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Summary

Inland waterways are well-suited for freight transportation due to their
reliability and cost-effectiveness. Locks, acting as natural bottlenecks,
are present on many inland waterways. We investigate the problem of
scheduling such locks from a mathematical point of view. We explore the
characteristics of different scheduling problems underlying the operational
planning of locks by providing results regarding the computational com-
plexity and by describing models and algorithms for a number of different
problem settings.

The first problem setting we consider is that of a single lock consisting
of a single chamber. We describe a polynomial-time algorithm which
minimizes the total waiting time of ships that need to pass through the
lock. This algorithm is then extended to take different practical aspects
into account. Next, we focus on a setting featuring multiple locks in
series and investigate the computational complexity of the problem of
minimizing the total waiting time of ships passing through these locks.
Additionally, we introduce and evaluate integer programming models that
solve this problem, and show how the speed of ships can be taken into
account to model the fuel cost and the related emissions. The models are
used to evaluate the trade-off between the objectives of minimizing the
travel time and minimizing the emissions. Lastly, we look at a problem
setting featuring multiple lock chambers arranged in parallel, and focus
on solutions where the chambers can be scheduled such that no ship
has to wait before entering the lock. We characterize the existence of
such schedules, and describe algorithms for the general setting, as well as
dedicated algorithms that solve a number of special cases more efficiently.
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Chapter 1

Introduction

Inland waterways form a natural infrastructure well-suited for the trans-
portation of goods. Since ancient times, rivers have played an important
role throughout history, both economically and politically. Though we
may never know when the first use of ships occurred in history, evidence
(Meijer, 2007) indicates that wooden ships were built for the transport
of construction materials in Egypt as early as 2650 BCE. While the first
man-made canals served mainly for irrigation, canals built to modify the
natural flow of a river appeared, also in Egypt, around 2300 BCE, see e.g.
Hattendorf (2007).

In more recent times – even with the emergence of road, railway, and
aviation infrastructure – the transport of goods over inland waterways
remains an important part of the supply chain and represents a significant
portion of the total freight transport. We refer to e.g. Notteboom (2007)
for an overview of the recent history of container barge shipping in Europe.
In 2003, inland waterway transport respectively represented 31% and 40%
of the containerised cargo in the ports of Antwerp and Rotterdam, the
two largest European ports by cargo volume.

Locks are needed on many inland waterways. They maintain a water
level suitable for navigation while allowing ships to overcome the resulting
differences in water level. Locks also provide a way to bypass obstacles such
as waterfalls or dams with hydro-power generation facilities. Occasionally,
locks may also serve to control the water flow on a river, or act as a barrier
for flood protection. As an example, Figure 1.1 shows a lock on a river
and a pair of locks near a port.

Due to the time needed to operate these locks – that is, to allow a

1



2 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: Example locks. (a) a tugboat pulling a barge at McAlpine
Lock, USA. (© US Army Corps of Engineers.) (b) the Berendrecht and
Zandvliet Locks at the Port of Antwerp, Belgium. (© wwuyts, wikimedia
commons.)

ship to enter, to change the water level, and to allow the ship to leave
on the opposite side – locks constitute a natural bottleneck near ports
and along many rivers and canals. In particular, the decisions made with
respect to the operating times of one or multiple locks, determine to a
large extent the total delay or waiting time incurred by ships travelling
through a waterway. Other decisions include the assignment of ships to
lock chambers, since multiple lock chambers may be available, or since
it may be possible to fit multiple ships in a single lock chamber and to
simultaneously serve these ships with a single lockage operation. An
overview of the recurring terminology, along with more formal definitions,
can be found in Section 1.3.

Throughout this text, different aspects of the lock scheduling problem
are investigated. More specifically, our results focus on locks on inland
waterways. As will be argued in Section 1.1, these locks differ significantly
from locks in ports and, while some aspects of the scheduling overlap, a
different solution approach is justified for these distinct settings.

The lock scheduling problem is approached from a theoretical perspec-
tive and related to the well-studied field of machine scheduling. In the
following chapters, several different problem settings are outlined. Initially,
we ignore a number of practical issues which would be present in a real-life
scenario. This allows us to investigate the complexity and characteristics
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of the ‘core’ problem, without needlessly complicating the discussion with
cumbersome notation or additional specific conditions. The underlying
idea is that a good method which tackles the core problem is, in general,
easily adapted to take additional practical restrictions into account, or
a solution to the core problem could be modified without fundamental
changes to obtain a high-quality solution which takes the practical issues
into account. The main goal of this text is to improve our understanding
of the computational properties of lock scheduling problems, and thereby
contribute to enhancing practical decision-making.

The remainder of this chapter is outlined as follows. Section 1.1
describes and motivates the importance of locks and their scheduling by
discussing some key statistics. Section 1.2 gives an overview of literature
which relates to different aspects of lock scheduling. Additional literature
which is specific to one of the later chapters or which provides known results
specific to a particular problem setting, will be covered in the chapter
where it is relevant. Section 1.3 introduces a number of concepts and gives
a formal definition of some terminology which will recur throughout the
remaining chapters. Finally, Section 1.4 outlines the following chapters
and gives a brief overview of the different problem settings discussed
in the remainder of this text, as well as a short summary of the main
contributions.

1.1 Context and motivation
In 2014, inland waterway transport accounted for 6.6 % of the total inland
freight transport in Europe. Table 1.1 shows the modal split for different
EU countries. The European Commission is actively working to promote
the use of inland waterways for freight transport as part of the Trans-
European Transport Network (TEN-T). More specifically, the NAIADES
‘policy package’ was adopted in 2006 and subsequently followed up and
extended by the NAIADES II package, see e.g European Commission
(2012). With this set of policy changes, the European Commission aims
to reduce transport-related greenhouse gas emissions by 60 % by 2050. A
significant contribution towards this goal will be made by the use of inland
waterways, for which the modal share of freight transport is expected to
rise by as much as 20 % by the year 2050.

Freight transport over inland waterways contributes to a significant
portion of the total logistics chain. The large capacities that can be carried
by barge make this a particularly interesting choice for many types of bulk
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Water (%) Road (%) Rail (%)
The Netherlands 39 56.1 4.9

Belgium 21.1 64.2 14.7
Romania 19.9 59.4 20.7
Bulgaria 14 76.6 9.5
Germany 12.3 64.4 23.4
Croatia 5.9 76.8 17.3
Austria 4.6 51.7 43.6
France 4.3 80.1 15.6

Hungary 3.7 75.8 20.5
Luxembourg 2.8 95.1 2.1

Slovakia 2.2 76.3 21.5
EU 28 6.6 75.4 18

Table 1.1: Modal split for European inland freight in 2014, for countries
with a reported waterway transport share exceeding 1%. Note: shares
may not sum up to 100% due to rounding. (Data: Eurostat)

cargo, raw materials, and products with a relatively low value-to-weight
ratio. Table 1.2 illustrates this, showing that metals, agricultural cargo,
chemicals, and petroleum products constitute over 85 % of the total cargo
carried over inland waterways.

The advantages of inland waterway transport include its reliability,
cost efficiency, and low pollutant emissions. Additionally, the current
traffic on many inland waterways is well below the available capacity, as
opposed to the road transport network, for which congestion is an ever-
increasing problem in many industrialized countries. The European inland
waterway network, however, has the potential for a significant increase
in additional traffic, see e.g. European Commission (2013). In a recent
report, the European Commission (2015) also promotes a better use of
inland waterways in order to relieve heavily congested transport corridors.
Promotie binnenvaart Vlaanderen (2013) discusses some statistics for
inland waterway transport in Flanders, Belgium. The average load capacity
for barges on the Belgian inland waterway network is approximately
1400 tonnes. A barge of this capacity can carry a load of 96 twenty-foot
containers, equivalent to approximately 60 trucks, or 45 train wagons.
Inland waterway transport is therefore increasingly seen as a mode of
transport that can make a significant contribution to sustainable mobility.
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Product type Share (%)
Metal ores and other mining products 23.8
Coke and refined petroleum products 16.4

Products of agriculture 13.5
Coal, lignite, crude petroleum, and natural gas 11.8
Chemicals, chemical products, and nuclear fuel 11.2

Basic metals and fabricated metal products 9.3
Food products, beverages, and tobacco 6.1

Secondary raw materials and wastes 4.1
Other 3.8

Table 1.2: Distribution of goods carried over inland waterways, 2014
average for EU-28 countries. (Data: Eurostat)

Not only is the energy consumption of transport over water approximately
17% of that of road transport and 50% of rail transport, it also has a high
degree of safety and its noise and gas emissions are modest.

In the US, total waterborne commerce has risen from about 1700
million tonnes of goods in 1975 up to approximately 2600 million tonnes
in 2006; due to the economic crisis it has dropped to a level of about
2200 million tonnes in 2009, and recovered to about 2350 million tonnes
in 2014 (US Army Corps of Engineers, 2014). In a report prepared
for the State of New York (Goodban Belt LLC, 2010), the potential of
the New York Canal System for container-on-barge logistics is extensively
described and an increased flow is expected due to Panama Canal expansion.
This expansion, which will double the total throughput capacity of the
Panama Canal by the installation of additional locks serving larger ships,
is scheduled for completion in 2016 (Panama Canal Authority, 2016). In
China, 88 million tonnes of freight passed the Three Gorges Dam in 2010;
this is nearly 5 times the maximal annual volume reported before 2003
(ChinaDaily, 2011).

Locks are present on many inland waterways as well as near ports.
Since port locks need to accommodate large intercontinental trade vessels,
the problem of scheduling port locks shows a number of differences when
compared to scheduling the smaller inland locks. In the large lock chambers
of a port lock, the relative placement of ships within a chamber becomes a
lot more involved. Additional safety distances may be required when ships
of significantly different sizes are present within a single lock chamber.
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Furthermore, since the engines of large container vessels may not be suited
for the precise manoeuvring required within a port, these ships must often
be accompanied by tug boats which further complicates the mooring of
ships within lock chambers. Further, while the main function of a port lock
is to ensure that the water level within the port remains unaffected by tidal
movements, the tide may still play an important role in the scheduling of
these locks. In order to safely navigate the area around the port, some
of the largest ships, i.e. those ships which require a large waterway depth
for safe navigation, can only leave the port when the tide is high. This
results in a so-called ‘tidal window’ where some of the ships can only leave
the port during specific time intervals which must also be reflected in the
operating schedule. Finally, the traffic density is typically much higher
in port areas than on inland waterways. It is intuitively clear that when
the traffic density increases up to the maximum traffic throughput of a
lock, the idle time of a lock decreases up to the point where the lock must
continually switch back and forth between the upstream and downstream
water level, effectively removing the need for any decision-making related
to the operating times. It is also for this reason that, for port locks,
the scheduling of operating times loses some of its relative importance
compared to the ship placement problem. Therefore, we limit the focus of
this text to the scheduling of locks on inland waterways.

At several waterway networks, congestion is expected to increase,
yielding extra pressure on the locks. Examples are the New York State
Canal System (Goodban Belt LLC, 2010) and the North Sea Canal region
(van Haastert, 2003). One way to anticipate this increase in traffic density
is to expand the size of existing locks, such as for example on the Twente
Canal in the Netherlands (Rijkswaterstaat, 2010). Also, new locks are
being built; for example, the Kieldrecht lock at the Port of Antwerp
(Antwerp Port Authority, 2011), which will become the world’s largest lock
by volume. Efficient lock schedules can contribute to the attractiveness of
waterway transport and help avoid, or maximize the impact of, expensive
infrastructural investments.

Our point of view throughout this work is to see the lock as an entity
providing a service to the ships. Then, it makes sense to identify a strategy
for the lock that optimizes some criterion related to service, such as the
total waiting time incurred by ships. Another point of view would be that
the lock announces times when ships can enter the lock in order to be
transferred, and that the ships simply need to respect these times. Clearly,
even in the latter model, there is still a decision to be made concerning
these times.
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1.2 Related literature
Lock scheduling has not been extensively studied in the scientific liter-
ature, although it has recently started attracting an increasing amount
of attention. Here, we give a general overview of the existing body of
literature related to different aspects of scheduling locks. For additional
literature related to the specific problem settings discussed in Chapters 2
to 5, we refer to the respective chapters. There, the relation between
existing research and the topics considered in the respective chapters is
discussed, as well as how the presented contributions relate to known
results from literature. For example, the lock scheduling can be related to
the well-studied machine scheduling problem, where locks can be consid-
ered to be machines, and ships can be considered to be jobs that require
processing on these machines. Chapters 2 and 3 describe the relevant
machine scheduling problems and known results in more detail.

An early example of the application of optimization techniques in
the context of scheduling locks is the case of the Welland Canal in North
America, which allows ships to bypass the Niagara Falls. The St. Lawrence
Seaway Authority, that maintains the canal, faced increasing congestion
at the locks. Petersen and Taylor (1988) describe an integer programming
model for this setting. The authors also discuss a dynamic programming
model for scheduling the operations of a single lock, and extend this model
to a heuristic that yields an operating schedule for the series of locks along
the Welland Canal. A different integer programming model is proposed
by Nauss (2008), where all ships are assumed to be present at a lock at a
given time, for example due to technical failure, and a sequencing order is
needed to clear the queue in a minimal amount of time.

The problem of scheduling a lock consisting of one chamber is treated
by Hermans (2014), who presents an algorithm that asserts feasibility with
respect to given ship deadlines when the single chamber has unit capacity.
Another approach for the single-lock single-chamber setting is described by
Smith et al. (2011), who model this problem setting as a two-stage queue
and describe a mixed integer programming model as well as a heuristic
solution procedure.

Due to the computational effort involved, a majority of works in the
literature restrict the attention to simulation models and heuristic solutions.
In Smith et al. (2009), for example, simulation models are used in order
to aid policy decisions to reduce congestion on the Upper Mississippi
River. Different ship sequencing policies for the Mississippi river are also
evaluated by Ting and Schonfeld (2001). The importance of an efficient
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lock operating strategy is also noted by Caris et al. (2007), who point out
that lock scheduling decisions strongly affect the simulated waiting time
and suggest efficient decision rules for lock operations as future work.

Results on obtaining optimum solutions to a system of multiple locks
as a whole, are more scarce in the literature. The potential of a central-
ized approach to scheduling has recently attracted more attention in the
field. The Dutch waterway management organization Rijkswaterstaat, for
example, is shifting its focus from decentralized lock operations towards
the fluent operation of certain ‘corridors’ as a whole, see Kunst (2013).
A recent publication by Prandtstetter et al. (2015) introduces a formal
definition for the problem of scheduling locks arranged in a sequence, and
describes a variable neighbourhood search approach to obtain heuristic
solutions.

The research mentioned above concentrates on single-chamber locks.
In practice, however, many locks consist of more than one chamber. On
the Panama Canal, for example, each lock consists of two identical parallel
chambers which can be operated independently. Another example is the
Wijnegem lock, situated in Belgium, which connects the Albert Canal to
the port of Antwerp. Like all other locks on the Albert Canal, this lock
consists of three non-identical chambers. Furthermore, the construction
of a fourth lock chamber in Wijnegem is currently under consideration,
see also Waterwegen en Zeekanaal NV and nv De Scheepvaart (2014).
Ting and Schonfeld (2001) mention a heuristic for a lock consisting of
two chambers. A different heuristic yielding approximate solutions for a
problem setting with lock chambers arranged in parallel is available online,
see Luy (2012). This algorithm has been integrated by Lübbecke et al.
(2014) in a heuristic procedure for traffic optimization on the Kiel canal,
which connects the Baltic Sea to the North Sea. The only work we are
aware of that deals with exact methods for scheduling a lock with multiple
chambers is Verstichel et al. (2014b); a mixed integer program is proposed
that simultaneously decides upon the packing of ships in chambers and
the operating times of the chambers, see also Verstichel (2013). Thus,
studying locks with parallel chambers is a practical and largely unexplored
problem.

Besides minimizing the total (weighted) flow time, a different objective
could be to minimize the fuel consumption for ships passing through
the waterway system. While the fuel consumption may be an important
economical factor for ship operators, the related emission of greenhouse
gases may also be an optimization criterion for governments or waterway
organizations. In the context of road transport, a model for the time-
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varying vehicle routing problem is proposed by Qian and Eglese (2014),
where the goal is to minimize the greenhouse gas emissions.

1.3 Terminology and notation
In this section, we introduce our terminology and notation. First, the
fundamental concepts and entities present in different lock scheduling
problems are explained. Next, some notation is introduced to ease the
description of the different optimization problems. Finally, a graphical
representation is given in order to visualize a problem instance and a
corresponding feasible solutions.

1.3.1 Concepts
Central in this entire exposition is the lock. Since the main concern in this
work is to schedule the locks in order to provide a service to ships, the
main function of a lock, as far as our discussion is concerned, is to transfer
a ship from one side of the lock to the other. We will also refer to the two
sides of the lock as positions, i.e. a lock has an upstream position (i.e. high
water level) and a downstream position (i.e. low water level).

A single lock may consist of multiple chambers. For a ship to be
processed by a lock, it suffices to pass through one of the lock’s chambers.
Since each of a lock’s chambers can be operated independently, a lock
consisting of two chambers is clearly more flexible than a single-chamber
lock from an operational point of view. Of course, this introduces additional
complexity in the planning process, since the assignment of ships to
chambers may drastically influence the performance of a schedule, in
particular when the chambers differ in their operating characteristics,
described below.

Note that for consistency of terminology, it is assumed that locks are
not arranged in parallel. Rather, chambers may be arranged in parallel
and constitute a single lock. Note that this does not always reflect the
nomenclature observed in practice. For example, the Berendrecht and
Zandvliet locks (see also Figure 1.1b) are indeed named ‘lock’; under
our terminology, however, they would be considered as two independent
chambers of a single lock for all intents and purposes. This is strictly a
semantic issue with no impact on the underlying scheduling problem.

The act of performing a single operation with one of the lock’s chambers
is referred to as a lockage. That is, a lockage consists of a set of ships
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entering a chamber from one side of the lock, upon which the water level
inside the chamber changes and the ships can exit the chamber from the
other side of the lock. Depending on the direction in which the ships
travel, we can immediately distinguish two types of lockages: upwards
lockages transfer ships from the downstream side to the upstream side,
and downwards lockages transfer ships from the upstream side to the
downstream side of a lock.

Note that a lockage may also be empty, i.e. contain no ships, and that
such empty lockages cannot always be avoided. Indeed, after serving a
ship, the water level in one of the lock’s chambers has changed. In order for
the same chamber to serve another ship that is waiting at the initial water
level, an empty lockage is required to ‘recycle’ this chamber to its original
position; for this reason, such empty lockages are sometimes referred to as
‘turnback lockages’.

We define the lockage duration of a chamber as the time needed to
perform a single lockage with that specific chamber. That is, the lockage
duration is the total time required for a chamber to:

1. allow all ships processed by the lockage to enter the chamber,

2. close the chamber doors on the side where the ships entered the
chamber,

3. change the water level in the lock to that of the opposite position,

4. open the chamber doors on the side where the ships leave the chamber,
and

5. allow all ships to exit the chamber.

In the case of single-chamber locks we will, for simplicity, refer to the
lockage duration of the lock, rather than the lockage duration of a chamber.
Throughout the following chapters, it will generally be assumed that the
lockage duration for a chamber is a known constant, and thus independent
of the set of ships that is processed by the chamber. An extension where
this is assumption is generalised is discussed in Section 2.5.3.

In addition to the lockage duration, each chamber is also characterized
by its capacity. While multiple ships may be simultaneously served by a
single lockage, the capacity restricts the set of ships within each lockage.
This can be achieved in a number of ways. Obviously, each chamber
has a limited surface area, which must not be exceeded by the total
area of ships present in the chamber at any given time. In some cases,
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especially for narrow locks on inland waterways, the width of a chamber
can be ignored and the capacity can be expressed as the allowed total
length of ships. However, simply comparing the total area of ships to
that of the lock ignores a number of important considerations regarding
e.g. safety distances and the mooring of ships, as argued in Section 1.1.
For locks on inland waterways, these aspects regarding the placement of
ships are of lesser importance. Since optimizing the placement of ships
is in itself a computationally hard (i.e. strongly NP-complete) problem,
see e.g. Verstichel (2013), it is assumed throughout most of the following
chapters that the capacity is expressed in terms of a fixed upper bound on
the number of ships that may be present within a chamber. This allows
us to focus on the complexity of the scheduling problem while still taking
a simplified capacity restriction into account.

The above concerns a single lock. In Chapters 3 and 4, a number of
problem settings are investigated where multiple locks are arranged in
sequence along a river or canal. Also there, our focus remains on the
locks, and the waterway can be simplified and modelled as a line. Any
restrictions regarding the navigating of ships on this waterway due to
the physical layout (e.g. depth, width, curvature, etc.) are ignored. In
particular, note that ships travelling at different speeds may overtake each
other within such section in between locks, unless otherwise mentioned.
In these settings, the locks are assumed to be ordered. Each lock, except
for the last lock in the sequence, is then also characterized by the travel
distance separating it from the next lock.

There exist many different types of ships. As far as the scheduling
problem is concerned, we will simply refer to any boat, ship, barge, or any
other vessel to be scheduled for passing through a lock, as ‘ship’. As far as
barges, which may or may not be self-propelled, are concerned, a set of
container barges being pushed by a tugboat is thus considered as a single
ship. Furthermore, in what follows we consider each ship as a single entity
which cannot be split. In contrast, such a fleet of barges could also exceed
the length of a lock and be disconnected in smaller groups of barges in
order to allow processing by a lock. This practice occurs for example on
the Upper Mississippi River, see e.g. Smith et al. (2009), although this is
not common on European waterways. With regards to the type of ships to
be processed, observe that the set of ships can be chosen to reflect policy
decisions with respect to priorities and ‘right of way’. For example, smaller
recreational vessels may be excluded from consideration if operational
policy dictates that freight ships receive priority at all times. In order
to further differentiate between ships of different types, a certain priority
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value may be assigned to each ship, which is then reflected in the way an
objective value is computed.

Two important properties associated with each of the ships are the
arrival time and arrival position. Clearly, in order to assign a ship to a
lockage and a corresponding time at which the ship can enter a chamber,
the exact time at which the ships arrive should be known, as well as the
side of the lock at which each ship arrives. Related to the arrival position
(i.e. upstream or downstream) is the direction of travel for a ship. We will
say that a ship is downstream-travelling if it arrives on the upstream side
of a lock, or a sequence of locks, and travels towards the downstream side,
and that a ship is upstream-travelling if it arrives on the downstream side
and travels towards the upstream side.

Specifying the arrival position suffices in the context of a single lock,
and in fact facilitates the notation for additional concepts introduced
in Chapter 2. However, referring to the upstream side (or downstream
side) in the context of multiple locks in sequence is somewhat ambiguous.
Indeed, each of the individual locks then has an upstream side; moreover,
the upstream side of one of the locks has the same water level as the
downstream side of an adjacent lock. When all ships traverse each of the
locks in the sequence, the direction of travel of a ship implicitly specifies
where the ship enters and leaves the system. In general, however, this
need not be the case. Indeed, consider for example a river with four locks
in sequence where a canal introduces a ‘side branch’ between the second
and third lock. There could then exist ships that traverse only the first
and second lock, or only the third and fourth lock, in addition to the ships
that pass by each of the locks. Alternatively, it may be the case that the
destination of a ship is located in between the locks along the waterway.
Therefore, the arrival lock and departure lock, respectively indicating the
first and last lock to be visited by a ship, must be explicitly specified. Note
that if the arrival and departure lock are not the same, the travel direction
for a ship is implied; if a ship only traverses a single lock, however, it
remains necessary to specify the travel direction.

In general, ships may be either upstream-travelling or downstream-
travelling; this setting will be referred to as the bi-directional setting. As a
special case, the so-called uni-directional setting can also be distinguished;
in this setting, all ships travel in the same direction.

We focus on the deterministic scheduling problem, i.e. all arrival times
and positions are assumed to be known ahead of time. While assuming that
future arrival data are known ahead of time may not be entirely realistic
for the planning of a long time horizon, two main arguments can be made
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in its favour. First, some future arrival information is likely to be available.
The guidelines for the River Information Services being implemented in
Europe, for example, specify that a ship should notify a lock operator at
least two hours before it arrives at the lock. These guidelines are currently
enforced for all freight ships on the Rhine and Danube rivers, and will be
further extended throughout the European waterway network (Central
Commission for Navigation on the Rhine, 2015). Additional estimates of
arrival times can also be extrapolated from known arrival times at other
locks along the waterway or from GPS data, which is increasingly recorded
and broadcast. See, for example, Central Commission for the Navigation
of the Rhine (2011) for an overview of the Automatic Identification System,
which provides a standard for the automatic collection and communication
of ship data, including the current position and heading. Secondly, the
time horizon considered may be limited, such as would be the case if a
schedule is repeatedly optimized in a ‘rolling horizon’ procedure in an
on-line setting, i.e. a schedule is initially obtained for a limited time horizon
with known arrival information, and the obtained solution is re-optimized
as more information becomes available over time.

In those settings where the distance between locks becomes relevant,
the ship speed should also be considered. This speed may either be assumed
to be constant throughout the canal for a given ship, or assumed to be
variable and adapted to the schedule in such a way that an objective
function is optimized. Where the speed is variable, a valid range for the
ship speed is specified, i.e. each ship is then characterized by a minimum
and maximum speed.

One measure for the performance of a solution is the total waiting
time incurred by all ships. We define the waiting time of a ship as the
time spent by that ship waiting before entering a lock chamber. Note that
this excludes the time spent inside lock chambers. For a setting with a
single lock, the waiting time can thus be computed as the time between
the arrival of the ship and the moment in time where the ship enters a
chamber and starts a lockage. In a setting with multiple locks, a ship may
incur some waiting time at each of the locks; the total waiting time for
a ship can then be defined as the time between the arrival of the ship at
its arrival lock and the time at which it leaves its departure lock, minus
the total lockage duration of all lock chambers by which it was served
and minus the total travel time. Note that in a problem setting with
only single-chamber locks, the total time spent inside lock chambers is
necessarily constant, so that the objective of minimizing the total waiting
time is equivalent to the commonly used objective of minimizing the total
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completion time in a machine scheduling context.
The different problems we consider are concerned with finding ‘high-

quality’ schedules. A schedule consists of an assignment of ships to lockages
for each chamber, coupled with specifying the starting times of these lock-
ages. In a setting with parallel chambers, this also includes an assignment
of ships to chambers. We say that a schedule is a feasible schedule if:

1. each ship is processed by each lock that it is required to pass, i.e. by
one of the chambers of each of these locks,

2. the order in which a ship passes the locks is consistent with its
direction of travel,

3. the time at which a ship enters a lock is consistent with the ship’s
arrival time and with the travel time and starting time of a previous
lockage containing that ship,

4. for each lock chamber, the starting times of its lockages are such
that these lockages do not overlap,

5. lockages alternate between upwards and downwards lockages, and
ships are only processed by the type of lockage that corresponds to
their direction of travel,

6. the number of ships in any given lockage does not exceed the chamber
capacity.

The quality of a feasible schedule can be determined in a number of
ways. One obvious choice is to consider the waiting time of ships and to
aim for a solution that has minimum total waiting time. This objective
function is discussed in Chapters 2 to 4. Additionally, Chapter 4 considers
the emissions, which can be related to the speed of ships. Another approach
is to look for any feasible schedule. In Chapter 5, a schedule is said to be
feasible if no ship incurs any waiting time, and the objective reduces to
finding any feasible solution.

1.3.2 Notation
In order to provide formal proofs in the following chapters, we introduce
some notation for the concepts outlined above. Here, an overview is
provided for the notation which is common to all following chapters.
Additional notation for more specific concepts will be defined where needed.
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For clarity, lowercase symbols will be reserved for decision variables. All
input data, i.e. parameters, are denoted in uppercase. Sets are denoted in
calligraphic script. Some exceptions will be made to this notation style
for frequently used symbols that have been adopted by convention. One
notable exception is the use of parameters n and m, which are typically
used to reflect the instance size; in our case, they are used to represent
the number of ships and the number of locks in an instance respectively.
Another exception is the use of V and E for a set of vertices and a set
of edges in a graph, respectively. Table 1.3 provides an overview of the
notation introduced here; we briefly discuss each introduced symbol below.

Central in each problem instance are a set of L locks L = {1, . . . , L},
and a set of S ships S = {1, . . . , S}. Since the locks must be visited in
an order corresponding to a ship’s direction of travel, a total order is
assumed on L so that the locks are arranged in the order in which they
are visited by a ship that traverses the entire waterway in the upstream
direction. Equivalently, this order could be reversed and correspond to
a ship travelling in the downstream direction. For the set of ships, a
total order is generally assumed to be given so that ships are sorted by
their time of arrival; additional details on the sorting of ships are covered
in the later chapters. We also define the sets U and D, containing all
upstream-travelling ships and all downstream-travelling ships respectively.
Observe that, thus, U ∪ D = S, and U ∩ D = ∅.

For each ship s ∈ S, the arrival time is denoted by As. Note that the
travel direction of a ship s is easily determined by checking whether s ∈ U
or s ∈ D. The arrival lock and departure lock of ship s are respectively
denoted by LAs and LDs . Additionally, for ease of notation when discussing
single locks, it will be helpful to define the arrival position of a ship s
as Ps. Finally, each ship also has a fixed minimum and maximum travel
speed, represented by V min

s and V max
s respectively. In a setting where the

speed is fixed, we have V min
s = V max

s .

For a given lock l ∈ L, let Cl be the set of chambers in l. Each chamber
c ∈ Cl has a lockage duration Tl,c and a capacity Cl,c. Whenever a setting
is considered where each lock consists of a single chamber, this notation is
simplified to Tl and Cl. Where multiple locks are arranged in a sequence,
the length of the waterway section between locks l and l+1 will be denoted
with Sl.
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S = {1,. . . , S} the set of all arriving ships,
U the set of upstream-travelling ships,
D the set of downstream-travelling ships,
L = {1,. . . , L} the set of all locks,
Cl (for l ∈ L) the set of chambers in lock l,
As (for s ∈ S) the arrival time of ship s,
LAs (for s ∈ S) the arrival lock of ship s,
LDs (for s ∈ S) the departure lock of ship s,
V min
s (for s ∈ S) the minimum speed attainable by ship s,
V max
s (for s ∈ S) the maximum speed attainable by ship s,
Tl,c (for l ∈ L, c ∈ Cl) the lockage duration for chamber c of lock l,
Cl,c (for l ∈ L, c ∈ Cl) the lock capacity for chamber c of lock l,
Sl (for l ∈ L \ {L}) the distance between locks l and l + 1.

Table 1.3: Summary of notation

1.3.3 Graphical representation of instances
A frequently used method for visualising schedules in transportation is
the time-distance diagram. These diagrams are often used to track the
movement of vehicles such as trains. For an example in the context of
inland waterways, see e.g. Lübbecke et al. (2014) for an application to the
Kiel canal.

This method can be easily extended to include locks. An example
visualisation for three locks in sequence is shown in Figure 1.2. In the
figure, time passes from left to right and the vertical axis denotes the
position of the ship in the waterway. The arrival of each ship, over time, is
marked with an ‘X’. Each tilted line corresponds to a lockage by one of the
lock’s chambers. Recall the constraints that require that lockages for any
given lock chamber must not overlap and must alternate between upwards
and downwards lockages. Visually, this corresponds to the requirement
that the tilted lines only intersect at the lines corresponding to the water
levels of a lock and that, for each lock, lines with an upward slope alternate
with lines with a downward slope. This makes it easy to verify these
constraints visually.

In the figure, the tilted lines that represent lockages are annotated
with the ships contained in the lockage. Note that, strictly speaking, this
assignment of ships to lockages should be identified in order to uniquely
determine the resulting schedule. However, it is generally acceptable to
assume that a ship will not ‘needlessly wait’ and thus enters the first
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Lock 1

Lock 2

Lock 3

X X X X
1 4 5 7

X X X
2 3 6

1 4,5 72 3,6

1 4,5 72 3,6

1 4,5 72 3,6

Figure 1.2: Visualisation for a system of three locks in sequence. Each
lock consists of a single chamber with a capacity of 2.

available lockage corresponding to its direction of travel. If the capacity of
a lock chamber would be exceeded, the ships in a chamber may be selected
on a first-come first-served basis, unless otherwise mentioned.

Note that, for multiple locks in a sequence, the distance between two
locks is not represented in Figure 1.2. In the figure, the travel time is
assumed to be such that once a ship is in a given position, it may enter
the next lockage in its direction of travel. Obviously, this need not hold in
general. An alternative visualisation that does represent the travel time
visually is shown in Figure 1.3. Here, a horizontal line no longer exclusively
corresponds to a water level; rather, the vertical coordinate represents the
distance from an arbitrary origin, while the locks remain represented by
a vertical segment between the lines corresponding to its upstream and
downstream position. In Figure 1.3, observe that ship 4 overtakes ship 2
between the first and second lock.

1.4 Outline

We conclude this chapter with a brief overview of the problem settings
discussed in each of the following chapters, and a summary of the main
results.
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Lock 1

Lock 2

Lock 3

X X X X
1 2 4 5

X
3

Figure 1.3: Visualisation for three locks. Each lock consists of two chambers
with unit capacity. Travel time is indicated by waved lines. Notice that
overtaking is allowed, i.e. in contrast to the lines representing lockages,
waved lines are allowed to intersect.

Scheduling a single lock Chapter 2 covers the scheduling of a single
lock consisting of a single chamber. Given a single lock with known lockage
duration and known capacity, and given a set of ships, each characterized
by an arrival time and a direction of travel, the problem consists of finding
a solution that minimizes the total waiting time of the ships. A dynamic
programming algorithm is proposed that solves this so-called lockmaster’s
problem in polynomial time. We further extend the algorithm so that it
can be applied in more realistic settings, taking into account capacity, ship-
dependent handling times, ship priorities, and water usage. In addition, we
compare the performance of this new exact algorithm with the performance
of some (straightforward) heuristics in a computational study.

The computational complexity of scheduling locks in sequence
Chapter 3 considers a problem setting where multiple locks are arranged
along a line, as is frequently the case on a river or canal. The focus remains
on minimizing the total waiting time. We investigate the computational
complexity of this problem. More specifically, we show that minimizing
the total waiting time is strongly NP-hard, even for two identical locks
and with all ships travelling in the same direction. A second NP-hardness
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result can be obtained for a related setting with identical ships that are
allowed to travel in either direction. Additionally, we introduce a class
of so-called synchronised schedules, and describe two problem settings
where the existence of an optimum solution which is synchronised can be
guaranteed. The claim that bi-directional travel contributes fundamentally
to the computational complexity of this problem is further reinforced by
describing a polynomial time procedure for a uni-directional setting with
identical locks and identical ships travelling in the same direction.

Mathematical programming for locks in sequence and emissions
Chapter 4 continues the setting with locks arranged in a sequence. Two
distinct mathematical programming models are introduced and their per-
formance is compared empirically. The quality of solutions obtained by
solving these models is then compared to that of a heuristic based on
an iterative single-lock solution method, showing that significant waiting
time reductions can be achieved by scheduling the sequence of locks in its
entirety, as opposed to decentralized solution methods. Furthermore, it
is shown how the models can be extended to include the ship speed as
decision variables in order to optimize the fuel consumption and closely
related pollutant emissions. Since the objectives of minimizing waiting
time and minimizing total emissions are conflicting, the trade-off between
these two objective functions is investigated through a computational study
for problem instances based on real-life arrival data.

No-wait scheduling for locks with parallel chambers Chapter 5
discusses a single lock with multiple chambers. Since the chambers may
differ in terms of lockage duration or capacity, the assignment of ships to
chambers is an important aspect of the scheduling for the lock. We focus on
schedules where no ship incurs any waiting time. We show how this problem
relates to known interval scheduling problems, as well as to a particular
graph colouring problem on multiple unit interval graphs. We explore the
relationships between these problems and discuss the complexity of different
problem variants. In particular, for a lock consisting of two chambers we
are able to characterize the feasible instances and use this result to obtain
an efficient solution algorithm. We also provide an efficient algorithm for
the special case with identical lock chambers. Furthermore, we describe a
dynamic programming approach for the more general case with arbitrary
chambers, and prove that the problem is strongly NP-complete when the
number of chambers is part of the input.





Chapter 2

Scheduling a
single-chamber lock1

This chapter concerns the scheduling of a single lock that consists of a single
chamber. Section 2.1 starts with a formal definition of a basic problem
setting that serves as a reference throughout this chapter. Section 2.2
continues with an overview of literature relating to this basic problem
setting; our setting is very similar to the scheduling of a batch processing
machine.

The contributions presented in this chapter can be summarized as
follows. We show that (i) our basic single-lock single-chamber scheduling
problem can be solved by means of a dynamic programming algorithm
that runs in O(n3) time (Section 2.3), (ii) a speed-up up to O(n2) time
can be achieved for this algorithm in the basic setting (Section 2.4), (iii)
the algorithm can be extended to solve problem variants with capaci-
ties, ship-dependent handling times, ship priorities, non-uniform lockage
times, or settings with a limited number of lockages (Section 2.5). Addi-
tionally, we investigate the performance of several heuristics by running
them on randomly generated instances that possess real-life characteristics
(Section 2.7).

1The research presented in this chapter, formatted as a journal article, has been
published in the European Journal of Operational Research, see Passchyn et al. (2016c)
for the article version. (doi: 10.1016/j.ejor.2015.12.007)
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2.1 Problem definition
We first discuss a basic setting which acts as our core problem throughout
this chapter: the lockmaster’s problem. The results obtained for this
problem will serve as a basis for dealing with more realistic settings later
on.

Consider a lock consisting of a single chamber. As described in Sec-
tion 1.3, let S represent the set of ships that arrive at this lock over time,
and let |S| = n. For each ship s ∈ S, let As represent its time of arrival,
and Ps the position where it arrives. Let Ps = 1 if ship s arrives on the
upstream side of the lock, and Ps = 0 if s arrives on the downstream side.
For convenience, we also assume that a total order 1 < 2 < . . . < n is
imposed on S so that ships are ordered by non-decreasing arrival time,
i.e. Ai ≤ Ai+1 for i = 1, . . . , n− 1. Note that multiple ships may have the
same arrival time; the total order thus breaks these ‘ties’ arbitrarily. It is
important to emphasize that we do not require ships to enter the lock in
the order imposed on S, except in the cases (see Sections 2.5.1 and 2.5.3)
where we explicitly state this as a requirement.

Let T denote the lockage duration of the lock’s chamber. We may
assume T > 0 as the problem becomes trivial for T = 0. We further
assume that all data are integral. Our goal is to find a feasible schedule
that minimizes the total waiting time of all ships. Note that we do not
consider the chamber’s capacity in this basic setting, any set of ships that
travel in the same direction can be processed together by a single lock, i.e.
the chamber capacity C is assumed to be infinite.

This particular problem, to which we refer as the lockmaster’s problem,
is a simplified version of reality. However, we see this problem as a basic
problem underlying any practical lock scheduling problem.

2.2 Relation to literature
We mention some results known from literature which relate to the lock-
master’s problem and describe how results for the lockmaster’s problem
extends the existing research on machine scheduling problems.

Nauss (2008) discusses a mathematical programming model to mini-
mize the time required to clear a queue at a lock, for example due to a
technical outage. Verstichel et al. (2014b) describe a model for a general
lock scheduling problem, which includes the placement of ships within
lock chambers. An alternative mathematical programming model for a
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generalised setting is also discussed in Chapter 4.
The main disadvantage to (mixed) integer programming models is the

rapid increase of the required computation time as the instance increases
in size. Below, we discuss related works which achieve exact solutions
in polynomial time. Hermans (2014) considers a unit-capacity special
case of the lockmaster’s problem, i.e. the chamber capacity is assumed
to be C = 1. An O(n4 logn) algorithm is described that asserts whether
each of the ships can be processed so that it arrives before a pre-defined
deadline. The unit-capacity setting where total waiting time is minimized
is covered by Petersen and Taylor (1988), who present an O(n2) dynamic
programming algorithm. Our results in Section 2.4 show that a similar
result holds when the lock capacity is infinite. Furthermore, we show in
Section 2.5.1 that the problem can be solved in O(n4) time when the lock
has arbitrary capacity C.

