
A Calculus for Data Mapping

George H. L. Fletcher,a,1 Catharine M. Wyss,a,b,2

Edward L. Robertson,a,b,3 and Dirk Van Guchta,4

a Computer Science Department
Indiana University, Bloomington, USA

b School of Informatics
Indiana University, Bloomington, USA

Abstract

Technologies for overcoming heterogeneities between autonomous data sources are key in the emerg-
ing networked world. In this paper we discuss the initial results of a formal investigation into the
underpinnings of technologies for alleviating structural heterogeneity. At the core of structural
heterogeneity is the data mapping problem: discovering effective mappings between structured
representations of data. Automating the discovery of these mappings is one of the fundamen-
tal unsolved challenges for data interoperability, integration, and sharing. We introduce a novel
data model and calculus for expressing data mappings between relational data sources, laying the
ground for a better understanding of the data mapping problem. This research uncovers several
new safety issues in data mapping languages. We discuss ongoing investigations of syntactic and
semantic restrictions on the calculus to deal with these issues.

Keywords: Data Calculus, Data Mapping, Database Interoperability

1 Introduction

The emerging networked world promises new opportunities and possibilities for
information dissemination, wide-scale collaboration, and knowledge construc-
tion. These opportunities will be fostered in large part by technologies which
bring together autonomous data sources. Since these data sources were created

1 gefletch@cs.indiana.edu
2 cmw@cs.indiana.edu
3 edrbtsn@cs.indiana.edu. Work supported by NSF grant IIS 82407.
4 vgucht@cs.indiana.edu. Work supported by NSF grant IIS 82407.

Electronic Notes in Theoretical Computer Science 150 (2006) 37–54

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.11.033

http://www.elsevier.com/locate/entcs

and have evolved in isolation, they are each maintained differently according
to local constraints and usage patterns. Consequently, facilitating technologies
must bridge a wide variety of heterogeneities. These heterogeneities encom-
pass differences at the system level, differences in the structuring of data, and
semantic pluralism in the interpretation of data.

We are investigating an approach for overcoming structural heterogene-
ity between relational data sources [5]. Although research in databases has
led to great practical successes in the storage and management of structured
data, it has made limited progress in technologies for alleviating structural
heterogeneity. At the heart of overcoming structural heterogeneity is the data

mapping problem: automating the discovery of mappings between structured
data sources [5]. These mappings are the basic “glue” for building information
sharing systems [7], and automating their discovery is one of the fundamental
unsolved challenges for data interoperability, integration, and sharing. This
ubiquitous problem arises in almost any information system involving multi-
ple structured data sources. Consequently, the problem has many traditional
manifestations: schema matching [17] and schema mapping [15] in databases,
ontology mapping on the Semantic Web [9], schema mediation in peer-to-peer
systems [7], and matching of information models [13], to name a few. In gen-
eral, the problem is considered to be “AI-complete” in the sense that it is as
hard as any of the hardest problems of artificial intelligence [13].

Example 1.1 To illustrate the data mapping problem, consider the three
databases containing student grade information in Figure 1. In this example,
each database contains the same student information. As shown, there are
many natural ways to organize even the simplest datasets such as these. For
example, G1 and G2 maintain the student information in a single table, while
G3 contains a table for each assignment. Note that to move between these
representations of student data, schema matchings and both data-data and
data-metadata transformations must be performed. For example, mapping
data from G1 to G2 involves promoting the values in attribute Assignment in
G1 to attribute names in G2 and “matching” the Name and Student attributes.
Also note that this mapping dynamically creates as many new attributes as
there are values in Assignment. To move information from G3 to G1, relation
names must be demoted to data values. This will be our running example in
the paper.

Any solution for overcoming relational structural heterogeneity must con-
sider the full data mapping problem space for relational data sources. Both
schema matchings (“traditional” metadata-metadata mappings between schema

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–5438

G1

Grades:

Name Assignment Percentage

Saori Assignment1 94

Saori Assignment2 97

Yukie Assignment1 88

Yukie Assignment2 89

↑↓

�

G2

Grades:

Student Assignment1 Assignment2

Saori 94 97

Yukie 88 89

↑↓

G3

Assignment1:

Name Percentage

Saori 94

Yukie 88

Assignment2:

Name Percentage

Saori 97

Yukie 89

Fig. 1. Mappings between student grade representations.

elements [17]) and data-metadata/metadata-data mappings (where data ele-
ments in one structure serve as metadata components in the other, or vice
versa [10,14]) must be expressible. It is important to note that considera-
tion of the full mapping space blurs the distinction between schema matching
and schema mapping [15], since data-metadata mapping encompasses schema
matching as a special case. When metadata itself is seen as data, the entirety
of schema matching and schema mapping is encompassed in data mapping.

