Eds.), The Vehicle Routing Problem. Springer, 239-261.

Frederickson, G. N., Wittman, B., 2007. Approximation algorithms for the
traveling repairman and speeding deliveryman problems with unit-time
windows. APPROX and RANDOM 2007, Lecture Notes in Computer
Science (LNCS) 4627, 119-133.

Friese, P., Rambau, J., 2006. Online-optimization of multi-elevator trans-
port systems with reoptimization algorithms based on set-partitioning
models. Discrete Applied Mathematics 154, 1908-1931.

Garcia, A., Jodré, P., Tejel, J., 2002. A note on the traveling repairman
problem. Networks 40, 27-31.

Garey, M. R., Johnson, D. S., 1979. Computers and Intractability: A Guide

to the Theory of NP-completeness. Freeman, San Francisco.

Goemans, M., Kleinberg, J., 1998. An improved approximation ratio for

the minimum latency problem. Mathematical Programming 82, 111-124.

Golden, B. L., Levy, L., Vohra, R., 1987. The orienteering problem. Naval
Research Logistics 34, 307-318.

BIBLIOGRAPHY 157

Golden, B. L., Raghavan, S., Wasil, E. A. (Eds.), 2008. The Vehicle Rout-
ing Problem: Latest Advances and New Challenges. Springer.

Grunow, M., Giinther, H. O., Schleusener, M., Yilmaz, I. O., 2004. Opera-
tions planning for collect-and-place machines in pcb assembly. Comput-
ers and Industrial Engineering 47, 409-429.

Helvig, C. S., Robins, G., Zelikovsky, A., 2003. The moving-target traveling
salesman problem. Journal of Algorithms 49, 153-174.

Hemmelmayr, V., Doerner, K. F., Hartl, R. F., Savelsbergh, M. W. P.,
2008. Delivery strategies for blood products supplies. OR Spectrum

available online.

Hoogeveen, J. A., 1992. Single-machine bicriteria scheduling, PhD Thesis,
Eindhoven University of Technology.

Hoogeveen, J. A., 2005. Multicriteria scheduling. European Journal of Op-
erational Research 167, 592-623.

ILOG, 2005. ILOG Dispatcher 4.1, User’s manual.

Johnson, D. S., Niemi, K. A., 1983. On knapsacks, partitions, and a new
dynamic programming technique for trees. Mathematics of Operations
Research 8, 1-14.

Jothi, R., Raghavachari, B., 2007. Approximating the k-traveling repair-
man problem with repairtimes. Journal of Discrete Algorithms 5, 293—
303.

Jozefowiez, N., Glover, F., Laguna, M., 2008a. Multi-objective meta-
heuristics for the traveling salesman problem with profits. Journal of
Mathematical Modeling and Algorithms 7, 177-195.

Jozefowiez, N., Semet, F., Talbi, E., 2008b. Multi-objective vehicle routing
problems. European Journal of Operational Research 189, 293-309.

158 BIBLIOGRAPHY

Kalmanson, K., 1975. Edgeconvex circuits and the traveling salesman prob-
lem. Canadian Journal of Mathematics 27, 1000-1010.

Karuno, Y., Nagamochi, H., Ibaraki, T., 1997. Vehicle scheduling on a
tree with release and handling times. Annals of Operations Research 69,
193-207.

Keller, C. P., Goodchild, M., 1988. The multiobjective vending problem: A
generalization of the traveling salesman problem. Environmental Plan-
ning B: Planning Design 15, 447-460.

Kim, B., Kim, S., Sahoo, S., 2006. Waste collection vehicle routing problem
with time windows. Computers & Operations Research 33, 3624-3642.

Klinz, B., Woeginger, G. J., 1999. The steiner tree problem in kalmanson
matrices and in circulant matrices. Journal of Combinatorial Optimiza-
tion 3, 51-58.

Korst, J., Aarts, E., Lenstra, J. K., 1997. Scheduling periodic tasks with
slack. INFORMS Journal on Computing 9, 351-362.

Labbé, M., Laporte, G., Mercure, H., 1991. Capacitated vehicle routing on
trees. Operations Research 39, 616—622.

Latombe, J. C., 1991. Robot Motion Planning. Kluwer, Boston.

Leipalé, T., Nevalainen, O., 1989. Optimization of the movements of a com-
ponent placement machine. European Journal of Operational Research
38, 167-177.

Lim, A., Wang, F., Xu, Z., 2005. The capacitated traveling salesman prob-
lem with pickups and deliveries on a tree. Proceedings of ISAACO05,
Lecture Notes in Computer Science, 1061-1070.

McMullan, R., Gilmore, A., 2008. Customer loyalty: an empirical study.
European Journal of Marketing 42, 1084—1094.

BIBLIOGRAPHY 159

Menger, K., 1932. Das botenproblem. Ergebnisse Eines Mathematischen
Kolloquiums 2, 11-12.

Minieka, E., 1989. The delivery man problem on a tree network. Annals of
Operations Research 18, 261-266.

Mourgaya, M., Vanderbeck, F., 2006. Probleme de tournées de véhicules
multipériodiques: Classification et heuristique pour la planification tac-
tique. RAIRO Operations Research 40, 169-194.