A number of related results can also be found in the well-studied
field of machine scheduling. The scheduling of a machine which allows
batch processing, in particular, corresponds to a chamber which processes
multiple ships simultaneously. Smith et al. (2011) relate traffic operations
at a river lock with a variant of the job shop scheduling problem with
sequence dependent setup times and a two-stage queuing process. The
lockmaster’s problem is more general in two ways: ships, i.e. jobs, have
release dates, and multiple ships can be processed together in a single
lockage.

Suppose that the lockmaster’s problem only has downstream-travelling
ships, i.e. consider the uni-directional case. The lock can be seen as a
batching machine; the jobs are the arriving ships with release dates and
equal processing times, and the flow time of a job corresponds to the
waiting time of a ship. Following the notation of Baptiste (2000) this
is problem 1 |p-batch, b = n, rj , pj = p |

∑
Fj . In words: the problem

has a single parallel batching machine with unrestricted capacity (b = n),
release dates on the jobs, and uniform processing times. The objective
is to minimize the sum of flow times (

∑
Fj). Baptiste (2000) shows that

this problem is polynomially solvable for a variety of objective functions.
Cheng et al. (2005) developed an O(n3) algorithm for 1 |p-batch, b = n,
rj , pj = p | f where f can be any regular objective function. Condotta
et al. (2010) show that feasibility of the same problem with bounded
capacity and deadlines can be checked in O(n2), even for a setting with
parallel batching machines. Ng et al. (2003) study a single machine serial
batching scheduling problem with release dates and identical processing
times. Machine setup only happens after arrival of the final job in a batch
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and there is a fixed setup time equal to s; the completion time of a batch is
equal to the sum of the processing times of the jobs in the batch. An O(n5)
algorithm is presented for this problem setting. By choosing s = T and
pj = 0 for all j ∈ S, it can be seen that the uni-directional lockmaster’s
problem is a special case of this batching machine scheduling problem.

The lockmaster’s problem with bi-directional travel clearly generalizes
the uni-directional setting which corresponds to these machine scheduling
problems. Indeed, there are then two families of jobs, and only jobs of
the same family can be together in a batch. A requirement is that, in our
case, processing a batch of one family needs to be alternated by processing
a batch corresponding to jobs of the other family, although a batch can
possibly be empty. That is, it is not possible to process two batches of the
same family consecutively.

The concept of a “family” of jobs is also described by Webster and
Baker (1995), be it without a batch processing machine. They deal with a
scheduling problem in which setup times can be reduced by consecutively
scheduling jobs of the same family. This problem setting is also known as
batch scheduling with job compatibilities. Jobs within a batch need to be
pairwise compatible, and these compatibilities can be expressed using a
compatibility graph. Boudhar (2003) and Finke et al. (2008) study different
variants of these batch scheduling problems when the compatibility graph is
bipartite or an interval graph. The compatibility graph of the lockmaster’s
problem is the union of two cliques.

The lockmaster’s problem can be summarized as 1 | s-batch, b = n, rj ,
Φ = 2, sfg, pj = 0 |

∑
Fj , with sfg = 2T if f = g and sfg = T if f 6= g,

where Φ refers to the number of families and sfg to the setup times between
batches. For a review on scheduling a batching machine we refer the reader
to Potts and Kovalyov (2000) and Brucker et al. (1998). Another related
problem is studied by Lee et al. (1992) who develop dynamic programming
algorithms for scheduling a batching machine with release dates, deadlines,
and constant processing times where the goal is to minimize makespan or
to minimize the number of tardy jobs. In conclusion, the complexity of
the lockmaster’s problem does not immediately follow from results in the
machine scheduling literature.

2.3 A solution for the lockmaster’s problem
We construct a graph such that the shortest path in the graph corresponds
to an optimal schedule for the lockmaster’s problem. We show that the
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Figure 2.1: Lockmaster’s problem: concepts

corresponding shortest path algorithm runs in O(n3) time. In addition, we
propose a more sophisticated implementation in Section 2.4, which results
in an O(n2) algorithm.

Recall that a solution to the lockmaster’s problem, i.e. a schedule,
consists of an assignment of the ships to a set of lockages, each starting at
some moment in time. However, some schedules are more interesting than
others. To describe these schedules, we first introduce some additional
definitions: let a pair of lockages be called consecutive when the starting
time of the second lockage equals the starting time of the first lockage
plus T . Clearly, after two consecutive lockages starting at time t, the lock
is back at the same position at time t+ 2T as it was at time t. A set of
lockages {1, . . . , `} is called consecutive when the pairs of lockages (i, i+ 1)
are consecutive for all 1 ≤ i < `. Clearly, when a set of ` consecutive
lockages starts at time t, it finishes at t+ `T . Recall that the arrival time
and position of a ship s are denoted by As and Ps respectively. We now
define blocks of consecutive lockages starting at the arrival of a ship s and
ending before the arrival of a ship s′:

Definition 2.1. For each pair s, s′ ∈ S with Ps = Ps′ and As+ 2T < As′ ,
we define a block B = (s, s′) as the set of `(B) consecutive lockages that
starts at As and ends at As+ `(B)T , where `(B) is the largest even integer
such that As + `(B)T < As′ .

For each pair s, s′ ∈ S with Ps 6= Ps′ and As + T < As′ , we define a
block B = (s, s′) as the set of `(B) consecutive lockages that starts at As
and ends at As + `(B)T , where `(B) is the largest odd integer such that
As + `(B)T < As′ .
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Figure 2.1 illustrates these definitions. In the figure, observe that
`(s, s′) = 5. We can now describe a class of solutions that exhibits a
specific structure.

Definition 2.2. A schedule is called a block-schedule if it consists of a
sequence of blocks B1, . . . , Bk with Bi = (ai, bi), where bi = ai+1 for each
i with 1 ≤ i < k, and with a final set of consecutive lockages that starts at
Abk

and ends not later than An + 3T .

Notice that the distinguishing feature of a block-schedule is that each
lockage starts at an arrival time or it directly follows the previous lockage.
Observe that the following properties characterize block-schedules:

Property 2.1. Each lockage either directly follows upon a previous lockage,
or starts upon some As while containing ship s.

Property 2.2. The length of a period in which there is no lockage, a
so-called idle period, is at most 2T .

Property 2.3. The final lockage does not end later than t(n) + 3T .

We can then state the following result.

Lemma 2.1. There is an optimum schedule that is a block-schedule.

Proof. It is easily verified that any schedule which satisfies Property 2.1-
Property 2.3 is a block-schedule, and that any block-schedule satisfies
these properties.

We show that any schedule not satisfying the above properties can
be transformed into a schedule satisfying them, without increasing the
objective value. Consider some schedule that does not satisfy Property 2.1.
Let t denote the earliest time where a lockage starts such that t is neither
the ending time of a previous lockage nor the arrival time As of some ship
s ∈ S contained in this lockage. Since at t− ε with ε > 0 and small, the
lock is idle, and since no ships contained in the lockage arrive between
t− ε and t, we can start this lockage at time t− ε without increasing the
objective value. This argument is easily repeated until the lockage starts
at either (i) the latest arrival time of a ship contained in it, or (ii) the
ending time of the preceding lockage.

Next, consider a solution where no lockage occurs during an idle period
with a length no less than 2T . At the beginning of this period, two
additional lockages can be scheduled, reducing the length of the idle period
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by 2T time units. By repeating this step we end up only with empty
periods shorter than 2T . (Property 2.2).

Further, assume that a solution exists with a final lockage that does
not end before An + 3T . Then, the last lockage contains no ships and,
hence, can be dropped. By repeating, we obtain a solution which ends not
later than An + 3T (Property 2.3).

Now consider an arbitrary optimum schedule. It immediately follows
that, by applying the above, we obtain an optimum block-schedule.

Furthermore, since all ships are identical, ships can be interchanged in
any solution to the lockmaster’s problem, such that the following property
holds:

Property 2.4. [FCFS] For each pair of ships s, s′ ∈ S with Ps = Ps′ it
holds that, if s < s′, then ship s will leave the lock not later than ship s′.

Now, we describe an algorithm that solves the lockmaster’s problem in
polynomial time by finding an optimum block schedule. The basic idea is
to build a directed acyclic graph G = (V,E) with a given cost ce for each
e ∈ E. The arcs in the graph represent either (i) the idle time before the
first block, (ii) a block in a schedule, or (iii) the final set of consecutive
lockages until all ships have been served. We first describe the construction
of the nodes and arcs in the graph, and specify the cost on each of the arcs.
We then argue that a path in this graph with a certain cost corresponds
to a block-schedule with a total waiting time equal to this cost, and vice
versa. Thus, a shortest path corresponds to an optimum solution to the
lockmaster’s problem.

2.3.1 Constructing the graph
There is a node σ, a node τ , and for each ship s ∈ S, there is a set of n+ 2
nodes that we denote by a layer of nodes L(s). One node from this layer
is called the top node, indicated by stop. All other nodes of the layer are
indexed by k = 0, . . . , n, and are denoted by sk. Hence the node-set V has
O(n2) nodes in total.

There are five types of arcs, namely arcs leaving σ, arcs entering τ ,
so-called block1 arcs, block2 arcs, and 0-cost arcs. We now describe these
arcs and the corresponding costs; Figure 2.3 illustrates the definitions that
follow graphically, for the example instance shown in Figure 2.2, assuming
a lockage time of T = 30. Note that the notation Ps allows us, for a
single lock, to conveniently refer to the position opposite to the arrival of
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Figure 2.2: Lockmaster’s problem: example instance
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Figure 2.4: Waiting time for the arc (σ, 31). The highlighted intervals
contribute to the cost on the arc; the dashed line represents the first
lockage of the next block, starting with ship 3.
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Figure 2.5: Waiting time for the arc (4top, τ). The lockages shown serve
all remaining ships, starting at the arrival of ship 4.

ship s as position 1 − Ps, which simplifies the formal description of the
construction below.

There is an arc from σ to a single node from each layer L(s) with
s ∈ S, say node sk with 0 ≤ k ≤ n. The value of k is determined by
the number of ships arriving in (−∞, As + T ] at position 1 − Ps. This
arc represents the situation where the first block of a schedule starts at
time As and position Ps. The cost of this arc equals the waiting time
accumulated at time As of all ships arriving in (−∞, As] at position Ps,
plus the waiting time accumulated at time As + T of all ships arriving
in (−∞, As + T ] at position 1− Ps. For example, the arc from σ to layer
L(3) in the example instance ends at node 31. Note that there is only one
ship that arrives in the interval (−∞, 70] at the position 1− P3 = 0. The
intervals contributing to the waiting time reflected in the cost of the arc
are illustrated in Figure 2.4.

There is an arc from a top node stop from each layer L(s) with s ∈ S
to node τ . The cost of this arc equals the waiting time of all ships arriving
in the interval (As, An] at position Ps, and in (As + T,An] at position
1−Ps in a solution where a set of consecutive lockages serves all remaining
ships, starting at the arrival of ship s. An illustration for the waiting time
contributing to the cost of example arc (4top, τ) is provided in Figure 2.5.

We now describe the block2 arcs; these arcs correspond to blocks with
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Figure 2.6: Waiting time for the arc (1top, 52). At the end of the block
(1, 5), consisting of the two consecutive lockages, two ships are waiting
opposite to the arrival position of ship 5; the dashed line represents the
first lockage of the next block, starting at ship 5.

a length of at least two lockages. For each block B = (a, b) ∈ S × S
with `(B) ≥ 2, there is an arc from node atop to node bk ∈ L(b), where k
equals the number of ships that arrive at position 1− Pb in the interval
(Aa+(`(B)−1)T,Ab+T ]. That is, k equals the number of ships waiting in
the position opposite to the arrival position of ship b if the next block starts
with ship b. The cost of such an arc equals the waiting time accumulated
in block B at time Ab + T for, in case Pa = Pb, all ships arriving in
(Aa, Ab] at position Pa, and in (Aa + T,Ab + T ] at position 1− Pa or, in
case Pa 6= Pb, all ships arriving in (Aa, Ab + T ] at position Pa, and in
(Aa + T,Ab] at position 1−Pa. An example is illustrated in Figure 2.6 for
the block (1, 5).

We now describe the block1 arcs; these arcs correspond to blocks
consisting of a single lockage. For each block B = (a, b) ∈ S × S with
`(B) = 1, there is an arc from each node ak for 0 ≤ k ≤ n to some node bl
from layer L(b) where l equals the number of ships that arrive at position
1 − Pb in the interval (Aa, Ab + T ]. The cost of such an arc consists of
two parts, first, the waiting time accumulated at time Ab + T of all ships
arriving in (Aa, Ab + T ] at position Pa, and in (Aa + T,Ab] at position
Pb; and second, k × (Ab −Aa − T ). Figure 2.7 illustrates the arc (11, 30)
from the example instance, corresponding to a block of length 1. Notice
that all ships that were already waiting in position Pb before time Aa + T
are served at time Ab, while their waiting time reflected in the cost of
earlier blocks is counted up to Aa + T . Since Ab > Aa + T , we need to
take this additional waiting time into account, which is achieved by the
second term described above. Note that, by construction, the index k of
ak corresponds precisely to the number of such waiting ships.

Finally, within each layer L(s), with s ∈ S, there is an arc with cost
0 that goes from each node sk, with k = 0, . . . , n, to node stop; these are
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Figure 2.7: Waiting time for the arc (11, 30). At the end of the block (1, 3),
consisting of a single lockage, no ships are waiting opposite at position
1 − P3; the dashed line represents the first lockage of the next block,
starting at ship 3.

the 0-cost arcs. This completes the description of graph G. We now prove
a lemma that establishes the correspondence between block-schedules and
paths in G.

Lemma 2.2. A σ-τ path in G corresponds to a block schedule and vice
versa.

Proof. Consider some path from σ to τ in G. Clearly, the path will visit
some nodes of some layers. More precisely, the path can only visit a node
in some layer by entering a node sk in L(s) for some k ∈ {0, . . . , n}. The
cost defined above, of any arc entering node sk assumes that the lock will
move at time As. Next, there are two ways of leaving node sk: either, the
path proceeds with a 0-cost arc to the top node, or it proceeds with a
block1 arc. Proceeding with a 0-cost arc implies that the lock will move at
time As+T , since the path then visits a top node and since all arcs leaving
a top node correspond to blocks of length at least 2. Proceeding with
a block1 arc to some node bl means that there is no lockage starting at
As + T . In this situation, by construction, k ships are waiting at position
1 − Ps at time As + T . The waiting time of these ships after As + T is
included in the cost of the block1 arc leaving node sk. Hence, the cost on
the arc entering node sk is defined appropriately. Finally, note that the
arcs leaving σ represent the waiting time before the first block and the
arcs entering τ represent the final set of consecutive lockages. It follows
that the cost of each path from σ to τ corresponds to the total waiting
time of a block schedule. The reverse is easy to see: any block schedule
can be mimicked by choosing the appropriate arcs.

Theorem 2.1. The lockmaster’s problem can be solved in O(n3) by a
straightforward implementation of a shortest path algorithm on the acyclic
graph G.
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Proof. The previous lemma, combined with Lemma 2.1 and the observation
that the graph G is acyclic and contains O(n3) arcs imply this result.

Notice that the problem definition does not impose a starting position
for the lock. In case the starting position of the lock is pre-specified, it is
easy to modify the algorithm to deal with this feature.

2.4 A faster algorithm for the basic problem
We describe here a more efficient implementation that uses the structure in
the graph G to solve the lockmaster’s problem. The resulting complexity is
O(n2). The method used to obtain this speed-up shows similarities to the
approaches proposed by Wagelmans et al. (1992) and Federgruen and Tzur
(1991), who independently describe a procedure to solve the well-known
lot sizing problem of Wagner and Within in linear time. A similar result
was also independently obtained by Aggarwal and Park (1993).

First, we define sp(ak) as the shortest path length from σ to node ak,
with 0 ≤ k ≤ n. Further, define spak (bi) as the shortest path length to
node bi, with 0 ≤ i ≤ n and a < b ≤ n, when the node visited just before
bi is ak. Note that the arc (ak, bi) is a block1 arc in G, which is defined
only when Aa + T < Ab and Pa 6= Pb.

In the graph constructed in Section 2.3, there are O(n2) arcs leaving
nodes from layer L(a): O(n) block2 arcs and O(n2) block1 arcs. Clearly, a
shortest path to some node bl has as last arc either a block1 arc, or some
arc that is not a block1 arc. This is reflected in the following expression
for the length of a shortest path from σ to some node bl ∈ L(b).

sp(bl) = min

 min
a<b

k=0,...,n

spak (bl), min
a<b

spatop(bl), spσ(bl)

 .

In the following, we argue that once sp(ak) is determined for an arbitrary
a and for each k ∈ {= 0, . . . , n}, all spak (bl), i.e. shortest paths determined
by block1 arcs leaving L(a), can be obtained in O(n) time.

For a given bl, it holds that spak (bl) = sp(ak) + c(ak, bl), whereby
c(ak, bl) = w(a, b) + k(Ab −Aa − T ) is the length of the block1 arc (ak, bl)
in G. The term w(a, b) represents the waiting time accumulated at time
Ab + T of all ships arriving in (Aa, Ab + T ] at position 1 − Pb and the
waiting time of all ships arriving in (Aa + T,Ab] at position Pb; this is a
constant over all ak, bl for which a block1 arc (ak, bl) exists. Note that for
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each ak, there is at most one bl from layer L(b) for which an arc (ak, bl)
exists.

We argue that, for any given a, finding all spak (bl) where 0 ≤ k ≤ n and
a < b ≤ n, corresponds to finding the minimum value of at most n linear
functions (∀k = 1, . . . , n) for no more than n inputs (∀b = a + 1, . . . , n).
Note that l is fixed, given ak and b.

Lemma 2.3. Given m linear functions fi(x) = αi · x+ βi with αi, βi ∈ R
for i ∈ {1, . . . ,m}, with αi ≤ αi+1 for each i = 1, . . . ,m − 1, and given
an ordered finite set Q. Then the indices arg min{fi(q) | i = 1, . . . ,m} for
each q ∈ Q can be found in O(m+ |Q|).

Proof. It is clear that we may assume, without loss of generality, that no
two of the given functions are identical. We start by eliminating dominated
functions. We say that fi is dominated by fj , j < i, if βj ≤ βi because
then fj(q) ≤ fi(q) for each q ≥ 0. Henceforth, we assume that βi > βi+1
for each i = 1, . . . ,m− 1 in the following.

Next, we find the lower envelope of the functions f1, . . . , fm. We
refer to Sack and Urrutia (2000) for an overview of methods devoted to
computing the lower envelope of a set of functions. We maintain a list
E of active functions which potentially contribute to the lower envelope.
Note that functions may be dropped from this list later on. Initially, this
list contains fm and fm−1. We consider the functions fm−2, fm−3, . . . , f1
in this order. Let fi be the function to be considered, and fw and fv the
last and next-to-last function contained in E , respectively. We determine
the q-coordinate qi,w ≡ βi−βw

αw−αi
of the intersection of fi and fw and the

q-coordinate qi,v ≡ βi−βv

αv−αi
of the intersection of fi and fv. If qi,v ≥ qi,w,

then we remove fw from E since fw(q) ≥ min (fi(q), fv(q)) for each q ≥ 0,
and we repeat this step with E := E \ {fw} until qi,v < qi,w. We then add
fi to E , i.e. let E := E ∪ {fi}, and consider the next function. Note that
at the end of each iteration, E must contain at least two functions since
fm is not dominated due to assumption.

Finally, by scanning through the sorted set of intersections of linear
functions and through values in Q, we find arg min{fi(x) | i = 1, . . . ,m}
for each q ∈ Q. For a graphical representation of the lower envelope, see
Figure 2.8.

It remains to show that this procedure runs in linear time. Eliminating
dominated functions takes O(m). During the construction of E , each
function is added at most once and each function is deleted at most once.
The decision whether to add the next function at the end of E or remove
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the currently last function from E can be taken in constant time. Thus,
constructing E takes O(m) and, consequently, finding arg min{fi(q) | i =
1, . . . ,m} for each q ∈ Q takes O(m+ |Q|).

We now use Lemma 2.3 and consider all block1 arcs leaving L(a), for
a given a ∈ S. Consider the linear functions spak (bl) = sp(ak) + w(a, b) +
k(Ab − Aa − T ), for k ∈ {0, . . . , n} and for all b with a < b ≤ n. As
mentioned before, w(a, b) is a constant for any given a and b. We thus
exclude it from the linear functions to be considered for the lemma, and
add this constant later. Let Q = {Ab −Aa − T | b = a+ 1, . . . , n} and
fk(q) = sp(ak) + q · k for each 0 ≤ k ≤ n. Thus, referring to Lemma 2.3,
αk = k, βk = sp(ak), and q ∈ Q. In Lemma 2.3 it is assumed that
the αi and the set Q are ordered, which is obviously the case. Now,
arg min{spak (bi) | 0 ≤ k ≤ n} for each bi determines the shortest path to
bi having a block (ak, bi) of length one as last part. Note that its length is
min{fk(q) | 0 ≤ k ≤ n}+ w(a, b). Hence, we can update all sp(bi) taking
into account all block1 arcs leaving a layer L(a) in O(n) time.

Applying this procedure to all layers L(a), with a ∈ S, all shortest paths
with correct cost values are obtained in O(n2). The overall procedure
to find the shortest path in O(n2) is shown in Algorithm 1. We can
summarize the above in the following theorem.

Theorem 2.2. The lockmaster’s problem is solvable in O(n2).
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Create the set of nodes V as described above
sp(sk)←∞ for all s ∈ S and 0 ≤ k ≤ n
for s = 1, . . . , n do

Consider block (σ, s), update sp(sk) for k corresponding to (σ, s)
Set sp(stop) = min {sp(sk) | 0 ≤ k ≤ n}
Determine the lower envelope for all block1 arcs (sk, s′l)
for s′ = s+ 1, . . . , n do

Determine the l for which (sk, s′l) ∈ E
if `(s, s′) == 1 then

Update spsk (s′l) using the lower envelope
else

Update spsk (s′l) using sp(stop)

Algorithm 1: O(n2) algorithm for finding the shortest path in G

2.5 Extensions
It can be argued that the basic problem defined in Chapter 1, due to
different assumptions regarding the input, ignores a number of issues
regarding practical lock operation. We now proceed by showing how
the procedure described in Section 2.3 can be extended towards a closer
approximation of reality.

2.5.1 Capacity
Section 2.3 did not take any capacity restrictions into account. We now
discuss two different settings with capacity restrictions. In one setting,
the lock can accommodate at most a given number of ships; in another
setting each ship has a size, the total size of ships within a lock should
then not exceed the given lock’s size. A fundamental difference with the
basic lockmaster’s problem is that ships may be “left behind”. Thus, ships
that lay waiting may not all be transferred in the same lockage.

When the number of ships that may be contained within the lock at
any given time is bounded by a constant, a similar procedure to Section 2.3
may be used.

Theorem 2.3. The lockmaster’s problem with an upper bound on the
number of ships in the lock is solvable in O(n4).
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Proof. Suppose that the lock can accommodate at most C ships at once.
We can reformulate Property 2.3 as follows: the final lockage does not end
later than (1 + d nC e)2T . For this generalization, Lemma 2.1 remains true.
Indeed, Properties 2.1 and 2.2 remain trivially true; moreover, the ships
being identical (except for their arrival time) implies that there exists an
optimal schedule that satisfies Property 2.4.

Definition 2.3.

• For each a ∈ S, let Ua = {b ∈ S | Pb = 1, b < a,Ab ≤ Aa − |Pb −
Pa|T}.

• For each a ∈ S, let Da = {b ∈ S | Pb = 0, b < a,Ab ≤ Aa − |Pb −
Pa|T}.

Thus, the set Ua (respectively Da) contains all ships b for which b < a,
that arrive on the upstream (downstream) side not later than Aa if ship a
arrives on the upstream (downstream) side, and not later than Aa − T if
ship a arrives on the downstream (upstream) side.

We now design the following directed graph G = (V,E) in order to
represent the problem. In contrast to the graph used for the lockmaster’s
problem, here, each arc directly corresponds to a set of ships transferred,
and there is no need to distinguish block1 and block2 arcs. We have
V = {σ, τ} ∪ V A with V A = {(a, u, d) | a ∈ S, u ∈ Ua, d ∈ Da}. A
node (a, u, d) corresponds to a block starting at Aa and position Pa while
u and d represent the latest served (with respect to the ordering in S)
downstream- and upstream-bound ship, respectively. It is easily seen that
whenever a ship a does not enter a lockage starting not earlier than Aa
from position Pa while sufficient lock capacity is available to serve this
ship, the solution is suboptimal. In combination with Property 2.4 it
follows that, within each block, each ship is served by the next appropriate
lockage with sufficient capacity, and it is thus known when each ship is
handled. We thus know which ships u′ and d′ become the latest ships
served upstream and downstream, respectively. We record this observation
by writing u′ = fup((a, b), u) and d′ = fdown((a, b), d) for each block (a, b),
u ∈ Ua, d ∈ Da.

Definition 2.4. We say that two nodes (a, u, d) and (b, u′, d′) are compat-
ible if (a, b) is a block and if u′ = fup((a, b), u) and d′ = fdown((a, b), d).

The set of edges in our graph is given as E = Eσ ∪ EB ∪ Eτ , with

• Eσ =
{

(σ, v) | v = (a, ∅, ∅) ∈ V A
}
,
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• EB = {(v, v′) | v and v′ are compatible}, and

• Eτ =
{

(v, τ) | v = (a, u, d) ∈ V A
}
.

The cost c(v, v′) of the edges in EB, with v = (a, u, d) and v′ =
(b, u′, d′), equals the sum of waiting times of all ships k with u < k ≤ u′

arriving at position p = 1 and the sum of waiting times of all ships l with
d < l ≤ d′ arriving at position p = 0, such that these ships are handled
while respecting the lock capacity.

The costs c(s, v) on edges leaving the origin are equal to 0, since no ship
has been transferred yet. The costs c(v, t), with v = (a, u, d), represent
the waiting times of ships k with u < k arriving at position p = 0 and the
waiting times of ships l with d < l arriving at position p = 1. These ships
are served by the final sequence of lockages.

Then, a path from σ to τ represents a feasible lock schedule and the
shortest path represents the lock schedule having minimum total waiting
time of ships. G is acyclic and contains O(n3) nodes, each node being
source of at most O(n) arcs. Furthermore, we can determine u′, d′, and
total waiting of ships according to all arcs emerging from v ∈ {s} ∪ V A in
O(n) time. The total time complexity for this algorithm is thus O(n4).

A more general setting assigns to each ship and lock an arbitrary
size. When each ship and lock has an associated length and width, the
problem is easily seen to be NP-hard by reduction from rectangle packing,
as mentioned by Hermans (2014). We extend this result to instances where
the size of the lock is represented by a scalar value. Thus, at any given
time, the sum of size values of the ships in the lock must not exceed the
size of the lock.

Theorem 2.4. The lockmaster’s problem with a (scalar) bound on the
size of the lock is strongly NP-hard, even in the uni-directional setting and
when all ships arrive at time t = 0.

Proof. We provide a proof by reduction from 3-PARTITION. In an instance
of 3-PARTITION, we are given an integer B and a set A consisting of
integers ai (i = 1, . . . , 3n) subject to B

4 < ai <
B
2 for each i. The question

is whether A can be partitioned into n triples such that the sum of integers
in each triple equals B. This problem is known to be NP-complete. We
now construct an instance of the lockmaster’s problem where the size of a
ship is encoded by the number of the 3-PARTITION instance, all ships
arrive at t = 0 in position p = 1, and the lock’s size encodes the value B
to be met by each triple. Clearly, if the instance of 3-PARTITION has
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a solution, then there exists a lock schedule where n lockages each serve
exactly 3 ships. Each of these lockages is followed by an empty lockage
that returns the lock to position p = 1, resulting in a solution with a total
waiting time of 3n(n− 1)T . On the other hand, any solution with a total
waiting time of 3n(n− 1)T such that at most 3 ships can be handled in
each subsequent 2T interval, will transfer all ships in the first n lockages
starting from position p = 1. Consequently, there must exist n subsets
of ships so that each subset fills the lock completely, and thus a solution
exists to the instance of 3-PARTITION.

We may, however, impose the requirement that all ships travelling
in the same direction must be handled in a predetermined order. More
specifically, we will require that ships travelling in the same direction are
handled according to the total order on S. We will say that solutions
satisfying this requirement adhere to a first-come first-served (FCFS)
policy. The FCFS policy is currently applied as the standard handling
policy for ships at many locks, see e.g. Smith et al. (2009); Ting and
Schonfeld (2001); van Haastert (2003). When this requirement is enforced,
an efficient procedure exists for finding an optimal solution.

Theorem 2.5. Under a FCFS policy, the lockmaster’s problem with a
bound on the size of the lock is solvable in O(n4).

Proof. In a preprocessing step, the subsets of consecutive ships that fit
together in the lock, are determined. Here, it is possible to include all
kinds of filling and entering rules that can be important in practice, see
e.g. Verstichel and Vanden Berghe (2009). This step can be executed
in O(n2) time. We use the same graph as defined for the setting with
bounded capacity, described above. Note that when determining u′, d′,
and total waiting time of ships according to arcs, we can only fill the lock
with ships that fit together in the lock, which we determined initially. Still,
we can treat all arcs emerging from a node in O(n) time.

Notice that although in the instance constructed in the proof of Theo-
rem 2.4 all ships arrive at the same time, it is not true that every sequence
of ships respects FCFS; only the sequence that is compatible with the given
order on S adheres to the FCFS policy. This explains why Theorems 2.4
and 2.5 are not contradictory.
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2.5.2 Ship priorities
In this subsection we are interested in minimizing the weighted sum of
waiting times; this allows us to take into account ship priorities. This is
often relevant, for instance, in locks operating in ports. It is indeed quite
common to distinguish between sea ships (having limited manoeuvrability)
and inland ships. In addition, ships transporting dangerous goods receive
priority over regular cargo ships (Du and Yu, 2003), which in turn may
have priority over leisure ships, see e.g. (Smith et al., 2009; Verstichel and
Vanden Berghe, 2009). All this can be dealt with by assigning a weight
wa to each ship a ∈ S, revealing their priority.

It is not hard to see that we can generalize the construction of the
graph G, and in particular the arc-costs, to this setting by multiplying the
waiting time of ship a by its weight wa. We state without proof:

Theorem 2.6. The lockmaster’s problem with objective to minimize total
weighted waiting time is solvable in O(n3).

Notice that when the ships are weighted and the capacity of the lock
is limited, the algorithm described in Section 2.5.1 might fail to find
an optimal solution. Earlier, specifying a block would implicitly specify
the set of ships that are transferred in this block. This, however, need
then no longer be the case; although the optimal solution can still be
seen as consisting of blocks, it is not clear which particular ships are
transferred during which lockages in a block. When considering the uni-
directional case, Baptiste’s algorithm (Baptiste, 2000) (see Section 2.2)
yields a polynomial time procedure.

2.5.3 Handling times
In practice, placing a ship into a lock takes a certain amount of time. The
total time a ship spends in the lock may then depend on the other ships
present. The required handling time per ship may be constant, which is
approximately the case for inland ships. For sea ships, on the other hand,
the handling time depends on the size and manoeuvrability of the ship. In
Smith et al. (2011), a lock scheduling problem is described where handling
times are not only ship-dependent, but also sequence dependent. In this
section, we consider the extension where each ship s ∈ S requires a certain,
integral, handling time hs. We model this by modifying the lockage time
so that it is no longer constant, but depends on the ships that are present
in the lockage: Tj = T +

∑
s∈Sj

hs, where Sj refers to the set of ships
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transferred in the j-th lockage, and Tj denotes the corresponding lockage
duration, j = 1, 2, . . ..

Observe that, due to possibly distinct hs values, it may be optimal
to let a ship with a relatively large handling time wait while handling
subsequent arrivals first. Thus optimal solutions may involve the overtaking
of ships, and hence violate Property 2.4. We show that the lockmaster’s
problem with ship dependent handling times is NP-hard. However, as
mentioned earlier, the FCFS policy is a reasonable additional requirement
when dealing with lock scheduling problems. Also notice that, even when
solutions must satisfy FCFS, it might be beneficial to let a ship with a
relatively large handling time wait, so that the lock is able to move quickly
to the other side and transfer ships that have arrived there. Nevertheless,
we show that for this case a polynomial time algorithm exists. Note that
this also applies to the setting where all handling times are equal, i.e. the
case where h = hs for all s ∈ S.

It may also be worth noting that by introducing these ship-dependent
handling times, an alternative definition for waiting time arises. Recall
that the waiting time for a ship s ∈ S was defined in Chapter 1 as the
difference between the starting time of the lockage containing s, and the
arrival time of s. However, when handling times are present, we may
define the waiting time for a ship to be the difference between the actual
and the earliest possible time where that ship could leave the lock, i.e. for
ship s ∈ S this waiting time corresponds to the ending time of the lockage
containing ship s, reduced by the arrival time As, the fixed part T of the
lockage time, and the handling time hs. Note that, with this definition of
waiting time, even if ship s enters the lock at time As, it may still incur
a positive waiting time due to the presence of other ships in the same
lockage. When all handling times are equal to zero, both definitions result
in the same value for each ship. In the remainder of this section, we will
continue to use our original definition of waiting time.

We first show that the general setting for the lockmaster’s problem
with handling times is strongly NP-hard.

Theorem 2.7. The lockmaster’s problem with ship-dependent handling
times is strongly NP-hard, even in the uni-directional setting.

Proof. We provide a reduction from 3-PARTITION (see the proof of
Theorem 2.4 for the definition). For any given instance of 3-PARTITION,
we construct a corresponding instance of the lockmaster’s problem with
ship-dependent handling times. We argue that solving the latter instance
to optimality allows to decide the question of the 3-PARTITION instance.
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The lockmaster’s instance is constructed as follows: Let T = 1, although
it can be seen that an instance can be constructed for arbitrarily chosen
T . At time t = 0, a set of 3n ships arrives on the downstream side, with
for each ship a handling time hi = ai (i = 1, . . . , 3n). We refer to these
ships as the handling ships. At each of the times t = B + 2T, t = 2B + 4T ,
. . . , t = n(B + 2T ), a set of 3(B + 2T )n2 ships arrives on the downstream
side. Each of these ships has zero handling time, i.e. hj = 0 for j =
3n + 1, . . . , 3n + 3(B + 2T )n3. We refer to these ships as the blocking
ships. The question is the following: “does there exist a solution with total
waiting time not greater than W ≡ 3(B+ 2T )n(n−1)/2?” This completes
the description of the instance of the lockmaster’s problem with handling
times. Figure 2.9 provides a graphical illustration of this instance.

XXX
X

X
3n ships
hi = ai

XX
X
XX

3(B + T )n2 ships
hi = 0

XX
X
XX

3(B + T )n2 ships
hi = 0

XX
X
XX

3(B + T )n2 ships
hi = 0

B+T T B+T T B+T T

Figure 2.9: Illustration of the instance for the proof of Theorem 2.7. The
dashed lines correspond to the lockages in a feasible solution for a ‘yes’
instance.

We now argue that the existence of a solution to the lockmaster’s
instance with total waiting time not greater than W implies a ‘yes’ answer
to the 3-PARTITION question. Observe that since all data are integral,
we can assume that the lock moves only at integral moments in time. Then
from W < 3(B + 2T )n2 it follows that any solution with value no greater
than W must serve all blocking ships at their arrival time. Hence, for all
feasible solutions with a total waiting time not greater than W , the lock
moves from the downstream side to the upstream side at times t = B+ 2T ,
t = 2B + 4T , . . . , t = n(B + 2T ). The lock thus has n intervals of size
B + 2T to handle the ships that arrive at t = 0. Because, for each lockage,
a duration of T cannot be avoided regardless of the number of ships in the
lock, it follows that the sum of handling times of all ships in each upward
lockage can be at most equal to B. Since B

4 < ai, it is impossible to
handle four ships in such an interval. As a result, the only way to achieve
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a total waiting time not greater than
∑n
i=1 3(n− i)(B + 2T ), is to handle

three handling ships in each of the n intervals with length B + 2T . Note
that

∑n
i=1 3(n− i)(B + 2T ) = 3(B + 2T )(n− 1)n/2 = W . This, however,

implies that the sum of handling times in each upwards lockage is exactly
equal to B, and thus a corresponding solution to the initial 3-PARTITION
instance exists. Thus, we can verify whether an instance of 3-PARTITION
is a ‘yes’-instance by solving the corresponding lockmaster’s instance with
ship-dependent handling times and checking whether the total waiting
time is no more than W . Conversely, it is obvious that if a partition
exists where all triples sum up to B, there is also a lock schedule with
total waiting time equal to W . Thus, if the optimal solution value to the
lockmaster’s instance is strictly greater than W , this identifies the given
instance as a ‘no’-instance.

Note that when the waiting time for a ship is defined according to
the alternative definition above, where the increase in lockage duration
due to the presence of other ships is considered as waiting time, we can
easily modify the proof so that the theorem remains valid. Indeed, we
may choose T >

∑3n
i=1 hi, increase the number of blocking ships arriving

at t = B + 2T , t = 2B + 4T , . . . , t = n(B + 2T ) by 2
∑3n
i=1 hi, and

let W ≡ 3(B + 2T )n(n − 1)/2 + 2
(∑3n

i=1 hi

)
. Observe that because 3-

PARTITION is NP-complete in the strong sense, we may assume that the
values ai are bounded by a polynomial in n; the size of the corresponding
lockmaster’s instance thus also remains polynomial in n. Because the value
for T was chosen to be sufficiently large, any solution where an upwards
lockage contains two or less ships necessarily has an objective value larger
than W . Each lockage starting in position p = 0 in a solution with value
not greater than W must thus contain exactly 3 ships. It then follows
that, in all such solutions, a waiting time of 2

(∑3n
i=1 hi

)
is incurred due

to ships being simultaneously present within the lock. The remaining
argumentation for the proof remains unchanged since the redefinition of
W reflects this increase in waiting time.

Similar to the setting with capacity and arbitrary ship sizes (Sec-
tion 2.5.1), which is also NP-hard in general, we observe that a polynomial
time procedure exists when restricting the solutions to those which adhere
to the FCFS policy.

Theorem 2.8. The lockmaster’s problem with arbitrary handling times
under a FCFS policy can be solved in O(n10) time.
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Proof. Observe that the arguments used to establish Lemma 2.1 in Sec-
tion 2.3 also apply to the case of arbitrary handling times. Hence Proper-
ties 2.1 and 2.2 remain valid in this setting.

We now construct a graph G = (V ∪ {σ, τ}, E) as follows. For each
ship s ∈ S, and for each possible number of ships waiting upstream at
time As (referred to as wu), and for each possible number of ships waiting
downstream at time As (referred to as wd), we create a node (also called
state) v = (s, wu, wd) in V . Notice that s is not included in either wu or
wd. To define the edges of G, we consider each pair of states (v, v′) where
v′ = (s′, w′u, w′d), with As′ > As + T if Ps 6= Ps′ or with As′ > As + 2T if
Ps = Ps′ . It is important to realize that, when given two states v and v′, it
is exactly known which ships are transferred when moving from state v to
state v′. Indeed, the FCFS assumption, together with the number of ships
waiting at As and As′ directly reveals which ships have been transferred.
We will denote this set of ships by S(v, v′) ⊆ S.