Our investigation of the data mapping problem is part of the Modular In-

tegration of Queryable Information Sources (MIQIS) project at Indiana Uni-
versity [22], a framework for data interoperability on the Semantic Web and
in peer-to-peer data management systems [7]. Among the distinguishing fea-
tures of MIQIS is a focus on the modular nature of information systems,
encompassing XML, relational, text, and other data sources. The framework
fully respects the autonomy of peers to manage locally their schemata and
concepts. The two major components of MIQIS are a formal investigation
of data interoperability and a practical implementation of modules driven by
this investigation. In this paper we present initial results on a formal study of
data interoperability for the the relational module of MIQIS.

1.1 Related Work

Overcoming structural heterogeneity is a long standing problem in database
research. Our work in this paper is motivated by relational languages for
database interoperability such as FISQL [21], data mapping solutions, and

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–54 39

recent work on the data exchange problem.

1.1.1 Languages for Relational Federations

It has been known for some time that first order logic (i.e., SQL) is not ad-
equate for expressing many useful transformations for data interoperability
[10,14]. This led to work over the last decade on relational languages for
federated data models. Most influential for our work are Chen et al. [2] on
higher order logic programming, Grant et al. [6], Krishnamurthy et al. [10],
and Lakshmanan et al. [11] on multidatabase languages, Sattler et al. [19] on
languages for database federations, and Jain et al. [8] on a general data model
and languages for data-metadata querying. Our work complements and ex-
tends this line of research with a logical characterization of the full space of
relational data mapping transformations.

1.1.2 Federated Interoperable SQL

Our work is a direct outgrowth of research on the relational metadata query
language Federated Interoperable SQL (FISQL) of Wyss et al. [21]. This princi-
pled extension of SQL naturally expresses all of the database transformations
in Fig. 1.

Example 1.2 To illustrate FISQL, consider the following query to restructure
data in G1 into the format of G2:

SELECT G.Name AS ‘‘STUDENT’’,
G.Percentage ON G.Assignment INTO ‘‘G2’’
FROM G1.Grades AS G

This query language is transformationally complete in the sense that it
precisely expresses all natural relational data-metadata transformations [21].
FISQL also has an equivalent query algebra, FIRA [21]. This algebra has, in ad-
dition to the normal relational operators, simple operators for data-metadata
querying, for example: ↑ to promote metadata, ↓ to demote metadata, and
→ to dereference data. FISQL will serve as our benchmark for relational in-
teroperability; a successful relational data mapping language should have at
least the expressivity of FISQL.

1.1.3 Data Mapping Solutions

The formal investigation initiated in this paper is concurrent with a successful
implementation of a data mapping solution [5] which uses the FIRA operators
and a restricted merge operator. This solution views data mapping as a search
problem, a novel perspective that allows us to leverage traditional techniques
from artificial intelligence. The present study lays the groundwork for a formal
investigation of data mapping solutions.

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–5440

1.1.4 The Data Exchange Problem

A problem closely related to the data mapping problem is the data exchange

problem, presented recently by Fagin et al. [3] to formalize aspects of the
Clio schema mapping system developed at IBM [15]. Briefly, the data ex-
change problem is as follows: given a source schema S, target schema T ,
source instance I, and a set ΣS,T of source-to-target dependencies in some
logical formalism, find a target instance J that satisfies ΣS,T [3]. Fagin et
al. have characterized solutions to the data exchange problem and have ex-
plored query answering in data exchange settings [3]. A limitation of these
results is a restriction of the logical formalism for expressing ΣS,T to fragments
of first order logic which do not always adequately express naturally occurring
data mappings. Furthermore, in data exchange it is assumed (1) that these
dependencies are given as input and (2) the target schema T is fixed. In the
data mapping problem we are concerned precisely with discovering meaningful
source to target constraints, given S, T , and perhaps (I, J) as input where the
target schema T is potentially dynamic [5], as we saw in the mapping from
G1 to G2, which creates as many new assignment names in G2 as there are
Assignment values in G1.

1.2 Contributions and Outline of Paper

In this paper we introduce a data mapping calculus for reasoning about the
data mapping problem. This language is a descendant of the Uniform Calculus
developed by Jain et al. [8], specialized to investigate relational data mapping;
it is a novel development of Jain’s language in that it clearly captures a very
minimal extension of the standard relational model for structural transforma-
tions for database interoperability. This simple logical formalism expresses the
transformations for data mapping, and complements our work on automating
data mapping solutions [5]. A primary motivation for the calculus is that it
facilitates an investigation into the complexity and/or decidability of aspects
of the data mapping problem.