Muslea, I., 1997. The very offline k-vehicle routing problem on trees. Pro-
ceedings of the International Conference of the Chilean Computer Sci-
ence Society, 155-163.

Ortec, 2007. Shortrec. http://www.ortec.be.

Paletta, G., 2002. The period traveling salesman problem: a new heuristic
algorithm. Computers and Operations Research 29 (10), 1343-1352.

Papadimitriou, C. H., Yannakakis, M., 2000. On the approximability of
trade-offs and optimal access of web sources. In: Proceedings of the 41st

Annual Symposium on Foundations of Computer Science, 86-92.

Picard, J., Queyranne, M., 1978. The time-dependent travelling salesman
problem and its application to the tardiness problem in one-machine
scheduling. Operations Research 26, 86—110.

Psaraftis, H. N., Solomon, M. M., Magnanti, T. L., Kim, T., 1990. Routing
and scheduling on a shoreline with release times. Management Science
36, 212-223.

Salehipour, A., Sorensen, K., Goos, P., Braysy, O., 2008. An efficient
GRASP+VND metaheuristic for the traveling repairman problem. UA
Research report 2008008.

Samphaiboon, N., Yamada, T., 2000. Heuristic and exact algorithms for
the precedence-constrained knapsack problem. Journal of Optimization
Theory and Applications 105, 659-676.

160 BIBLIOGRAPHY

Sitters, R., 2002. The minimum latency problem is NP-hard for weighted
trees. Proceedings of the ninth International Conference on Integer Pro-
gramming and Combinatorial Optimization (IPCO) LNCS 2337, 230—
239.

Sitters, R., 2004. Complexity and Approximation in Routing and Schedul-
ing, PhD thesis. Technical University Eindhoven.

Studer, Q., 2008. Results that last: hardwiring behaviors that will take
your company to the top. John Wiley & Sons, Inc., Hoboken, New Jersey.

Su, C., Fu, H., 1998. A simulated annealing heuristic for robotics assem-
bly using the dynamic pick-and-place model. Production Planning and
Control 9, 795-802.

Su, C., Ho, L., Fu, H., 1998. A novel tabu search approach to find the
best placement sequence and magazine assignment in dynamic robotics

assembly. Integrated Manufacturing Systems 9, 366-376.

Su, Y., Wang, C., Egbelu, P., Cannon, D. J., 1995. A dynamic point
specification approach to sequencing robot moves for pcb assembly. In-

ternational Journal on Computer Integrated Manufacturing 8, 448-456.

Tan, C. C. R., Beasley, J. E., 1984. A heuristic algorithm for the period
vehicle routing problem. Omega 12, 497-504.

T’kindt, V., Bouibede-Hocine, K., Esswein, C., 2005. Counting and enu-
meration complexity with application to multicriteria scheduling. 40R
3, 1-21.

Toth, P., Vigo, D. (Eds.), 2002. The Vehicle Routing Problem. Society for
Industrial and Applied Mathematics, Philadelphia.

Tricoire, F., Romauch, M., Doerner, K. F., Hartl, R. F.; 2008. Algorithms
for the multi-period orienteering problem with multiple time windows.
EU/MEeting 2008: Workshop on Metaheuristics for Logistics and Vehi-
cle Routing, paper 23.

BIBLIOGRAPHY 161

Tsitsiklis, J. N., 1992. Special cases of traveling salesman and repairman
problems with time windows. Networks 22, 263—-282.

van Gastel, S., Nikeschina, M., Petit, R., 2004. Fundamentals of SMD

assembly. Assembléon.

van Hop, N., Tabucanon, M. T., 2001a. Extended dynamic point specifica-
tion approach to sequencing robot moves for pch assembly. International
Journal of Production Research 39, 1671-1687.

van Hop, N., Tabucanon, M. T., 2001b. Multiple criteria approach for solv-
ing feeder assignment and assembly sequence problem in pcb assembly.
Production Planning and Control 12, 735-744.

Verhaegh, W. F. J., Aarts, E. H. L., van Gorp, P. C. N., Lippens, P.
E. R., 2001. A two-stage solution approach to multidimensional periodic
scheduling. IEEE Transactions on computer-aided design of integrated
circuits and systems 20, 1185-1199.

Wang, C., Ho, L., Cannon, D. J., 1998. Heuristics for assembly sequencing
and relative magazine assignment for robotic assembly. Computers and
Industrial Engineering 34, 422-431.

Woeginger, G. J., 1999. When does a dynamic programming formulation
guarantee the existence of a fully polynomial time approximation scheme
(FPTAS)? INFORMS Journal on Computing 12, 57-74.

Wu, B. Y., 2000. Polynomial time algorithms for some minimum latency

problems. Information Processing Letters 75, 225-229.

Wu, B. Y., Huang, Z., Zhan, F., 2004. Exact algorithms for the minimum
latency problem. Information Processing Letters 92, 303-309.

Yu, W., Hoogeveen, H., Lenstra, J. K., 2004. Minimizing makespan in a
two-machine flow shop with delays and unit-time operations is NP-hard.
Journal of Scheduling 7, 333-348.

Doctoral dissertations from
the Faculty of Business and

Economics

A list of doctoral dissertations from the Faculty of Business and Economics
can be found at the following website:
http://www.econ.kuleuven.be/phd/doclijst.htm.

163