We define a handling strategy from v to v′ as a set of consecutive lock-
ages that start at Aa, ends in the interval (Aa′ − 2T,Aa′ ], and collectively
transfer the set of ships in S(v, v′). Notice that a handling strategy need
not exist; in addition, there may be different handling strategies for a
given pair of states (v, v′). However, the following is true for any handling
strategy (if one exists):

Lemma 2.4. Given a pair of states v = (s, wu, wd) and v′ = (s′, w′u, w′d),
any feasible handling strategy consists of the same number of lockages.

Proof. Since we know v and v′, we know which ships are transferred
by any handling strategy, and hence we know the total handling time:
H(v, v′) =

∑
s∈S(v,v′) hs. By Property 2.2 above, we also know that the

ending time of the last lockage of the strategy cannot exceed As′ , nor can
it end earlier than tAs′ − 2T . Thus, in case Ps = Ps′ , we look for an even
number of lockages, called m(v, v′), that satisfies:

As′ − 2T < As +H(v, v′) +m(v, v′)T ≤ As′ .

Similarly, in case Ps 6= Ps′ , we look for an odd number of lockages m(v, v′)
satisfying the equation above. Due to Property 2.2, the value of m(v, v′)
is unique and the lemma follows.

For all pairs v, v′ for which a number m(v, v′) can be computed, we
have an edge in G. Further, there is an edge from node σ to each state v,
and there is an edge from each state v to node τ .
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We now turn to describing how the costs of the edges in E are chosen.
To compute the costs of an edge from v to v′, we will invoke a procedure
that computes the cost of the corresponding optimal handling strategy
from v to v′. We point out that it may still be the case that, although
a number m(v, v′) can be computed, no feasible handling strategy exists.
This will follow from the procedure that we describe next. The resulting
cost of that edge is then set to ∞. A handling strategy from v to v′ will
specify for each ship in S(v, v′) in which lockage of the handling strategy
it will be transferred.

The cost of a handling strategy consists of the waiting time of relevant
ships. A ship a with Aa ≤ As′ is relevant when it has not yet been
transferred at time As. For each relevant ship a, let ta be the time at
which a is served by the lock. The waiting time for a, within this handling
strategy, then equals the time that elapses between max(As, Aa) and
min(ta, As′).

We now show how to compute the minimum total waiting time of the
optimal handling strategy from v to v′. This will become the cost of the
arc from state v to v′ in the graph G. Recall that S(v, v′) is the set of
ships transferred; we write S(v, v′) = Su(v, v′) ∪ Sd(v, v′), where Su(v, v′)
and Sd(v, v′) respectively refer to those ships in S(v, v′) that arrive on
the upstream and downstream side. Let u(k) and d(k) represent the k’th
element in Su(v, v′) and Sd(v, v′) respectively.

Given v and v′, we construct a graph H. There is a node in H for
each state (ku, kd,m); ku ranges from 0, . . . , |Su(v, v′)|, kd ranges from
0, . . . , |Sd(v, v′)|, and m = 1, . . . ,m(v, v′). Note that m(v, v′) can be
uniquely determined as a result of Lemma 2.4. Thus, a state (ku, kd,m)
represents the situation that the first ku upstream ships from S(v, v′), as
well as the first kd downstream ships from S(v, v′) have been transferred
using m lockages. In addition, we add a starting node (0, 0, 0). Let us
now consider the edges in H. For any vertex w = (ku, kd,m), we find all
possible states w′ = (k′u, k′d,m+1) that can be reached by the next lockage.
Notice that this includes an empty lockage, i.e. state (ku, kd,m+ 1). Also,
a single lockage cannot serve both upstream and downstream ships: thus,
only states with either k′u = ku or k′d = kd can be reached. More formally,
we associate to each state a so-called ending time T (ku, kd,m), which can
be computed as follows:

T (ku, kd,m) = t(s) +mT +
∑

a∈Sku,kd
(v,v′)

ha,
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where Sku,kd
(v, v′) corresponds to the first ku upstream ships, and the first

kd downstream ships from S(v, v′). Observe that T (0, 0, 0) = As.
We now specify the arcs in H. Observe that since both Pa and m

are known, we can infer whether an arc from node (ku, kd,m) to node
(k′u, k′d,m+ 1) represents an upward or a downward lockage of the lock.
Without loss of generality, let us consider a downward lockage of the lock:
we draw an arc from node (ku, kd,m) to node (k′u, kd,m + 1) for all k′u
that satisfy tu(k′u) ≤ Aq, where q is the latest ship to arrive upstream
before T (ku, kd,m). A similar construction holds for any upward lockage
of the lock. Since we know which ships we transfer for each arc in H, we
can compute the total waiting time of the relevant ships in this lockage.
This number is the cost of this edge, and we have specified the graph H.

We claim that a shortest path in H from (0, 0, 0) to (|Su(v, v′)|,
|Sd(v, v′)|, m(v, v′)), if it exists, corresponds to a minimum-cost han-
dling strategy from v to v′. Indeed, this claim follows from the observation
that any way of transferring the ships in S(v, v′) is a path in H with
the corresponding waiting time, and vice versa. Furthermore, we argue
that such a shortest path can be found in O(n4) time. We introduce the
following lemma which reduces the number of handling strategies that we
need to consider:

Lemma 2.5. All handling strategies where two consecutive empty lockages
are followed by a nonempty lockage can be excluded without impacting the
optimality of the resulting solution.

Proof. Assume, without loss of generality, that the non-empty lockage
starts on the downstream side. Notice that the handling strategy is non-
optimal if any ship moved by the non-empty lockage arrives before the first
empty lockage. We thus assume the existence of at least one downstream
arrival during the empty lockages. It is then easy to see that there is
an optimal block schedule with a block starting at that arrival, and thus
excluding the two empty lockages.

Note that for all m larger than 2|S(v, v′)|+ 1, either two consecutive
empty lockages are followed by a non-empty lockage, or all ships in S(v, v′)
have been moved. The values for m that we need to consider are thus
bounded by O(n) so that we find a shortest path in H considering only
O(n3) nodes and O(n4) arcs.

Correctness of the theorem thus follows from the fact that an optimal
solution exists that displays the structure of Lemma 2.1 and since we
compute, for each possible pair of states, a handling strategy with minimum
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cost. Since any σ-τ path in G represents a feasible lock schedule, the
shortest path in this graph corresponds to the optimal lock schedule. With
respect to the complexity of the procedure we observe by Lemma 2.5 that
the number of states to be considered in G equals O(n3), and hence the
number of edges equals O(n6). Since a shortest path in H can be found
in O(n4) steps, we have a polynomial time bound of O(n10).

2.5.4 Non-uniform lockage duration

It is not uncommon that the lockage duration for an upwards lockages
differ from the lockage duration for a downwards lockage, for example due
to the current. We argue that the procedure for the lockmaster’s problem
outlined in Section 2.3 is easily adjusted to take this into account.

Theorem 2.9. The lockmaster’s problem with a lockage duration that
depends on the position of the lock is solvable in O(n3).

Proof. We redefine a block B(a, b) from Section 2.3 as follows.

Definition 2.5.

• For each a, b ∈ S with Pa = 0 6= Pb and with Aa + Tu < Ab, a block
B(a, b) is the set of `(B) consecutive lockages that starts at Aa and
ends at Aa + d `(B)

2 eTu + b `(B)
2 cTd; with `(B) the largest odd integer

such that Aa + d `(B)
2 eTu + b `(B)

2 cTd ≤ Ab.

• For each a, b ∈ S with Pa = 1 6= Pb and with Aa + Td < Ab, a block
B(a, b) is the set of `(B) consecutive lockages that starts at Aa and
ends at Aa + d `(B)

2 eTd + b `(B)
2 cTu; with `(B) the largest odd integer

such that Aa + d `(B)
2 eTd + b `(B)

2 cTu ≤ Ab.

• For each a, b ∈ S with Pa = Pb and with Aa + Tu + Td < Ab, a block
B(a, b) is the set of `(B) consecutive lockages that starts at Aa and
ends at Aa + `(B)

2 (Tu + Td); with `(B) the largest even integer such
that Aa + `(B)

2 (Tu + Td) ≤ Ab.

It is not difficult to verify that all results from Section 2.3, mutatis
mutandis, apply to this setting.
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2.5.5 Water usage
Due to organizational or environmental reasons, there can be a limit on the
number of lockages allowed in a given time-interval. In particular, when
water is scarce (e.g. after dry seasons), lockages may seriously disrupt the
water level. In such a case, the number of allowed lockages is bounded
in order to keep the water at a navigable level (Verstichel and Vanden
Berghe, 2009). Again a modification to the original procedure can be
found which finds an optimal solution. This procedure runs in polynomial
time provided that the bound Q on the number of lockages is part of the
input.

Theorem 2.10. The lockmaster’s problem with an upper bound Q on the
total number of lockages is solvable in O(Q2n4).

Proof. Let Q refer to the maximum number of allowed lockages. Notice
that in this situation Lemma 2.1 no longer holds. Indeed, a lockage will
no longer occur at least every 2T interval. However, it does hold that
lockages are either consecutive or start upon arrival time of a ship; and
the final lockage ends no later than An + 3T . We now define a bounded
block B = (a, b, `(B)) for each a, b ∈ S, `(B) ≤ Q with Aa + `(B)T < Ab,
as a set of `(B) consecutive lockages starting at Aa, with `(B) even if
Pa = Pb, and `(B) odd if Pa 6= Pb. It must hold that Aa + `(B)T < Ab.

Again, `(B) is called the length of block B. We do not prove it formally
but it should be clear that each schedule can be represented by a sequence
of bounded blocks B1, . . . , Bα where Bk = (ak, bk), k = 1, . . . , α with
ak, bk ∈ S and bk = ak+1 for each k = 1, . . . , α− 1.

If we define Ua and Da as in Section 2.5.1, we may design the following
directed graph G = (V,E) in order to represent the problem. We have
V = {s, t} ∪ V A with V A = {(a, u, d, q) | a ∈ S, u ∈ Ua, d ∈ Da, 0 ≤ q ≤
Q}. A node (a, u, d, q) corresponds to a bounded block starting at Aa,
while u and d represent the latest ships served coming from upstream and
downstream, respectively, and q denotes the number of finished lockages.
It holds that:

u′ = fup((a, b, l(a, b)), u); d′ = fdown((a, b, l(a, b)), d)

Definition 2.6. We say that two nodes (a, u, d, q) and (b, u′, d′, q′) are
compatible if (a, b) is a block and if u′ = fup((a, b, l(a, b)), u) and d′ =
fdown((a, b, l(a, b)), d), and q′ = q + l(a, b).

The set of edges is given as E = Es ∪ EB ∪ Et, with
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• Es =
{

(s, v) | v = (a, ∅, ∅, 0) ∈ V A
}
,

• EB = {(v, v′) | v and v′ are compatible}, and

• Et =
{

(v, t) | v = (a, u, d, q) ∈ V A with q + κ ≤ Q where κ is the
shortest length of a bounded block starting at Aa and serving all
ships not transported yet}.

The meanings of nodes and arcs are analogous to the ones in Sec-
tion 2.5.1. The only difference is that the number of lockages is encoded
in nodes here and arcs represent bounded blocks instead of blocks. Graph
G now contains O(n3Q) nodes. Note that each node is source of O(Qn)
arcs. We can determine u′((a, b, l(a, b)), u) and d′((a, b, l(a, b)), d), and to-
tal waiting time of ships according to all arcs emerging from v ∈ {s} ∪ V A
in O(Qn) time.

Obviously, a path from σ to τ then represents a feasible lock schedule
and the shortest path represents the lock schedule having minimum total
waiting time of ships. Since G is acyclic the theorem follows.

2.6 Heuristics
Let us also define a number of heuristics that solve the single-lock single-
chamber scheduling problem. In Section 2.7, we then compare the perfor-
mance of the exact algorithms to the heuristics presented below.

Continuous up/down (CUD): The lock will move whenever possi-
ble, resulting in a continuous up/down movement. At the start of each
lockage, as many ships are moved as the lock capacity (if limited) allows.
This strategy uses no information whatsoever, and even ignores the number
of ships present at the lock. The first lockage is assumed to start at t = 0.
When ship handling times are present, the lockage duration is adjusted
accordingly. Ship waiting time is weighted by its priority value if required.

Move upon arrival (MA): The lock will not move unless a ship
arrives or a ship is already waiting. Whenever a ship arrives on either side,
the lock will immediately move and handle this ship (potentially by first
performing an empty lockage so that a ship on the opposite side can enter).
When given knowledge concerning the ships that have arrived so far while
having no future arrival information, this may be the most straightforward
way to operate the lock. Capacity, handling times and weights are again
straightforward to take into account.

Wait until threshold (WUT): For this strategy, the lock is expected
to move only when a certain number of ships is reached on either side of
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the lock. We choose to linearly decrease this threshold value to zero over
a constant interval I after each lockage. This guarantees that the lock
will move at least once every T + I time units. Note that this ensures
that this heuristic always generates a feasible solution. If the threshold
would not decrease over time, the last ship may not pass the lock if the
threshold value is not met. Also note that, by choice of both the threshold
value and I, this heuristic can be seen as a generalization of the CUD as
well as the MA heuristic. The WUT results reported below assume an
interval I of T/2, and a threshold of 2. Higher threshold values quickly
decreased the performance for the instances used below. Capacity and
handling times are again easy to include. When taking priority values into
account, it makes sense to adjust the threshold value accordingly. We now
consider the weighted number of ships waiting for service, and the original
threshold value is multiplied by the mean of all ship priority values.

The heuristics above use no information about future arrivals. On real-
world waterways however, ships should typically announce their arrival at a
lock some time in advance. For example, as mentioned in Section 1.3.1, all
cargo ships on the Rhine and Danube rivers are expected to communicate
their time of arrival at least two hours before reaching a lock. More
information can thus be expected to be available to the lockmaster. We
present two additional heuristics below that incorporate some of this
information in the decision process.

Minimum unavoidable increase (MUI): Assume that the lock is
in a given position, say p, at a certain time t. A decision has to be made
whether to move the lock immediately or to keep waiting for more ships.
When the lock does not move, we assume that it waits at least until the
next arrival at that position p. If no arrival occurs at position p within 2T
time units, we restrict ourselves to this 2T horizon to limit the ‘look-ahead’
time. Thus, we assume the lock will leave at an arrival time of a ship,
say t′, with t ≤ t′ ≤ t + 2T . Given t′, we determine the unavoidable
increase Uwait as the waiting time of all ships arriving at p, that were
already present at time t; and of those ships that arrive in the interval
(t, t′]. In addition, all ships waiting at the opposite side 1− p, need to wait
an additional T time units, compared to ships arriving at p, for the lock to
arrive. This justifies the notion of ‘unavoidable’ waiting time; an increase
in total waiting time at least as large as Uwait is incurred regardless of
any future decisions. Alternatively, when the lock moves immediately, we
apply a similar strategy. Once the lock starts to move, it cannot arrive
back in its original position for a period of at least 2T . We let Umove
be equal to the unavoidable waiting time of all ships on the opposite
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side as before, as well as the waiting time of all ships at the original
position that can not be handled until the earliest time when the lock may
return. The heuristic will now decide to wait when Uwait < Umove, or move
immediately otherwise. This decision is repeated when the lock arrives at
its new position, or at the end of the waiting time. Ship priorities and lock
capacity can be incorporated without any problem. Some care must be
taken when including handling times in the model, as the waiting time of
ships positioned at the opposite site of the lock will then increase beyond
T . Similarly, the earliest return time for the lock when determining Umove
may be larger than 2T . If capacity is included, it is assumed optimal to
handle as many ships as the lock allows while handling ships with the
shortest handling time first. All other aspects of the decision procedure
remain unchanged.

Look-ahead 2T (LA2T): Like the previous heuristic, this procedure
also makes use of future arrival information. The LA2T heuristic again
decides whether or not to move the lock at certain decision times. However,
we now base this decision on the optimum solution for the look-ahead
interval. We assume that all arrival information is known for the next
2T time units and we create a new subproblem over this 2T horizon, also
including all unhandled ships that are waiting at the decision time. This
subproblem is then solved with the exact solution procedure outlined in
Sections 2.3 and 2.5 while ensuring that the initial position of the lock is
fixed. If the lock moves immediately in the solution to the subproblem,
the heuristic now decides to move immediately in the original problem. If
not, the lock waits until the next decision point, which corresponds to the
arrival of a ship at the lock’s position, or whenever a new ship is added to
the 2T look-ahead period. Lock capacity as well as ship priorities are easy
to add. Handling times cannot be included since an efficient procedure to
find an exact solution is not available, as argued in Section 2.5.3. The look-
ahead interval can be chosen arbitrarily large to improve the performance
of this heuristic. However, repeated application of the exact procedure
quickly increases the LA2T computation time beyond that of the other
heuristics. For small look-ahead intervals such as 2T , the exact procedure
does find a solution quickly since the solution graph has very few edges in
general.

For those problem settings where the first-come first-served assumption
(i.e. Property 2.4) does not hold, each of the heuristics requires a sequencing
rule to decide on the order in which the ships are handled. This is the case
for the setting where capacity, priority, and handling times are considered
simultaneously. We apply a greedy strategy in this case. Intuitively, one
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expects that ships with high priority and/or short handling times should be
handled first. A decision rule could be to order waiting ships by decreasing
value of P/HT , where P is the priority value and HT the handling time.
For our set of instances however, it turns out that handling ships by
decreasing priority leads to significantly better performance. Many other
greedy policies can be used, but are not considered below. For the setting
with all extensions, we report results for the decreasing priority policy.

2.7 Computational study
Is it worth the effort to solve instances of the lockmaster’s problem to
optimality? Or, are heuristics sufficient to achieve near-optimal solutions?
In this section we answer this question by performing computational
experiments. We consider the basic problem setting as well as a number
of extensions and compare the optimal solution to the heuristics described
in Section 2.6. Each of the presented heuristics will be applied to all
problem settings where possible. Note that the solution value for the
presented heuristics depends on the initial position of the lock, whereas it
does not for the exact solution; we compensate for this effect by obtaining
a heuristic solution for both starting positions and reporting the best of
both solutions.

2.7.1 Instances and problem setting
As far as we are aware, the only publicly available instances are maintained
by Verstichel and Vanden Berghe (2009). We report results for these
instances in Section 2.7.3. As these instances do not contain all information
needed for the extensions we cover here, we also generate new instances
for the experiments below, simulating a realistic arrival process. Since
ship arrivals are independent, a Poisson arrival process is to be expected.
The time between subsequent arrivals is then distributed according to
an exponential distribution, since the ‘memoryless’ property should be
satisfied. That is, the arrival probability for a ship is unrelated to the
elapsed time since the last arrival. To obtain integral arrival times, we use
a geometric distribution, which can be be seen as the discrete analogue
of the continuous exponential distribution. The time unit is one minute.
All instances consider a time horizon of 24 hours. The lockage duration is
assumed to be 30 minutes, a typical value similar to that reported by Smith
et al. (2009) for ‘single’ lock operations. The only remaining parameter to
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decide upon is the parameter p that specifies the geometric distribution.
This parameter corresponds to the arrival probability as follows: if we let
X denote a random variable representing the number of ships that arrive
at any given time in the instance, the following holds: P (X ≥ n) = pn for
all n ∈ N. Each generated instance can thus be considered as a random
realization of a ‘typical day’ where the arrival probability is specified
by the value of p. We report here the results averaged over 25 random
instances with equal p. Rijkswaterstaat has kindly provided a dataset
with arrival information for the three parallel locks of Terneuzen, the
Netherlands. Regression on the interarrival times shows that the geometric
distribution assumed above corresponds well to reality. Furthermore, the
arrival probability of p = 0.1 used in the simulations below reflects the
arrival process observed at the locks of Terneuzen. In addition to the
arrival times, each arriving ship is also assigned a priority value and a
handling time for the extensions below. We consider the following problem
settings:

1. Basic: The basic settings described in Section 2.3. This considerably
simplified problem serves as the starting point for all cases below.
Further, it acts as a reference to compare the relative performance
of the different solution methods.

2. Capacity: The extension covered in Section 2.5.1. We assume
that the number of ships in the lock is limited for any lockage. We
arbitrarily set the bound equal to 3 for all capacitated instances below.
Separate simulations, with capacity values of 6 and 12 respectively,
indicating that the optimal solution is rarely restricted by higher
capacity bounds. For this reason, results for the larger capacity
bounds are omitted.

3. Weights: The extension considered in Section 2.5.2. All ships
are given a priority value which is used as a weight factor in the
objective function. Lock capacity is not limited in this case. The
generated instances each have ship priority values chosen randomly
from {1, 2, 3} with equal probability.

4. Handling times: The extension considered in Section 2.5.3. All
ships are given a handling time. For any lockage the lockage time is
increased by the sum of the handling times of all ships present in
the lock. For the instances below, handling time values are chosen
randomly from {0, 2, 5} with equal probability. Ship priorities and
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p = 0.0333 basic capacity weights handling cap + W + HT
exact (min.) OPT 727.3 793.8 1381.4 X X

heuristic (%)

CUD 201.6% 195.8% 214.0% 1555.6 3296.1
MA 192.3% 187.8% 204.2% 1557.6 3357.5
WUT 212.6% 210.1% 214.4% 1649.7 3353.9
MUI 115.2% 128.4% 110.3% 866.0 1982.4
LA2T 107.2% 109.4% 104.6% X X

Table 2.1: Results for different problem settings. Each value represents the
average of 25 instances simulating the same arrival process. The arrival
parameter equals 1/30.

lock capacity are not considered. Note that finding the optimum
solution is NP-hard as shown in Section 2.5.3.

To allow the fairest comparison of solution performance, the instances used
for each of the extensions have arrival times identical to the corresponding
instances in the basic setting.

2.7.2 Results
We summarize the results of all simulations in Tables 2.1 to 2.3. Each table
shows values obtained by averaging over 25 instances for each heuristic
under different problem settings and for a specific arrival probability (see
Section 2.7.1). We do not separately list the required computation time
as minimizing the solution time was not our main priority. Nevertheless,
the exact solution is obtained in less than a second on average, except
for the bounded capacity setting, where the increased graph complexity
increases the computation time up to a 10 minutes average on a 3.4
GHz machine with 4GB RAM. Exact results are reported in minutes of
total waiting time. Heuristic values are shown as a percentage relative
to the corresponding exact solution where possible, and as total waiting
time in minutes where the exact solution is not available. All generated
instances and results for each individual instance are available online
(https://perswww.kuleuven.be/~u0086328/lockmasterdata.html).

We see from the tables that the straightforward heuristics (CUD, MA,
WUT) perform significantly worse than their look-ahead counterparts,
though performance improves as the arrival probability increases. The
WUT heuristic only realizes very small improvements over MA in some
cases; we expect that there may in fact be certain conditions when such
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p = 0.0666 basic capacity weights handling cap + W + HT
exact (min.) OPT 1884.9 3768.8 3644.0 X X

heuristic (%)

CUD 152.3% 130.4% 158.5% 3524.6 11972.6
MA 153.1% 132.3% 159.2% 3516.6 12049.2
WUT 156.3% 131.6% 158.7% 3472.3 11787.3
MUI 115.7% 151.7% 114.7% 2397.2 12379.3
LA2T 105.8% 107.6% 104.9% X X

Table 2.2: Results for different problem settings. Each value represents the
average of 25 instances simulating the same arrival process. The arrival
parameter equals 1/15.

p = 0.1 basic capacity weights handling cap + W + HT
exact (min.) OPT 3361.3 21592.2 6474.6 X X

heuristic (%)

CUD 137.1% 109.7% 141.1% 6166.0 60722.2
MA 134.8% 108.4% 139.6% 6199.2 60003.0
WUT 134.0% 107.4% 139.2% 6246.9 59995.4
MUI 118.5% 138.9% 118.3% 5134.1 94393.9
LA2T 105.3% 103.7% 105.3% X X

Table 2.3: Results for different problem settings. Each value represents the
average of 25 instances simulating the same arrival process. The arrival
parameter equals 1/10.
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a threshold policy is beneficial. Especially when capacity is considered
limited, moving a lock while it is not ‘sufficiently’ full may introduce
unnecessary waiting times in future lockages.

When comparing the columns for the capacity simulations, it is clear
that the lock quickly becomes heavily congested for higher values of p, as
reflected in the large difference between optimal values for the capacity
and basic settings. The optimality gap induced by all heuristics except
for MUI tends to decrease as the arrival rate increases. This behaviour
is to be expected as for a congested lock with a high arrival rate, the
optimal decision would be to keep moving continuously up and down
taking as many ships as possible. This decision also follows from each
of the heuristics, except for MUI, which sometimes decides to wait for
the next ship while moving is the better option. This tendency is most
obvious when capacity is bounded, as the MUI heuristic does not explicitly
consider capacity limits in its decision. However even when capacity is
not an issue, the same tendency arises, to a minor extent, for the other
problem settings. MUI is the only heuristic where performances decrease
as the arrival rate increases.

LA2T clearly has the best heuristic performance overall. Making use
of future arrival information clearly pays off. This appears to be the best
available strategy, provided that the optimal solution to sub-problems
can be found. The smaller size of sub-problems may also allow an exact
MIP solution in reasonable time, even for settings that are known to be
NP-hard. This suggests using this heuristic as a ‘rolling horizon’ strategy
for large instances where the exact solution is infeasible. Increasing the
look-ahead horizon will further improve the performance of this heuristic,
though it should be mentioned that computation time likely becomes a
restraining issue as the horizon increases. For our instances, the LA2T
computation was at least an order of magnitude faster than for the exact
solution, and frequently the difference was even larger. For one of the
larger instances in the basic setting however, the exact solution for the
entire problem was actually found faster, albeit only slightly, than the
heuristic result.

2.7.3 Results for the instances by Verstichel and Van-
den Berghe

Results for the instances maintained by Verstichel and Vanden Berghe
(2009) are presented in Tables 2.4 to 2.7. We note that the lock and ship
dimensions provided in these instances are ignored, since our approach
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Instance OPT CUD MA WUT MUI LA2T
P_10_20_0.3 429 134% 125% 134% 116% 100%
P_10_20_0.5 400 138% 133% 140% 100% 108%
P_15_20_0.3 456 130% 117% 114% 153% 104%
P_15_20_0.5 385 145% 114% 140% 166% 103%
P_30_20_0.3 208 230% 171% 327% 145% 116%
P_30_20_0.5 261 190% 188% 194% 113% 119%
P_5_20_0.3 327 131% 149% 133% 100% 100%
P_5_20_0.5 428 116% 125% 118% 117% 106%

P_10_100_0.3 2281 131% 127% 131% 133% 109%
P_10_100_0.5 2084 134% 129% 134% 127% 104%
P_15_100_0.3 1993 142% 138% 147% 137% 106%
P_15_100_0.5 2002 146% 144% 132% 112% 105%
P_30_100_0.3 1238 247% 235% 242% 157% 110%
P_30_100_0.5 1334 202% 195% 235% 121% 111%
P_5_100_0.3 2438 128% 110% 128% 207% 118%
P_5_100_0.5 2434 118% 126% 119% 152% 109%

P_10_1000_0.3 5160 612% 536% 556% 466% 391%
P_10_1000_0.5 6195 527% 485% 471% 386% 327%
P_15_1000_0.3 5131 613% 598% 655% 340% 303%
P_15_1000_0.5 12023 285% 266% 241% 158% 142%
P_30_1000_0.3 9276 349% 323% 337% 124% 119%
P_30_1000_0.5 10123 352% 289% 307% 118% 113%
P_5_1000_0.3 10555 280% 278% 280% 395% 251%
P_5_1000_0.5 4873 597% 592% 597% 716% 544%

Table 2.4: Exact solution and heuristic performance for the ‘Poisson’
instances for the basic problem setting with unbounded lock capacity.

does not decide on the placement within the chamber. In contrast, we use
the methods described in Sections 2.3 and 2.5.1 to obtain an optimum
solution with respect to the provided arrival times. The lockage time
T is chosen equal to 30. Relative weights and handling times are not
included in these datasets. A subset of the instances has interarrival times
which follow a Poisson distribution; other instances have times between
arrivals following a uniform distribution. We note that interarrival times
distributed according to a Poisson distribution do not reflect a Poisson
arrival process, where an exponential distribution would be expected.
Results for these instances are reported in Tables 2.4 and 2.6. Results
for these instances are given in Tables 2.5 and 2.7. We do not report
averages for the values in the tables as each of the instances simulates an
arrival process with different parameters. We refer to the original paper by
Verstichel and Vanden Berghe (2009) for details on the instance parameters.
For Tables 2.6 and 2.7, where capacity is considered, we ignore the ship
size and assume a capacity bound equal to 3 ships.
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Instance OPT CUD MA WUT MUI LA2T
R_10_20_0.3 393 113% 134% 113% 123% 100%
R_10_20_0.5 421 124% 114% 124% 108% 100%
R_15_20_0.3 414 125% 125% 142% 114% 100%
R_15_20_0.5 368 144% 133% 161% 132% 112%
R_30_20_0.3 362 145% 151% 176% 111% 113%
R_30_20_0.5 350 166% 166% 138% 132% 100%
R_5_20_0.3 458 129% 134% 129% 120% 108%
R_5_20_0.5 444 127% 141% 129% 133% 109%

R_10_100_0.3 2234 124% 131% 124% 133% 108%
R_10_100_0.5 2168 129% 141% 129% 129% 106%
R_15_100_0.3 1832 156% 163% 159% 133% 103%
R_15_100_0.5 1815 168% 145% 154% 117% 104%
R_30_100_0.3 1533 187% 179% 212% 108% 106%
R_30_100_0.5 1181 224% 207% 248% 126% 104%
R_5_100_0.3 2568 110% 106% 110% 169% 104%
R_5_100_0.5 2424 118% 112% 118% 113% 111%

R_10_1000_0.3 11181 270% 266% 256% 207% 173%
R_10_1000_0.5 7225 451% 374% 416% 320% 288%
R_15_1000_0.3 13685 225% 221% 221% 117% 108%
R_15_1000_0.5 11577 293% 253% 251% 156% 145%
R_30_1000_0.3 3914 841% 727% 805% 280% 280%
R_30_1000_0.5 8040 443% 360% 385% 134% 134%
R_5_1000_0.3 19062 151% 149% 151% 255% 141%
R_5_1000_0.5 6174 469% 476% 469% 577% 442%

Table 2.5: Exact solution and heuristic performance for the ‘Uniform’
instances for the basic problem setting with unbounded lock capacity.

Instance OPT CUD MA WUT MUI LA2T
P_10_20_0.3 696 126% 129% 126% 184% 100%
P_10_20_0.5 577 117% 124% 121% 102% 100%
P_15_20_0.3 704 144% 118% 119% 229% 113%
P_15_20_0.5 530 117% 128% 147% 275% 100%
P_30_20_0.3 208 230% 171% 327% 145% 116%
P_30_20_0.5 261 190% 188% 194% 113% 119%
P_5_20_0.3 767 157% 165% 160% 146% 123%
P_5_20_0.5 736 108% 130% 108% 167% 102%

P_10_100_0.3 14647 103% 109% 103% 131% 101%
P_10_100_0.5 5204 103% 123% 103% 201% 101%
P_15_100_0.3 2852 135% 132% 133% 280% 103%
P_15_100_0.5 2359 139% 140% 146% 138% 111%
P_30_100_0.3 1238 247% 235% 242% 157% 110%
P_30_100_0.5 1334 202% 195% 235% 121% 111%
P_5_100_0.3 42271 106% 103% 106% 123% 103%
P_5_100_0.5 26060 106% 104% 106% 116% 100%

Table 2.6: Exact solution and heuristic performance for the ‘Poisson’
instances for the limited capacity setting with bound equal to 3.
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Instance OPT CUD MA WUT MUI LA2T
R_10_20_0.3 806 107% 125% 107% 175% 100%
R_10_20_0.5 665 114% 135% 114% 183% 100%
R_15_20_0.3 758 124% 108% 115% 169% 108%
R_15_20_0.5 368 144% 133% 161% 309% 122%
R_30_20_0.3 415 156% 142% 156% 112% 100%
R_30_20_0.5 350 166% 166% 138% 149% 100%
R_5_20_0.3 1373 113% 115% 113% 149% 115%
R_5_20_0.5 844 159% 152% 159% 195% 121%

R_10_100_0.3 20490 109% 103% 109% 117% 107%
R_10_100_0.5 9130 105% 104% 105% 169% 102%
R_15_100_0.3 8123 107% 110% 115% 173% 119%
R_15_100_0.5 2392 152% 132% 145% 241% 108%
R_30_100_0.3 1543 186% 177% 211% 118% 113%
R_30_100_0.5 1314 211% 198% 230% 136% 104%
R_5_100_0.3 36030 103% 105% 103% 132% 103%
R_5_100_0.5 29384 105% 102% 105% 113% 100%

Table 2.7: Exact solution and heuristic performance for the ‘Uniform’
instances for the limited capacity setting with bound equal to 3.

2.8 Conclusion
In this chapter, we introduced ‘the lockmaster’s problem’, a simplified
problem setting that represents the core problem underlying any lock
scheduling setting that involves batch processing of ships and the scheduling
of lockage operations. This problem is closely linked to known batch
scheduling problems. The problem can be solved in polynomial time; we
were able to construct a graph such that applying a shortest path algorithm
solves the lockmaster’s problem to optimality. We investigated a number of
problem extensions based on practical considerations such as the chamber
capacity and ship-dependent handling times. We provided hardness results
for these generalizations, in addition to describing a modified solution
method to obtain an optimum solution when a first-come first-served policy
is enforced. Finally, computational experiments confirmed that the exact
algorithm outperforms a number of basic heuristics.

One possible direction for future research is to focus on the batch
scheduling aspect of the problem. For example, it may be interesting to
extend the single-lock setting to a machine scheduling problem with job
compatibilities and jobs of more than two types. Throughout this chapter,
it is assumed that all input data are known initially. An extension where
this is no longer the case could introduce some uncertainty about the input
parameters. A different extension relates to the arrival times, which may
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only be known in a limited time window that updates as time progresses.
These generalizations are discussed further in Chapter 6, since they are
also relevant for the problem settings discussed in the remaining chapters.





Chapter 3

Computational
complexity of scheduling
locks in sequence

Although the results obtained in Chapter 2 can be useful to obtain an
operational schedule, it rarely occurs that there is only a single lock along
the entire length of a well-travelled waterway. For example, the two most
economically important waterways in Europe are the Danube and the
Rhine. The Rhine-Main-Danube Canal and the Main river, that connect
the Danube to the Rhine, respectively have 16 and 34 locks along this
connection. Clearly, ships travelling along these waterways will encounter
many locks during their itinerary, and individually scheduling each of
the locks may not yield an overall optimum solution with respect to the
waiting time objective, see also Section 4.5 for an illustration.

In this chapter, we consider the problem of obtaining an integrated
schedule for multiple locks arranged in a sequence. The general definition
of this problem setting is provided in Section 3.1. Section 3.2 gives an
overview of related literature. Our results focus on the nature of exact
algorithms for different versions of the problem. More concrete, we show
that the existence of polynomial-time algorithms must be considered
unlikely, even for the case of two identical locks and all ships travelling in
the same direction. Indeed, we show that this problem is strongly NP-hard
in Section 3.3. In Section 3.4, we show that the case of identical ships also
remains strongly NP-hard for an arbitrary number of locks. Section 3.5
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introduces a class of solutions which satisfy particular properties: so-called
synchronised solutions. Section 3.5.3 describes a polynomial-time algorithm
for a uni-directional variant of the latter problem, thus narrowing the gap
between known easy and hard problem settings.

The first main contribution of this chapter is to prove strong NP-
hardness for the problem of scheduling single-chamber locks in sequence.
This is, to the best of our knowledge, the first proof where the complexity
of the problem is not due to the packing of ships within chambers or due to
the chamber assignment. (For a NP-hardness proof related to the chamber
assignment, see Chapter 5.) We show that the problem is NP-hard in two
fundamentally different special cases. The first special case is a setting with
identical locks and uni-directional travel, where ships may be non-identical.
The second special case is a setting with identical ships. The claim that
bi-directional travel contributes fundamentally to the complexity in the
latter setting is reinforced by providing a polynomial-time algorithm for
a uni-directional variant with identical ships. When we use the phrase
“identical locks”, we mean that all locks have an equal lockage duration
and all locks have equal capacity, i.e. Tl = T and Cl = C for all l ∈ L.
When we use the phrase “identical ships”, we mean that all ships travel at
equal speed, i.e. Vs = V for all s ∈ S.

The second contribution of this chapter is to investigate the existence
of so-called synchronised solutions. We show that there exists an optimum
solution which is synchronised in two special cases of our problem. The
first special case is a setting with two identical locks and bi-directional
travel; the second special case is a setting with multiple identical locks and
uni-directional travel. Additionally, we consider different generalizations of
the two-lock setting and show that these results do not apply to a number
of extended problem settings.

3.1 Problem definition
Given is an ordered set of single-chamber locks L = {1, . . . , L}. Since each
lock consists of a single chamber, we simplify our notation as follows. Each
lock l ∈ L has a lockage duration Tl and a capacity Cl. Throughout this
chapter we will, unless otherwise mentioned, consider locks with unbounded
capacity; that is, the setting where Cl = +∞ for all l ∈ L. Recall that, for
all l ∈ L \ {L}, Sl specifies the distance between locks l and l + 1. Given
the set of ships S, recall that the arrival time of a ship s ∈ S is given by
As. Recall from Section 1.3.1 that, in general, a ship need not enter the
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system of locks at the first or the last lock. The arrival and departure
locks of a ship s are denoted by LAs and LDs respectively. Throughout this
chapter we assume that each ship s ∈ S travels at a fixed speed Vs.

The problem consists of finding a feasible schedule with minimum
total waiting time. We denote this problem by SLS, short for Sequential
Lock Scheduling. In Section 3.3, we show that solving SLS is strongly
NP-hard by proving that the corresponding decision problem is strongly
NP-complete. This decision problem, denoted by dec-SLS, is formulated
as follows: “given an instance of SLS, does there exist a feasible schedule
with a total waiting time of at most W?”

3.2 Relation to literature
To the best of our knowledge, no results on the complexity of scheduling
locks in sequence exist in the literature. A known result is that the problem
becomes strongly NP-hard as soon as the placement of ships within a
chamber is considered. See e.g. Verstichel et al. (2014a) for a description
of the ship placement problem. A problem related to our problem, also in
the context of waterways, is the scheduling of bi-directional traffic along
a narrow river or canal, where a limited number of wider segments is
available for the crossing of ships that travel in opposite directions, or for
the overtaking of ships that travel in the same direction. The complexity
of the problem to minimize total waiting time for this setting is settled
by Disser et al. (2015). We note that the results obtained by Disser et al.
(2015) do not immediately extend to our setting for the scheduling of
locks. One attempt to connect the two problems is to see the narrow
canal sections in their problem setting as locks, and the widened sections
as the distance separating adjacent locks. But then, a notable difference
is that in the lock setting, each lock must return to its initial position
in between the processing of two ships that travel in the same direction,
whereas a narrow canal is immediately available for ships travelling in
either direction. Other differences are that, in our lock setting, each ship
is allowed to overtake any other ship while both ships are travelling, and
that the distance between locks in fact enforces a minimum amount of
required waiting time for the widened sections.

A large body of related literature also exists on the scheduling of a
single-track railway line with a limited number of segments or stations
where overtaking is allowed. An early paper on this topic was presented by
Frank (1966); since then, many papers have studied integer programming
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models and heuristics for this problem setting. While the single-track
railway scheduling problem is similar to the sequential locks scheduling
problem, a number of differences appear. First, a lock may serve multiple
ships simultaneously in a single lockage. Secondly, in the lock scheduling
problem, travel time is associated with each section between locks; in the
railway setting such a section corresponds to a single track segment, which
requires a train to stand still and incur waiting time in order to allow
overtaking. Gafarov et al. (2015) prove NP-hardness for such a single-track
railway problem. In their problem setting, each of the trains has a due
date, so that the overtaking of trains may in fact be required, and the
hardness result follows in part from the underlying sequencing problem.