In this paper, our contributions are as follows:

• A novel data model for data mapping is introduced in Section 2.1.

• The data mapping calculus is presented in Sections 2.2 and 2.3.

• Several important safety issues which arise in structural data mapping, such
as schema safety and functionality, are introduced in Sections 2.4-2.6 In
these sections we also discuss ongoing work on characterizing an appropriate
safe fragment of the calculus which is equivalent to tractable query languages
for relational data interoperability.

We give concluding remarks and indications for future work in Section 3.

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–54 41

2 Data Mapping: Data Model and Calculus

This section presents a new data model and declarative data mapping calculus

(DMC) to address the data mapping problem. Throughout the presentation,
we illustrate the effectiveness of DMC with several examples. After presenting
the data model underlying DMC in Section 2.1, we present DMC syntax in
Section 2.2 and semantics in Section 2.3. It turns out that unrestricted DMC

is too powerful, and the natural semantics for DMC is problematic. In Sections
2.4-2.6, we illustrate the problems that occur and suggest ways of refining
DMC to a fragment which is expressive enough for data mapping and yet is
restricted enough to admit equivalence with existing efficient languages for
data mapping.

2.1 Data Model

This data model underpinning DMC is closely related to both the Federated
Data Model of Wyss et al. [21] and to the Uniform Data Model of Jain et al. [8].
Similarly to the relational data model, databases are finite structured objects
over a countably infinite set DOM of atoms (e.g., alphanumeric strings).
However, in the DMC data model, tuples are simply finite sets of ordered
pairs tagged explicitly with a relation name. A database is then a finite set
of such tuples. Formally, the model is defined as follows. Let Pfin(X) denote
the set of all finite subsets of a given set X.

• A tuple, T , is an ordered pair

〈r, {〈a1, v1〉 , . . . , 〈an, vn〉}〉

where r, a1, ..., an, v1, ..., vn ∈ DOM and n � 0. We will use the notation
name(T) to denote r and body(T) to denote the set of attribute-value pairs.
Let T denote the set of all possible tuples over DOM.

• A database, D, is an ordered pair

〈d,T〉 ∈ (DOM ×Pfin(T)).

As shorthand, we write name(D) and body(D) as above to denote the first
and second elements of D, respectively. Let D denote the set of all databases
over DOM.

• A relation r in a database D is the set of tuples {t ∈ body(D) | name(t) =
r}. Note that every database D has a finite set of relations which partition
body(D).

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–5442

• A federation D̄ is a finite set of databases:

D̄ = {D1, . . . , Dn} ∈ Pfin(D)

where name(Di) �= name(Dj), for i �= j. Let ADOM(D̄) denote the set of
all atoms appearing in D̄. Also, let TD̄ denote the finite set of all possible
tuples over ADOM(D̄).

Example 2.1 In this data model, the representation of the federation of Fig-
ure 1 is the set of databases {G1, G2, G3}. Furthermore, G2 (for example) has
the following representation:

〈
G2,

{
〈Grades, {〈Student, Saori〉 , 〈Assignment1, 94〉 , 〈Assignment2, 97〉}〉,

〈Grades, {〈Student, Yukie〉 , 〈Assignment1, 88〉 , 〈Assignment2, 89〉}〉
}〉

.

2.1.1 Comments on the Data Model

Note that our data model is a proper extension of the relational data model
in that it allows non-functional tuples, i.e., tuples that have more than one
pair in their body with the same first element. This flexibility is necessary
to accommodate natural transformations which occur during data mapping;
enforcing strict functionality (i.e., the relational data model) is an issue which
we discuss at length in this paper and is also the focus of ongoing research.
This phenomenon imitates “nests” (in the sense of Nested Relational Model
[1]) of depth 1 and thus our data model has affinities with the data model
underlying the Pack-Unpack Calculus [16].

Another interesting feature is that the data model naturally supports miss-
ing information. It is common that during data mapping, a query may dy-
namically allow input data to become output metadata. Special “null” values
have typically been introduced to indicate missing or inapplicable information.
DMC data model cleanly and simply avoids problems associated with this ap-
proach by viewing a null value as absence. As an example, if a single student
in G2 has the attribute-value pair 〈extra-credit, 83〉, it is not necessary to
explicitly have null values for the attribute extra-credit in the tuples of all
other students.

These flexible features of the data model render it particularly suitable for
use in dynamic data mapping. We now turn to a presentation of the syntax
of DMC.