A third problem setting that relates to our SLS setting is the well-
known flow shop problem, where a set of jobs is given and each job is to
be executed on a set of machines. Typical for a flow shop is that each
of the jobs must be executed by each of the machines in a pre-defined
order which is identical for all jobs. Clearly, the jobs correspond to ships
arriving over time, and the machines correspond to the different locks.
The natural ordering of locks is immediately reflected in the order in which
the jobs must be executed on the machines. See, for example, Emmons
and Vairaktarakis (2013) for an overview of the many results on the flow
shop problem and its variants.

One aspect in which the SLS problem is clearly more general is the
bi-directional traffic: in terms of the flow shop problem, this corresponds
to the existence of jobs which must be processed in ‘reverse order’. The
complexity of such an extension falls naturally between that of the original
flow shop problem and that of the job shop problem, where the processing
order of each job is independently specified. The SLS problem, however, is
more specific than the flow shop problem in terms of the job processing time;
whereas this processing time may be arbitrarily chosen for each combination
of job and machine in the flow shop problem, the processing time on any
lock (i.e. machine) is clearly identical for each of the ships (i.e. jobs) in
SLS. Other notable differences between SLS and the flow shop problem are
the batch processing of jobs with the same direction, the requirement that
processing alternates between batches with different directions, and the
fact that not all ships need to pass each of the locks in the SLS problem.
The travel time needed on the waterway segments in between the locks can
be modelled in the flow shop setting as a transportation delay, also referred
to as transfer lag, between the different machines. Brucker et al. (2004)
give an overview of flow shop scheduling problems with transportation
delays and introduced a number of new complexity results. Notice that the
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transportation delay is independent of the job if the speed of all ships is
identical, whereas general transportation delays can represent any arbitrary
fixed speed for each ship. When the distance between locks is considered
to be zero or, equivalently, when the speed of all ships is large enough for
the travel to be considered equal to zero, transportation delays can be
ignored.

Results on the generalization of the flow shop problem to two directions
for the processing order are scarce. One setting where this variant is
considered, is presented by Zhao et al. (2009); they consider a sequence of
operations for a container loading and unloading problem. A bi-directional
flow shop problem with additional constraints on the processing order is
described, and the authors present integer programming formulations as
well as a heuristic procedure based on a relaxation of the original problem.

While the complexity of SLS does not immediately follow from results in
the literature, we are able to denote several special cases of the SLS problem
using the standard notation for scheduling problems; for a description of
this notation, see e.g. Graham et al. (1979). Consider the uni-directional
variant of SLS. The distinction between job families then disappears, and
the act of returning the lock to its original position before processing
the next ship can be considered as a fixed setup time which can be
anticipated, i.e. executed before a job is available at a machine. We
show in Section 3.3 that SLS is strongly NP-hard, even for two identical
machines and with arbitrary capacity. A related result for a two-machine
flow shop was obtained by Brucker et al. (2004), who showed that problem
F2|pi,j = 1, rj , tj |

∑
Cj is strongly NP-hard. Here, rj represent the release

date of jobs, which is easily seen to correspond to the arrival times of
the ships, and tj represents a job-dependent transportation delay, which
reflects the ship-dependent travel time between the locks. Notice that in
the flow shop setting, in contrast to problem SLS, multiple jobs cannot be
processed simultaneously in a single batch.

3.3 A hardness result for two identical locks
We prove strong NP-hardness for a uni-directional special case of SLS. In
fact, the reduction we provide below will imply strong NP-hardness for a
significantly more restricted setting. The precise result is as follows.
Theorem 3.1. Problem dec-SLS is strongly NP-complete, even for two
identical locks, all ships travelling in the same direction, and when each
ship must be processed by both locks.
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Proof. Inspired by a proof by Disser et al. (2015), we start our reduction
from MAX CUT, which consists of answering the following question: given
a graph G = (V,E) with |V | = n and |E| = m, does there exist a cut
consisting of at least K edges? This problem is shown to be NP-hard,
see Garey et al. (1976). Notice that we consider the unweighted case,
sometimes referred to as SIMPLE MAX CUT.

For a given instance of MAX CUT, we describe a corresponding instance
of the decision version of SLS. We will then argue that solving dec-SLS for
this instance corresponds to deciding the question of MAX CUT. We first
turn G into a directed graph by choosing some ordering of the vertices in
V , and next orienting every edge from the vertex with smaller index to
the vertex with larger index.

The instance of dec-SLS is as follows. There are two identical locks.
The lockage time of each of these locks equals 1 (i.e. T1 = T2 = 1), the
capacity of each lock is infinite (i.e. C1 = C2 = ∞), and the distance
between the two locks equals 1 (i.e. S1 = 1). Lock 1 is positioned upstream
of lock 2. The set of ships consists of a total of 2nm+ 2n+ 2m ships. All
ships travel in the downstream direction and must first be served by the
first lock and subsequently by the second lock. For ease of exposition, we
distinguish two types of ships: vertex ships and edge ships. Note that each
ship must be served by both locks and that the speed of the ships need
not be identical, as will be described in what follows.

We now specify the arrival times As for each s ∈ S. Recall that we
have imposed an arbitrary order on V : let V = {1, . . . , n}. For each vertex
v ∈ V , we have m + 1 vertex ships arriving at time 5(v − 1) and m + 1
vertex ships arriving at time 5(v−1)+1. We thus have a total of 2nm+2n
vertex ships. We say that the time interval [5(v − 1), 5v) on the first lock
is the period corresponding to vertex v on the first lock, and the time
interval [5n+ 5(v− 1), 5n+ 5v) is the period corresponding to vertex v on
the second lock. The speed of each vertex ship equals 1/(5n−1), i.e. each
vertex ship needs 5n− 1 time units to travel the distance between the two
locks.

In addition, there are two edge ships for each (vi, vj) ∈ E (with vi < vj):
one ship arriving at time 5(vi−1), and one ship arriving at time 5(vi−1)+1.
We will refer to these arrivals as the first ship and second ship corresponding
to edge (vi, vj) respectively. Clearly, we have 2m edge ships in total. The
speed of the first ship for each such edge equals 1/(5(n+vj−vi)), while the
speed of the second ship equals 1/(5(n+vj−vi)−2).

The question is: does there exist a solution with total waiting time
at most W ≡ nm+ n+ 3m− 2K? This completes the description of the
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Figure 3.1: Overview of a constructed instance of dec-SLS. The blocks
represent periods corresponding to the different vertices. Dashed lines
represent vertex ships, while waved lines represent edge ships.

instance of dec-SLS. An overview of the constructed instance of dec-SLS
is shown in Figure 3.1. A detailed illustration of the vertex ships and edge
ships follows in the remainder of this section.

Before we argue the equivalence between a yes-instance of MAX CUT
and a yes-instance of dec-SLS, let us first explicitly describe two possible
ways of serving the ships arriving in a given period. Figure 3.2 illustrates
two possible ways of serving the ships arriving in a period corresponding
to some vertex v on the first lock. In the first option, a downwards lockage
starts at times 5(v − 1) and 5(v − 1) + 2, and an upwards lockage starts
at time 5(v − 1) + 1. Ships arriving at time 5(v − 1) can thus be served
immediately upon their arrival, while ships arriving at time 5(v − 1) + 1
incur a waiting time of 1 time unit. We refer to this way of serving the
ships in this period as option 1. A second way to serve these ships is to
schedule downward lockages starting at time 5(v− 1) + 1 and 5(v− 1) + 3,
and an upwards lockage starting at time 5(v − 1) + 2. Notice that ships
arriving at time 5(v− 1) then incur at least one unit of waiting time, while
ships arriving at time 5(v − 1) + 1 can be served immediately upon their
arrival. We refer to this way of serving the ships that arrive in this period
as option 2.

Given these two options for serving the arrivals at lock 1, we can define
two similar options for each period on lock 2. Let option 1 on the second
lock consist of downwards lockages starting at times 5n + 5(v − 1) and
5n+ 5(v − 1) + 2, and an upwards lockage at time 5n+ 5(v − 1) + 1; let
option 2 on the second lock consist of downwards lockages starting at
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Figure 3.2: Illustration of option 1 (solid lines) and option 2 (dashed lines)
to serve the ships arriving in a period on the first lock.

times 5n+ 5(v − 1) + 1 and 5n+ 5(v − 1) + 3, and an upwards lockage
starting at time 5n+ 5(v − 1) + 2.

Notice that, on either lock, options in different periods are independent
of each other since there is enough time to reposition the lock in any
appropriate state after having transferred the ships of an earlier period.
For example, selecting option 1 in the period [5, 10) does not prevent us
from selecting either option 1 or option 2 in the periods [0, 5) or [10, 15),
on either of the locks.

We now argue the equivalence between a yes-instance of MAX CUT,
and a yes-instance of dec-SLS. Suppose that there exists a cut in the graph
G with at least K edges; let the corresponding partition of the node-set V
be indicated by V1 and V2. We build the following solution for the instance
of dec-SLS. If vertex v ∈ V1, then we use option 1 for the two periods
corresponding to vertex v; if vertex v ∈ V2, then we use option 2 for the
two periods corresponding to vertex v. We claim that the solution that
arises when (i) each ship arriving at the first lock enters the first possible
lockage; next, (ii) immediately travels to the second lock after leaving the
first lock; and finally (iii) enters the first possible lockage of the second
lock, is a solution with total waiting time bounded by W .

We first revisit the vertex ships. Observe that in each period on lock 1,
no matter whether option 1 or option 2 is used, one half of the arriving
vertex ships in that period has no waiting time, and the other half incurs
a waiting time of 1 time unit. This accounts for a total waiting time of
n(m + 1) for the vertex ships, at the first lock. Recall that these ships
require a travel time of 5n − 1 in between the two locks. Suppose that
option 1 is selected for the period corresponding to v on lock 1. This
means that at time 5(v − 1) + 1 and at time 5(v − 1) + 3, there are m+ 1
ships leaving lock 1 and travelling towards lock 2. It follows that these
ships arrive on the upstream position of lock 2 at times 5n+ 5(v − 1) and
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Figure 3.3: Illustration of the vertex ships in a period corresponding to a
vertex v. Each ‘X’ marks the arrival of m+ 1 vertex ships.

5n + 5(v − 1) + 2 respectively. Observe that this period on lock 2 also
corresponds to vertex v and hence uses option 1. Thus, these ships do not
incur any waiting time at lock 2. In the case that v ∈ V1, we thus have a
waiting time of m+ 1 for the vertex ships corresponding to v. In the case
that v ∈ V2, a similar argument can be made. Indeed, the m + 1 ships
arriving at time 5(v − 1) then each incur a waiting time of 1 time unit at
the first lock; all vertex ships arriving in the period corresponding to v
leave the first lock at time 5(v − 1) + 2 and arrive at the upstream side of
the second lock at time 5n+ 5(v − 1) + 1. Since option 2 was selected for
this period, these ships do not incur any additional waiting time at lock 2.
It follows that the total waiting time due to vertex ships equals n(m+ 1).
An illustration of this construction is provided in Figure 3.3.

We now look at the edge ships. Consider an edge (vi, vj) ∈ E with
vi < vj . Recall that the first ship corresponding to this edge requires a
travel time of 5(n+ vj − vi), and the second ship requires a travel time of
5(n+vj−vi)−2. For convenience, let ti = 5(vi−1) and tj = 5n+5(vj−1),
so that ti and tj are the starting time of the period corresponding to vi on
lock 1 and the starting time of the period corresponding to vj on lock 2,
respectively. We now have the following four cases to consider. Figure 3.4
illustrates these cases graphically.

• Case 1: option 1 is used for the period corresponding to vi on lock
1 and option 1 is used for the period corresponding to vj on lock 2.
Then, the first ship enters lock 1 at its arrival time ti, leaves lock
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Figure 3.4: Illustration of the edge ships in a period corresponding to an
edge (vi, vj). Each circle marks the arrival of a single edge ship.

1 at ti + 1, and due to its speed, arrives at lock 2 at time tj + 1,
where it has to wait 1 time unit in order to be served. The second
ship waits 1 time unit in front of lock 1, leaves lock 1 at ti + 3, and
arrives at lock 2 at time tj + 1. Hence, the second ship also has to
wait 1 time unit in front of lock 2. The total waiting time for these
two ships in this case equals 3 time units.

• Case 2: option 1 is used for period vi on lock 1 and option 2 is used
for period vj on lock 2. Then, the first ship leaves lock 1 at ti + 1
and arrives at lock 2 at time tj + 1. The second ship incurs one unit
of waiting time at lock 1, leaves lock 1 at time ti + 3 and arrives at
lock 2 also at time tj + 1. Hence, neither ship incurs any additional
waiting time at lock 2; the total waiting time for these two ships in
this case equals 1 time unit.

• Case 3: option 2 is used for period vi on lock 1, and option 1 is used
for period vj on lock 2. Then, both the first and second ship enter
lock 1 at time ti + 1 and leave lock 1 at ti + 2. Due to their speeds,
the first ship arrives at lock 2 at time tj + 2, while the second ship
arrives at lock 2 at time tj . It follows that neither ship incurs any
additional waiting time at lock 2; the total waiting time for these
two ships in this case equals 1 time unit.

• Case 4: option 2 is used for period vi on lock 1, and option 2 is used
for period vj on lock 2. Then, both the first and second ship enter
lock 1 at time ti + 1 and leave lock 1 at ti + 2. Due to their speeds,
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the first ship arrives at lock 2 at time tj + 2, while the second ship
arrives at lock 2 at time tj . Both ships incur an additional waiting
time of 1 time unit. The total waiting time for these two ships in
this case equals 3 time units.

We conclude this case analysis by observing that if the same option is
selected for a period vi on lock 1 and a period vj on lock 2 that correspond
to an edge (vi, vj) ∈ E, there is a waiting time of 3 time units corresponding
to this edge. If the two selected options for the periods corresponding to
this edge differ, there is a waiting time of 1 time unit.

Since the cut contains K edges, we infer that the edge ships have a
total waiting time of K + 3(m−K) = 3m− 2K. Indeed, observe that if
edge (vi, vj) is in the cut, i.e. if vi ∈ V1 and vj ∈ V2, the two options used
for periods vi and vj differ, resulting in a waiting time of 1 corresponding
to this edge; otherwise, there is a waiting time of 3. Hence, the total
waiting time for all ships equals n(m+ 1) + 3m− 2K = W . A yes-instance
of MAX CUT thus gives rise to a yes-instance of dec-SLS.

Consider now a solution to an instance of SLS with a total waiting time
of at most W . First, we argue that we can assume that such a solution is
so-called sensible. We say that a solution to dec-SLS is sensible if

• Condition 1: each ship enters the first downwards lockage that occurs
at or after its arrival at a lock,

• Condition 2: in each period on lock 1 and on lock 2, either option 1
or option 2 is used.

We argue that we can restrict ourselves to sensible solutions only.

Lemma 3.1. For any feasible solution to SLS with total waiting time W ′,
there exists a sensible solution to SLS with total waiting time at most W ′.

Proof. It is easily argued that Condition 1 can be enforced without increas-
ing the total waiting time. Indeed, given any solution that does not satisfy
Condition 1, it is obvious that each ship for which an earlier lockage is
available can be immediately reassigned to that earlier lockage; this does
not increase the total waiting time. We note that this also holds when the
capacity of each lock is bounded: each ship then enters the first non-full
lockage at or after its arrival at a lock.

To see that Condition 2 can be guaranteed, observe that there exists
an optimal solution where each lockage of a lock l either (i) starts at a
moment in time where some ship that is served by the lockage arrives
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at this lock l, or (ii) starts immediately upon the completion time of a
preceding lockage of this lock l. (Recall that this observation is also made
for a single lock in Chapter 2, see Property 2.1.) Consider now a period
corresponding to some vertex v on the first lock. It follows that we can
restrict ourselves to solutions where the first downwards lockage starts at
time 5(v − 1) or at time 5(v − 1) + 1. This corresponds to either option 1
or option 2.

As a result, on the second lock, ships arrive only at times t, t + 1,
or t+ 2, where t denotes the starting time of a period corresponding to
some vertex v ∈ V . Thus, the same argument can be repeated to see that
selecting either option 1 or option 2 yields minimum waiting time for any
given period on the second lock. Since this holds independently for each
period on each lock, the claim follows.

We may now assume that the given solution for dec-SLS is a sensible
solution with a total waiting time bounded by W . Let us argue that
the instance of MAX-CUT is then a yes-instance. Since our solution for
dec-SLS is a sensible solution, it follows that, in each period, either option
1 or option 2 is used. We again consider the waiting time of the two types
of ships. For each vertex v ∈ V , observe that there are 2(m+ 1) vertex
ships arriving in the period corresponding to v on the first lock. These
ships incur a total waiting time of m + 1 if both periods corresponding
to v use the same option, and a total waiting time of 3(m+ 1) if the two
periods use different options. For the edge ships, recall that the two ships
corresponding to an edge (vi, vj) incur a total waiting time of 1 if different
options are used for the period corresponding to vi on the first lock and
the period corresponding to vj on the second lock; if the same option is
used for these periods, the total waiting time equals 3 time units. Observe
that, since there are m edges and n periods where vertex ships arrive, a
total waiting time of n(m+ 1) +m cannot be avoided.

We claim that the two periods corresponding to any given vertex
v ∈ V must use the same option. We argue by contradiction. Recall
that the total waiting time must equal at least n(m + 1) + m and that
an additional waiting time of 2(m+ 1) is incurred for every vertex v for
which the two corresponding periods are scheduled with different options.
Assume that there is a single vertex for which this is the case. It follows
that the total waiting time is then at least n(m+ 1) +m+ (2m+ 1) >
nm+ n+ 3m− 2K = W . This contradicts that our solution for dec-SLS
has a waiting time of at most W . It follows that for each vertex v ∈ V , the
two corresponding periods are scheduled using the same option. We can
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conclude that in any sensible schedule with a total waiting time no greater
than W , the total waiting time equals n(m+ 1) +m plus an additional
waiting time of 2 time units for every edge (vi, vj) ∈ E with vi < vj where
the periods corresponding to vi are scheduled in the same state as the
periods corresponding to vj .

Finally, we construct a solution to MAX CUT by assigning a vertex v
to V1 (V2) if option 1 (option 2) is used for the two periods corresponding
to vertex v. Then, since the solution to dec-SLS has a total waiting
time no greater than W = nm + n + m + 2(m − K), it follows that
there are at least K pairs of vertices (vi, vj) with vi < vj such that
the period corresponding to vi on lock 1 is scheduled with a different
option than the period corresponding to vj on lock 2. Indeed, if only
K − 1 pairs use different options, the total waiting time equals at least
nm+n+(K−1)+3(m−(K−1)) = nm+n+3m−2K+2. By construction,
there are thus at least K pairs of vertices (vi, vj) with vi < vj such that
exactly one of these vertices is in V1 and the other is in V2. Thus, there
are at least K edges in the resulting cut in G. A yes-instance of dec-
SLS thus gives rise to a yes-instance of MAX CUT, which completes our
reduction.

As a remark, we note that the construction of this reduction can be
modified so that each lock has unit capacity and all arrivals occur at
distinct times. This can be achieved by extending the length of each
period corresponding to a vertex and spreading all simultaneous arrivals
out over time. Notice that Lemma 3.1 also holds in this more general
setting. We omit a formal description of this proof.

3.4 A hardness result for identical ships
We now provide an alternative NP-hardness proof for the SLS problem
with identical ships, i.e. where the speed of all ships is the same. Note
that in the reduction outlined below, ships travel in both directions. A
crucial difference with the reduction provided in Section 3.3 is that, here,
the number of locks is not bounded by a constant independent of the input.
Furthermore, ships need not be served by each of the locks; as described
in Section 1.3.1, we specify an arrival lock LAs and a departure lock LDs
for all ships s ∈ S.

The general outline of the reduction is inspired by a reduction for a
problem involving bi-directional traffic on a path, described by Disser
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et al. (2015). This setting, however, does not correspond exactly to
the lock scheduling setting, as mentioned in Section 3.2. The wording
and presentation of the proof in this section also resemble the proof of
Theorem 3.1.

Theorem 3.2. Problem dec-SLS is strongly NP-complete, even for iden-
tical ships and identical locks with unbounded capacity.

Proof. We again start our reduction from MAX CUT; recall that an
instance of MAX CUT consists of a graph G = (V,E) and a non-negative
integer K. To aid the exposition of the reduction, we first provide a general
overview of the reduction before describing all details. The total number of
locks in the SLS instance is not bounded by a constant, although we argue
below that this number is bounded by O(m). On the locks, we describe
periods that correspond to the vertices in the instance of MAX CUT. A
crucial part of the construction is that, on each lock that contains these
periods, the order of the vertices corresponding to the periods is permuted.
As in Section 3.3, we will argue that there are only two sensible scheduling
options for each period; the option that is chosen in a given period reflects
the assigned partition in the corresponding instance of MAX CUT.

Figure 3.5 illustrates a simplified overview of the fundamental part of
the construction: a set of periods on a sequence of locks that represents
the existence of an edge. In the figure, this is shown for an edge (v1, v4).
Each square in the figure represents a period on one of the locks; each
period corresponds to a vertex. We say that two periods are adjacent if
they occupy consecutive time intervals on the same lock. We say that two
periods are diagonally adjacent if they occupy consecutive time intervals
on two consecutive odd-numbered locks. Note that in Figure 3.5, only
the odd-numbered locks are shown. The role of the even-numbered locks
will be specified in the detailed description of the construction. The main
components of the construction are (i) sets of ships, represented in the
figure by dashed lines, which ensure that two periods occupying the same
time interval on different locks correspond to the same vertex, (ii) sets
of ships, represented in the figure by waved lines, which ensure that the
vertices to which two adjacent periods correspond are interchanged from
one lock to the next, and (iii) sets of ships, represented in the figure by
dotted lines, which correspond to the existence of an edge between the
vertices corresponding to two diagonally adjacent periods. In what follows
we argue that the constructed instance of SLS corresponds to a given
instance of MAX CUT, and provide a detailed description of these three
components.
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v1 v2 v3 v4

v2 v1 v3 v4

v2 v3 v1 v4

v2 v3 v1 v4

Figure 3.5: Illustration of the construction for an edge (v1, v4). Only the
odd-numbered locks are shown. Each box represents a period corresponding
to a vertex. Dashed lines connect periods corresponding to the same vertex
on the same time interval; waved lines connect adjacent periods for which
the corresponding vertex is interchanged; dotted line models the existence
of an edge between diagonally adjacent periods.
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To define the set of ships in the SLS instance, we distinguish ships of
different types. All ships travel at unit speed, i.e. each ship traverses one
unit of distance per unit of time. The two types of ships are as follows:

1. ships of type 1, arriving on the upstream position of a specified lock
l and travelling towards the downstream position of this lock l. Each
type 1 ship thus only traverses a single lock. We have LAs = LDs = l
and s ∈ D for all ships s of type 1.

2. ships of type 2, arriving at a specified lock l; each ship of this type
may be upstream-travelling or downstream-travelling, and requires
processing by three locks. For a ship s ∈ S of type 2, we thus have
either LAs = l, LDs = l − 2 and s ∈ D, or LAs = l, LDs = l + 2 and
s ∈ U . In what follows, the travel direction and characteristics will
be distinguished as needed.

To construct an instance of dec-SLS, we use an algorithmic description.
This algorithm runs a procedure for each edge (vi, vj) ∈ E where vi < vj .
We initialize by specifying the first lock and next we use the procedure
described below. Each odd-numbered lock in the instance has n periods,
each corresponding to a vertex in V . A period consists of a time interval
on a lock l; the i’th period spans a time interval [24(i − 1), 24i). For
convenience we define ti = 24(i− 1), which equals the starting time of the
i’th period on each of the locks. Note that, as illustrated in Figure 3.5,
the i’th period on a lock l does not necessarily correspond to the vertex
vi, and the order in which periods correspond to vertices need not be the
same on different locks. The lockage duration equals Tl = 2 and the travel
distance equals Sl = 6 for each lock in the instance. The locks in L remain
ordered from upstream to downstream, i.e. as new locks are added to L
throughout the procedure, they are added to the downstream end.

Initialization

We start with a single lock: L = {1}. At this lock 1 we have, for each
vertex v ∈ V , m + 1 arrivals of type 1 at each of the times 24(v − 1),
24(v − 1) + 2, . . . , 24(v − 1) + 18. We define the i’th period on lock 1, i.e.
the period on the interval [24(i− 1), 24i), to be the period corresponding
to vertex i, for all i ∈ {1, . . . , n}. For convenience, we also define the value
l∗ = 1, representing the last lock in L at each step in the construction
procedure where new locks are added to L. Figure 3.6 illustrates the
arrivals of type 1 in such a period.
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Figure 3.6: Illustration of a period on some lock, corresponding to a vertex.
Each ‘X’ marks the arrival of m+ 1 type 1 ships. Solid lines correspond
to option 1; dashed lines correspond to option 2.

As in the proof of Section 3.3, we first highlight two possible ways to
schedule a lock to serve the arrivals that arrive within a period on some lock.
Let t be the starting time of the period. Option 1 consists of scheduling
a series of consecutive lockages starting with a downwards lockage at
time t and ending with a downwards lockage that starts at time t + 20;
option 2 consists of scheduling a series of consecutive lockages starting
with a downwards lockage at time t + 2 and ending with a downwards
lockage that starts at time t+ 18. Observe that if either of these options
is used, the ships of type 1 incur a total waiting time of 10(m+ 1). Also
notice that options in different periods are independent of each other since
there is enough time to reposition the lock to either the upstream or the
downstream position after having transferred the ships of an earlier period.
For example, selecting option 1 in the period [24, 48) does not prevent us
from selecting either option 1 or option 2 in the periods [0, 24) or [48, 72).

For each edge (vi, vj) ∈ E, we now describe a procedure that specifies a
set of locks, and arrivals at these locks, to be added to the partial instance.
This procedure is ran for each edge once, and after the final edge the
instance is complete.

Procedure repeated for each edge

Consider some edge (vi, vj) ∈ E with vi < vj . Let i and j be the periods
corresponding to vi and vj on lock l∗, respectively. We assume that ti < tj ;
if this does not hold, we simply swap i and j below. The procedure is as
follows.

1. While the periods corresponding to vertices vi and vj on lock l∗ are
not adjacent, repeat
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(a) We add two new locks: let L ← L ∪ {l∗ + 1, l∗ + 2}.
(b) On lock l∗ + 2, we have periods corresponding to vertices: for

each i ∈ {1, . . . , n}, we add m+ 1 arrivals of type 1 at each of
the times ti, ti + 2, . . . , ti + 18.

(c) Let vk be the vertex to which the period [ti + 24, ti + 48) on
lock l∗ corresponds; note that this is the period following the
period corresponding to vertex vi on lock l∗. Clearly, vk 6= vi
and vk 6= vj . We say that, on lock l∗+ 2, vertex vk corresponds
to period [ti, ti + 24), and vertex vi corresponds to period
[ti + 24, ti + 48). Notice that, compared to lock l∗, the vertices
corresponding to these two periods are interchanged on lock
l∗ + 2. All other vertex-period correspondences remain equal
to those on lock l∗.

(d) On lock l∗, we add m + 1 arrivals of type 2 at each of the
times ti + 16 and ti + 18. These ships travel in the downstream
direction and are thus served by locks l∗, l∗ + 1, and l∗ + 2.
Additionally, on lock l∗ + 2, we add m+ 1 arrivals of type 2 at
each of the times ti + 10 and ti + 12. These ships travel in the
upstream direction and are thus served by locks l∗ + 2, l∗ + 1,
and l∗. For convenience, we will refer to the ships added in this
step as ships of type 2a. Notice that these ships are added in
the periods for which the vertex-period correspondence changes
from lock l∗ to lock l∗ + 2.

(e) On all remaining periods on lock l∗, i.e. all periods [tk, tk + 24)
for which tk 6= ti and tk 6= ti + 24, we add m + 1 arrivals of
type 2 at both time tk and time tk + 2. For convenience, we
will refer to the ships added in this step as ships of type 2b.
Notice that these ships are added in the periods for which the
vertex-period correspondence remains the same from lock l∗ to
lock l∗ + 2.

(f) We update l∗ so that it again refers to the latest added lock in
the instance. That is, we set l∗ ← l∗ + 2. Further, we redefine i
and j to be the periods corresponding to vi and vj on the new
last lock l∗; we adjust ti and tj accordingly.

2. Observe that the periods corresponding to vi and vj are now adjacent
on lock l∗. We add two additional locks: let L = L ∪ {l∗ + 1, l∗ + 2}.
On lock l∗ + 2, we again have periods corresponding to vertices: for
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each i ∈ {1, . . . , n}, we add m+ 1 arrivals of type 1 at each of the
times ti, ti + 2, . . . , ti + 18.

3. For each i ∈ {1, . . . , n}, we add m+ 1 arrivals of type 2 at each of
the times tk and tk + 2. We refer to the ships added in this steps as
ships of type 2b. Notice that the vertex-period correspondence on
lock l∗ and lock l∗ is the same for all periods.

4. Finally, we add arrivals corresponding to the edge (vi, vj). We add a
single arrival of type 2 on lock l∗ at each of the times ti + 12 and
ti + 14. We refer to these arrivals as ships of type 2c. Additionally,
we add m+ 1 arrivals of type 1 on lock l∗ + 1 at each of the times
ti + 21 and time ti + 23.

This concludes the formal description of an instance of SLS correspond-
ing to a given instance of MAX CUT. Figure 3.5 shows the structure
of an example where the procedure is applied for an edge (v1, v4). In
the figure, detailed arrival times and the even-numbered locks are not
shown. Upon completing the construction of this instance, let N1, N2a,
and N2b equal the total number of ships of type 1, type 2a, and type 2b
respectively. Note that both the total number of ships and the number of
locks are polynomial in the size of the original instance G. Indeed, for each
edge in E, at most n interchange operations are performed: we extend
the construction with O(n) locks for each edge. On each lock, at most
O(nm) ships are added. The total number of locks is thus bounded by
O(nm); the total number of ships is bounded by O(n2m2). The decision
question to be answered in the corresponding instance of dec-SLS is the
following. “Does there exist a solution with a total waiting time of at most
W ≡ N1 +N2a +N2b + 10m− 4K?”

Correspondence of MAX CUT to dec-SLS

We first state the foundations of the argument which shows the corre-
spondence between the given instance of MAX CUT and the constructed
instance of dec-SLS. Notice that, on each odd-numbered lock, we have a
period corresponding to each vertex. We will argue that we can restrict
ourselves to solutions of SLS where all periods are scheduled using either
option 1 or option 2 and, moreover, all periods corresponding to the same
vertex are scheduled using the same option. The selected option then
indicates one of two possible partitions of V to which a vertex is assigned,
thus defining a cut in the given graph G. We now proceed by providing a
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Figure 3.7: Construction corresponding to the interchange of two adjacent
periods. Each ‘X’ marks the arrival of m+ 1 ships of type 1. Each circle
marks the arrival of m+ 1 ships of type 2a.

detailed overview of the different arrivals added throughout the construc-
tion, and the waiting time incurred by these arrivals depending on the
chosen option for the different periods.

Figure 3.6 gives a detailed representation of a period [24(v − 1), 24v)
on some lock, corresponding to some vertex. Recall that, in each such
period, we have 10(m+ 1) arrivals of type 1 and that, if either option 1 or
option 2 is used in this period, the total waiting time incurred by these
ships equals 10(m+ 1).

Step 1(d) adds ships of type 2a, corresponding to the waved lines in
Figure 3.5; these arrivals are added where the vertex-period correspondence
of two adjacent periods is interchanged from some lock l to lock l + 2. A
detailed representation, depicting all arrivals in the corresponding periods
is shown in Figure 3.7. Observe that if either option 1 or option 2 is chosen
for each period, although ships travelling in opposite direction cross in
between locks l and l + 1, no lockages overlap regardless of the chosen
option for the periods. Further observe that, if the same option is chosen
for the two periods corresponding to vi, a total waiting time of 2(m+ 1)
is incurred by the 2(m+ 1) ships of type 2a arriving on lock l; similarly,
if the same option is chosen for the two periods corresponding to vk, a
total waiting time of 2(m+ 1) is incurred by the 2(m+ 1) ships of type
2a arriving on lock l + 2. If different options are used for either the two
periods corresponding to vi (repectively vk), the total waiting time for
the ships of type 2a arriving on lock l (respectively l + 2) equals at least
6(m+ 1).
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Figure 3.8: Construction corresponding to two periods that occupy the
same time interval and correspond to the same vertex. Each ‘X’ marks
the arrival of m+ 1 type 1 ships. Each circle marks the arrival of m+ 1
type 2b ships.

Step 1(e) and step 3 add ships of type 2b, corresponding to the dashed
lines in Figure 3.5; these ships travel between a period on a lock l and a
period on lock l + 2 that occupy the same time interval and correspond
to the same vertex. Figure 3.8 shows a detailed representation depicting
all arrivals in the corresponding periods. Observe that if the same option
is chosen for the two periods corresponding to vk, a total waiting time of
2(m+ 1) is incurred by the ships of type 2b; if different options are used
for the two periods, the waiting time equals at least 6(m+ 1).

Step 4 adds ships of type 2c, corresponding to the dotted lines in
Figure 3.5. A detailed representation of this construction is shown in
Figure 3.9. Observe that if two different options are used for the periods
corresponding to vi and vj on lock l and l+ 2, the ships of type 2c incur a
total waiting time of at least 6 time units. In contrast, if the same option
is used for both periods, the total waiting time for the ships of type 2c
equals at least 10 time units. Also notice that on the even-numbered lock
l + 1, in order to achieve this waiting time, a downwards lockage must
be scheduled at times ti + 21 and ti + 25 if option 1 is selected for the
period corresponding to vi, and a downwards lockage must be scheduled
at time ti + 23 if option 2 is selected for the period corresponding to vi.
The arrivals of type 1 on the intermediate lock then incur a total waiting
time of 2(m+ 1). Note that whenever these arrivals of type 2c are added
to a period, this period also has arrivals of type 2b as described by step
5 of the construction. There is, however, no overlap in the trajectory of
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Figure 3.9: Construction corresponding to an edge (vi, vj). Each ‘X’ marks
the arrival of m+ 1 type 1 ships. Each circle marks the arrival of a single
type 2c ship.

the ships of types 2b and 2c, nor is there an overlap between the lockages
serving these ships in Figures 3.8 and 3.9.

We are now ready to argue that a cut in graph G containing at least
K edges exists if and only if a solution exists for the instance of dec-SLS
with a waiting time of at most W .
⇒ Assume that there exists a cut in G that contains at least K edges;

the corresponding partition of the vertices is indicated by V1 and V2. We
build the following solution for the instance of dec-SLS. If vertex v ∈ V1,
then we use option 1 for all periods corresponding to vertex v; if vertex
v ∈ V2, then we use option 2 for all periods corresponding to vertex v;
each ship enters the first available lockage corresponding to its direction
of travel, and the lockages for all even-numbered locks are scheduled such
that ships of type 2c incur a waiting time of 1 time unit at these locks, as
illustrated in Figure 3.9. We claim that the resulting waiting time of all
ships is bounded by W .

We first identify the total waiting time for the ships of types 1, 2a, and
2b. Recall that either option 1 or option 2 is chosen for each period in the
instance.

• The total waiting time for ships of type 1 equals the total number
of type 1 arrivals. Indeed, arrivals of type 1 are added either (i)
in a period corresponding to a vertex (Figure 3.6), or (ii) on an
even-numbered lock where two adjacent periods are connected to
model an edge in E (Figure 3.9). In both of these cases, the total
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waiting time incurred by type 1 ships equals the number of type 1
arrivals.

• The total waiting time for ships of type 2a equals the total number
of type 2a arrivals. Indeed, arrivals of type 2a are added only where
two periods occupy the same time interval and correspond to the
same vertex (Figure 3.8). As a result, the same option is chosen for
these two periods, and the total waiting time incurred by type 2a
ships equals the number of type 2a arrivals.

• The total waiting time for ships of type 2b equals the total number of
type 2b arrivals. Indeed, arrivals of type 2b are added only where the
vertices to which two periods correspond on a lock l are interchanged
on lock l + 2 (Figure 3.7). As a result, the same option is chosen for
each pair of periods corresponding to the same vertex, and the total
waiting time incurred by type 2b ships equals the number of type 2b
arrivals.

For these ships, this yields a total waiting time of N1 +N2a +N2b.
Now consider the ships of type 2c. Observe that for each edge (vi, vj) ∈

E, there are exactly two arrivals of type 2c. If edge (vi, vj) is in the cut,
i.e. if vi ∈ V1 and vj ∈ V2 or vice versa, the options used for periods
vi and vj differ on the locks traversed by these ships. This results in a
waiting time of 6 corresponding to this edge; otherwise, there is a waiting
time of 10. Since there exists a cut of K edges, we thus obtain a total
waiting time of 6K + 10(m − K) = 10m − 4K for the ships of type
2c. The total waiting time for the corresponding solution of SLS equals
N1 + N2a + N2b + 10m − 4K = W . A yes-instance of MAX CUT thus
gives rise to a yes-instance of dec-SLS.
⇐ Consider now a solution to an instance of SLS with a total waiting

time of at most W . First, we argue that we can assume that such a
solution is so-called sensible. We say that a solution is sensible if:

• Condition 1: after arriving at a lock, each ship enters the first
available lockage corresponding to its direction of travel,

• Condition 2: in each period corresponding to a vertex, either option
1 or option 2 is used,

• Condition 3: each even-numbered lock is scheduled such that ships
of type 2c traversing that lock incur a waiting time of 1.
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We argue that we can restrict ourselves to considering sensible solutions
only.

Lemma 3.2. For any feasible solution to SLS with waiting time W ′, there
exists a sensible solution to SLS with waiting time at most W ′.

Proof. Notice that Conditions 1 and 2 are identical to the definition a
sensible solution used in Lemma 3.1 in the context of non-identical ships.
The argument that these conditions can be guaranteed, without increasing
the total waiting time of a solution, can be repeated from the proof of
Lemma 3.1.

To see that Condition 3 can be enforced without increasing the total
waiting time, we again make use of the fact that there is an optimum
solution where, for each lock l, each lockage starts at a point in time where
a ship arrives at lock l or follows immediately upon an earlier lockage of
lock l. It is then clear that for the corresponding time ti in the step in the
construction where ships of type 2c are added, visualised in Figure 3.9, the
type 1 ships that arrive at the even-numbered lock can be served either by
(i) a downwards lockage starting at time ti + 20 and a downwards lockage
starting at time ti + 24, (ii) a downwards lockage starting at time ti + 21
and a downwards lockage starting at time ti + 25, (iii) a single downwards
lockage starting at time ti+22, or (iv) a single downwards lockage starting
at time ti + 23. Observe that the schedule of the even-numbered lock
only determines the total waiting time of ships of type 1 arriving on the
lock and the total waiting time of ships of type 2c. It can be seen that if
option 1 is selected for the period corresponding to vi, case (i) or (ii) must
hold in any optimum solution; if option 2 is selected, case (iii) or (iv) must
hold in any optimum solution. If case (i) or (iii) holds, it is not difficult to
see that, by selecting option (ii) or (iv) respectively, the total waiting time
for ships of type 1 reduces by 2(m+ 1) time units, whereas it increases
for the ships of type 2c by at most 6 time units. Clearly we may assume
m ≥ 2 since instances with m = 1 are trivial to solve. Case (ii) or case (iv)
above must then hold in any optimum schedule; it follows that all ships
of type 2c then incur a single unit of waiting time at an even-numbered
lock.

We may thus assume that the given solution for SLS is a sensible
solution with a total waiting time bounded by W . We argue that the
instance of MAX-CUT is then a yes-instance. We first claim that all
periods corresponding to any given vertex v ∈ V must use the same
option. We argue by contradiction. Recall that the total waiting time in
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any sensible schedule equals at least N1 +N2a +N2b + 6m and that an
additional waiting time of 4(m+ 1) is incurred for every vertex v for which
two corresponding periods are scheduled with different options. Assume
that there is a single vertex for which this is the case. It follows that the
total waiting time must be equal to at least N1 +N2a +N2b + 10m+ 4 >
N1 + N2a + N2b + 10m − 4K = W . This contradicts the fact that our
solution for dec-SLS has a waiting time of at most W . Thus, all periods
corresponding to some vertex v ∈ V are scheduled using the same option.
For any sensible schedule with a total waiting time no greater than W , it
then follows that we have a solution where the total waiting time consists
of:

1. N1 +N2a +N2b, incurred by ships of type 1, type 2a, and type 2b,

2. a waiting time of 6 time units for every edge (vi, vj) ∈ E where
different options are chosen for the periods corresponding to vi and
vj , incurred by ships of type 2c,

3. a waiting time of 10 time units for every edge (vi, vj) ∈ E where the
same option is chosen for the periods corresponding to vi and vj ,
incurred by the remaining ships of type 2c.

Given a solution to SLS with a total waiting time of at most W =
N1 +N2a +N2b + 10m− 4K, we construct a solution to MAX CUT by
assigning a vertex v to V1 (respectively V2) if option 1 (option 2) is used for
the periods corresponding to vertex v. It follows that there are at least K
pairs of vertices (vi, vj) with vi < vj such that the periods corresponding
to vi are scheduled with a different option than the periods corresponding
to vj . Indeed, if at most K−1 pairs use different options, the total waiting
time must equal at least N1 +N2a+N2b+6(K−1)+10(m−(K−1)) > W .
By construction, there are thus at least K pairs of vertices (vi, vj) with
vi < vj such that exactly one of these vertices is in V1 and the other
is in V2. Thus, there are at least K edges in the resulting cut in G. A
yes-instance of dec-SLS thus gives rise to a yes-instance of MAX CUT,
which completes our reduction.

We remark here that the construction outlined above, like the proof
described in Section 3.3, can be modified so that each lock has unit capacity
and arrivals occur at distinct times. We omit a formal description for this
modified setting.
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3.5 Synchronised solutions
In this section, we introduce a class of solutions that posses a specific
property: so-called synchronised solutions. We discuss two problem settings
that are special cases of SLS, and show that in these settings, there exists
an optimal solution which is synchronised. The first setting, covered in
Section 3.5.1, is the special case where there are two identical locks with
zero travel time, and where each ship must be processed by both locks.
Furthermore, we show by means of different examples that the existence of
an optimum solution which is synchronised does not extend to a number
of generalizations of this two-lock setting. The second setting, covered in
Section 3.5.3, considers uni-directional travel along a sequence of identical
locks, where the arrival and departure locks of the ships are such that
there is at least one ‘common lock’, i.e. there is at least one lock that must
process each of the ships. Notice that, in this second setting, the ships
need not all pass each of the locks, and travel time may be non-zero.

We begin by stating the definition of a synchronised solution.

Definition 3.1. A solution to SLS is synchronised if each ship s ∈ S only
incurs waiting time before entering a lockage at its arrival lock LAs .

Observe that if a solution is synchronised, it follows that each ship
s ∈ U (respectively s ∈ D), after having been served by a lock l < LDs
(l > LDs ), travels to lock l + 1 (l − 1) and immediately enters a lockage of
lock l+1 (l−1) without incurring any waiting time. Figure 3.10 illustrates
this definition.

Note that synchronised solutions correspond to so-called ‘green waves’
in traffic scheduling; for example, when scheduling a series of traffic lights
along an important road, it makes sense to adjust the timing of the lights
so that once a car meets a first green light, it can keep travelling at the
indicated maximum speed and arrive at all following traffic lights without
encountering any red lights. When considering bi-directional traffic and
locks, a crucial difference with the scheduling of traffic lights appears: a
green light simultaneously serves cars going in either direction, whereas a
lock cannot.

3.5.1 Synchronised solutions for two locks
We consider a special case featuring two identical locks with infinite capac-
ity. The travel distance between the locks is equal to zero (or, equivalently,
the travel time is considered negligible) and each ship must pass both locks.
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Figure 3.10: An example of a synchronised schedule. This example features
3 locks, with distances S1 = 1, S2 = 2. All odd-numbered ships are
upstream-travelling and travel to lock 3, whereas even-numbered ships are
downstream-travelling and travel to lock 1. Dashed lines correspond to
empty lockages.
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Figure 3.11: An example of a synchronised schedule featuring two identical
locks. The distance between the locks is equal to zero. The dashed lines
correspond to empty lockages.

We consider the bi-directional setting, i.e. downstream-travelling ships as
well as upstream-travelling ships may be present. Figure 3.11 shows an
instance and a feasible synchronised solution illustrating this special case of
SLS. In the figure, the shown solution is also optimum. In fact, we show in
this section that, for this problem setting, there always exists an optimum
solution which is synchronised. Recall that in a synchronised solution, by
definition, a ship s ∈ S incurs waiting time only before entering its arrival
lock LAs .

Theorem 3.3. For each instance of SLS consisting of two identical locks
where the travel distance equals zero and where all ships must be served by
both locks, there exists an optimum solution which is synchronised.
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Proof. We prove the theorem by arguing that an arbitrary optimum
solution O can be transformed into a synchronised solution O′ without
increasing the total waiting time. Let I be an instance of the stated
problem. We call the locks in this instance lock 1 and lock 2, with lock 2
positioned upstream of lock 1. Consider an arbitrary optimum solution O
which is not synchronised. Let the total waiting time of this solution be
equal to W .

We observe the lockages of lock 2 in solution O. If the first lockage of
lock 2, with starting time tf , is an upwards lockage, we add a downwards
lockage with starting time tf − T on lock 2 in solution O. If the last
lockage of lock 2, with starting time tl, is a downwards lockage, we add an
upwards lockage with starting time tl + T on lock 2 in solution O. Clearly,
the added lockages are empty and do not alter the total waiting time of
the solution. Observe that the i’th lockage of lock 2 is then a downwards
lockage if i is odd, and an upwards lockage if i is even. We now consider
all odd-numbered lockages i of lock 2, and their subsequent lockage i+ 1.
Let ti and ti+1 be the starting time of the lockages i and i+ 1 respectively.
We show how we can construct a synchronised solution O′ while retaining
optimality. Clearly, ti+1− (ti + T ) ≥ 0. We distinguish the following three
cases for the starting times of lockages i and i+ 1 in solution O.

• Case 1: ti+1 − (ti + T ) = 0. This situation is shown in Figure 3.12.
We schedule the following lockages in solution O′. On lock 2, we
schedule a downwards lockage starting at time ti and an upwards
lockage starting at time ti+1, i.e. we copy the lockages of lock 2
in O; on lock 1, we schedule an upwards lockage starting at time
ti+1 − T and a downwards lockage starting at time ti + T . Notice
that scheduling these lockages does not occupy either lock outside of
the interval [ti, ti+1 +T ]. Also notice that any ship served by lockage
i in solution O′ leaves lock 1 no later than in solution O, and that
any ship served by lockage i+ 1 in solution O′ leaves lock 2 no later
than in solution O.

• Case 2: 0 < ti+1 − (ti + T ) < 2T . This situation is shown in
Figure 3.13. If lockage i in solution O is empty, we may reschedule
it without increasing the total waiting time so that it starts at time
ti+1 − T . If lockage i+ 1 in solution O is empty, we may reschedule
it without increasing the total waiting time so that it starts at time
ti + T . If either of the above is the case then lockages i and i + 1
are consecutive, and we schedule lockages on lock 1 as described
in Case 1 above. Assume, thus, that both lockages i and i+ 1 are
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Figure 3.12: Visualisation of Case 1 in proving Theorem 3.3.
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Figure 3.13: Visualisation of Case 2 in proving Theorem 3.3.

non-empty. Since each ship must be served by each lock, there clearly
exist lockages on lock 1 serving the ships in lockages i and i+ 1. Let
t′i+1 be the starting time of the latest upwards lockage of lock 1 in
solution O with t′i+1 + T ≤ ti+1. If t′i+1 + T < ti+1, it follows that
lockage i+ 1 can be rescheduled to start earlier, at a time ti+1− ε for
some ε > 0. Since lockage i+ 1 is non-empty, this operation reduces
the total waiting time, contradicting the optimality of solution O.
Thus, t′i+1 + T = ti+1. Let t′i be the starting time of the earliest
downwards lockage of lock 1 in solution O with t′i ≥ ti + T . Notice
that t′i+1 < t′i. Indeed, t′i+1 and t′i cannot coincide and if t′i+1 > t′i
we have ti+1 ≥ t′i+1 + T ≥ t′i + 2T ≥ ti + 3T , which contradicts our
assumption that ti+1 − (ti + T ) < 2T . It then follows from t′i ≥ ti+1
that in solution O, lockage i can be rescheduled to start later, at
time ti+1 − T without increasing the total waiting time. Lockages i
and i+ 1 are then consecutive, and we schedule lockages on lock 1
as described in Case 1 above.

• Case 3: ti+1 − (ti + T ) ≥ 2T . This situation is shown in Figure 3.14.
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Figure 3.14: Visualisation of Case 3 in proving Theorem 3.3.

We schedule lockages in solution O′ as follows. On lock 2, we schedule
a downwards lockage starting at time ti, and an upwards lockage
starting at time ti+1. On lock 1, we schedule a downwards lockage
starting at time ti + T and an upwards lockage starting at time
ti+1 − T . As in Case 1, it can be seen that scheduling these lockages
does not occupy either lock outside of the interval [ti, ti+1 + T ], and
that any ship served by lockages i or i+ 1 leaves its departure lock
no later than in solution O.

For every pair of lockages (i, i+ 1) with i odd, the solution O′ consists
of an interval [ti, ti+1 + T ) containing either the structure in Figure 3.12
or Figure 3.14. It is easily verified that a solution consisting exclusively of
such structures is synchronised. Furthermore, since the intervals containing
these structures do not overlap, solution O′ is feasible. Finally, since the
total waiting time in solution O′ is, by construction, not greater than the
total waiting time of the solution O, solution O′ is also optimum.

We note that the proof can be seen to hold in two slightly more general
settings. If the setting from Theorem 3.3 is modified so that it features
non-identical lockage durations T1 and T2, the proof remains valid if lock
2 is chosen to be equal to the lock with the largest lockage duration.
Similarly, if the setting from Theorem 3.3 is modified so that it features
arbitrary capacity bounds C1 and C2, the proof remains valid if lock 2 is
chosen to be the lock with the smallest capacity. We point out, however,
that the theorem does not hold the setting which features an arbitrary
lockage duration as well as an arbitrary capacity for both locks, as will be
shown in the following section.
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Ships

s As direction LAs LDs

1 0 U 1 2
2 0 U 1 2

Locks

l Tl Cl Sl

1 2 2 0
2 1 1 -

Table 3.1: Instance for the example illustrating Observation 3.1.
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Figure 3.15: Feasible solution illustrating Observation 3.1.

3.5.2 Synchronised solutions in general
We show that, in general, there may not always exist an optimal solution
that is synchronised. There are four conditions formulated in Theorem 3.3:
(i) the locks are identical, (ii) there are two locks, (iii) the travel distance
is equal to zero, and (iv) each ship is served by each lock, i.e. for all s ∈ U :
LAs = 1 and LDs = L, and for all s ∈ D: LAs = L and LDs = 1. Each of
these conditions is necessary, as shown by the following examples.

Two arbitrary locks

The first generalization we consider is the setting where the two locks are
not identical. Let T1, T2 and C1, C2 denote the lockage duration and the
capacity of the two locks, respectively. Consider the instance described in
Table 3.1 and the solution (which is not synchronised) shown in Figure 3.15.
Clearly, the total waiting time in this solution equals 2 time units. Observe
that in any optimum solution, lock 1 starts an upwards lockage at time 0
containing both ships, otherwise the total waiting time equals at least 4
time units. Then, since both ships cannot be served by lock 2 at time 2,
there exists no feasible synchronised solution with a waiting time less than
4 time units. We can conclude the following.
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Ships

s As direction LAs LDs

1,2,3 0 D 3 1
4 3 U 1 3
5 7 D 3 1

6,7,8 11 U 1 3

Locks

l Tl Cl Sl

1 3 ∞ 0
2 3 ∞ 0
3 3 ∞ -

Table 3.2: Instance for the example illustrating Observation 3.2.

Observation 3.1. In case the two locks are not identical, there exist
instances for which no optimum solution is synchronised.

We point out that if either T1 ≤ T2 and C1 ≥ C2, or T1 ≥ T2 and
C1 ≤ C2, i.e. if the ‘fastest’ lock is also the ‘largest’ lock, it is easily argued
that we can restrict ourselves to solutions where the number of ships in
the lock with the highest capacity never exceeds the capacity of the other
lock. We then obtain the setting with distinct lockage durations and equal
capacity, for which an optimum synchronised solution exists, as mentioned
in Section 3.5.1.

Three locks

A different generalization extends the problem setting by including a third
lock. We show that there need not exist an optimum synchronised solution,
even when each ship must be served by each of the three locks. Clearly,
this result immediately generalizes to any setting with more than three
locks.

Consider the instance described in Table 3.2 and the solution shown
in Figure 3.16. It is easily verified in Figure 3.16 that the shown solution
has a total waiting time of 2 time units. It follows that ships 1,2,3,6,7,
and 8 must not incur any waiting time in any optimum solution since
the total waiting time would be no less than 3 time units otherwise. In
order to obtain a total waiting time of at most 2 time units, it then follows
that ship 4 must enter a lockage (denoted by a in the figure) starting
immediately upon its arrival. Then, in any synchronised solution, lock 3
starts an upwards lockage at time 9, so that ship 5 incurs a total waiting
time of at least 5 time units. Thus, for this instance, no synchronised
solution with a total waiting time of at most 2 time units exists.
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Figure 3.16: Feasible solution illustrating Observation 3.2.

Observation 3.2. In case there are three locks, there exist instances for
which no optimum solution is synchronised.

Travel time

We now relax the assumption that the travel time in between the locks is
equal to zero. Notice that the speed of ships then becomes relevant. We
show that there may not exist a synchronised schedule which is optimum.
Perhaps surprisingly, this result also holds when all ships travel at the same
speed and thus spend the same travel time in between the locks, regardless
of their direction of travel. The existence of an optimum solution which is
synchronised thus highlights a noteworthy difference between the settings
with and without travel time.

Consider the instance described in Table 3.3 and the feasible solution
shown in Figure 3.17. It is easily verified in Figure 3.17 that, in the shown
solution, ship 2 incurs a total waiting time of 1 time unit, whereas ships
1 and 3 incur no total waiting time. Also note that this solution is not
synchronised, since the waiting time for ship 2 occurs in between the locks.
The total waiting time in this solution equals 1 time unit. Observe that
in any feasible solution with a total waiting time of at most 1 time unit,
at least two of the ships incur no total waiting time. In a synchronised
solution where this holds, the two ships for which this applies are thus
either:

1. Ships 1 and 2. It immediately follows that the earliest time at which
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Ships

s As direction LAs LDs Vs

1 0 D 2 1 1
2 2 U 1 2 1
3 5 D 2 1 1

Locks

l Tl Cl Sl

1 2 ∞ 2
2 2 ∞ -

Table 3.3: Instance for the example illustrating Observation 3.3.
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Figure 3.17: Feasible solution illustrating Observation 3.3.

lock 2 can serve ship 3 is time 8, so that the total waiting time in
this solution is no less than 3 time units.

2. Ships 1 and 3. It is easily verified that, if ship 2 enters an upwards
lockage in the time interval [2, 6), the lockages required to serve ship
2 would overlap with one of the lockages serving ship 1 or ship 3.
The earliest time at which ship 2 can enter lock 1 so that it incurs
no waiting time in between the locks, is time 6. The total waiting
time of such a solution is then no less than 4 time units.

3. Ships 2 and 3. It follows that lock 2 has to start a downwards lockage
(serving ship 3) at time 7, and an upwards lockage (serving ship 2)
at time 8: a contradiction.

We conclude that a synchronised schedule for this instance must have a
total waiting time of at least 3 time units, while a feasible solution exists
with a total waiting of 1 time unit.

Observation 3.3. In case the travel time between the two locks is not
equal to zero, there exist instances for which no optimum solution is
synchronised.
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Not all ships pass both locks

Let us now consider the generalized setting where ships need not necessarily
pass through each of the locks. We show that there does not always exist
an optimum synchronised solution. In fact, this holds even in a more
restrictive setting where there is one lock that must serve all ships; we refer
to such a setting as a setting with a ‘common lock’. The uni-directional
variant of such a common lock setting is discussed in Section 3.5.3; there,
it is shown that an optimum synchronised synchronised solution does exist
when all ships travel in the same direction.

Consider the instance described in Table 3.4 and the feasible solution
shown in Figure 3.18. Clearly, the total waiting time in this solution equals
1 time unit. Observe that in any feasible solution with a total waiting
time no more than 1 time unit, at least two of the ships should incur no
total waiting time. The ships for which this is the case are thus either:

1. Ships 1 and 2. It then immediately follows that lock 2 starts an
upwards lockage at time 3, and that ship 3 can enter lock 2 no earlier
than time 6. It follows that any solution where this is the case has a
total waiting time no less than 3 time units.

2. Ships 1 and 3. A contradiction immediately follows since, in such a
solution, an upwards lockage is required to start on lock 2 at time 2
as well as at time 3; clearly, this cannot be the case in any feasible
solution.

3. Ships 2 and 3. It follows that lock 2 performs an upwards lockage
starting at time 3. From the previous case, it is clear that ship
1 cannot be served by this lockage in any synchronised solution.
The earliest time at which ship 1 can enter lock 2 in a feasible
synchronised solution is thus time 7, so that such a solution has a
total waiting time no less than 5 time units.

It follows from the above that any feasible synchronised solution thus has
a total waiting time no less than 3 time units. Thus, there does not exist
a synchronised solution which is optimum for this instance.

Observation 3.4. In case not all ships must be served by each of the
locks, there exist instances for which no optimum solution is synchronised.
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Ships

s As direction LAs LDs

1 0 U 1 2
2 0 D 2 1
3 3 U 2 2

Locks

l Tl Cl Sl

1 2 ∞ 0
2 2 ∞ -

Table 3.4: Instance for the example illustrating Observation 3.4.
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Figure 3.18: Feasible solution illustrating Observation 3.4.

3.5.3 Uni-directional traffic with a common lock

We prove that a uni-directional special case of the problem discussed
in Section 3.4 can be solved in polynomial time. The problem setting
discussed here considers identical locks with infinite capacity and ships
travelling in a single direction at identical speeds. We assume for simplicity
that ships travel at unit speed; it is easily seen that, by modifying the
distance between locks, any result for unit speed extends immediately to
the setting with arbitrary identical speeds. Ships may arrive at arbitrary
positions along the canal. A key difference with the uni-directional variant
of the setting from Section 3.4, however, is that we assume the existence
of at least one lock that must serve each of the ships. We refer to this lock
as the ‘common lock’. That is, it is assumed that all ships travel in the
upstream direction and that LAs and LDs can be arbitrarily chosen subject
to the constraint that there exists at least one lock common to all ships,
i.e. there is a lock l∗ ∈ L satisfying LAs ≤ l∗ ≤ LDs for all s ∈ S.

The underlying idea of the proposed method for solving a given instance
I of the problem setting stated above, is as follows.
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1. Construct a single-lock instance I ′ that is equivalent to instance I.

2. Solve this single-lock instance to optimality, for example by using
the procedure described in Chapter 2.

3. Extend the obtained solution to a synchronised solution for the
original instance I.

We prove that this procedure yields an optimal schedule for the original
instance. In the following we describe these steps in detail and argue that
the obtained solution has minimum total waiting time.

Theorem 3.4. Problem SLS for identical locks with infinite capacity,
identical ships travelling in the same direction, and a common lock, reduces
to solving the uni-directional case of a single lock with infinite capacity.

Proof. Given an instance I, we obtain an equivalent single-lock instance
I ′ as follows. Let the lockage duration of the locks in I be equal to T .
In instance I ′, we have a single lock with lockage duration T and infinite
capacity. Let the set of ships in I ′ be empty initially. For each ship s in
I, we create a ship arriving at the downstream position of the lock. The
arrival time A′s of this ship in the single-lock instance is equal to As minus
the time needed to travel from the downstream position of the first lock
in I to the lock where ship s arrives if no waiting time is incurred:

A′s = As − (LAs − 1)T −
LA

s −1∑
l=1

Sl.

This defines instance I ′. Informally, an arrival time As is thus ‘traced back’
to the first lock by subtracting a fictitious travel time assuming that this
ship s incurs no waiting time. This is visualised in Figure 3.19. Observe
that the lines that trace back these arrivals do not correspond to actual
lockages and thus need not be spaced without overlap. Also note that a
ship may be traced back along a lock on which it need not be served in
instance I.

Next, we describe how to extend a solution for the single-lock instance
I ′ to a solution for the original instance I. In the solution for I, we
schedule lockages for the first lock at the same starting times and in the
same direction as the lockages in the solution for I ′. We then extend this
solution to a synchronised solution as under the assumption that each
upwards lockage contains a ship travelling to the last lock. That is, let
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Figure 3.19: Arrival times for instance I ′. The circles mark the times of
arrival in I ′ corresponding to the original arrivals at locks 2, . . . , 5. The
travel distances equal S1 = 1, S2 = 2, S3 = 1, and S4 = 2. All ships travel
to lock 5, i.e. we have l∗ = 5.

T be the set of starting times of the upwards lockages of the single lock
in the solution to I ′. We schedule, for each lock l ∈ L in instance I with
l > 1 and for each t ∈ T , an upwards lockage starting at time t′, with

t′ = t+ (l − 1)T +
l−1∑
i=1

Si.

Additionally, we schedule downwards lockages consecutive to the added
upwards lockages; i.e. at each ending time of an upwards lockage for some
lock, we add a downwards lockage returning that lock to its downstream
water level. An example is visualised in Figure 3.20. Observe that, by
construction, the result is a synchronised schedule. Note that, since all
locks have equal lockage duration, the constructed solution is feasible.
Indeed, since there are no overlapping lockages in the solution to I ′, the
ending times for subsequent upwards lockages are separated by at least
2T time units, so that no overlap is present for any of the added lockages.

In the solution to I, we let each ship enter the first available lockage
corresponding to its direction of travel. Notice that a number of lockages
may be unnecessary. Indeed, since not all arrivals in I occur at the first
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Lock 1
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Lock 3

Figure 3.20: Extending a solution for the single-lock instance I ′ to a
synchronised solution for instance I with distances S1 = 1 and S2 = 2.

lock, and since not all ships in I travel to the last lock, upwards lockages
on a lock before a ship’s arrival lock, or after a ship’s departure lock, may
in fact remain empty. Clearly, we can simply remove these empty upwards
lockages and any unnecessary downwards lockages with no impact on the
obtained solution.

This completes the description of the solution to I obtained by ex-
tending a solution to the single-lock instance I ′. Clearly, in any feasible
solution to the single-lock instance, all ships are served by the lock. The
constructed solution to I is thus feasible.

We now argue that the single-lock instance I ′ is equivalent to the
original instance I:

Lemma 3.3. A solution with a total waiting time of at most W for
instance I ′ exists if and only if a solution with a total waiting of at most
W exists for the given instance I.

Proof. ⇒ Consider a schedule with total waiting timeW for the single-lock
instance I ′, and the corresponding solution for instance I obtained by
extending the single-lock solution as described above. For each ship in I ′,
the waiting time incurred at the lock is equal to the waiting time incurred
at the corresponding ship’s arrival position in instance I. Indeed, this is
trivial for all ships arriving at the first lock, since both their time of arrival
and the schedule of the first lock are identical in instances I and I ′. For
all other ships, it can be seen that the difference between the arrival time
of a ship s in I and the corresponding ship in I ′, is equal to the difference
between an upwards lockage starting on the first lock and a corresponding
upwards lockage of lock LAs .

Thus, by construction, the waiting time incurred by a ship in the
solution for I ′ is equal to the waiting time of the corresponding ship in the
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solution for I. Since this holds for all ships, it follows that the constructed
solution for I has a total waiting time of exactly W .
⇐ Now consider a feasible solution F for instance I with a total waiting

time of at most W . Let us first argue that there exists a synchronised
schedule with a total waiting time of at most W . For each ship s ∈ S,
let ts be the starting time of the upwards lockage of lock l∗ containing s.
Next, we define A∗s to be the latest possible time at which a ship can enter
a lockage of lock LAs so that it reaches lock l∗ at time ts, for s ∈ S. Due
to the unavoidable lockage duration and the travel time between locks LAs
and l∗, we have:

A∗s = ts − (l∗ − LAs )T −
l∗−1∑
l=LA

s

Sl.

Clearly, since solution F is feasible, we have As ≤ A∗s for all ships s ∈ S.
Further, we define C∗s as the earliest possible time at which a ship can
leave its departure lock LDs if it enters lock l∗ at time ts. Due to the
unavoidable lockage duration and the travel time between locks l∗ and
LDs , we have:

C∗s = ts + (LDs − l∗ + 1)T +
LD

s −1∑
l=l∗

Sl.

Let Tl∗ be the set of starting times of upwards lockages of lock l∗ in
the given solution. We now construct a solution FS as follows:

1. For all t ∈ Tl∗ , schedule an upwards lockage of lock l∗ starting at
time t, and schedule a downwards lockage of lock l∗ starting at time
t+ T .

2. For all locks l = l∗ + 1, . . . , l = L, in this order, and for all t ∈ Tl−1,
schedule an upwards lockage starting at time t+ T , and schedule a
downwards lockage starting at time t+ 2T . Define Tl to be the set
of starting times of the upwards lockage of lock l.

3. For all locks l = l∗ − 1, . . . , l = 1, in this order, and for all t ∈ Tl+1,
schedule an upwards lockage starting at time t − T , and schedule
a downwards lockage starting at time t. Define Tl to be the set of
starting times of the upwards lockage of lock l.

Clearly, the solution FS that is thus constructed is synchronised. Fur-
thermore, since the given solution F is feasible and since all locks are
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identical, the scheduled lockages in FS do not overlap. Observe that, in
FS , each ship s ∈ S that is served by lock l∗ at time ts, is served by
its arrival lock LAs at time A∗s. Since A∗s ≥ As for all ships s ∈ S, the
constructed solution FS is feasible. Finally observe that, in FS , each ship
s ∈ S that is served by lock l∗ at time ts, leaves its departure lock at time
C∗s . It follows that each ship s ∈ S leaves its departure lock no later in
solution FS than it does in solution F . Solution FS is thus a synchronised
solution with a total waiting time equal to at most W .

By the construction of instance I ′, the waiting time incurred by a ship
s ∈ S in a synchronised solution for instance I, is exactly equal to the
waiting time incurred by the corresponding ship in a solution for instance
I ′. There thus exists a solution with a total waiting time of at most W
for I ′.

From the lemma establishing the equivalence between an instance I
and the corresponding instance I ′, it immediately follows that minimizing
the total waiting time for instance I ′ yields an optimum solution for the
original instance I, proving the theorem.

We note that constructing the instance I ′, as well as extending the
obtained solution for the single-lock instance to a solution for the original
instance, can be achieved in polynomial time. Combined with the results
for a single lock described in Chapter 2, we thus obtain a polynomial
time procedure for the uni-directional problem setting with identical locks,
unbounded capacity, identical ships, and a common lock. Also note that
the single-lock setting with infinite capacity can be solved in O(n2) time,
as argued in Section 2.4. As a result, the computational complexity of the
proposed algorithm does not depend on the number of locks.

3.6 Conclusion
In this chapter, we investigated the complexity of optimally scheduling a
sequence of single-chamber locks with respect to the total waiting time. We
showed that this problem is strongly NP-hard, even in a more restrictive
setting with identical locks, non-identical ships, and uni-directional travel.
Further, we also proved strong NP-hardness for a setting with identical
locks, identical ships, and bi-directional travel. We reduced the gap between
computationally easy and computationally hard settings by introducing a
polynomial time algorithm for the setting with identical locks, identical
ships, and uni-directional travel. Furthermore, we introduced the notion
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of a synchronised solution, and identified two special cases for which every
instance has an optimum solution which is synchronised.

We observe that the complexity of scheduling single-chamber locks in
sequence is not fully characterised for all special cases that were introduced
throughout this chapter. In order to close the gap between computation-
ally easy and computationally hard problems, it may be interesting to
investigate the complexity of the setting with identical locks, identical
ships, and uni-directional travel. Note that this case, where ships may
arrive at and depart from the canal at arbitrary positions, separates the
settings for which we obtained results in Sections 3.4 and 3.5.3. Further, it
may also be interesting to investigate whether the sequential lock problem
with identical ships can be solved in polynomial time for a fixed number
of locks, for example by means of dynamic programming.



Chapter 4

Mathematical
programming for locks in
sequence1

In this chapter, mixed integer programming models are presented for the
scheduling of locks in sequence. This allows the modelling of both the
waiting time and the emissions. The definition of the problem we consider
is stated in Section 4.1. Section 4.2 then describes how this research relates
to existing literature. Section 4.3 introduces two different mixed integer
linear programming models that model our problem setting. A number of
valid inequalities and other possible model improvements are discussed in
Section 4.4. In order to compare the performance of scheduling a system of
locks as a whole with that of a decentralized procedure which schedules the
locks independently, we describe an iterative heuristic based on the solution
algorithm for a single lock described in Chapter 2. A computational study,
discussed in Section 4.6, compares the performance of both models and
investigates the sensitivity with respect to different input parameters. In
this section, we also evaluate the trade-off between the waiting time and
emission objectives.

The contributions of this chapter can be summarized as follows. First,
we present mixed integer programming models that model the problem

1The research presented in this chapter, formatted as a journal article, has been
published in the European Journal of Operational Research, see Passchyn et al. (2016a)
for the article version. (doi: 10.1016/j.ejor.2015.09.012)
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setting with locks in sequence. Secondly, we compare the performance of
the presented models with the performance of a procedure which schedules
the locks independently, and thus compare the performance of a centralized
and a decentralized scheduling approach. Thirdly, a computational study
evaluates the performance of the models. The parameters used in the
instances are derived from a real-world dataset. Note that a trade-off
between reducing emissions and ships’ flow times is to be expected. The
computational study investigates this trade-off and analyses the potential
emission reduction.

4.1 Problem definition

We follow the notation introduced in Section 1.3. Given is a set of L
consecutive locks: L = {1, . . . , L}. The locks are ordered in increasing
order from the downstream end of the waterway to the upstream end.
We assume throughout this chapter that each lock consists of a single
chamber, and that each ship travels through each of the locks. That is,
upstream-travelling ships pass through the locks in the order 1, . . . , L, and
downstream-travelling ships in the order L, . . . , 1. Recall that the set of
ships that arrive over time is denoted by S, and the sets U and D refer to
the upstream-travelling ships and downstream-travelling ships respectively.
The arrival time of a ship s is written as As. All arrival times are assumed
to be known. We do not assume an initial position for the locks, i.e. the
initial water level of each lock may equal the lock’s upstream water level as
well as the lock’s downstream water level, although the models presented
in Section 4.3 can be easily extended to enforce a fixed initial position.

Also recall that Sl denotes the length of the waterway section between
locks l and l + 1, and that each ship s ∈ S has a fixed minimum and
maximum travel speed, represented by V min

s and V max
s respectively. Ship s

may thus travel at an arbitrary speed contained in the interval [V min
s , V max

s ].
While the ships can travel at a different speed on different sections of the
canal, we assume that each ship maintains a constant speed within each
section. Additionally, when emissions are considered, each ship s ∈ S may
also have an imposed deadline Ds, before which it must have left the last
lock that it needs to pass.

The problems we consider are to find an optimum feasible solution with
respect to the objective functions discussed in Sections 4.1.1 and 4.1.2.
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4.1.1 Minimizing total flow time

As in the previous chapters, one objective could be to minimize the total
flow time, i.e. the elapsed time between the ship’s arrival at the first lock
and departure from the last lock in its direction of travel, summed over
all ships. Given this objective function we can easily see that we can fix
the speed of each ship s to its maximum value V max

s without sacrificing
optimality.

4.1.2 Minimizing emissions

An alternative objective is to minimize the total emissions or the total
fuel cost. While the emission of greenhouse gases may be an optimization
criterion for governments or waterway organizations, the strongly related
fuel consumption is also an important economical factor for ship operators.
Since both the fuel consumption and emissions per kilometre travelled
increase at higher ship speeds, it is important to take the ship’s speed into
account when considering this objective. It is frequently assumed that
the emissions are directly proportional to the fuel consumption, so that
minimizing the emissions is equivalent to minimizing the fuel cost; we thus
ignore the fuel cost in the remainder of this chapter. We refer to Section 4.2
for literature related to variable ship speeds and the related emissions.
We assume that an emission function E(v) is given which expresses the
emission of pollutants, in tonnes per km, as a function of the ship speed v
for v > 0. Note that this function E depends on many external factors and
is generally non-linear due to the ship’s increasing resistance in the water.
In idealized settings, the emission per km is typically a convex function of
ship speed. For the emissions expressed per time unit as a function of ship
speed, a cubic relationship bounded by a constant minimum at low speeds
is often assumed, e.g. by Fagerholt et al. (2010). When this relationship
is expressed in emissions per unit of distance travelled as a function of
ship speed, this corresponds to a quadratic relationship, bounded by a
hyperbola for low speed values. A qualitative illustration can be seen in
Figure 4.1. Clearly, it is suboptimal to sail at a speed below the threshold
value where the minimum is attained, since increasing both the ship speed
and subsequent idle time then yields a better solution. Regardless of the
existence of such a threshold speed, imposing a minimum value for the
speed is also justified in order to guarantee sufficient manoeuvrability.

Let vs,p denote the speed of ship s along segment p. The total emission
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Figure 4.1: Qualitative graph of an emission function exhibiting a minimum
at a threshold speed. Note that emissions are expressed per kilometre
travelled.

of greenhouse gases Etot can then be computed as follows:

Etot =
∑
s∈S

∑
l∈L\{L}

SlE(vs,l).

A similar approach can be applied in order to minimize fuel consumption,
which may be more desirable from the ship operator’s point of view.

We note that assuming constant speed on the individual sections cannot
be justified for arbitrary functions E(v), although it is easily seen that a
constant speed is optimal for any convex emission function, see Hvattum
et al. (2013).

4.2 Relation to literature
Literature on the scheduling of a sequence of locks remains scarce. Petersen
and Taylor (1988) extend a dynamic programming approach for a single lock
to a constructive heuristic for a set of locks in sequence, although batching
is ignored, i.e. each lock is assumed to have unit capacity. Only recently, a
formal definition for the problem of scheduling locks arranged in a sequence
was described by Prandtstetter et al. (2015), accompanied by a variable
neighbourhood search approach to obtain heuristic solutions. Despite this
apparent gap in literature, however, the potential of scheduling a series
of locks as a whole, as opposed to each lock individually, is recognized
by different stakeholders. The Dutch waterway management organization
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Rijkswaterstaat, for example, is shifting its focus from decentralized lock
operations towards the fluent operation of certain ‘corridors’ as a whole,
see Kunst (2013).

In recent years, the operational speed of intercontinental container
ships has been decreased to improve fuel efficiency, a practice referred to as
‘slow steaming’. A large body of literature exists on optimizing ship speed
for maritime shipping, see e.g. Ronen (1982) for some early results on this
topic, and Psaraftis and Kontovas (2013) for a recent survey. In the context
of ocean liner shipping, a reduction in ship speeds clearly translates to an
increase in the total travel time. On inland waterways however, ships are
likely to incur waiting time near bottlenecks such as locks. This provides
ships with the opportunity of decreasing their maximal speed on each of
the sections along the canal while their total time spent inside the canal,
i.e. the flow time, remains unchanged. A paper by Ting and Schonfeld
(1999) mentions the strategy of reducing ship speed to avoid idle time
when a single lock is present; significant economic benefits are reported.
Our results in this chapter extend this by showing how to integrate the
decisions for multiple locks. To the best of our knowledge, the models
presented in this chapter are the first MIP models for lock scheduling which
include the ship speed as a variable and allow to take the emissions and
fuel cost into account. In the case of minimizing emissions, communicating
the outcome of the models to the ships allows lowering the ship speed
when locks are known to be unavailable; this avoids unnecessary idle time
where ships would arrive at a lock before it is available. At the same time,
this yields a reduction in fuel cost as well as pollutant emissions.

4.3 Mathematical programming models
We introduce here two distinct MIP formulations representing the problems
introduced in Section 4.1. In this section, we present a basic formulation
for both models. Valid inequalities and other model improvements are
presented in Section 4.4.

To state the travel time, which appears in the constraints of both
models, as a linear expression of the variables, we introduce the variables
v̄s,l, which equals the reciprocal of vs,l, i.e. v̄s,l = 1/vs,l. The travel time
for ship s along the section between locks l and l+ 1 then equals v̄s,lSl. To
characterize the emissions, we use the function Ē(v̄), which expresses the
emissions as a function of the reciprocal of ship speed. To obtain a linear
model, we use a piecewise linear approximation of Ē(v̄). Note that, in
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general, using a piecewise linear approximation may introduce additional
variables as the number of segments increases. If the piecewise function is
convex and is to be minimized, however, it suffices to introduce a single
additional variable and a set of additional constraints. In order to reduce
the notational burden we do not give the linearisation here and use Ē(v̄)
when we refer to the approximation. For an example and additional details
on how to compute E(v) and Ē(v̄), we refer to Section 4.6.3.

Note that even with Sp and vs,p integral, the travel time for some
sections may be fractional. From a practical point of view, however, it
might not make sense to schedule lock movements with a higher precision
than the unit in which the arrival times are expressed, e.g. minutes.
The time-indexed model described below allows lockages to start only
at integral moments in time, whereas the second model allows arbitrary
starting times for the lock movements.

4.3.1 Time-indexed formulation

For the model formulation we consider a discretised planning horizon. We
consider a set T = {0, . . . , T} of points of time. In the model then we
restrict ourselves to start times from T for each lock movement.

We obtain a bound T on the latest possible lockage start time as the
sum of the latest arrival time, maximum total travel time, total lockage
time, and the maximum waiting time. An upper bound for the latter is
derived as the maximum waiting time that a ship can spend at an artificial
lock having capacity Cmin and lockage duration Pmax and assuming that
all other ships travelling in the same direction are waiting when s arrives.

Let Wu and Wd denote, respectively, the maximum waiting time for
an upstream-travelling ship and for a downstream-travelling ship, and let
Cmin = minl∈L Cl and Pmax = maxl∈L Pl. Then

Wu =
⌊
|U|
Cmin

⌋
4Pmax,

Wd =
⌊
|D|
Cmin

⌋
4Pmax,

and with TRmax equal to the maximum time needed to pass through the



4.3. MATHEMATICAL PROGRAMMING MODELS 109

entire canal without waiting, we obtain

T = max
(

max
s∈U

As + 2 ∗ Ptotal + TRmax +Wu,

max
s∈D

As + 2 ∗ Ptotal + TRmax +Wd

)
.

For each ship s and each lock l we can further reduce the relevant
points in time to the interval between earliest possible arrival time and
latest feasible departure time of s at l. We thus obtain a set Ts,l for each
ship s and lock l.

In addition to the variables v̄s,l introduced in Section 4.1.2, we define
the following binary decision variables: For each s ∈ S, l ∈ L, t ∈ Ts, let

xs,l,t =
{

1 if at time t, lock l starts a lockage serving ship s,
0 otherwise.

Note that the completion time cs can then be expressed as follows:

cs =
{∑

t∈Ts,L
xs,L,t(t+ PL) if s ∈ D,∑

t∈Ts,1
xs,1,t(t+ P1) if s ∈ U .