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–54 43

2.2 Calculus Syntax

2.2.1 Terms

We assume the following basic building blocks of the language:

• A countably infinite set of constants C = {c1, c2, . . .},

• A countably infinite set of domain variables DV = {x1, x2, . . .}, and

• A countably infinite set of tuple variables T V = {t1, t2, . . .}.

Furthermore, we assume that C, DV, and T V are pairwise disjoint.

The set of DMC terms T is built up from constants and variables as follows.

• If c ∈ C, then c ∈ T .

• If x ∈ DV, then x ∈ T .

• If t ∈ T V and c ∈ C, then t.c ∈ T .

• If t ∈ T V and x ∈ DV, then t.x ∈ T .

Intuitively, the syntax t.x represents the set of values for tuple t on attribute
x.

2.2.2 Formulas

Formulas in DMC are built from terms as follows.

• If α, β ∈ T , then α = β ∈ DMC.

• If ϕ, ψ ∈ DMC, then
· ¬ϕ ∈ DMC

· ϕ ∨ ψ ∈ DMC

· ϕ ∧ ψ ∈ DMC

• If t ∈ T V, c ∈ C, x ∈ DV, and ϕ ∈ DMC, then
· (∃x)ϕ ∈ DMC

· (∃x : t ∈ c)ϕ ∈ DMC

Note that (1) the syntax x : t emphasizes that x is the relation name coupled
with tuple t, (2) the database name c is a constant, and (3) we will use (∀ . . .)ϕ
as shorthand for ¬(∃ . . .)¬ϕ, and ϕ → ψ as shorthand for ¬ϕ ∨ ψ, as usual.

2.2.3 Queries

A DMC query has the form

{x : t | ϕ(x, t)},

where x ∈ DV and t ∈ T V are the only free variables in ϕ ∈ DMC.

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–5444

2.2.4 Examples

A few examples will illustrate the expressive power of this syntax.

Example 2.2 We begin with a standard relational query on database G1 that
returns all student names appearing in the Grades relations, placing them in
an output relation named StudentNames:

{x : t | x = StudentNames ∧ (∃r : s ∈ G1) (r = Grades ∧ t.Name = s.Name)}.

Example 2.3 Next, consider a query mapping G2 to G3. This query must
promote attribute names to relation names, which can be done as follows:

{x : t | (∃r : s ∈ G2)(∃a)(∃v)(r = Grades∧ a �= Student∧ s.a = v ∧ x = a

∧ t.Name = s.Student∧ t.Percentage = v)}.

Example 2.4 Finally, a query mapping G2 to G1 must demote attribute
names to data values:

{x : t | x = Grades∧ (∃r : s ∈ G2)(∃a)(∃v) (r = Grades∧ s.a = v ∧ a �= Student

∧ t.Name = s.Student∧ t.Assignment = a ∧ t.Percentage = v)}.

Note that DMC can cleanly express all of the mappings among databases in
Fig. 1. Examples of other transformations are given in subsequent sections.

2.3 Calculus Semantics

DMC has an active domain semantics, a natural choice which avoids problems
with domain safety of queries [1]. Under this semantics, quantifiers only range
over ADOM(D̄), the active domain of an input federation D̄. A formula
ϕ ∈ DMC is interpreted under a valuation. Define a valuation with respect to
a federation D̄ to be a function of one of the following types:

νC

D̄
: C → ADOM(D̄)

νDV

D̄
: DV → ADOM(D̄)

νT V

D̄
: T V → TD̄.

Since C, DV, and T V are pairwise disjoint, we can use νD̄ to refer to any of
these functions without confusion (and just ν when the context is clear).

2.3.1 Terms

The meaning of a DMC term α with respect to a valuation ν (denoted [[α]]ν)
is given as follows:

• For c ∈ C, [[c]]ν = {ν(c)}, i.e., the singleton value of constant c.

• For x ∈ DV, [[x]]ν = {ν(x)}, i.e., the singleton value of domain variable x.

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–54 45

• For t ∈ T V and c ∈ C, [[t.c]]ν = {y ∈ DOM | 〈ν(c), y〉 ∈ body(ν(t))}, i.e.,
the set of values of tuple t on attribute name ν(c).

• For t ∈ T V and x ∈ DV, [[t.x]]ν = {y ∈ DOM | 〈ν(x), y〉 ∈ body(ν(t))},
i.e., the set of values of tuple t on attribute name ν(x).

2.3.2 Formulas

Given a formula ϕ ∈ DMC and a valuation νD̄, we can define a standard notion
of satisfaction inductively based on the syntactic form of ϕ as follows. We
write “ν |= ϕ” to mean ν satisfies ϕ.