Model 1 shows the mathematical formulation of the time-indexed
model. For a schedule to be feasible, each ship should pass each of the
locks, as imposed by (4.2). Notice that this constraint also implicitly
ensures that the arrival time and deadline for each ship are respected, since
only variables in Ts,l are considered. Further, all locks must be passed
in the correct order, i.e. a ship must arrive at a lock before it can enter
that lock. We achieve this by imposing constraints (4.3) and (4.4). In
these inequalities, the left hand side reflects the time difference between
the starting time of the lock movement that handles ship s at lock l, and
the ending time of the lockage that handles ship s at the preceding lock.

Additionally, a lockage can only start when the lock is in the appropriate
position and not currently moving, i.e. lockages of the same lock should
not overlap in time. We impose this by adding the constraints (4.5) to
(4.7). Figures 4.2 and 4.3 give a visual representation of these constraints.
In the figures, for any pair of ships s1, s2 travelling in the appropriate
direction, a movement for ship s2 cannot start in the indicated interval
if the x variable corresponding to s1 equals one. Note that constraints
(4.6) and (4.7), which concern ships travelling in the same direction, allow
multiple ships to be handled at the same time.
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Minimize
∑
s∈S

(
cs −As

)
or Minimize

∑
s∈S

∑
l∈L\{L}

SlĒ(v̄s,l) (4.1)

Subject to:∑
t∈Ts,l

xs,l,t = 1 ∀s ∈ S, l ∈ L (4.2)

∑
t∈Ts,l

(t xs,l,t)−
∑

t∈Ts,l+1

(t xs,l+1,t) ≥ Pl+1 + v̄s,lSl ∀s ∈ U,∀l ∈ L \ {L} (4.3)

∑
t∈Ts,l

(t xs,l,t)−
∑

t∈Ts,l−1

(t xs,l−1,t) ≥ Pl−1 + v̄s,l−1Sl−1 ∀s ∈ D,∀l ∈ L \ {1} (4.4)

xs1,l,t +
∑

τ∈Ts2,l ∩
{t−Pl+1,...,t+Pl−1}

xs2,l,τ ≤ 1 ∀l ∈ L, s1 ∈ U , s2 ∈ D, t ∈ Ts1,l (4.5)

xs1,l,t +
∑

τ∈Ts2,l ∩
({t−2Pl+1,...,t−1}∪
{t+1,...,t+2Pl−1})

xs2,l,τ ≤ 1 ∀l ∈ L, s1, s2 ∈ U , t ∈ Ts1,l (4.6)

xs1,l,t +
∑

τ∈Ts2,l ∩
({t−2Pl+1,...,t−1}∪
{t+1,...,t+2Pl−1})

xs2,l,τ ≤ 1 ∀l ∈ L, s1, s2 ∈ D, t ∈ Ts1,l (4.7)

∑
s∈S,t∈Ts,l

xs,l,t ≤ Cl ∀l ∈ L, t ∈
⋃
s∈S
Ts,l (4.8)

1
V max
s

≤ v̄s,l ≤
1

V min
s

∀s ∈ S, l ∈ L \ {L} (4.9)

xs,l,t ∈ {0, 1} ∀s ∈ S, l ∈ L, t ∈ Ts,l (4.10)
v̄s,l ∈ R+ ∀s ∈ S, l ∈ L \ {L} (4.11)

Model 1: Time-indexed model

Finally, the locks’ capacity restrictions, the limits on attainable ship
speed, and the domain of all variables are trivially modelled by constraints
(4.8) to (4.10).

We point out that this model contains O(SLT ) binary variables, O(SL)
real variables, and O(S2LT ) constraints. We refer to Section 4.4.1 for
a number of model improvements that enhance the performance of the
time-indexed model (4.1) to (4.11).

4.3.2 Lockage-based formulation
A notable disadvantage of the time-indexed model is that the number
of (binary) variables grows as the time horizon increases. For a small
discretisation step or when arrival times are large, the value for the upper
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s1

s2

Figure 4.2: Visualisation of constraints (4.5), ships travelling in opposite
direction.

s1s2 s2

Figure 4.3: Visualisation of constraints (4.6) and (4.7), ships travelling in
the same direction.

bound T and thus the number of variables and the computation time to
find an optimal solution, may grow prohibitively large. We introduce an
alternative formulation that does not use a time index for the variables,
and instead numbers the possible lockages. It is clear that for each lock,
the number of lockages in an optimal solution does not need to be greater
than 2S. Furthermore, we may also use the bound T introduced with the
TI model to bound the number of lockages:

K = min
(

2S,
⌈
T + maxl∈L Pl

minl∈L Pl

⌉)
.

We thus define the set K = {1, . . . ,K} to identify the lockages of each
lock. In fact, it is easy to see that we can replace K with an individual
expression Kl for each lock, but we ignore this for simplicity of notation.

In addition to the variables v̄s,p, we introduce the following decision
variables for each s ∈ S, l ∈ L, k ∈ K:

zs,l,k =
{

1 if ship s is handled by the k’th lockage of lock l,
0 otherwise.

tl,k equals the starting time of the k’th lockage of lock l,
cs equals the completion time of ship s.
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Note that the number of variables does not increase with T . Model 2
presents the complete formulation. For ease of notation, we do not explicitly
mention that κ, κ1, κ2 ∈ K whenever they are used.

Minimize
∑
s∈S

(
cs −As

)
or Minimize

∑
s∈S

∑
l∈L\{L}

SlĒ(v̄s,l) (4.12)

Subject to:

Ds ≥ cs ≥ t1,k + P1 −Mu
s (1−

∑
κ≥k

zs,1,κ) ∀s ∈ U , k ∈ K (4.13)

Ds ≥ cs ≥ tL,k + PL −Md
s (1−

∑
κ≥k

zs,L,κ) ∀s ∈ D, k ∈ K (4.14)∑
k∈K

zs,l,k = 1 ∀s ∈ S, l ∈ L (4.15)

tl,k ≥ tl,k−1 + Pl ∀l ∈ L, k ∈ K \ {1} (4.16)
zs1,l,k + zs2,l,k ≤ 1 ∀s1 ∈ U , s2 ∈ Dl ∈ L, k ∈ K (4.17)
zs1,l,k−1 + zs2,l,k ≤ 1 ∀s1, s2 ∈ U , l ∈ L, k ∈ K \ {1} (4.18)
zs1,l,k−1 + zs2,l,k ≤ 1 ∀s1, s2 ∈ D, l ∈ L, k ∈ K \ {1} (4.19)

tL,k ≥ As
∑
κ≤k

zs,L,κ ∀s ∈ U , k ∈ K (4.20)

t1,k ≥ As
∑
κ≤k

zs,1,κ ∀s ∈ D, k ∈ K (4.21)

tl,k1 ≥ tl+1,k2 + Pl+1 + v̄s,lSl
−Mk1,k2(2−

∑
κ≤k1

zs,l,κ −
∑
κ≥k2

zs,l+1,κ) ∀s ∈ U , l ∈ L \ {L}, k1, k2 ∈ K (4.22)

tl,k1 ≥ tl−1,k2 + Pl−1 + v̄s,l−1Sl−1
−Mk1,k2(2−

∑
κ≤k1

zs,l,κ −
∑
κ≥k2

zs,l−1,κ) ∀s ∈ D, l ∈ L \ {1}, k1, k2 ∈ K (4.23)

∑
s∈S

zs,l,k ≤ Cl ∀l ∈ L, k ∈ K (4.24)

1
V max
s

≤ v̄s,l ≤
1

V min
s

∀s ∈ S, l ∈ L \ {L} (4.25)

zs,l,k ∈ {0, 1} ∀s ∈ S, l ∈ L, k ∈ K (4.26)
tl,k ∈ R+ ∀l ∈ L, k ∈ K (4.27)
cs ∈ R+ ∀s ∈ S (4.28)

Model 2: Lockage-based model

Notice that the model introduces Mu
s , Md

s , and Mk1,k2 as big-M values.
To define their value, we first define the parameter T , which gives an upper
bound on the latest starting time of any lock movement. Note that this
value may exceed the T introduced for the time-indexed model. We have
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at least d S
Cmin
e non-empty lockages, thus:

T = T + Pmax +
(
K −

⌈
S

Cmin

⌉)
Pmax

We now discuss the individual constraints. Inequalities (4.13) and
(4.14) ensure that the completion time of each ship, used in the objective
function, is consistent with the timing of the last lockage the ship passes
through and enforce the deadlines for each ship. The values Mu

s and Md
s

introduced here give an upper bound on the difference between the latest
possible starting time for a lockage and the earliest completion time for a
ship s which is upstream-travelling or downstream-travelling respectively.
With TRmin equal to the minimum time required to cross the entire canal,
we can write:

Mu
s = T + P1 −As − TRmin

Md
s = T + PL −As − TRmin

Constraint (4.15) guarantees that each ship passes through each of the
locks and constraint (4.16) ensures that lockages do not overlap in time.

The next set of inequalities, (4.17) to (4.19), ensures that a lockage
can only handle ships in a single direction with each lockage, and that
no two consecutive lockages carry ships in the same direction. Note that
because the only way to characterize the direction of a lockage is to
consider the direction of ships inside the lockage, the direction of lockages
need not necessarily alternate when empty lockages are present. Using
these constraints, however, the model does guarantee that all non-empty
lockages satisfy all requirements for a feasible solution.

Obviously, the locks should be passed in the correct order. This is
imposed by specifying that the waiting time each ship incurs at each
position must be non-negative. Constraints (4.20) and (4.21) ensure
this for the outer positions where the arrival times are known, whereas
constraints (4.22) and (4.23) do the same for the middle positions. The
big-M value Mk1,k2 gives an upper bound on the difference in starting
time between the lockages k1 and k2:

Mk1,k2 = T − (k1 − 1)Pmin − (K − k2 − 1)Pmin

Finally, the capacity constraint (4.24) and the domain restrictions for
the variables are again straightforward to specify.
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The lockage-based model involves O(S2L) binary variables, O(SL) real
variables, and O(S3L) constraints. We refer to Section 4.4.2 for a number
of performance improvements for the lockage-based model (4.12) to (4.28).

4.3.3 First-come first-served constraints
Notice that, in general, both models allow ships to overtake each other.
That is, for two ships s1, s2 ∈ S with As1 < As2 , the model allows ship
s2 to enter any of the locks strictly before ship s1 enters that lock. In
practice, a first-come first-served rule is often enforced for ships travelling
in the same direction, see e.g. Smith et al. (2009) and Ting and Schonfeld
(2001). Furthermore, if there is no difference between the ships other than
their time of arrival, it is easily argued that at least one solution with
minimal flow time exists that satisfies first-come first-served. Since this
is the case in the problem we consider here, we order U and D by arrival
time and add the following constraints to the TI-model:∑

τ≤t

xs1,l,τ ≥
∑
τ≤t

xs2,l,τ ∀s1 < s2 ∈ U , l ∈ L, t ∈ T (4.29)

∑
τ≤t

xs1,l,τ ≥
∑
τ≤t

xs2,l,τ ∀s1 < s2 ∈ D, l ∈ L, t ∈ T (4.30)

For the LB-model, we add the following:∑
κ≤k

zs1,l,κ ≥
∑
κ≤k

xs2,l,κ ∀s1 < s2 ∈ U , l ∈ L, κ ∈ K (4.31)

∑
κ≤k

zs1,l,κ ≥
∑
κ≤k

xs2,l,κ ∀s1 < s2 ∈ D, l ∈ L, κ ∈ K (4.32)

We note that this FCFS assumption need not hold in general. For
example, in the extension discussed above where ship-dependent handling
times are present, it may be optimal for ships with a small handling time
to overtake ships with a larger handling time. It is also worth noting that
some of the constraints introduced in Models 1 and 2 can be tightened by
implicitly taking this FCFS property into account. In order to preserve
the flexibility of the original model when FCFS does not hold, however,
we do not modify the original constraints.

4.3.4 Model extensions
We note that the models presented above do not include all practical
considerations which may occur in a specific real-world setting. The
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generality of both models, however, allows such extensions to be included
with relative ease, although the required computational effort is likely
to increase significantly as a result. We briefly mention some of these
additional issues that may arise:

• ships may arrive or leave the system at arbitrary position, as opposed
to the first and last lock only.

• the lockage time may depend on the number of ships inside the lock.
In particular, empty lockages may be performed very efficiently.

• the water velocity may affect the lockage time depending on whether
the water level is raised or lowered,

• the water velocity may also effect the emission characteristics of
ships depending on their direction of travel.

4.4 Model improvements
4.4.1 Improvements for the time-indexed model
We present here a number of enhancements to the time-indexed model. A
first performance improvement can be gained by reducing the number of
variables. Next, we discuss a number of valid inequalities which could be
added to obtain a stronger LP-relaxation.

Reducing the number of variables

As argued before we can assume the ship speeds to be fixed to the maximum
speed when we consider the objective to minimize total flow time. It can
be easily argued that there exists an optimal solution where each lockage
either starts at the arrival time of some ship that is in the lockage, or
immediately follows the lockage that precedes it. We can make use of this
fact in order to obtain T ′s,l by eliminating all elements from Ts,l where no
ship can arrive and where no lockage can end. Generating all remaining
variables can be done by starting from the arrival times of ships as the
initial possible lockage start times. Adding all multiples of the lockage
time and the appropriate travel time to each of these starting times yields
more possible lockage start times for the neighbouring locks. By repeating
this while always considering the earliest possible lockage start time first,
we obtain a set T ′ ⊆ T . Since we can also compute the earliest possible



116 CHAPTER 4. MIP FOR LOCKS IN SEQUENCE

time es,l for a ship s to arrive at the position where it enters lock l, and
the latest possible time ls,l for ship s to enter lock l in time to reach the
deadline Ds, we obtain the set T ′s = {t | t ∈ T ′, es,l ≤ t ≤ ls,l} containing
all relevant time units at which ship s may move. Employing T ′s,l instead
of Ts,l avoids including many unnecessary variables and yields a drastic
performance improvement. We refer to Section 4.6 for a comparison of the
TI model with and without the application of this procedure.

Valid inequalities

In the time-indexed model, the constraints that avoid overlap of the
lockages contain a single variable xs1,l,t for ship s1, and a sum over a time
interval for ship s2. A generalization of these constraints can be obtained
by summing over an interval for both ships s1 and s2:∑

τ∈Ts1,l ∩
{t,...,t+p}

xs1,l,τ +
∑

τ∈Ts2,l ∩
{t−Pl+p+1,...,t+Pl−1}

xs2,l,τ ≤ 1

∀l ∈ L, s1 ∈ D, s2 ∈ U , t ∈ Ts1,l, p ∈ {0, . . . , 2Pl − 2}

(4.33)

∑
τ∈Ts1,l ∩
{t,...,t+p}

xs1,l,τ +
∑

τ∈Ts2,l ∩
{t−Pl+p+1,...,t+Pl−1}

xs2,l,τ ≤ 1

∀l ∈ L, s1 ∈ U , s2 ∈ D, t ∈ Ts1,l, p ∈ {0, . . . , 2Pl − 2}

(4.34)

It is not hard to see that we do not exclude any feasible solution,
while some solutions from the LP-relaxation of the original formulation
are excluded. We can use a similar approach when s1 and s2 are travelling
in the same direction:∑

τ∈Ts1,l ∩
{t,...,t+p}

xs1,l,τ +
∑

τ∈Ts2,l ∩
({t−2Pl+p+1,...,t−1}∪
{t+p+1,...,t+2Pl−1})

xs2,l,τ ≤ 1

∀l ∈ L, s1 ∈ U , s2 ∈ U , t ∈ Ts1,l, p ∈ {0, . . . , 2Pl − 2}

(4.35)

∑
τ∈Ts1,l ∩
{t,...,t+p}

xs1,l,τ +
∑

τ∈Ts2,l ∩
({t−2Pl+p+1,...,t−1}∪
{t+p+1,...,t+2Pl−1})

xs2,l,τ ≤ 1

∀l ∈ L, s1 ∈ D, s2 ∈ D, t ∈ Ts1,l, p ∈ {0, . . . , 2Pl − 2}.

(4.36)

Graphically, we can represent these constraints as shown in Figures 4.4
and 4.5.
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s2

s1

Figure 4.4: Visualisation of constraints (4.33) and (4.34), ships travelling
in opposite direction.

s1s2 s2

Figure 4.5: Visualisation of constraints (4.35) and (4.36), ships travelling
in the same direction.

Note that for p = 0, constraints (4.33) to (4.36) imply constraints
(4.5) to (4.7) of the original IP model. Although constraint (4.33) suffices
to prevent overlap of alternating lock movements, (4.34) repeats this
constraint for ships moving in the opposite direction to cut away additional
LP-solutions. A tighter LP relaxation can thus be obtained by replacing
constraints (4.5) to (4.7) by constraints (4.33) to (4.36).

Experiments with this stronger formulation show that, even though
the LP-relaxation yields a stronger bound, the solution time does not
decrease on average, which can be explained by the computational burden
of generating and processing these O(PmaxS

2LT ) additional constraints.
However, these stronger constraints may still be of interest when the focus
is on finding a good LP solution, or if a separation procedure could be
applied in order to avoid generating many of the non-binding constraints.

4.4.2 Improvements for the lockage-based model
We introduce here a reformulation of the LB-model that allows to fix some
of the variables, as well as different valid inequalities that strengthen the
LP-bound.

Because lockages must alternate direction, we can impose that even-
numbered lockages contain only ships in U and all odd-numbered lockages
contain only ships in D, or vice versa. We can do this by enforcing all
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ships in U and D to be restricted to even and odd numbered lockages
respectively, while allowing for an additional empty lockage that ends at
time t = 0. This additional lockage is required to allow the first lockage
starting not earlier than t = 0 to be an upstream as well as a downstream
lockage. We impose that:

zs,l,k = 0 ∀s ∈ U , l ∈ L, k ∈ K ∪ {K + 1} : k is even (4.37)
zs,l,k = 0 ∀s ∈ D, l ∈ L, k ∈ K ∪ {K + 1} : k is odd, (4.38)

which fixes approximately half of the original zs,l,k variables to zero,
effectively removing them from the model, at the cost of increasing K
by one and some adjustments to inequalities (4.20) and (4.21) discussed
below. Furthermore, we may remove constraints (4.17)-(4.19) from the
formulation, since they are no longer relevant.

Some care must be taken to allow the first lockages at locks 1 and L
to start at time −P1 and −PL. Constraints (4.20) and (4.21) imply non-
negative starting times for all lockages. We can substitute the following
for these two constraints:

t1,k ≥
∑
κ≤k

zs,1,κ(As + P1)− P1 ∀s ∈ D, k ∈ K (4.39)

tL,k ≥
∑
κ≤k

zs,L,κ(As + PL)− PL ∀s ∈ U , k ∈ K. (4.40)

In addition, the big-M value Mk1,k2 should be increased by Pmax.
In the remainder, we will discuss a number of valid inequalities to

enhance this reformulated LB-model. To express these valid inequalities,
we introduce two new sets of continuous variables:

as,l ∈ R equals the earliest time at which ship s can enter lock l,

bs,l,κ ∈ R equals
{

0 if as ≤ tl,κ,
as,l − tl,κ if as > tl,κ.

We have the following constraints linking as,l and bs,l,κ to the original
variables:



4.4. MODEL IMPROVEMENTS 119

as,1 = As ∀s ∈ D (4.41)
as,L = As ∀s ∈ U (4.42)
as,l ≥ tl−1,k + Pl−1 + Sl−1v̄s,l−1

− (T −Es,l)
∑
κ<k zs,l−1,κ

∀s ∈ D, l ∈ L \ {1}, k ∈ K (4.43)

as,l ≥ tl+1,k + Pl+1 + Slv̄s,l
− (T −Es,l)

∑
κ<k zs,l+1,κ

∀s ∈ U , l ∈ L \ {L}, k ∈ K (4.44)

bs,l,k ≥ as,l − tl,k ∀s ∈ S, l ∈ L, k ∈ K (4.45)
bs,l,k ≥ 0 ∀s ∈ S, l ∈ L, k ∈ K (4.46)

where Es,l equals the earliest time at which ships s can arrive at lock l.
Using the as,l variables, constraints (4.22) and (4.23) in the original

LB-model can be replaced by the following:

tl,k ≥ as,l −MLB+
k,l

∑
κ>k

zs,l,κ ∀s ∈ S, l ∈ L, k ∈ K (4.47)

with MLB+
k,l = T + Pl − (k − 1)Pl. Notice that the value MLB+

k,l is smaller
than the value of Mk1,k2 in the original LB-model.

We now express a number of valid inequalities which further strengthen
the formulation of the LB-model. While the model allows for any number
of empty lockages provided that they do not overlap, it is trivial to argue
that two consecutive empty movements can be removed from any schedule
without affecting the solution value. We can thus prune away many
equivalent solutions where two empty lockages are present before all ships
have been handled. Note that because the number of non-empty lockages
in the optimal solution is not known, we allow for two or more lockages to
be empty if all subsequent lockages are also empty. We can impose this
by introducing the following constraints:∑

s∈S

(
zs,l,k + zs,l,k−1

)
≥ 1
S

∑
s∈S
κ>k

zs,l,κ ∀l ∈ L, k ∈ K \ {1} (4.48)

A second set of inequalities expresses the intuitively obvious statement
that once a ship has arrived at one of the locks, it will enter the first
available non-full lockage in the appropriate direction. Note that this does
not imply that a ship must move at a high speed so that it arrives on
time to enter the first following non-full lockage, but rather that if ship s,
travelling e.g. in the upstream direction, has passed lock l and there is a
non-full lockage k for lock l+ 1 that does not contain s, then v̄s, l must be
such that s has not yet arrived at lock l + 1 at time tl+1,k.
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The mathematical formulation is as follows:

1−
∑
σ∈S zσ,l,k

Cl
− bs,l,k −

∑
κ<k

zs,l,κ <= 0 ∀l ∈ L, s ∈ D, k ∈ K

1−
∑
σ∈S zσ,l,k

Cl
− bs,l,k −

∑
κ<k

zs,l,κ <= 0 ∀l ∈ L, s ∈ U , k ∈ K

Finally, we introduce additional constraints on the as,l and cs variables:

as,l ≥ as,l+1 + Pl+1 + Slv̄s,l ∀s ∈ U , l ∈ L \ {L}
as,l ≥ as,l−1 + Pl−1 + Sl−1v̄s,l−1 ∀s ∈ D, l ∈ L \ {1}

cs ≥ as,1 + P1 ∀s ∈ U
cs ≥ as,L + PL ∀s ∈ D

Adding these valid inequalities to the reformulated LB model improves
the performance of the model; we refer to Section 4.6 for computational
experiments that compare the LB and LB+ models.

4.5 A single-lock based heuristic
While the MIP models allow to find a provably optimal solution, the
computational burden can be difficult to overcome for larger instances. To
investigate whether the use of an integrated MIP model for multiple locks
is justifiable, we compare the exact solution to the solution obtained from
an intuitive heuristic.

The heuristic solution is based on a decentralized approach where
optimal decisions are made for the individual locks. To obtain an optimal
solution to the single-lock problem in polynomial time, we use the results
described in Chapter 2. From each individual solution, arrival times are
then obtained for the neighbouring locks. Each of the locks is iteratively
scheduled to minimize flow time individually, using only the known ship
arrival times. We are, however, facing the problem that with the locks
arranged in sequence, the arrival time of a ship at a lock is known only
once the schedule of the previous lock that processes this ship is known.
Thus, initially, only the downstream arrivals for the first lock and the
upstream arrivals for the last lock are known.
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We resolve this problem by iteratively scheduling each of the single
locks for only those arrival times that are known. We then update arrival
information for the following iterations and repeat the process until the
solution has converged. A solution has converged when the arrival times
computed in the current iteration are equal to the arrival times of the
previous iteration, for each lock. An outline of this procedure in pseudo-
code is given in Algorithm 2, where SLS1(U,D) represents the single lock
solver procedure that returns a solution to the single lock problem given
a set of upstream arrivals U and downstream arrivals D, and fu (fd) is
a function that computes the upstream (downstream) arrival times at a
lock given from a given schedule at the previous lock. The input for this
procedure consists of the reciprocal of the (identical) ship speed, section
lengths, and sets with all arrival times of ships travelling upstream, as well
as downstream, at the lock where they enter the system. These sets of
arrival times will be denoted by UL1 and D1

1 respectively. The heuristic is
named RISL, short for ‘repeated iterations of single lock scheduling’.

Input: U , D, Sl (for l ∈ L \ {L}), v̄
i← 1
UL1 ← U , D1

1 ← D
repeat

ULi+1 ← ULi , D1
i+1 ← D1

i

for l ∈ L \ {1} do
U l−1
i+1 = fu(SLS1(U li , Dl

i)) + v̄Sl−1

for l ∈ L \ {L} do
Dl+1
i+1 = fd(SLS1(U li , Dl

i)) + v̄Sl

i← i+ 1
until

(
U li = U li−1 and Dl

i = Dl
i−1 for all l ∈ L

)
or i = 10L

Algorithm 2: Pseudo-code algorithm for the RISL heuristic

As an example, consider for a moment that we have only two locks.
We start by scheduling the first lock while only considering those ships
for which the arrival time is known. Next, we schedule the second lock,
including only the initially available arrival information. After obtaining a
schedule for the second lock, we update the arrival times at each of the
locks based on the individual schedules for both locks, adjusted with the
appropriate lockage duration and travel times. We now recalculate the
individual schedule for each of the locks and keep repeating this procedure
until the solution has reached convergence or a fixed iteration limit has
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Lock 1

Lock 2

X XXX

X X

t = 0 t = 4

t = 0 t = 1

Figure 4.6: Instance for which RISL does not converge. The locks have
T1 = T2 = 2 and C1 = C2 =∞. The dotted lines represent an optimum
solution for each lock after each even iteration; the solid lines represent an
optimum solution for each lock after each odd iteration.

been reached. We note that this iteration limit is required to ensure that
the procedure terminates, since it cannot be guaranteed that the procedure
converges for every input. In fact, it is possible to construct an instance so
that the algorithm cycles infinitely between two solutions; such an instance
is illustrated in Figure 4.6.

Note that the RISL procedure does not correspond entirely to the
decisions made in practice. Because the arrival times are obtained from
previous iterations, each lock operator thus implicitly takes future decisions
of neighbouring locks into account. Since this information is not available
in practice, we may expect the iterative procedure to perform better than
a typical decentralized solution in practice. For an estimation of the
waiting time that can be avoided by scheduling the system of locks as a
whole as opposed to the decentralised scheduling of the individual locks,
see Section 4.6.2; there, computational experiments compare solutions
obtained with a MIP model to solutions obtained with the RISL heuristic.

Notice that when deadlines are imposed, for example when considering
the emission objective, deadlines should be specified for each of the single-
lock instances to obtain sensible results. Since it is unclear how to derive
deadlines at each of the individual locks while still allowing the model
sufficient freedom to minimize emissions, we do not consider the emission
objective for the RISL heuristic. In Section 4.6.2, we restrict ourselves to
the flow time objective.
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4.6 Computational study
In this section, we evaluate the performance, with respect to minimizing
total flow time, of the two models and their respective performance im-
provements described in Section 4.4. We then use the lockage-based model
to minimize the emissions and evaluate the trade-off between emissions and
flow time on instances based on real-world data. All instances and results
are made available online at https://perswww.kuleuven.be/~u0086328/
lockmasterdata.html.

4.6.1 Comparison of the MIP-models
We implement the different model formulations with the flow time objective
in CPLEX (version 12.5.1). We evaluate the performance on different sets
of instances. Our reference scenario consists of instances with 3 identical
locks and 15 ships. The lockage time is equal to 12 minutes. Arrival times
are generated randomly from a Poisson arrival process with parameter
λ = 0.0536. These value are derived from a real-world dataset, see also
Section 4.6.3. The Poisson parameter corresponds to an expected time
between arrivals of 18.66 minutes. For simplicity, the distance between the
locks is considered to be zero. This allows us to ignore the minimum and
maximum speed. Results concerning the distance and ship speed between
locks are presented in Section 4.6.3.

We consider different values for the time unit in order to investigate
the impact on solution performance. In the reference scenario, we assume
a time unit of 5 minutes, i.e. all arrival times and the lockage time are
rounded to the nearest multiple of 5 minutes; the lockage duration for
each lock is thus assumed to be 2 time units. Other values for the time
unit are considered in what follows.

Since we are minimizing the flow time, we need not impose any deadlines.
A summary of the input parameters for the reference scenario is given in
Table 4.1. Each scenario is evaluated for 10 randomly generated instances.
We enforce a time limit of 15 minutes per instance. No model tuning is
required, and the CPLEX solver options are left to their default values.

For the reference scenario, we compare the performance of the models
presented in Section 4.3 as well as the models with the performance
improvements described in Section 4.4. The time-indexed and lockage
based models, including the FCFS constraints discussed in Section 4.3.3, are
denoted by TI and LB respectively, while the models with the improvements
described in Section 4.4 are labelled TI+ and LB+. Table 4.2 presents the
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Input parameters
S = 15 Cl = 2
L = 3 λ = 0.0536
Sl = 0 Ds = ∞
Pl = 2 [V min

s , V max
s ] = [2, 12]

Table 4.1: Instance properties for the reference scenario

# instances solved

TI TI+ LB LB+
10 10 0 10
avg. relative optimality gap

TI TI+ LB LB+
0 % 0 % 185% 0%

time to generate model [s]

TI TI+ LB LB+
21.14 1.81 2.63 1.44

solution time [s]

TI TI+ LB LB+
8.89 0.49 900.15 12.89

Table 4.2: Model comparison for the reference scenario

results.
Perhaps surprisingly, the LB models do not perform well despite having

significantly less variables than the TI model. To illustrate, the average
number of variables and constraints in each of the models is presented in
Table 4.3. Due to the filtering of variables in the TI+ model, this model
has an even lower number of variables, although this number depends on
the size of the time unit as well as the value T , as discussed in Section 4.3.
While the LB model performs very badly, the stronger LB+ model does
outperform the TI model without preprocessing. This is good to note
since the TI preprocessing is only possible when minimizing the flow
time, or alternatively when ship speed is fixed, whereas the improvements
introduced in the LB+ model can also be applied in the emission context
with variable speed.

For both models presented in Section 4.3, it can be seen that the
modifications suggested in Section 4.4 provide a strong reduction in com-
putation time. In what follows, we investigate the sensitivity of the models’
performance with respect to different input parameters. Given the drastic
improvement of the TI+ and LB+ models over their basic variants, we
limit ourselves to the improved models only.
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# variables (binary, continuous)

TI TI+ LB LB+
(3053, 1) (784, 1) (1350, 106) (1395, 1549)

# constraints

TI TI+ LB LB+
137262 17921 48253 10275

Table 4.3: Number of variables and constraints for reference instances

Instance size

We increase the size of the reference instances up to 25 and 35 ships. The
other input parameters remain unchanged. Table 4.4 presents the results
for the TI+ and LB+ model. As a consequence of our method of generating
Poisson arrivals, the time horizon is expected to grow proportionally with
the number of ships. For the TI model, this implies that the number of
variables (and constraints accordingly) will increase. Although the number
of variables in the LB model does not depend on T , several big-M values
in the LB+ constraints will increase as a result. The results indicate that
the TI+ continues to outperform the LB+ model even in this case. Notice
that the time required to generate the TI+ model grows much faster than
that of the LB+ model, which reflects the rapidly increasing number of
variables. This is also an early indication of the fact that the time-indexed
models will easily fail to generate larger models due to insufficient memory,
whereas the lockage-based models do not suffer from this problem but fail
to find high-quality solutions. Note that not many meaningful conclusions
can be drawn from the reported computation time for the LB+ model.
Indeed, only a single instances is solved to optimality in the setting with 25
ships, and no instances are solved for the setting with 35 ships. Repeating
these tests with an increased time limit of 2 hours shows that, in the
setting with 25 ships, 8 instances can be solved to optimality; the average
computation time for the solved instances then equals 4116.9 seconds, a
sizeable increase compared to the reference scenario with 15 ships.

Number of locks

To investigate the effect of the number of locks, we solve the reference
scenario for a single lock as well as for a set of 5 locks. For the latter
scenario, we maintain the assumption that all distances are equal to zero.
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# instances solved
TI+ LB+
10 1
avg. relative optimality gap
TI+ LB+
0 % 18 %
time to generate model [s]
TI+ LB+
7.62 5.33

solution time [s]
TI+ LB+
2.39 883.19

# instances solved
TI+ LB+
10 0

avg. relative optimality gap
TI+ LB+
0 % 67%
time to generate model [s]
TI+ LB+
22.58 7.02

solution time [s]
TI+ LB+
9.11 900.62

Table 4.4: Results for varying problem sizes: 25 ships (left) and 35 ships
(right)

We note that the single-lock scenario should be considered as a simple
reference benchmark only, since the methods described in Chapter 2 can be
used to obtain an optimal solution in polynomial time, which outperforms
the MIP approach presented here. The results for both sets of instances
can be found in Table 4.5.

For a single lock, it can be seen that the performance of both models is
comparable. In the single lock setting, the set of big-M constraints (4.43)
and (4.44) vanish from the model, strengthening the LP relaxation. When
increasing the number of locks, however, the opposite occurs and additional
big-M constraints are added. As a consequence, the LB+ becomes two
orders of magnitude slower than the TI+ model.

Time unit

Here, we vary the size of the time unit, i.e. the discretisation step size. We
solve instances with a one minute and with a 15 minute time unit. All
original input parameters are rescaled and rounded to the nearest unit, e.g.
in the 15 minute case, the lockage duration Pl = 1 and all arrival times As
are rounded to the nearest multiple of 15 minutes. Recall that the time unit
equalled five minutes in the reference scenario. Obviously, the computation
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# instances solved
TI+ LB+
10 10
time to generate model [s]
TI+ LB+
1.24 0.97

solution time [s]
TI+ LB+
0.17 0.46

# instances solved
TI+ LB+
10 10
time to generate model [s]
TI+ LB+
2.40 1.22

solution time [s]
TI+ LB+
1.17 168.39

Table 4.5: Results for varying number of locks: single lock (left) and 5
locks (right)

time for the TI+ model is expected to increase significantly for the one
minute scenario, as the number of variables increases. However, a negative
effect on the performance of the LB+ model is also expected with an
increasing value for T and the related big-M values in the constraints.
Table 4.6 shows the results. We note that the reported results relate only
to the performance of solving the instances. We assume that the arrival
times are rounded to the nearest multiple of the time unit, and thus do not
assess the waiting time that would occur if ship arrivals occur in between
the rounded times at which a lockage is allowed to start.

Unsurprisingly, both models perform better when a larger time unit is
chosen and the computation time for the TI+ model increases significantly
compared to the reference scenario. The LB+ model, on the other hand,
experiences only a minor increase in computation time for a smaller time
unit. While the performance of the LB+ model suffers significantly from
increasing the number of variables, for example by increasing the number
of ships or locks in an instance, changing only the value of T is not as
detrimental to performance.

Arrival rate

We do not perform a separate test to check for the influence of the arrival
rate parameter λ, since varying this parameter is equivalent to varying
the time unit (discussed above) and simultaneously rescaling the value for
the lockage duration so that the ratio of lockage duration to time unit
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# instances solved
TI+ LB+
10 10
time to generate model [s]
TI+ LB+
5.69 1.00

solution time [s]
TI+ LB+
9.13 17.91

# instances solved
TI+ LB+
10 10
time to generate model [s]
TI+ LB+
1.15 1.24

solution time [s]
TI+ LB+
0.16 5.71

Table 4.6: Results for varying time unit size: 1 minute (left) and 15 minutes
(right)

remains unchanged. Results similar to the scenarios for the time unit
can be expected, where a low arrival rate favours the LB+ model, and a
relatively high arrival rate favours the TI+ model.

Summary of the MIP comparison

To summarize, we can conclude that the TI+ model outperforms all other
models for the tested instances. However, the model does suffer from two
important drawbacks:

• As with any time-indexed model, the number of variables depends
on the length of the time horizon. The computation time increases
particularly fast when either choosing a small time unit (e.g. minutes)
or for low arrival rates.

• Since the preprocessing assumes that the ship speed is known, the
number of variables can only be reduced when speed is assumed to
be fixed or when the objective is to minimize the total flow time.

The first item is illustrated by the tests performed for 15 ships and 3
locks with a time unit of 1 minute. For these instances, the TI+ and LB+
models have comparable performance, indicating that there are ‘break-
even’ input parameters beyond which the LB+ model is to be preferred
over the TI+ model.

Especially the second item justifies the use of the LB+ model when
considering emissions or investigating the impact of variable speed, since
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input

S = 15
L = 5
Sl = 0
Pl = 12
Cl = 2
λ = 0.107
Ds = ∞

Table 4.7: Input for
the RISL heuristic.

Total flow time [min]

TI+ RISL Relative gain

1106 1179 6.19 %
1155 1155 0 %
1030 1030 0 %
1066 1066 0 %
1022 1044 2.11 %
1080 1080 0 %
1225 1249 1.92 %
1056 1057 0.09 %
1073 1101 2.54 %
1022 1115 8.34 %
Average computation time [s]

TI+ RISL
30.59 0.40

Table 4.8: Results for instances com-
paring the TI+ and RISL solutions.

the disadvantages of a time-indexed formulation are much more prominent
in the TI model, which is outperformed by the LB+ model even in the
reference scenario.

4.6.2 Comparing MIP and heuristic solutions

We compare the solution quality of centralized solutions, obtained with
the TI+ model, with that of the RISL heuristic described in Section 4.5.
The input used for the instances is summarized in Table 4.7. We again
compare the results for 10 instances; the results are listed in Table 4.8.
The heuristic finds an optimum solution in 4 out of the 10 instances.
The average performance gain by centralizing the scheduling is 2.12%,
although the variation over the instances is quite large, up to a maximum
of 8.34%. Naturally, this comes at the expense of a significantly increased
computation time. With respect to minimizing the total flow time, we
conclude that there is value in obtaining a centralized schedule. Also note
that the emission objective inherently requires an integrated approach.
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4.6.3 Evaluating emission reductions

Instance data

We now evaluate the trade-off between emission reduction and flow time
reduction based on an instance created from real-world data. We focus
on a section of the upper Scheldt river near Ghent, Belgium. We consider
three locks, each consisting of a single chamber, separated by a distance of
10.9 km and 12 km respectively. Arrival times are generated randomly for
25 ships, with a time unit of one minute. Based on a dataset with historical
arrival data provided by ‘Waterwegen en Zeekanaal’, the organisation
responsible for managing the locks, an arrival rate of λ = 0.0536 can be
estimated between 6 a.m. and 8 p.m. We use this arrival rate, noting that
we do not fix the time horizon of the instances since this is determined
from the Poisson arrival process where both the number of arrivals and the
parameter Poisson parameter λ are fixed. We report the average results
obtained over 10 instances.

In order to derive the piecewise linear function approximating Ē(v̄) we
employ a tool originating from the ARTEMIS project, see Boulter (2007).
This tool allows to evaluate the CO2 emissions as a function of multiple
inputs, including the ship speed and waterway characteristics. The tool’s
default ship data is used for ships of the type ‘RHK’, named after the
Rhine-Herne Canal for which ships of this size were originally designed.
The RHK ships have a size which is representative for freight ships that
pass through the upper Scheldt river. The waterway characteristics entered
in the ARTEMIS tool are a water depth of 3 m and an average waterway
width of 50 m.

Using the tool, we evaluate the CO2 emissions at a speed of 2, 5.33,
8.66, and 12 km/h, depicted as dots in Figures 4.7 and 4.8. We transform
the results into a piecewise linear approximation of Ē(v̄) with three linear
segments. It is important to note that if a piecewise linear function is
translated into a function of emission depending on speed, the result is not
convex. This is illustrated in Figure 4.7. The effect can be made arbitrarily
small, however, by choosing the piecewise linear segments sufficiently short.
The resulting functions Ē(v̄) and E(v) are shown in Figures 4.7 and 4.8
respectively. Further, we impose a minimum speed of 2 km/h and the
canal’s maximum speed of 12 km/h for all ships.
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Figure 4.7: Resulting approxima-
tion of E(v).
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Figure 4.8: Piecewise approxima-
tion of Ē(v̄).

Trade-off between emissions and flow time

The trade-off between flow time and emissions is evaluated as follows: first,
the LB+ model is used to minimize the total flow time without imposing
any deadlines, where ship speed is fixed to the maximum allowed speed
of 12 km/h. Notice that the flow time of each ship is at least equal to
150.5 min: the time needed to traverse the entire canal at maximum speed
plus the total time spent inside locks. To speed up the computation, we
set a deadline Ds = As + 240 min for each of the ships. All instances are
solved to optimality.

Solving these instances yields a set of completion times, which will be
used as the reference deadlines in what follows. Next, we treat the ship
speed as variable and gradually relax the deadlines so that the flow time
for each individual ship is allowed to increase by a given percentage relative
to the reference scenario. In each of these modified instances, the ship
speed is variable. Table 4.9 lists the average of the total emission value
over the instances as the flow time is increased. Note that a reduction in
total emission is possible even without relaxing the reference deadlines, as
the variable ship speed allows the slowing down, thus reducing emissions,
when waiting time is unavoidable at the locks. This scenario, where the
reference deadlines are imposed while ship speed is variable, will be referred
to as the reference scenario. Note that the reference scenario allows an
average emission reduction of 3.44% over the initial setting with fixed
speed, while the total flow time remains unchanged. Table 4.9 also lists
the average computation time as flow times are increased. We should
note that determining the initial completion times with fixed speed had in
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flow time increase [%] CO2 [tonnes] CO2 reduction [%] comp. time [s]
0 (12km/h) 13.616 - 5.13

0 (ref) 13.148 0 4.84
1 12.816 2.5 4.85
5 11.534 12.3 5.01
10 9.702 26.2 5.31
20 5.861 55.4 18.53
30 2.788 78.8 37.58
40 2.289 82.6 97.58
50 2.064 84.3 151.13
60 1.834 86.1 243.22

Table 4.9: Averaged emission results. The first row refers to the setting
where ship speed is fixed at V max

s . In all other rows, the ship speed is
variable and the deadlines are adjusted to constrain the increase in flow
time.

fact the largest computation time. On average, this required 895 seconds,
although the required time varied greatly by instance, with a minimum of
71 seconds and a maximum of 4374 seconds. Once the reference deadlines
times are determined, subsequent tests complete much faster since the
deadlines strongly constrain the feasible solution space.

Figure 4.9 shows the trade-off between emissions and flow times, av-
eraged over the 10 instances considered. The emission reduction is given
as a percentage relative to the solution which minimizes the total flow
time where the ship speed is variable, i.e. the reference scenario. It can
be seen that the trade-off is approximately linear up to a point where
the curve flattens. This is to be expected from the relationship between
emissions and speed, where a much steeper slope is found at the highest
speed values.

It should be mentioned that the trade-off is generally slightly more
erratic for a single instance. When the increase in flow time is insufficient
to allow any changes to the assignment of ships to lockages, an emission
reduction is possible only by slightly delaying the starting time of the
lockages. However, when the increase in flow time becomes sufficiently
large, the assignment of a ship may change to a later lockage, introducing
a discontinuity in the trade-off curve. Figure 4.10 shows the trade-off
profile evaluated for a single instance. While this effect is barely visible
in this case, it is expected to be more prominent when distances Sl are
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Figure 4.9: Trade-off between flow
time and emissions, averaged.
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Figure 4.10: Trade-off between flow
time and emissions, single instance.

smaller, or for a larger lockage duration Pl.

4.7 Conclusion
In this chapter, we described two mixed integer programming models
which allow to minimize the total flow time for multiple locks arranged
in a sequence. Both models can be easily extended to include additional
constraints or alternative objective functions such as minimizing the total
greenhouse gas emissions, as opposed to the total flow time. Computa-
tional testing confirms that a time-indexed model performs well when the
unit of time is chosen sufficiently large when the objective is to minimize
the total flow time. This model permits a preprocessing step where the
number of variables is reduced, greatly benefiting the performance. Per-
haps more surprisingly, a second model where the number of variables does
not depend on the time unit does not seem to outperform the first model,
even with the addition of valid inequalities to tighten the LP-relaxation. In
the context of minimizing emissions, however, the latter model will easily
outperform the former, since the preprocessing is then no longer possible.
Comparing the exact solutions to a heuristic indicates that, while the
heuristic may frequently find an optimal solution, significant improvements
can be achieved for other instances. It is also shown that for the proposed
heuristic, which is based on iteratively scheduling the individual locks to
optimality, convergence cannot be guaranteed. Different computational
experiments evaluated the trade-off between emission reduction and in-
crease in flow time for a system of three locks on the upper Scheldt river.
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Compared to the fixed speed scenario, an emission reduction of 3.44%
could be achieved with no impact on the total flow time. Relaxing the flow
time for individual ships allows a further reduction at an approximately
linear rate.

As a topic for future research a number of practical extensions, similar
to those presented for a single lock in Chapter 2, could be considered.
Further, the limited performance for larger instances suggests a decom-
position approach such as branch and price, which may overcome the
weak LP relaxation of the LB model while avoiding the inclusion of many
unnecessary variables and suffering from the same drawback as the TI
model. A different approach would be to initialize the solution procedure
with a known feasible solution, such as the RISL heuristic based on the
algorithm for single locks.



Chapter 5

No-wait scheduling for
parallel chambers1

This chapter explores the scheduling of a lock that consists of multiple
parallel chambers. More specifically, we are interested in so-called no-
wait schedules, i.e. schedules where none of the ships incurs any waiting
time. The resulting problem closely resembles an interval scheduling
problem. A formal problem description for the general problem is provided
in Section 5.1. In proving results for various special cases of this general
problem, a number of different results from literature can be improved
upon. The related literature and an overview of the relevant results
obtained in this chapter are discussed in Section 5.2; a summary is given
in Table 5.1. Different special cases of the general problem with parallel
chambers are then investigated. Section 5.4 considers the uni-directional
setting for a lock with two arbitrary chambers. Section 5.5 concerns the
more general bi-directional setting. In a different special case, all chambers
are identical; this setting is covered in Section 5.6. Finally, we look at
the more general setting with arbitrary chambers. Section 5.7 provides a
dynamic programming algorithm, while Section 5.8 shows that this general
problem is NP-complete.

The contributions of this chapter are the following. We show how
our problem relates to known interval scheduling problems, as well as

1The research presented in this chapter, formatted as a journal article, has been
submitted for publication and is currently undergoing peer review. An electronic version
is available as a research report, see Passchyn et al. (2016b).
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to a particular graph colouring problem on multiple unit interval graphs.
We explore the relationships between these problems and discuss the
complexity of different problem variants. In particular, for a lock consisting
of two chambers we are able to characterize the feasible instances and use
this result to obtain efficient algorithms: the bi-directional setting can be
solved in O(n2) time, whereas the uni-directional setting can be solved
in O(n) time. We also provide a linear-time algorithm for the special
case with identical lock chambers. Furthermore, we describe an O(mnm)
dynamic programming approach for the more general case with arbitrary
chambers, and prove that the problem is strongly NP-complete when the
number of chambers is part of the input.

5.1 Problem definition
We consider a single lock that consists of m parallel chambers. Since there
is only a single lock, we will ignore the index for the lock throughout this
chapter. Let C denote the set of chambers for this lock. The lockage
duration and capacity of a chamber c ∈ C are thus identified by Tc and Cc
respectively. The arrival time of a ship s in the set of ships S is denoted
by As. For convenience, we also define A as the set of arrival times, i.e.
A = {As | s ∈ S}.

Our interest here is exclusively on the existence of so-called no-wait
schedules. A no-wait schedule is a schedule where each ship, upon its
arrival, can enter a chamber of the lock immediately. Thus, in a no-wait
schedule, each ship s ∈ S leaves the lock at either As + T1, As + T2, . . .,
or As + Tm, depending on the particular chamber to which the ship is
assigned. We say that an assignment of ships to lock chambers is feasible
if each ship is served by a chamber upon its time of arrival and if, for each
chamber, the performed lockages do not overlap and alternate between
the upwards and downwards direction. Notice that empty lockages may
be required to return a chamber to the position where a ship arrives. The
question we address is thus: given the arrival time and the direction of
travel for each ship, does there exist a feasible assignment of each ship
to a chamber such that no ship has to wait; more compactly: does there
exist a no-wait schedule?

We are aware that, from a practical point of view, this problem de-
scription does not include all relevant features such as the size of a ship
and ship-dependent lockage durations. However, in order to be able to
solve these practical problems, it is good to understand the behaviour of
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this more basic problem. The following also justifies the focus on no-wait
schedules initially: as mentioned in Section 1.1, large vessels may be sub-
ject to a ‘tidal window’ in certain ports, i.e. they are able to enter the
port only during a limited time interval. For this reason, a policy can be
enforced that sea-going vessels do not incur any waiting time at the locks
that allow entry into the port area. A similar argument can be made for
locks on inland waterways when serving certain classes of ships carrying
dangerous cargo. Locks must then be scheduled such that these ships are
immediately served by the lock upon their time of arrival.

Moreover, as we argue below, the problem can be seen as a particular
interval scheduling problem, which is of independent interest, and some
of our results have implications for other interval scheduling problems. A
special case of the problem that is of interest is the uni-directional setting.

5.1.1 A note on sorted arrival times
Some of the results discussed in this chapter apply exclusively to sorted
input, i.e. these results require the assumption that arrival times are given
in non-decreasing order. Due to the well-known Ω(n logn) lower bound on
comparison-based sorting algorithms, it may not be possible to improve
beyond a complexity of O(n logn) in the general case of unsorted arrival
times. However, assuming that the arrival times are known in sorted order
may be justified. For instance, when iteratively applying the presented
methods, a large part of the input may have remained unchanged since
earlier iterations, so that sorting is no longer required for a large subset of
the given arrival times. Furthermore, the input may be unsorted but may
satisfy additional assumptions which allow the use of a non-comparison-
based sorting algorithm such as radix sort, which runs in linear time.
Therefore, we choose to report the complexity assuming that the arrival
times are sorted.

5.2 Relation to literature
As briefly mentioned in the literature overview of Section 1.2, the problem of
scheduling locks consisting of parallel chambers remains largely unexplored.
The only work, as far as we are aware, that deals with exact methods for
this setting is Verstichel et al. (2014b), who present a MIP model where
the chamber assignment decision is a part of an integrated approach for
the packing and scheduling of ships and lock chambers. To the best of our
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knowledge, the computational complexity of scheduling locks with multiple
chambers has not been directly addressed in the literature. Below, we
discuss two problems that can be related to the no-wait scheduling problem
for a lock with parallel chambers. We refer to Table 5.1 in Section 5.3
for an overview of the different results presented in this chapter, and the
related results from literature which are extended.

5.2.1 Interval scheduling
A closely related problem in the context of scheduling parallel machines is
interval scheduling, which can be stated as follows. Given are a set J of
jobs, each represented by an interval [sj , fj) for j ∈ J . Additionally, there
are a number of identical machines. Each job requires processing on one
of the machines during its stated interval, in such a way that no machine
processes two jobs of which the intervals intersect. The problem consists
of finding a schedule that minimizes the number of machines required to
process all jobs.

We can phrase our problem setting introduced above in terms of interval
scheduling as follows. Let a chamber be a machine, and let a ship be
a job. Furthermore, let the direction of travel for each ship correspond
to a job type for each job. Multiple intervals are associated to each job,
one for each machine in the instance. The starting time of each of the
intervals corresponding to a particular job i is equal to Ri; the ending
times of these intervals are given by Ri + Pj , j ∈ {1, . . . ,m}. Clearly,
the starting time Ri of a job i corresponds to the arrival time As of a
ship s, and the processing time Pj corresponds to the lockage duration
Tc of a chamber c. Notice that when considering a particular interval, it
is associated with a job and with a machine. A feasible solution consists
of a selection of intervals such that (i) one interval corresponding to each
job is selected, (ii) the selected intervals that correspond to a machine
are disjoint, and even more: when two consecutive intervals of a machine
correspond to jobs with the same job type, there must be a difference
of Pj between the ending point of the earlier interval and the starting
point of the later interval. The requirement involving this difference is
needed because a chamber transporting a ship needs Pj time units to
return before transporting another ship that travels in the same direction.
Notice that in the uni-directional case (when all jobs have the same type),
this difference requirement vanishes since it can be modelled by assuming
that the length of the intervals equal 2Pj .

Interval scheduling is a well-studied subject, see Kolen et al. (2007) for
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an overview. A recent paper by Krumke et al. (2011) deals with interval
scheduling on related machines, which can be formulated as follows. Given
are m machines, each with a certain speed Vj (1 ≤ j ≤ m), and n intervals
specified by a starting point Ri and a processing time Pi (1 ≤ i ≤ n). They
show that even deciding the existence of a schedule is NP-complete. Clearly,
this setting is relevant for our problem, certainly when we consider the
uni-directional variant of our problem: by setting the speed Vj of machine
j equal to Tj/Tmax (where Tmax refers to the maximum lockage time over
the chambers, i.e. Tmax = maxj Tj), the two problems are very much
related. In fact, our problem is a special case of the problem in Krumke
et al. (2011), since in our case, the lengths of intervals corresponding to a
particular machine (the processing requirements) are identical.

Another interesting paper, by Böhmová et al. (2013), concerns a version
with machine-dependent intervals. Here, a job corresponds to a set of
intervals, one for each machine, and to schedule a job exactly one of its
intervals must be selected. A set of selected intervals is then called feasible
if the intervals corresponding to the same machine do not overlap. In their
paper, they consider different special cases, one of which is of primary
importance to our problem: the problem with so-called cores, where all
intervals corresponding to the same job have a point in time in common.
More specifically, Böhmová et al. (2013) deal with the problem where all
intervals of a job end at the same time; they prove that deciding whether
a feasible selection of intervals scheduling all jobs exists is NP-complete,
solving an open problem from Sung and Vlach (2005). As this problem is
equivalent to dealing with the problem where all intervals of a job start
at the same time, this seems to be identical to our problem. There is one
difference however: in our case, the set of lengths of the intervals that
correspond to a job is the same for all jobs, which is not necessarily the
case in Böhmová et al. (2013). They also mention a dynamic program
given in Sung and Vlach (2005); translated in our terms, this means that
the uni-directional case can be solved by a dynamic program in O(mnm+1)
time. In addition, they mention that the uni-directional case with two
machines is polynomially solvable by a reduction to 2-SAT.

5.2.2 Graph colouring
Another related problem concerns the colouring of graphs. The well-
known graph colouring problem can be stated as follows. Given a graph
G = (V,E), decide whether there exists a partition of V into k subsets so
that, for every edge (i, j) ∈ E, vertices i and j are not contained in the
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same partition. Equivalently, decide whether there exists a partition of V
into k subsets such that each subset is an independent set in G.

Now consider the following graph colouring problem on a number of
unit interval graphs with a common node set. For each unit interval
graph, by definition, a set of equal-length real intervals exists where each
interval corresponds to a node and an edge exists if and only if the intervals
corresponding to these nodes overlap. Given are m unit interval graphs
(V,E1), . . ., (V,Em) where the edge sets satisfy E1 ⊆ . . . ⊆ Em. Notice
that these m graphs have the node set V in common. The question is:
does there exist a partition of the node set V into m subsets V1, . . . , Vm
such that Vj ⊆ V is an independent set in (V,Ej) for each j ∈ {1, . . . ,m}?

The two problem descriptions are related as follows. Consider the
uni-directional case of the problem formulated in the “lock”-description
and assume that all arrival times are distinct. Build a node set V by
having a node in V for each arrival of a ship. Next, build an edge set
Ej by having an edge in Ej between the nodes i1, i2 ∈ V if and only if
Ai1 + 2Tj > Ai2 for j = 1, . . . ,m. It is easily seen that if chamber j is
used to serve ship i1, it can return to the position where ships arrive no
earlier than Ai1 + 2Tj ; for each pair of nodes (i1, i2) for which an edge
exists in edge set Ej , chamber j can thus not be used to serve both ships
in any no-wait solution. Observe that if the lock chambers are ordered
such that T1 ≤ . . . ≤ Tm, this immediately implies that E1 ⊆ . . . ⊆ Em.
The existence of a partition of V into subsets Vj , with Vj an independent
set in (V,Ej) for all j ∈ {1, . . . ,m}, then corresponds to the existence of
a no-wait schedule. Indeed, the nodes, or arrivals, in Vj can be handled
by chamber j in a corresponding solution to the “lock” problem.

Observe that the “lock”-description gives rise to a problem that is more
general than the problem from the “graph”-description in two ways: (i)
multiple ships may arrive at the same time, and (ii) ships may travel in
the downstream as well as the upstream direction. One point to note is
that to obtain a “lock”-instance from a given “graph”-instance, an interval
representation (leading to the values As) needs to be determined. In this
work, we do not not consider this conversion explicitly.

5.3 Notation and summary of results
Throughout the remainder of this chapter, we use the “lock” description
of the problem to describe our results. Thus, our results are formulated
in terms of locks and ships; for example, the phrase ‘assigning ship s to
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chamber c’ corresponds to ‘executing job s on machine c’ in the “interval”
description, and to ‘placing node s in subset Vc’ in the “graph” description.
For convenience, we introduce a notation to refer to the special cases
of NLS discussed in what follows. We refer to the problem settings as
NLS{-uni, ∅}{-2, -m, ∅}{-id, ∅}{-distinct, ∅}, where

• uni refers to the uni-directional case (where omitted, bi-directional
traffic is implied),

• 2 refers to the setting with two lock chambers and m refers to the
setting where the number of chambers m is fixed (omitting these
implies that the number of chambers is part of the input),

• id refers to the setting with identical chambers (omitting this implies
that values for lockage time and capacity are arbitrary),

• distinct refers to the setting where all arrival times are distinct
(omitting this implies that multiple ships may arrive simultaneously).

We point out that specifying additional parameters in the problem name
increasingly yields a more specific case of the problem. NLS, which
describes the setting with an arbitrary number of non-identical chambers
and bi-directional traffic, thus describes the most general problem covered
by this notation.

Table 5.1 lists the notation for the different problem settings discussed
in this chapter, and gives an overview of known results from literature
and the new results presented in this chapter. Based on the chamber
characteristics, we consider the following settings:

1. The setting where m = 2 with two arbitrary chambers. For the
uni-directional setting, called NLS-uni-2, we give necessary and
sufficient conditions for deciding on the existence of a no-wait schedule
(Section 5.4), and we show how to find such a schedule in O(n) time
provided that the arrival times are sorted (see Section 5.1.1). Further,
for the bi-directional case NLS-2, we give a reduction to 2-SAT that
leads to an O(n2) algorithm (Section 5.5).

2. The setting where Cc = C and Tc = T for all c ∈ C, i.e. the setting
with m identical chambers. The resulting problems are called NLS-
uni-id and NLS-id, and we show that we can solve these problems in
O(n) time for sorted arrival times (Section 5.6).
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3. The setting where the number of chambers m is fixed. We give a
dynamic program (DP) for our problem that runs in polynomial time
(Section 5.7). For the problem of finding a feasible no-wait schedule
described here, this DP strengthens the result in Sung and Vlach
(2005) that can be applied to the uni-directional case.

4. The setting with an arbitrary number of chambers. We prove that
the uni-directional case of this variant is NP-complete (Section 5.8).
This result strengthens both the result given in Krumke et al. (2011)
and a result in Böhmová et al. (2013).

5.4 Two arbitrary chambers, uni-directional

In this section we deal with the case of two chambers, more specifically
with the uni-directional setting. In order to serve a ship with chamber
c ∈ {1, 2}, a lockage duration Tc is incurred. We assume T1 ≤ T2. We
refer to the two chambers as the short and long chamber respectively, and
to their lockages as short and long lockages.

In Section 5.4.1, we first look at problem NLS-uni-2-distinct, i.e. the
special case with two locks where (i) all ships travel in the same direction,
and (ii) all arrival times are distinct. Notice that the numbers C1, C2 are
then irrelevant since a chamber contains at most one ship. In Sections 5.4.2
and 5.4.3, we extend our approach to a more general setting where some
ships are pre-assigned to a chamber and describe how this result can
be used to model the setting NLS-uni-2, where the numbers C1 and C2
become relevant.

5.4.1 Uni-directional setting, distinct arrival times

As argued in Section 5.1.1, we assume throughout this section that the
arrival times are given in sorted order. We describe an O(n) algorithm
under this assumption. We organize this section as follows: in Section 5.4.1
we describe the construction of a graph corresponding to an instance of
NLS-uni-2-distinct, and discuss some basic observations. We first prove a
theorem characterizing feasibility, and then use this result to describe an
O(n) algorithm.
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Graph and concepts

An instance I is given by specifying distinct ordered arrival times A1 <
. . . < An and lockage durations T1 < T2. We say that an instance is
feasible if there exists a no-wait solution, otherwise it is not feasible. Given
an instance I, we create a graph G(I); we will, in the sequel, simply write
G. Notice that we allow multiple edges between a pair of nodes in G; more
precisely, the edge set of G consists of a set ES and a set EL. The graph
is constructed as follows. There is a node for each arrival time; two nodes
i < j are connected via an s-edge (i, j) ∈ ES if and only if Aj −Ai < 2T1;
two nodes i < j are connected via an l-edge (i, j) ∈ EL if and only if
Aj −Ai < 2T2. The following property underlies this construction: for a
solution to be no-wait, two arrivals connected by an l-edge cannot both be
served by the long chamber; two arrivals connected by an s-edge cannot
both be served by the short chamber.

Observe that ES ⊆ EL, i.e. the existence of an s-edge (i, j) implies the
existence of an l-edge (i, j), so that two arrivals connected by an s-edge can
also not both be served by the long chamber. Further note that (V,ES)
and (V,EL) are unit interval graphs by construction. In fact, deciding
whether the set of nodes V can be partitioned into two subsets which are
independent sets in ES and EL respectively, corresponds exactly to the
problem stated in the “graph”-description of our problem, described in
Section 5.2, for m = 2, where ES = E1 and EL = E2.

Because the arrival times are assumed to be strictly ordered, this same
ordering applies to the nodes of V . Node i then refers to the arrival of a
ship at time Ai, with 1 ≤ i ≤ n. We may thus refer to a ‘first’ and ‘last’,
or ‘earlier and ‘later’ nodes without ambiguity. We call a pair of nodes
(i, j) consecutive when j = i+ 1. In all figures, we represent an s-edge by
a straight line segment ( ), while an l-edge is represented by a segment
in the form of an arc (a).

A no-wait solution to the given instance can exist only if each ship can
be assigned to one of the two lock chambers so that a lockage starts at the
ship’s time of arrival. We can observe a number of interesting properties
in graph G. In addition to highlighting some structural characteristics of
an instance and its graph, we will refer to these observations in the proof
that follows.

Observation 5.1. If there exists a node i ∈ V \ {n} such that (i, i+ 1) /∈
EL, i.e. if there exists a pair of consecutive nodes which are not
connected by an l-edge, the instance splits into two independent
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i i+ 1 j − 1 j

Figure 5.1: Structure described in Observation 5.3. Note that the existence
of (i, j) ∈ EL implies that (i, j − 1) ∈ EL and (i + 1, j) ∈ EL since
Ai < Ai+1 < Aj−1 < Aj and since (V,EL) is a unit interval graph.

sub-problems. This is easily seen since both chambers are then
available at time Ai+1 for any no-wait solution, regardless of the
assignment of nodes 1, . . . , i. A no-wait solution thus exists if and
only if there is a no-wait solution for each of the two sub-problems.

Observation 5.2. If there exists a node i ∈ V such that (i, i+ 2) ∈ ES ,
i.e. if there exists a triangle of s-edges in G, then the instance is not
feasible. This readily follows from the fact that there does not exist
a proper 2-colouring in a triangle graph.

Observation 5.3. If an l-edge contains two s-edges that are node-disjoint,
i.e. if there exist nodes i, j ∈ V with j > i+ 2 so that (i, i+ 1) ∈ ES ,
(j − 1, j) ∈ ES , and (i, j) ∈ EL, then the instance is not feasible.
This is easily argued as follows: the existence of the s-edges implies
that either node i or node i+ 1 must be served by the long chamber,
and that either node j − 1 or node j must be served by the long
chamber. The l-edge (i, j), however, implies the existence of the
l-edges (i, j − 1) and (i+ 1, j), conflicting with the observation that
two nodes must be served by the long chamber. An example is shown
in Figure 5.1.

Observation 5.4. If there exists a node i ∈ V such that there exist s-
edges (i, i + 1), (i + 1, i + 2), (i + 2, i + 3) ∈ ES and l-edges (i, i +
2), (i+ 1, i+ 3) ∈ EL, the instance is not feasible. Figure 5.2 shows
the graph for an instance consisting of 4 such nodes. It is easily
verified (see also the next observation) that both nodes i + 1 and
i+ 2 must be served by the short chamber in all feasible solutions,
which is impossible due to the presence of s-edge (i+ 1, i+ 2). Hence,
an instance containing this structure is not feasible.

For convenience, we restrict ourselves in the remainder of Section 5.4
to instances I whose corresponding graphs G(I) do not contain any of
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i i+ 1 i+ 2 i+ 3

Figure 5.2: Structure described in Observation 5.4.

i i+ 1 j

(a)

i j − 1 j

(b)

Figure 5.3: Structures described in Observation 5.5. Note that the existence
of the dashed edges is implied since (V,EL) is an interval graph.

the structures described in Observations 5.1 to 5.4. This can be done
without loss of generality, since we can recognize these structures efficiently,
see Section 5.4.1. Furthermore, an additional observation allows us to
recognize certain nodes which must be assigned to the short chamber:

Observation 5.5. If there exist nodes i, j ∈ V with j > i + 1 such
that (i, i + 1) ∈ ES and (i, j) ∈ EL, a feasible solution can exist
only when node j is assigned to the short chamber. This follows
readily from the fact that either i or i+ 1 must be assigned to the
long chamber, and an l-edge to j starts at both i and i+ 1. From
symmetry, it immediately follows that the same holds for a node i
where (i, j) ∈ EL and (j, j − 1) ∈ ES . The associated graphs are
shown in Figures 5.3a and 5.3b.

We proceed by describing paths and nodes in the graph which have a
specific structure. We show later that checking for the presence of such
paths suffices to decide on the feasibility of a given instance.

Definition 5.1. Given an instance I and graph G(I), a bad path is any
sequence of distinct nodes (i1, i2, . . . , ik) with k ≥ 4 that satisfies:

1. The nodes in the sequence appear in the order defined on V , with
exception of i1 and ik, which satisfy i2 < i1 < i3 and ik−2 < ik <
ik−1. More formally: ix < ix+1 for all x ∈ {2, . . . , k − 2}, i2 < i1 <
i3, and ik−2 < ik < ik−1.

2. The pairs of consecutive nodes in the sequence are alternatingly
connected by an s-edge and an l-edge, with the first and last edges
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i2 i1 i3 i4 i5 i6 i8 i7

Figure 5.4: Example of a bad path. Note that the structure described in
Definition 5.1 remains satisfied if the dashed edges are replaced with a
longer sequence (with odd number of nodes) consisting alternatingly of
s-edges and l-edges.

in the sequence being both s-edges. More formally: (ix, ix+1) ∈ ES
for all odd x ∈ {1, . . . , k − 1}, (ix, ix+1) ∈ EL for all even x ∈
{1, . . . , k − 1}, and k is even.

Note that a bad path necessarily contains an even number of nodes.
An example is shown in Figure 5.4. Observe that a bad path with k = 4
consists of the structure shown in Figure 5.1.

We also describe specific nodes that are closely related to the definition
of a bad path. Intuitively, we define a potentially bad node as the latest
node in a path (i1, i2, . . . , ik) that contains at least 5 nodes, and that could
be extended to a bad path if there would exist a node j with ik−1 < j < ik
and an s-edge (j, ik). Note that the existence of such a node j is not
required for ik to be a potentially bad node. More formally, we define a
potentially bad node as follows.

Definition 5.2. A node ik is a potentially bad node if there exists a path
(i1, i2, . . ., ik) that satisfies the following:

• ix < ix+1 for all x ∈ {2, . . . , k − 1} and i2 < i1.

• (ix, ix+1) ∈ ES for all odd x ∈ {1, . . . , k − 1} and (ix, ix+1) ∈ EL
for all even x ∈ {1, . . . , k − 1}.

• k ≥ 5 and k is odd

Observe that in a bad path, all nodes ij in the path with j ≥ 5 and
j odd are potentially bad nodes. E.g. in Figure 5.4, nodes i5 and i7 are
potentially bad nodes, whereas i3 is not.

Characterizing feasible instances

We present the following theorem to characterize when an instance is
feasible:
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Theorem 5.1. An instance I of NLS-uni-2-distinct is feasible if and only
if its corresponding graph G(I) does not contain a bad path.

Proof. ⇒ We argue that if G(I) contains a bad path, the instance is
not feasible. Consider a bad path (i1, . . . , ik) in G. It follows from
Observation 5.5 and i2 < i1 < i3 that node i3 must be assigned to the
short chamber. We now trace the path from i3 to ik−1. Note that, since
l-edges and s-edges alternate, any solution must assign nodes i3, . . . , ik−1
to the short and long chamber in alternating order. This implies that
node ik−2 must be assigned to the long chamber, while node ik−1 must
be assigned to the short chamber. However, the bad path implies that
(ik−1, ik) ∈ ES and (ik−2, ik) ∈ EL so that no chamber is available for ik
and hence no feasible solution exists.
⇐ We now argue by contradiction that a feasible solution exists when-

ever the graph does not contain a bad path. For this, let us assume that
there exists an instance which is not feasible while its corresponding graph
does not contain a bad path. Assuming that such instances exist, consider
one with a minimum number of arrivals. Let G∗ = (V ∗, E∗) be the graph
corresponding to this instance, with E∗ = ES∗ ∪EL∗ where ES∗ and EL∗
denote the set of s-edges and l-edges respectively. The proof is organized
as follows. First, we show that G∗ must contain at least one potentially
bad node. We then argue that there cannot be a latest potentially bad
node in G∗: a contradiction.

We claim that graph G∗ must satisfy the following properties:

Property 5.1. For each i ∈ V ∗, there exists a feasible solution in G∗ \{i}
with distinct nodes js, jl ∈ V ∗ \ {i} such that (i, js) ∈ ES∗, (i, jl) ∈ EL∗
while js (jl) is assigned to the short (long) chamber in that feasible solution.

Proof. Let i be an arbitrary node in G∗. Since G∗ is a counterexample
with a minimum number of nodes, and since no bad paths are introduced
by removing a node and its incident edges, it follows immediately that
a feasible assignment of chambers is possible in G∗ \ {i}. Consider an
arbitrary feasible assignment in G∗ \ {i} and let S and L be the set of
nodes that are assigned to the short and long chamber in this solution
respectively; clearly, S ∩ L = ∅. If, in G∗, none of the nodes in S are
connected to i by an s-edge, it is easily seen that node i can be assigned
to the short chamber, thus extending the solution in G∗ \ {i} to a feasible
solution in G∗. Since no feasible solution is possible in G∗, it follows that
a node js ∈ S must exist such that (i, js) ∈ ES∗. Repeating this reasoning
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i1i2 i3 i4

(a)

i1i2 i3 i4

(b)

Figure 5.5: Structures described in case 1 in the proof. Note that, in (b),
the dotted edges are not present in G∗, and a feasible solution assigns i1
and i3 to the short chamber and i2 and i4 to the long chamber.

for the long chamber immediately implies that there exists a node jl ∈ L
such that (i, jl) ∈ EL∗.

Property 5.2. G∗ contains at least one potentially bad node.

Proof. Consider the earliest node, say i2, in G∗. Applying Property 5.1
to this node, it follows that there must exist two additional nodes i1, i3
such that (i2, i1) ∈ ES∗ and (i2, i3) ∈ EL∗. We select i1, i3 to be minimal,
i.e. i1 is the successor of i2 and i3 is the successor of i1. We obtain the
structure shown in Figure 5.3. Applying Property 5.1 to node i3 implies
that there is an s-edge incident to node i3. We can distinguish two possible
cases:

1. The s-edge is incident to a node i4 > i3. Observe that i4 must the
be the successor of i3. We obtain the structure shown in Figure 5.5a.
If G∗ consists of four nodes, applying Property 5.1 to i1 implies
that (i1, i4) ∈ EL∗. Observe that i3 cannot be selected as node jl
in the property, since i3 must not be assigned to the long chamber
(Observation 5.5). Furthermore, observe that (i1, i3) /∈ ES∗ (by our
assumption that the structure from Observation 5.4 is not present
in an instance) and that (i2, i4) /∈ EL∗ (by our assumption that the
structure from Observation 5.3 is not present). Then, however, G∗
corresponds to an instance that is feasible, which is not the case.
This is illustrated in Figure 5.5b. Thus, G∗ consists of at least five
nodes. Observation 5.1 implies that (i4, i5) ∈ EL∗, and thus i5 is a
potentially bad node.

2. The s-edge is incident to node i1. Observe that if G∗ consists of
only 3 nodes, a feasible solution is easily found. Thus, there exists
a fourth node i4 in G∗. Since i2, i1, and i3 are the earliest nodes
in the instance, i4 is the successor of i3. Applying Property 5.1 to
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i1i2 i3 i4

(a)
i1i2 i3 i4 i5 i6

(b)

Figure 5.6: Structures described in case 2 in the proof.

node i1, it follows that (i1, i4) ∈ EL∗. Observe that nodes i2 and i3
cannot be selected as node jl in the property since they must not be
assigned to the long chamber (Observation 5.5). G∗ then contains
the structure shown in Figure 5.6a. We then apply Property 5.1 to
node i4. Since we may assume that (i3, i4) /∈ ES∗ (otherwise the case
described above applies), it follows that there exists a node i5 > i4
with (i4, i5) ∈ ES∗. The resulting structure is shown in Figure 5.6b.
Finally, we apply Property 5.1 again, now to i5. It follows that there
is an l-edge incident to i5. As before, note that nodes i3 and i4
cannot be chosen as node jl in the property since they must not be
assigned to the long chamber (Observation 5.5). Since the existence
of the l-edge (i1, i5), dotted in Figure 5.6b, implies a bad path, this
l-edge cannot be present and there thus exists a node i6 > i5 with
(i5, i6) ∈ EL∗. Node i6 is then a potentially bad node, with path
(i3, i1, i4, i5, i6) satisfying the definition above.

Thus, G∗ must contain at least one potentially bad node.

Property 5.2 implies that G∗ contains a latest potentially bad node.
We now show that this leads to a contradiction. Figure 5.7 illustrates the
reasoning below. Let ik be the latest potentially bad node in G∗. Applying
Property 5.1 to ik implies that there exists an s-edge (ik, ik+1). Since ik is
a potentially bad node, ik+1 < ik would imply the existence of a bad path.
Node ik+1 is thus the successor of ik. Applying Property 5.1 again, now
to ik+1, implies the existence of an additional l-edge. Observe that the
l-edge (ik−1, ik+1), illustrated by the dotted l-edge in Figure 5.7, cannot
be present because it implies the existence of a bad path. Thus, there
exists a node ik+2 > ik+1 with (ik+1, ik+2) ∈ EL∗. Note that ik+2 is a
potentially bad node and ik+2 > ik. This contradicts our choice of ik as
the latest potentially bad node.

Thus, the existence of G∗ leads to a contradiction, proving the theorem.
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ik−1 ik ik+1 ik+2

Figure 5.7: Structure describing the latest potentially bad node in G.
Observe that the dotted l-edge cannot be present.

s

(a)
s

(b)

Figure 5.8: The nodes labeled s must be assigned to the short chamber.

An O(n) algorithm for deciding feasibility and constructing a
solution

Notice that Theorem 5.1 characterizes feasibility of an instance. We now
present an O(n) algorithm that actually recognizes whether G contains a
bad path. We start with the arrival times Ai for i ∈ {1, . . . , n} in sorted
order, and avoid explicitly constructing G, which may contain up to O(n2)
l-edges. Since (V,EL) is a unit interval graph, we can avoid checking
each of the l-edges explicitly. Instead of constructing all edges in graph
G, we will check for the existence of edges, using their definition, only
when needed. For example, when we write “if (vi, vj) ∈ EL” for nodes
vi, vj ∈ V in what follows, this equals the expression “if Aj −Ai < 2T2”,
corresponding to the definition of an l-edge. For any given pair of nodes,
this is easily checked in constant time. In addition to recognizing feasibility,
the algorithm assigns each node to a chamber such that the corresponding
solution is a no-wait solution, provided that no bad path exists.

Recall that in Figure 5.8a and Figure 5.8b, each of the nodes labelled s
must be assigned to the short chamber in any feasible solution, as argued
in Observation 5.5.

The outline of the procedure is as follows. We first identify all nodes
that must be assigned to the short chamber due to the structures shown
in Figure 5.8a and Figure 5.8b. We then use implications from these
assignments to assign other nodes to the chambers. In this way, all ‘forced’
assignments are handled. Finally, we apply a simple greedy procedure to
assign the remaining nodes to chambers. In the remainder of this section,
we will show that if no bad paths are present, the greedy procedure always
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yields a feasible assignment of lock chambers (i.e. the correctness of the
algorithm), and that each of these steps can be performed in linear time
(i.e. the complexity of the algorithm).

We will call any node that must be assigned to the same chamber in
all feasible solutions due to the implications mentioned above, a fixed node.
We distinguish s-fixed and l-fixed nodes for nodes that must be assigned to
the short and long chambers respectively. As argued in Observation 5.5,
the nodes labelled s in Figure 5.8 are s-fixed nodes. We start by identifying
all occurrences of these structures in G. Observe that these structures
correspond to the ‘beginning’ (i.e. the first three nodes) and the ‘end’ (i.e.
the last three nodes) of a bad path. Finding these structures is easily done
in linear time by considering each node once and checking for the presence
of the edges shown in the figures. We obtain an initial set of s-fixed nodes.
Initially, no nodes are l-fixed.

Observe that any node connected to an s-fixed node by an s-edge is
necessarily l-fixed and that any node connected to an l-fixed node by an
l-edge is necessarily s-fixed. The following step is to identify all remaining
nodes that can be fixed using these observations. We first consider all
nodes in order; let i be the current node. If i is s-fixed and (i, i+ 1) ∈ ES ,
add i + 1 to the set of l-fixed nodes. If i is l-fixed, add all j > i for
which (i, j) ∈ EL to the set of s-fixed nodes. Next, we repeat this for all
nodes in reverse order; again let i be the current node. If i is s-fixed and
(i, i− 1) ∈ ES , add i− 1 to the set of l-fixed nodes. If i is l-fixed, add all
j < i for which (i, j) ∈ EL to the set of s-fixed nodes. Clearly, when a
node is both s-fixed and l-fixed, no feasible solution exists. Observe that
such a conflict is only possible if a path starting from the ‘beginning’ of a
bad path is extended to a node where it meets the ‘end’ of a bad path.

It is important to note that nodes fixed by considering all nodes in order
do not in turn fix any earlier nodes. Similarly, nodes fixed by considering
all nodes in reverse order have no impact on later nodes. This is illustrated
in Figure 5.9. In Figure 5.9a, assume that i is an s-fixed node. Adding
i+ 1 to the set of l-fixed nodes then has no new implications for any nodes
earlier than i because if an l-edge (j, i+ 1) exists with j < i, the initial set
of s-fixed nodes already contained node j. In the rightmost figure, assume
that i is an l-fixed node. Adding i+ 1 to the set of s-fixed nodes then has
no implications for any nodes earlier than i since the existence of an s-edge
(j, i+ 1) with j < i implies a triangle of s-edges, which is not present due
to Observation 5.2. The similar statement where nodes are considered in
reverse order follows immediately from symmetry.