ν |= α = β iff [[α]]ν ∩ [[β]]ν �= ∅

ν |= ¬ϕ iff it is not the case that ν |= ϕ

ν |= ϕ ∨ ψ iff ν |= ϕ or ν |= ψ

ν |= ϕ ∧ ψ iff ν |= ϕ and ν |= ψ

ν |= (∃x)ϕ iff ∃a ∈ ADOM(D̄) such that

ν[x ← a] |= ϕ

ν |= (∃x : t ∈ c)ϕ iff ∃D ∈ D̄ ∃T ∈ body(D), name(D) = ν(c)

and ν[x ← name(T), t ← T] |= ϕ

Note that the semantics of equality in DMC is set based. This is because
tuples are not necessarily functional, as noted above. While it may seem
odd to define equality of terms as non-empty intersection, this is a direct
reflection of the fact that our data model can include non-functional tuples.
One consequence of this is that an atom x is equated with the singleton set
{x}. This approach is becoming more accepted in the literature recently, since
the same phenomenon occurs with itemsets when defining data models and
query languages for XML data [4].

2.3.3 Queries

Given a DMC query, Q, and input federation D̄, we can define the semantics
of Q with respect to D̄, denoted [[Q]]D̄, as follows.

[[{x : t | ϕ(x, t)}]]D̄ =

{ [[t]]ν | ν is some valuation over D̄ such that ν |= ϕ(name([[t]]ν), [[t]]ν)}.

This semantics is a natural extension of the relational tuple calculus semantics
[1]. This semantics gives a unique, well-defined output database as the result

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–5446

of any DMC query.

However, there are several inadequacies that are associated with the nat-
ural semantics. These arise because (i) the output of a DMC query is dy-
namic and thus cannot be explicitly typed, leading to extraneous tuples in
the output, (ii) the DMC data model allows non-functional tuples, and (iii)
the calculus is too powerful to be used as a practical query language. In the
next sections we illustrate what can go wrong and provide successive restric-
tions of DMC. Note that a consideration in these restrictions is to develop a
fragment of DMC that is equivalent to transformationally complete relational
data mapping languages such as FISQL [21].

2.4 Schema Safety

One foremost consideration is that the natural semantics of a DMC query
forces unintuitive results since DMC output schemata are dynamic. This
means that any tuples in TD̄ which satisfy ϕ appear in the output, not just
those of “appropriate” schema.

Example 2.5 Consider input federation D̄ := {〈a, {〈a, {〈b, b〉}〉}〉} and the
query Q := {x : t | x = a ∧ (∃r : s ∈ a) (r = a ∧ t.b = s.b)}. In this case, we
have:

[[Q]]D̄ = { 〈a, {〈b, b〉}〉 ,

〈a, {〈b, b〉 , 〈a, a〉}〉 ,

〈a, {〈b, b〉 , 〈a, b〉}〉 ,

〈a, {〈b, b〉 , 〈b, a〉}〉 ,

〈a, {〈b, b〉 , 〈a, a〉 , 〈a, b〉}〉 , . . . ,

〈a, {〈b, b〉 , 〈a, a〉 , 〈a, b〉 , 〈b, a〉}〉}.

Query Q on D̄ stipulates that the output database must contain the relation a

with a tuple containing attribute-value pair 〈b, b〉. Every tuple in TD̄ that has
name a and contains 〈b, b〉 will be included in the result, clearly an unintended
consequence of the natural semantics in the face of dynamic output schemas.

In this sense, the natural semantics for DMC queries is schema unsafe, i.e.,
query results potentially contain unintuitive, unexpected tuples. Our first
restriction on DMC is thus to provide schema safety. We can do this either
syntactically (Section 2.4.1) or semantically (Section 2.4.2).

2.4.1 Syntactic Schema Safety

Syntactically, it is a simple matter to restrict DMC queries to schema-safe
queries. All that is needed is to include in every query a parameterized formula
σ ∈ DMC that states explicitly that no extraneous attribute-value pairs exist

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–54 47

in the output. We illustrate the process on the first two queries from Section
2.2.4.

Example 2.6 First, we rewrite the simple query from Example 2.2 as fol-
lows.

{x : t | x = StudentNames ∧ (∃r : s ∈ G1) (r = Grades ∧ t.Name = s.Name ∧ σ(t))},

where σ(t) := (∀u) u �= Name → ¬(∃v) t.u = v.