It follows that after considering all nodes once in order and once in
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i i+ 1

(a)
i i+ 1

(b)

Figure 5.9: Assigning i + 1 to a chamber has no implications for nodes
earlier than i.

reverse order, no new nodes can be fixed. As noted above, if a bad path
exists, at least one node must be both s-fixed and l-fixed. If no such
contradiction is found, the instance is thus feasible. In the corresponding
solution, all s-fixed nodes are assigned to the short chamber and all l-fixed
nodes are assigned to the long chamber. Upon completing this step, there
may remain nodes with no chamber assignment. Note that none of the
fixed nodes has any implications for any of the remaining nodes, since this
would imply that additional nodes should be fixed nodes. We describe
a straightforward greedy rule that assigns the remaining nodes to the
chambers and show that applying this rule to a node does not prevent us
from applying it to any later node, thus yielding a feasible solution. The
greedy procedure considers all nodes in order. Let i be the current node
to be labelled: if (i− 1, i) ∈ ES and i− 1 is assigned to the short chamber,
assign i to the long chamber; otherwise assign i to the short chamber. To
see that applying this rule does not prevent us from applying it to any
later node, consider node i in Figure 5.10. If (i, i + 1) ∈ ES , then node
i + 1 must be assigned to the long chamber only if i is assigned to the
short chamber; this is consistent with the rule. If there exists a j > i+ 1
for which (i, j) ∈ EL, no s-edges may be incident to any nodes k with
i < k < j because this would imply that either i or j is a fixed node and
hence is already assigned to a chamber. All such nodes k, as well as node
j can thus be assigned to the short chamber, which is consistent with the
rule. Note that it cannot be the case that both (i, i+ 1) ∈ ES and there
exists a j > i+ 1 with (i, j) ∈ EL since this would imply that j is a fixed
node. After applying the greedy rule, all nodes have been assigned to a
chamber; if no bad path was identified, we have thus obtained a feasible
solution. A pseudo-code of this procedure is presented in Algorithm 3.
Note that the algorithm assumes that n ≥ 3; instances with n < 3 can
be solved trivially. The discussion above establishes correctness of the
algorithm.

We remark that the greedy rule described above is applied only after
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input: arrival times t1 < t2 < . . . < tn, lockage durations T1 < T2
vi ← node corresponding to the arrival at time Ai, for all i ∈ {1, . . . , n}
s-fixed ← ∅, l-fixed ← ∅
// identify initial s-fixed nodes:
j = 1
for i = 1 to |V | do

j ← max(i + 2, j)
if (vi, vi+1) ∈ ES then

while (vi, vj) ∈ EL do
s-fixed ← s-fixed ∪ {vj}
j ← j + 1

j = |V |
for i = |V | to 1 do

j ← min(i− 2, j)
if (vi−1, vi) ∈ ES then

while (vj , vi) ∈ EL do
s-fixed ← s-fixed ∪ {vj}
j ← j − 1

// extend implications of fixed nodes:
for i = 1 to |V | do

if vi ∈ s-fixed and (vi, vi+1) ∈ ES then l-fixed ← l-fixed ∪ {vi+1}
j ← i + 2
if vi ∈ l-fixed then

while (vi, vj) ∈ EL do
s-fixed ← s-fixed ∪ {vj}
j ← j + 1

for i = |V | to 1 do
if vi ∈ s-fixed and (vi−1, vi) ∈ ES then l-fixed ← l-fixed ∪ {vi−1}
j ← i− 2
if vi ∈ l-fixed then

while (vj , vi) ∈ EL do
s-fixed ← s-fixed ∪ {vj}
j ← j − 1

if s-fixed ∩ l-fixed 6= ∅ then return ‘not feasible’
// assign nodes to chambers using a greedy rule:
for i = 1 to |V | do

if vi ∈ s-fixed then chambersi ← ‘short’
else if vi ∈ l-fixed then chambersi ← ‘long’
else if (vi−1, vi) ∈ ES and chambersi−1 = ‘short’ then

chambersi ← ‘long’
else chambersi ← ‘short’

Algorithm 3: Pseudo-code algorithm for problem SLS-uni-2-distinct.
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i i+ 1 j

Figure 5.10: Illustration of the assignment rule for remaining nodes. Note
that only one of the dashed edges may be present for any j > i+ 1.

i1 i2 i3 i4

Figure 5.11: Example showing that the greedy rule does not yield a feasible
solution in general. Note that node i2 can be identified as an s-fixed node.

no additional nodes can be fixed. Figure 5.11 illustrates that, in contrast
to the above, applying the rule may not yield a feasible solution if not
all fixed nodes have been identified. In the figure, one feasible solution
consists of assigning nodes i2 and i3 to the short chamber and nodes i1
and i4 to the long chamber. The greedy rule, however, assigns node i1 to
the short chamber and node i2 to the long chamber, so that no feasible
assignment remains for nodes i3 and i4.

It remains to show that the procedure described above runs in linear
time. As argued above, finding the initial set of s-fixed nodes takes at
most O(n) time. Finding all additional s-fixed nodes is also possible in
linear time. Indeed, each node has at most two s-edges incident to it
and each node is considered only once in order, and once in reverse order.
Graph G contains up to O(n2) l-edges; to see that finding all additional
l-fixed nodes takes only O(n) time, we make use of the fact that (V,EL)
is an interval graph. By definition, it follows that if l-edge (u, v) exists, all
l-edges (u,w) with u < w < v must also exist. Thus, when traversing the
nodes in order, if a node was labelled as s-fixed due to the presence of an
l-edge, no nodes earlier than this fixed node need to be checked at a later
time, since such nodes are already s-fixed. Thus, it suffices to remember
the latest node that was s-fixed to avoid checking all possible l-edges for
each of the nodes. In Algorithm 3, this is achieved by keeping track of j,
which represents the next node to be checked for the existence of an l-edge.
The same argument applies when considering nodes in reverse order, where
it suffices to start from the earliest s-fixed node. Since in each iteration
either i or j increases and no nodes earlier than j are checked, finding the
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s-fixed nodes completes in O(n) time.
Finally, we note that recognizing the structures described in Observa-

tions 5.1 to 5.4, which were assumed not to be present in the graph, can be
achieved in linear time. This is easily seen for Observations 5.1, 5.2 and 5.4,
which deal only with adjacent nodes. To recognize these structures, it
suffices to traverse each of the nodes and check for the existence of the
incident edges described in the observations. For Observation 5.3, we
use the interval graph structure in the same was as when recognizing the
s-fixed nodes in Algorithm 3. That is, we remember the latest node that
was s-fixed in order to avoid checking earlier nodes which are already
known to be s-fixed. If any of these structures is identified, it immediately
follows that no feasible solution exists.

5.4.2 Fixed chamber assignments
We describe here how the algorithm can be extended to the case where
some nodes are pre-assigned to a specific chamber. Note that when specific
chamber assignments are imposed, an instance may not have a feasible
solution while its corresponding graph does not contain a bad path. Our
algorithm, however, is able to take these given assignments into account.

If a given subset of the nodes, say S ⊆ V , is pre-assigned to the short
chamber, we initialize, in Algorithm 3, the set of s-fixed nodes to this set
S. Similarly, if a given subset of nodes, say L ⊆ V , is pre-assigned to the
long chamber, we initialize, in Algorithm 3, the set of l-fixed nodes to this
set L. Clearly, when a node is both s-fixed and l-fixed, the instance is not
feasible. Once the sets of fixed nodes are initialized, the initial sets of fixed
nodes are extended as in Algorithm 3. The analysis of the assignment rule
for all nodes that are not fixed remains valid. Note that feasibility is still
identified by verifying for each node whether it is both s-fixed and l-fixed.
These adjustments suffice to solve the generalization with fixed chamber
assignments. The computational complexity remains unchanged.

5.4.3 Simultaneous arrivals
In this section, we will consider the generalization where simultaneous
arrivals can occur, i.e. where arrival times need not be distinct. Since
a chamber may then simultaneously serve more than one ship in a no-
wait solution, we need to take the capacity of the chambers into account.
Let Csmall = min(C1, C2) and Clarge = max(C1, C2). Note that Csmall
does not necessarily correspond to the chamber with the shortest lockage
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duration. We now show how to modify graph G and Algorithm 3 in
order to determine whether a feasible solution exists in this setting with
simultaneous arrivals.

For each arrival time t ∈ A, let kt be the number of ships arriving
at time t. Clearly, if there exists such a t with kt > Csmall + Clarge, the
instance is not feasible since the number of arriving ships at time t exceeds
the combined capacity of both chambers. Let us thus assume that the
instance has kt ≤ Csmall + Clarge for all t ∈ A. For each t ∈ A, we
distinguish three cases:

1. Case 1: 2 ≤ kt ≤ Csmall. We modify graph G as follows: we let a
single node represent all the simultaneous arrivals at time t. Either
chamber is a valid assignment to simultaneously serve all kt ships;
we may thus treat these simultaneous arrivals as a single ship.

2. Case 2: Csmall < kt ≤ Clarge. As in the case above, let a single
node represent all simultaneous arrivals at time t. In addition, we
impose that this node must be assigned to the large chamber. Recall
that the large chamber may be either the short or the long chamber,
depending on the values of T1, T2, C1, C2. It is easily seen that it is
never required to use both chambers to serve these kt ships, since
the large chamber must be used regardless, and this chamber suffices
to serve all ships simultaneously.

3. Case 3: Clarge < kt ≤ Csmall + Clarge. Again, let a single node
represent all simultaneous arrivals at time t. It follows that since
kt > Clarge, both chambers must be used simultaneously to transfer
all ships without introducing waiting time. We add this node to the
set B designated to identify all nodes that must be assigned to both
chambers. We argue below that, after modifying the graph for all
t ∈ A, the algorithm is easily adjusted to enforce this assignment for
each node in B.

After graph G has been modified, we take B into account by initializing
the algorithm as follows. For each node i ∈ B, we add all implications that
follow from imposing that i is assigned to both chambers: for all j ∈ V
with (i, j) ∈ ES , add j to the set l-fixed; for all j ∈ V with (i, j) ∈ EL, add
j to the set s-fixed. It is easily argued that each of the added implications
must hold in any feasible solution. When assigning the nodes to chambers,
we set chambersi = ‘short + long’ for all i ∈ B. Furthermore, for a
feasible solution to exist, it must hold that none of the nodes in B are fixed



158 CHAPTER 5. SCHEDULING PARALLEL CHAMBERS

when running the algorithm. Indeed, if a node k ∈ B with corresponding
arrival time Ak would be fixed, this implies that at least one chamber is
unavailable at time Ak, so that there is no feasible assignment for k. In
addition to modifying the initialization of sets s-fixed and l-fixed, we thus
extend the check for conflicts in the algorithm to “if s-fixed ∩ l-fixed 6= ∅
or s-fixed ∩ B 6= ∅ or l-fixed ∩ B 6= ∅”.

Using the result for fixed chamber assignments described in Sec-
tion 5.4.2, and by modifying Algorithm 3 as outlined above, it follows that
we can solve the resulting instance in O(n) time. The following theorem
concludes this discussion.

Theorem 5.2. If a no-wait solution exists for the uni-directional lock
scheduling problem with two chambers it can be found, i.e. problem NLS-
uni-2 can be solved, in O(n) time.

5.5 Two arbitrary chambers
We now focus on the more general setting with two lock chambers, where
ships may travel in both directions. Böhmová et al. (2013) mention a
reduction to 2-SAT for an interval scheduling problem which generalizes
the uni-directional setting. The well-known 2-SAT problem can be solved
in a number of operations which is linear in the number of clauses, see
Even et al. (1976) and Aspvall et al. (1979). We show here that the
same applies to the bi-directional two-chamber setting and describe the
reduction explicitly.

Lemma 5.1. An instance of NLS-2 can be modelled as an instance of
2-SAT using O(n) variables and O(n2) clauses.

Proof. In the NLS-2 setting ships may arrive simultaneously. To take
this into account, we first describe how each instance of NLS-2 can be
transformed into an equivalent instance where C1 = C2 = 1 and where
some ships are pre-assigned to chambers. We then provide a reduction to
2-SAT for the setting with two unit-capacity chambers and pre-assigned
ships.

Similar to the approach followed in Section 5.4.3, we distinguish multiple
cases when constructing the instance with unit capacity. For each time
t ∈ A, let kt,d be the number of ships arriving at time t and travelling in
direction d. Clearly, the instance is not feasible if there exist a t and d
such that kt,d > C1 +C2. Since this can be easily verified, we assume that
kt,d ≤ C1 + C2 for all t ∈ A, d ∈ {upstream, downstream}.
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Consider a given instance I of NLS-2. As in Section 5.4.3, let Csmall =
min(C1, C2) and Clarge = max(C1, C2). We construct an instance Iunit,
where CIunit

1 = CIunit
2 = 1, leaving the lockage times and the set of arrival

times unaltered. The set of arriving ships is constructed as follows. For
each t ∈ A and d ∈ {upstream, downstream}:

1. If kt,d ≤ Csmall, replace these kt,d ships by a single ship travelling in
direction d, arriving at time t. It is immediately clear that either
lock chamber suffices to handle all kd,t ships, so that we effectively
ignore these simultaneous arrivals.

2. If Csmall < kt,d ≤ Clarge, replace all these ships by a single ship
travelling in direction d, arriving at time t, and additionally impose
that this ship must be assigned to the large chamber (i.e. the second
chamber if C1 ≤ C2, the first chamber otherwise). To serve all ships
without introducing waiting time, the large chamber must be used to
serve at least one ship arriving at time t and travelling in direction
d. By pre-assigning the ship to the large chamber, it follows that
this chamber must be available at time t to serve ships travelling
in direction d. In fact, the capacity of the large chamber suffices
to serve all ships arriving at time t and travelling in direction d.
Consequently, we can ignore the simultaneously arriving ships in
what follows.

3. If Clarge < kt,d, replace all these ships by two ships travelling in
direction d, arriving at time t. Further, pre-assign the first ship to
the first chamber and the second ship to the second chamber. It
follows that both chambers must be available at time t to serve ships
travelling in direction d.

The resulting instance is called Iunit. Finding a no-wait schedule for
Iunit with pre-assigned ships thus yields a no-wait solution for the original
instance I of NLS-2. We now describe a reduction to 2-SAT for the
problem of finding a no-wait solution for instances with two unit-capacity
chambers and pre-assigned ships.

Recall that a no-wait schedule exists if and only if each ship can be
assigned to either the short or the long chamber such that, for each chamber,
lockages do not overlap. For lock chamber c ∈ {1, 2}, it is easily seen that
there is no overlap if and only if |As −As′ | ≥ Tc for each pair of ships s
and s′ that are assigned to chamber c, and in addition |As −As′ | ≥ 2Tc if
ships s and s′ travel in the same direction, as argued in Section 5.1. We
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create the following instance of 2-SAT: for each ship s ∈ S, define a literal
xs. We will argue later that xs = false corresponds to assigning ship s
to the short chamber, and xs = true corresponds to assigning ship s to
the long chamber. Let the Boolean expression in conjunctive normal form
consist of clauses described as follows. For each pair of ships s, s′ ∈ S:

1. if the ships travel in opposite direction and |As −As′ | < T1, add the
clause (xs ∨ xs′),

2. if the ships travel in the same direction and |As − ts′ | < 2T1, add
the clause (xs ∨ xs′),

3. if the ships travel in opposite direction and |As −As′ | < T2, add the
clause (¬xs ∨ ¬xs′),

4. if the ships travel in the same direction and |As −As′ | < 2T2, add
the clause (¬xs ∨ ¬xs′).

Observe that, if xs = false where ship s is assigned to the short chamber
and xs = true where it is assigned to the long chamber, (¬xs∨¬xs′) suffices
to prevent overlapping lockages for the long chamber whereas (xs ∨ xs′)
ensures that there is no overlap for the short chamber.

In addition, to enforce that all pre-assignments are respected, we add
a clause containing only the literal xs for all ships s that are pre-assigned
to the long chamber, and a clause consisting of ¬xs for all ships s that are
pre-assigned to the short chamber.

We claim that the existence of a truth assignment satisfying the Boolean
formula is equivalent to the existence of a no-wait schedule. Indeed, given
a truth assignment, we assign ship s to the short chamber if xs = false
and to the long chamber if xs = true. The definition of the clauses implies
that no overlapping lockages exist for either chamber while each ship is
assigned to a chamber, and hence we found a no-wait schedule. Also, the
existence of a no-wait schedule immediately translates into a satisfying
truth assignment.

Note that the number of clauses in the 2-SAT instance described above,
as well as the time needed to construct this instance, is quadratic in the
number of ships. To find a no-wait solution for the NLS-2 problem, it
follows that we can construct an instance of 2-SAT as described above,
and use any algorithm for 2-SAT with a running time linear in the number
of clauses. We can summarize this in the following theorem:
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Theorem 5.3. The bi-directional case for two arbitrary chambers, i.e.
problem NLS-2, can be solved in O(n2) time.

5.6 Identical chambers
We now focus on problem NLS-id, i.e. Cc = C and Tc = T for each c ∈ C.
Again we assume that arrival times are given in sorted order (Section 5.1.1).
In fact, we consider a more general optimization version of NLS-id, where
we aim at finding the minimum number of chambers allowing a no-wait
solution. We first show that this problem is a special case of colouring
trapezoid graphs. In Section 5.6.2, we provide a description of a greedy
procedure and argue that it always finds a no-wait schedule while using a
minimum number of chambers. We then prove in Section 5.6.3 that this
procedure can be implemented with an O(n) running time for both the
uni-directional as well as the bi-directional case.

5.6.1 Colouring trapezoid graphs
For the definition of trapezoid graphs we consider a pair of parallel lines,
labelled up and down. A trapezoid between these lines is defined by two
points per line. Let this construction of lines and trapezoids be called the
trapezoid instance. A graph G = (V,E) is called a trapezoid graph if there
exists a trapezoid instance with |V | trapezoids, each corresponding to a
node in V , such that there is an edge in E connecting nodes i and j if and
only if the trapezoids corresponding to i and j intersect. See Figures 5.12
and 5.13 for an example illustrating this definition. Felsner et al. (1997)
discuss the colouring of trapezoid graphs and show that a proper colouring
with minimum number of colours can be found in O(n logn) time.

The special case of this trapezoid graph colouring problem that we
consider is the following: given a trapezoid instance where all trapezoids
are identical isosceles triangles, find a proper colouring with a minimum
number of colours. We denote this problem by TC. Notice that while the
triangles are identical, their orientation may differ depending on which of
the parallel lines contains a single point. In a trapezoid colouring instance,
we say that a triangle is up-oriented if this triangle has a single point on
the up line and two points on the down line; a triangle is down-oriented if
it has a single point on the down line and two points on the up line.

We argue that we can reduce NLS-id to TC, and vice versa. As in
Section 5.5, let kt,d denote the number of ships arriving at time t and
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travelling in direction d; we first argue that we can deal with simultaneous
arrivals by transforming each instance I of NLS-id into an equivalent
instance Iunit with unit capacity. In the remainder of Section 5.6, we can
then restrict ourselves to instances where C = 1. Given I, we construct
Iunit as follows. For each t ∈ A, replace the kt,d arrivals by dkt,d/Ce
arrivals at time t and travelling in direction d. Clearly, in I, at least
dkt,d/Ce chambers are needed to serve these kt,d ships. It is also clear
that any remaining capacity in the chosen lock chambers cannot be used
to serve other ships without introducing waiting time. Consequently, a
solution in Iunit corresponds directly to a solution in I. Observe that
constructing Iunit can be done in O(n) time.

We thus turn our attention to the case with unit capacity. Given an
instance of NLS-id where C = 1, we specify a set of identical isosceles
triangles between parallel lines up and down as follows. For each down-
stream travelling ship s we construct a triangle with a point on the up
line at ts and points on the down line at As − T and As + T ; for each
upstream travelling ship s we construct a triangle with a point on the
down line at As and points on the up line at As − T and As + T . From
this construction, we can derive two fundamental properties:

1. The triangles corresponding to two ships s and s′ travelling in the
same direction intersect if and only if |As −As′ | < 2T .

2. The triangles corresponding to two ships s and s′ travelling in
opposite directions intersect if and only if |As −As′ | < T .

Note that in either case, ships s and s′ cannot be served by the same
chamber. Concluding, ships can be assigned to the same chamber if and
only if the corresponding triangles do not intersect. Hence, a proper
colouring of the corresponding graph represents a no-wait schedule where a
colour refers to a chamber. The chromatic number of the trapezoid graph,
then, represents the minimum number of chambers allowing a no wait
schedule. Each instance of NLS-id can thus be modelled as an instance of
TC. Similarly, it is easily seen that each instance of TC can be modelled
as an instance of NLS-id.

In order to illustrate this reduction, we provide an example instance in
Figure 5.12. We have downstream-travelling ships 1, 2, 4, and 6, arriving
at times 10, 25, 42, and 54, and upstream-travelling ships 3 and 5, arriving
at times 30 and 50. The lockage duration equals T = 10. Consequently,
the pairs of ships that cannot both be served by a single chamber are (1,2),
(2,3), (2,4), (4,5), (4,6), and (5,6). This is represented by intersections of



5.6. IDENTICAL CHAMBERS 163

X
1

t = 10
X
2

t = 25
X
4

t = 42
X
6

t = 54

X
3

t = 30

X
5

t = 50

Figure 5.12: Example instance illustrating the definition of the correspond-
ing trapezoids.
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Figure 5.13: Trapezoid graph corresponding to the example instance of
Figure 5.12.

triangles accurately. The graph corresponding to this instance is shown
in Figure 5.13. It is immediately seen that at least three colours are
required to colour the graph since it contains a clique on nodes 4, 5, and 6.
One feasible solution could consist of assigning ships 1 and 4 to the first
chamber, ships 2 and 5 to the second chamber, and ships 3 and 6 to the
third chamber.

Since the chromatic number of a trapezoid graph can be found in
O(n logn) time, it immediately follows that an O(n logn) algorithm exists
that solves NLS-id. In the remainder of this section, we improve this result
to yield an O(n) algorithm.

5.6.2 Correctness of a greedy procedure for NLS-id
We argued in Section 5.6.1 that we can reduce each instance of NLS-id
to an equivalent instance with C = 1. We thus restrict ourselves to the
setting with C = 1.

We say that a chamber is available at time t for direction d if the
last ship served by this chamber (say ship s) travels in direction d and
has an arrival time As ≤ t − 2T , or travels in the direction opposite
to d and has an arrival time As ≤ t − T . In the former case, we say
that the availability period of the chamber equals t − As − 2T ; in the
latter case, the availability period of the chamber equals t−As − T . The
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solution procedure is as follows. Initially, let the number of chambers be
zero. Consider all arrival ships in order, let As and ds be the arrival time
and direction of ship s being considered. If no chambers are available at
time As for direction ds, add an additional chamber and assign ship s to
this chamber; otherwise, assign ship s to the chamber with the largest
availability period for direction ds at time As.

We argue that this greedy procedure yields a solution with a minimum
number of chambers. Whenever a chamber is added to serve ship s, there
is no possible assignment of ships 1, . . . , s − 1 to chambers so that any
of the chambers is available at time As. Indeed, since all chambers are
identical, the choice of which preceding ship is assigned to which chamber
is in fact irrelevant. Thus, after considering a ship s, a chamber is added
if and only if the current number of chambers is not sufficient to serve
ships 1, . . . , s without waiting time. It follows that after considering all
ships, we have a no-wait solution which uses a minimum number of lock
chambers.

5.6.3 An O(n) algorithm for NLS-id
To see that the procedure from Section 5.6.2 can be implemented to run
in linear time, we first briefly discuss the uni-directional setting before
extending the implementation to the bi-directional case. When all ships
travel in the upstream direction, it is easily seen that there is an optimal
solution where a chamber, after transferring a ship, immediately returns
to the downstream side. A chamber that serves a ship is then always
unavailable for 2T time units, starting from the arrival time of that ship.
Solving this problem corresponds to a basic interval scheduling problem,
for which Ford and Fulkerson (1962) describe a ‘staircase rule’ based on
Dilworth’s chain decomposition theorem. Gupta et al. (1979) provide a
more efficient algorithm, which runs in O(n logn) in general. When the
intervals have equal length and are sorted by starting time, it is easily seen
that an initial sorting step in this algorithm can be omitted, reducing the
complexity to O(n). Applying the simplified version of this algorithm thus
immediately yields a solution to NLS-uni-id.

While this approach is straightforward for NLS-uni-id, the time at
which a chamber becomes available depends on the direction of travel in
the more general NLS-id. Indeed, a chamber that finishes an upwards
lockage is immediately available to serve a downstream travelling ship;
the next upstream travelling ship, however, can only be served after an
additional T time units needed to return to the downstream side. As a
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result, for a given time t and direction d, a chamber which started a lock
movement at time t1 may not be available while a different chamber which
started a lock movement at time t2 > t1 is available.

The main challenge of implementing our greedy rule is thus to efficiently
keep track of the different chambers, and the moments in time at which
they are available to serve ships depending on their direction. To achieve
this, we maintain the following lists throughout the solution procedure.
Each of the entries that will be added to these lists consists of a pair (t, s),
where t specifies the time at which the chamber that serves ship s becomes
available for a given direction.

1. list AUU : availability to serve an upstream-travelling ship, when the
last served ship s is upstream-travelling.

2. list AUD: availability to serve an upstream-travelling ship, when the
last served ship s is downstream-travelling.

3. list ADU : availability to serve a downstream-travelling ship, when
the last served ship s is upstream-travelling.

4. list ADD: availability to serve a downstream-travelling ship, when
the last served ship s is downstream-travelling.

As outlined in the description in Section 5.6.2, we keep track of the required
number of chambers m. Additionally, we follow up whether each chamber
remains available as the algorithm runs. Throughout the algorithm, Rs
are Boolean values indicating whether, after serving ship s, a chamber has
been used to serve another ship (1 ≤ s ≤ n).

A pseudo-code for the algorithm is provided in Algorithm 4. In words:
we consider each ship in order and first verify whether one of the existing
chambers is available at the position where the ship arrives. Let s be the
ship under consideration. If a chamber c is available, it contains an entry
in two of the lists. Upon assigning a ship to c we update Rs so that the
second entry corresponding to c becomes invalid. We update the times at
which c becomes available for each direction. If no chamber is available,
we update m and proceed as above.

To see that Algorithm 4 runs in linear time, note the following. Each
ship is considered only once, in the given input order. New entries in the
lists AUU , AUD, ADU , and ADD are always added to the end of the list.
Furthermore, within each list, the time value of newly inserted entries is
non-decreasing with s since the increment when constructing the entry is
the same for all entries within each of the lists; for example, all entries
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input: arrival times A1 ≤ A2 ≤ . . . < An, directions d1, d2, . . . , dn,
lockage duration T
AUU ← ∅, AUD ← ∅, ADU ← ∅, ADD ← ∅
Rs ← false, for all s ∈ S
m← 0
for s = 1 to n do

reUsed = false
if ds == downstream then

(t∗, s∗) ← earliest entry in ADU ∪ ADD
while t∗ ≤ ts and reUsed == false do

if Rs == false then
reUsed = true
Rs∗ ← true

delete entry (t∗, s∗) from the list in which it is contained
(t∗, s∗) ← earliest entry in ADU ∪ ADD

else
(t∗, s∗) ← earliest entry in AUU ∪ AUD
while t∗ ≤ ts and reUsed == false do

if Rs == false then
reUsed = true
Rs∗ ← true

delete entry (t∗, s∗) from the list in which it is contained
(t∗, s∗) ← earliest entry in AUU ∪ AUD

if reUsed == false then
m← m+ 1

if ds == downstream then
add entry (As + T , s) to the back of list AUD
add entry (As + 2T , s) to the back of list ADD

else
add entry (As + T , s) to the back of list ADU
add entry (As + 2T , s) to the back of list AUU

return m

Algorithm 4: Pseudo-code for identical chambers, i.e. NLS-id, with
unit capacity.
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inserted in list AUU have a time value of As + 2T for some As, and all
entries inserted in list AUD have a time value of As+T for some As. Each
of the lists thus remains sorted by the time value of the contained entries
at all times. Finding the earliest entry in two of the lists is then easily
performed in constant time by comparing the first entry of each of the
lists. Deleting the first entry as well as adding a new entry to the back of
a list also require only constant time. Whenever an entry of one of the
lists is iterated over, it is deleted. Since only O(n) entries are added to
lists throughout the procedure, iterating through the lists thus also takes
O(n) time in total. It follows that the entire procedure runs in linear time.
We can summarize the discussion above as follows:

Theorem 5.4. For the setting with identical chambers, a no-wait schedule
can be found or shown not to exist, i.e. problem NLS-id can be solved, in
O(n) time.

Since problem NLS-id is equivalent to the trapezoid graph colouring
problem described above, the following result immediately follows.

Corollary 5.1. Finding the chromatic number of a trapezoid graph where
the trapezoids are identical up- or down-oriented isosceles triangles can be
done in O(n) time.

5.7 An algorithm for arbitrary m

In the following, we propose a dynamic programming (DP) approach
that solves the general problem NLS, stated in Section 5.1. That is, we
consider an arbitrary number of chambers m, with non-identical lockage
times Tc and capacities Cc for c ∈ C. The proposed approach is similar to
an O(mnm+1) DP algorithm presented by Sung and Vlach (2005) for a
parallel machine scheduling problem with deadlines and just-in-time jobs.

We assume ships to be numbered in non-decreasing order of arrival
times. Ties are broken by letting ships arriving downstream have lower
numbers than ships arriving upstream. Remaining ties are broken arbi-
trarily. Our DP approach assigns ships to chambers in increasing order of
these numbers. We consider states (s1, . . . , sm) where sc represents the
last ship 1 ≤ sc ≤ n that has been assigned to chamber c (1 ≤ c ≤ m).
Furthermore, we restrict ourselves to states where a ship is assigned to
a chamber only if all earlier ships have also been assigned. Thus, in a
given state (s1, . . . , sm), the first maxc∈C sc ships have been assigned to
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chambers. We consider a transition from (s1, . . . , sm) to (s′1, . . . , s′m) if
there is a c∗ ∈ C such that:

1. s′c∗ > sc∗ and s′c = sc for each c ∈ C with c 6= c∗,

2. ships (maxc sc) + 1, . . . , s′c∗ travel in the same direction and arrive
at the same time,

3. s′c∗ arrives at least Tc∗ time units later than sc∗ if both travel in
opposite direction and s′c∗ arrives at least 2Tc∗ time units later than
sc∗ if both travel in the same direction, and

4. s′c − (maxc sc) ≤ Cc∗ .

This transition represents assigning ships (maxc sc) + 1, . . . , s′c∗ to
chamber c∗. This is allowed only if chamber c∗ is available after handling
ship sc∗ . If more than one ship is assigned to chamber c∗, these ships must
arrive simultaneously, travel in the same direction, and the chamber’s
capacity must not be exceeded. We consider an initial state (0, . . . , 0)
representing that no ships are assigned to any chambers yet. The question
is whether we can reach a state (s1, . . . , sm) with maxc∈C sc = n by any
sequence of transitions.

In this DP we use O(nm) states and O(mnm+1) transitions. However,
we can further restrict the set of transitions by always assigning the
maximum number of ships (up to the chamber’s capacity) which travel in
the same direction and arrive at the same time as ship sc∗ + 1. Each state
then has m transitions: one per chamber. This leaves us with O(mnm)
transitions, which also constitutes the runtime complexity. Note that the
complexity is polynomially bounded if the number of chambers is fixed.
We can conclude with the following theorem:

Theorem 5.5. The problem setting with a fixed number of arbitrary
chambers, i.e. problem NLS-m, can be solved in O(mnm) time.

5.8 Number of chambers m part of the input
We prove here that problem NLS is NP-complete.

Theorem 5.6. Deciding whether a no-wait solution exists for an arbitrary
number of chambers, even when all ships travel in the same direction
and arrival times are distinct, i.e. problem NLS-uni-distinct, is strongly
NP-complete.
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Proof. We prove the theorem by a reduction from numerical matching
with target sums where all given integers are distinct. We will denote this
problem as dNMTS. Hulett et al. (2008) showed that this special case of the
classical NMTS problem is strongly NP-complete. In an instance of dNMTS
we are given 3n pairwise distinct positive integers ai, bi, ci (1 ≤ i ≤ n) with∑n

i ci =
∑n
i (ai + bi). The question is whether there exists a collection

of n triples (i, j, k) such that, for each triple, ai + bj = ck, and such that
each integer in the input occurs in exactly one triple. We show that we
may impose, without loss of generality, two additional constraints on the
instances of dNMTS. Our assumptions are (i) maxi ai −mini ai < mini bi,
and (ii) maxi ci−mini ci < mini bi. Assumption (i) is immediately seen to
hold since the instances in the proof provided by Hulett et al. (2008) satisfy
maxi ai < mini bi. For assumption (ii), observe that we may transform
any instance into an equivalent instance where maxi ci −mini ci < mini bi
by adding an arbitrary positive K to all bi and ci of the original instance.
This does not change the answer to the decision question; also note that
by adding any K > 0, all resulting values remain distinct, and assumption
(i) remains valid. Since the left-hand side of the inequality in assumption
(ii) does not change by this operation, we obtain the desired result by
choosing any K > maxi ci −mini ci −mini bi.

For any instance of dNMTS satisfying the two assumptions specified
above, we now construct an instance of the lock scheduling problem with
parallel chambers as follows. There are 2n ships arriving on the downstream
side: n ships arrive at times Ai = ai and n ships arrive at times An+k = ck,
with i, k ∈ {1, . . . , n}. For convenience, we will refer to the first n arrivals
as the set of ships A, and the last n arrivals as the set of ships C. There
are m = n chambers, each with a lockage time equal to Tj = bj/2 for
j ∈ {1, . . . ,m}. The question remains whether a no-wait solution exists
for this instance. Figure 5.14 shows a graphical representation. Next, we
show that the given instance of dNMTS is a ‘yes’ instance if and only if
there exists a no-wait solution to the constructed lock scheduling instance.

If there is a solution to the instance of dNMTS, each triple (ai, bj , ck)
corresponds to a combination of a chamber with one ship from the set A,
and one ship from the set C. If the ship in A enters the chamber with
lockage time bj/2 at time ai, the ship in C can enter the same chamber
at time ck = ai + 2 (bj/2). Neither ship incurs any waiting time. Since
each ship in A and C corresponds to exactly one such triple, there exists
a no-wait solution.

On the other hand we argue that if a no-wait solution exists, there
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downstream

upstream

X X X X X X X X

Figure 5.14: Graphical representation of the instance for the proof. Ship
arrivals are marked with ‘X’, time passes from left to right. The tilted
lines correspond to lock movements of the different chambers in a no-wait
solution.

must also exist a corresponding set of triples that satisfies the requirement
of the dNMTS problem. We first observe that in all no-wait solutions, each
chamber handles exactly one ship from A, and one ship from C. Indeed,
since all arrival times are distinct, a chamber cannot simultaneously transfer
more than one ship without introducing waiting time. Further, it follows
from maxi ai−mini ai < mini bi that no chamber can serve two ships from
A so that no ships incur waiting time. Similarly, it holds that no chamber
can serve two ships from C without introducing waiting time. Thus, in a
given no-wait solution, each chamber transfers exactly one ship from A
and one ship from C. For each chamber j, let i(j) be the index of the ship
from A and k(j) the index of the ship in C that is handled by chamber j.
We thus obtain n triples (ai(j), bj , ck(j)). Since the solution is no-wait, we
have ai(j) + bj ≤ ck(j) for all j. Finally, because

∑n
i (ai + bi) =

∑n
i ci, it

is clear that if ai(j) + bj < ck(j) for any j, there must exist a j′ such that
ai(j′) + bj′ > ck(j′), which would mean that at least one ship incurs waiting
time. It follows that ai(j) + bj = ck(j) for all j ∈ {1, . . . , n}, and there thus
exists a set of triples that identifies the given instance of dNMTS as a ‘yes’
instance. This concludes the proof.

As mentioned in the introduction, when viewing a chamber as a machine
and an arrival as a job represented by one interval for each machine, each
starting at the same moment in time, the above reduction shows that the
problem considered by Böhmová et al. (2013) (called Interval Selection
with cores) remains NP-complete even when all intervals that correspond
to the same machine have the same length.

5.9 Conclusion
In this chapter, we considered the problem setting of a single lock consisting
of parallel chambers. We analysed the complexity of finding no-wait
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schedules. The resulting problem closely resembles an interval scheduling
problem, and also relates to a graph colouring problem on unit interval
graphs. By investigating different problem variants of this setting, we were
able to extend and improve a number of known results from literature. We
covered results for the setting with two locks, the setting with identical
locks, and the general setting with arbitrary chambers. Additionally, we
showed that the general problem setting of deciding whether a no-wait
schedule exists is strongly NP-complete.

An obvious extension which could be further investigated is to consider,
for all instances where no no-wait solution exists, the problem of finding
a feasible schedule that minimizes the total waiting time. A different
objective could be to minimize the maximum waiting time. As for a single-
chamber lock, it may be interesting to consider problem settings where
there is uncertainty on the input parameters, or to look at the on-line
setting. See Chapter 6 for a brief description of these problem extensions.





Chapter 6

General conclusion and
future research

In the preceding chapters, we have discussed different facets of the lock
scheduling problem. Inspired by the practical problem of scheduling
locks, and locks on inland waterways in particular, we have investigated a
variety of the underlying scheduling problems from a mathematical point
of view. In Chapter 1, we described some context and motivation for
this problem, and provided an overview of related literature. Further,
we defined some terminology and introduced a notation in order to allow
more formal problem descriptions. We then focussed on the following
problem settings. Chapter 2 described a basic problem concerning a single
lock consisting of a single chamber. This problem, as well as a number of
extensions, can be solved in polynomial time. In Chapter 3, we investigated
the computational complexity of minimizing the total waiting time for
multiple locks arranged in a sequence, and showed that this problem is
NP-hard. Furthermore we showed that, for certain special cases, there
exists a so-called synchronised solution which is optimum. The hardness
result obtained for locks in sequence suggests an integer programming
approach. Chapter 4 introduced two such integer programming models
and evaluated their performance. The trade-off between the objective
of minimizing flow time and minimizing emissions was also investigated.
Finally, Chapter 5 considered the problem setting with multiple chambers
arranged in parallel, and investigated the computational complexity of
finding no-wait schedules.
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We conclude by identifying some possible directions for further research
which are not specific to any of the individual chapters. One direction for
future research could relax the assumption that all input data are known
initially. We describe two ways in which this is possible. First, stochastic
effects could be considered, since a number of parameters which were
assumed to be known may in fact be subject to different influences which
cannot be accurately predicted. Notably, the observed arrival times may
differ from the expected arrival times that were predicted or communicated
at an earlier point in time.

A different approach is to maintain the assumption of deterministic
arrival times, but to consider the on-line setting, i.e. assume that arrival
information only becomes available as time progresses, so that it may be
interesting to update the current schedule as more information becomes
available. One particular setting, which better reflects practical lock
scheduling problems, compromises between the off-line and on-line settings.
It can be reasonably expected that arriving ships are announced at least
some time before their arrival. The result is a limited ‘look-ahead’ interval
where all arrival times are assumed to be known. Clearly, an approach with
such a look-ahead interval integrates well with a ‘rolling horizon’ procedure,
where new instances are evaluated over time as more information becomes
available; the schedule can then also be updated as new solution are
obtained.

A more general extension of the research presented here would be to
consider a network of waterways, where there may exist multiple ‘routes’
from a ship’s origin to its destination. This setting may be of particular
interest if certain segments of the network are heavily congested, either
due to the traffic density or due to a technical outage.

Integrating the scheduling of locks within more general waterway man-
agement may also be valuable. As an example, the operational planning
for locks could be taken into account while a desired water level is actively
maintained, for example during a dry season; the scheduling of locks could
then integrate with the operational planning of pumps or hydroelectric
power plants along a waterway.

It may also be possible to apply some of the results in related settings
such as, for example, the scheduling of bridges or traffic intersections. It
should be noted, however, that there is no exact correspondence between
these alternative applications and the scheduling of locks.
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