Example 2.7 Similarly, for the query mapping G2 to G3 from Example 2.3,
σ(t) := (∀u) (u �= Name ∧ u �= Percentage) → ¬(∃v) t.u = v.

For queries having dynamic output, such as those in Examples 2.8 or 2.12
(below), it is slightly trickier to compose the schema-safe condition σ, but the
method still works (by quantifying over the “active schema” of the output
database). The details are omitted due to space limitations.

2.4.2 Semantic Schema Safety

Schema safety can also be enforced by adopting a stricter query semantics.
Intuitively, we restrict the query result to a naturally defined minimal an-
swer. The idea is to only include in the query result the “smallest” tuples
on attribute names mentioned explicitly in the query. This semantics follows
similarly to the standard model-theoretic semantics for the relational calculus.
We will establish in future work that this minimal-answer semantics disallows
spurious attribute-value pairs and is well defined.

2.5 Functionality

A similar oddity is that our data model and the natural query semantics allow
non-functional tuples. It should be emphasized that this is not a problem, but
rather a feature of the model and semantics. However, it prevents equivalence
of DMC with relational query languages such as FISQL, which assume tuples
are functions [21].

Example 2.8 Suppose that exam grades are added to the Grades relation in
G2:

Student Assignment1 Assignment2 Exam1

Saori 94 97 97

Yukie 88 89 88

Note that Saori made a 97 on both Assignment 2 and Exam 1, and Yukie
made an 88 on both Assignment 1 and Exam 1. We can promote grade data

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–5448

to attribute names with the following query:

{x : t | x = Grades∧ (∃r : s ∈ G2)(∃a)(∃v) (r = Grades

∧ t.Student = s.Student∧ a �= Student∧ v = s.a ∧ t.v = a ∧ σ(t, v))},

where σ(t, v) := (∀p) (p �= Student ∧ p �= v) → ¬(∃w)t.p = w. In this case
we have the output database includes the following tuples (among others):

{ 〈Grades, {〈Student, Saori〉 , 〈94, Assignment1〉}〉 ,

〈Grades, {〈Student, Saori〉 , 〈97, Assignment2〉}〉 ,

〈Grades, {〈Student, Saori〉 , 〈97, Exam1〉}〉 ,

〈Grades, {〈Student, Saori〉 , 〈94, Assignment1〉 , 〈97, Assignment2〉 , 〈97, Exam1〉}〉 ,

〈Grades, {〈Student, Saori〉 , 〈97, Assignment2〉 , 〈97, Exam1〉}〉 , . . .}

Note that the output is schema-safe in the sense of Section 2.4, but includes
non-functional tuples (e.g., the last two tuples) as well as intended tuples, since
these satisfy the query conditions. This indicates the need for a “functional”
restriction on DMC queries, in addition to the schema-safety restriction, if
equivalence with relational languages is desired. Also note that the output
will contain “merged” versions of the tuples as well as “unmerged” versions
(e.g., the fourth tuple is a “merge” of the first three tuples on the Student

attribute). We discuss this issue below in Section 2.6.

As with schema-safety, functionality can be strictly enforced either syn-

tactically (Section 2.5.1) or semantically (Section 2.5.2). However, the func-
tionality that is achieved disallows many natural queries that are possible in
FISQL. We discuss a third approach to functionality in Section 2.5.3.

2.5.1 Syntactic Functionality

Functionality can be enforced syntactically by adding a formula θ to DMC

queries that insists the output is functional. We illustrate the method by
revisiting the query in Example 2.8.

Example 2.9 We can rewrite the query in Example 2.8 as follows.

{x : t | x = Grades∧ (∃r : s ∈ G2)(∃a)(∃v) (r = Grades∧

t.Student = s.Student∧ a �= Student∧ s.a = v ∧ t.v = a ∧ σ(t, v)) ∧ θ(t)},

where θ(t) := ¬((∃a)(∃v)(∃u) (t.a = v∧ t.a = u∧u �= v)). This will force the
following output (which is reasonably in conformance to our expectations):

{ 〈Grades, {〈Student, Saori〉 , 〈94, Assignment1〉}〉 ,

〈Grades, {〈Student, Saori〉 , 〈97, Assignment2〉}〉 ,

〈Grades, {〈Student, Saori〉 , 〈97, Exam1〉}〉 ,

〈Grades, {〈Student, Saori〉 , 〈94, Assignment1〉 , 〈97, Exam1〉}〉

〈Grades, {〈Student, Saori〉 , 〈94, Assignment1〉 , 〈97, Assignment2〉}〉 , . . .}

Note, however, that both merged and unmerged tuples remain.

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–54 49

2.5.2 Semantic Functionality

Functionality can also be achieved by stratifying tuple variables into those
allowed to be non-functional and those that may only range over functional
tuples, denoted by t̂. Under this new stratification, a query has the form
{x : t̂ | ϕ(x, t̂)} and the semantics is developed appropriately. Note that if
arbitrary tuple variables are allowed in ϕ (as opposed to just functional ones),
the language is strictly more powerful. We defer the details of this alternative
to a longer paper.

2.5.3 Operational Functionality

The syntactic and semantic approaches to functionality run into difficulty
when several data-to-metadata promotions occur within a single DMC query.
These promotions may conflict with each other, resulting in multiple “order
of execution” possibilities reflected in the output database. In this case, a
strict approach to functionality would force the query answer to be empty.
The FISQL query language, however, does return functional tuples in this case
since it has a natural operational semantics for generating query results that
follows the syntax of a query.

Example 2.10 Consider the following Grades relation in a database G1’:

Name Assignment AGrade Exam EGrade

Sanae 1 100 1 98

Suppose now that both Assignment and Exam values are promoted to attribute
names with the following query:

{x : t | x = Grades∧ (∃r : s ∈ G1’)(∃y1)(∃y2) (r = Grades

∧ t.Name = s.Name ∧ y1 = s.Assignment∧ y2 = s.Exam

∧ t.y1 = s.AGrade∧ t.y2 = s.EGrade∧ σ(t)) ∧ θ(t)}

The result of this query will be the empty set, an undesired result. If we re-
move the θ(t) clause, the result will reflect the two possible values for attribute
1: ˘

〈Grades, {〈Name, Sanae〉 , 〈1, 100〉 , 〈1, 98〉}〉
¯

Clearly having two different values for attribute 1 is also an undesired
result. For such queries, we can explicitly specify an “order of execution”
with a parameterized syntactic clause, ω(t). For equivalence with FISQL, it
is important that the general form of ω(t) be compatible with the order of
operations of the language.

Example 2.11 In the previous example,

ω(t) := (y1 = y2) → (t.y1 = s.AGrade)

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–5450

and a deterministic, functional output is achieved:
˘
〈Grades, {〈Name, Sanae〉 , 〈1, 100〉}〉

¯

With this modification, we prevent the “indeterminacy” in the natural
DMC semantics that arises from having several distinct canonical relations (all
legitimately satisfying the query) reflected in the output database. This op-
erational approach to functionality naturally captures the behavior of FISQL.

2.6 Complexity Reduction

As shown in Example 2.8, the semantics of a query can include both “merged”
and “unmerged” output. This is an artifact of promoting data to attribute
names. Commonly, the merged output is desired. The OLAP operation,
PIVOT, for example, expects the pivoting columns to form a key so that a
single, well-defined merged relation can be output. In general, the problem of
merging tuples in dynamically typed output is known to be NP-complete [20].

Example 2.12 Consider a query mapping G1 to G2:

{x : t | x = Grades∧ (∃r : s ∈ G1)(∃y) (r = Grades

∧ t.Student = s.Name ∧ y = s.Assignment∧ t.y = s.Percentage)}

The output of this query is as follows:

˘
〈Grades, {〈Student, Saori〉 , 〈Assignment1, 94〉}〉,

〈Grades, {〈Student, Saori〉 , 〈Assignment2, 97〉}〉,

〈Grades, {〈Student, Yukie〉 , 〈Assignment1, 88〉}〉,

〈Grades, {〈Student, Yukie〉 , 〈Assignment2, 89〉}〉,

〈Grades, {〈Student, Saori〉 , 〈Assignment1, 94〉 , 〈Assignment2, 97〉}〉,

〈Grades, {〈Student, Yukie〉 , 〈Assignment1, 88〉 , 〈Assignment2, 89〉}〉
¯

We would expect a Student value to be associated with all of its Assignment
values “merged” into a single tuple, as in the last two tuples of the query re-
sult. In the case of the input federation in Figure 1, the following query
accomplishes this:

{x : t | x = Grades∧ (∃r : s ∈ G1) (r = Grades∧ t.Student = s.Name

∧ (∀r′ : s′ ∈ G1)(∀a) (r′ = r ∧ t.Student = s′.Name)

→ (a = s′.Assignment∧ t.a = s′.Percentage))}

It is important to note that there is a single merge for this particular input
federation, but in general this will not be the case. The DMC semantics for
such a query will reflect all merges that satisfy the query conditions.

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–54 51

In fact, allowing queries such as the second one of Example 2.12 enables
us to express the generalized join [18] in DMC, an operation that is known
to be pspace-complete [18]. In contrast, our paradigmatic language for re-
lational data mapping FISQL is in logspace. Thus, to achieve equivalence
with FISQL, we need to further restrict DMC to rule out such queries. This
can be done syntactically by restricting the scope of the free variables in the
query body to a negation-free grounding formula, γ. The general form of such
queries is:

{x : t | (∃r1 : s1 ∈ c1) · · · (∃rn : sn ∈ cn)(∃y1) · · · (∃yk)

γ(x, t, r1, ..., rn, s1, ...sn, y1, ...yk) ∧ ϕ(r1, ...rn, s1, ...sn, y1, ...yk)},

where γ is negation-free and neither x nor t appears free in ϕ. This syntactic
form of DMC queries directly reflects the scoping of a FISQL query. (A similar
scoping occurs in SQL.)

We denote the query sub-language of DMC having appropriate σ (schema-
safety), γ (grounding), and ω (ordering) clauses by the name Federated In-

teroperable Relational Calculus, or FIRC. One goal of future work is to show
that under a natural mapping, this fragment of DMC gives us exactly the
expressivity of FISQL.

3 Conclusions and Future Work

In this paper we presented ongoing work on a formal underpinning for in-
vestigations into the data mapping problem. After discussing related works,
we developed DMC, a calculus for data mapping, and illustrated its appro-
priateness for expressing relational data mapping transformations. We then
presented a natural semantics for DMC queries and introduced several thorny
safety issues which arise with this semantics. Finally, we discussed syntactic
and semantic safety restrictions with an eye towards developing a fragment
of the language that is equivalent with known practical metadata query lan-
guages.

Currently, we are working out the full details of these issues and the re-
strictions on DMC which address them. In addition, with DMC in hand we
are now in a position to clearly formalize the data mapping problem in terms
of DMC decision problems. Our next major step in this research is to formally
state these problems and establish their complexity and/or decidability.

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–5452

References

[1] Abiteboul, Serge, Richard Hull, and Victor Vianu. Foundations of Databases, Addison-Wesley,
Reading, MA, 1995.

[2] Chen, Weidong, Michael Kifer, and David Scott Warren. HILOG: A Foundation for Higher-
Order Logic Programming. J. Logic Prog. 15(3): 187-230, 1993.

[3] Fagin, R., P.G. Kolaitis, and L. Popa. Data Exchange: Getting to the Core. Proc. ACM PODS,
pp. 90-101, San Diego, CA, 2003.

[4] Fernández, M.F., et al. XQuery 1.0 and XPath 2.0 Data Model. W3C, Feb. 2005.

[5] Fletcher, George H.L. and Catharine M. Wyss. Mapping Between Data Sources on the Web.
Proc. IEEE ICDE Workshop WIRI, Tokyo, Japan, 2005.

[6] Grant, J., W. Litwin, N. Roussopoulos, and T. Sellis. Query Languages for Relational
Multidatabases. VLDB Journal 2(2):153-171, 1993.

[7] Halevy, A. Y., Z. G. Ives, D. Suciu, and I. Tatarinov. Schema Mediation in Peer Data
Management Systems. Proc. IEEE ICDE, pp. 505-516, Bangalore, India, 2003.

[8] Jain, M., A. Mendhekar, and D. Van Gucht. A Uniform Data Model for Relational Data and
Meta-Data Query Processing. Proc. COMAD, Pune, India, 1995.

[9] Kalfoglou, Yannis and Marco Schorlemmer. Ontology Mapping: the State of the Art. The
Knowledge Engineering Review 18(1):1-31, 2003.

[10] Krishnamurthy, R., W. Litwin, and W. Kent. Language Features for Interoperability of
Databases with Schematic Discrepancies. Proc. ACM SIGMOD, pp. 40-49, Denver, CO, USA,
1991.

[11] Lakshmanan, L.V.S., F. Sadri, and I.N. Subramanian. Logic and Algebraic Languages for
Interoperability in Multidatabase Systems. J. Logic Prog. 33(2):101-149, 1997.

[12] Lenzerini, Maurizio. Data Integration: A Theoretical Perspective. Proc. ACM PODS, pp. 233-
246, Madison, WI, USA, 2002.

[13] Melnik, Sergey. Generic Model Management: Concepts and Algorithms, LNCS 2967. Springer
Verlag, Berlin, 2004.

[14] Miller, Renée J. Using Schematically Heterogeneous Structures. Proc. ACM SIGMOD Conf. on
Management of Data, pp. 189-200, Seattle, WA, USA, 1998.

[15] Miller, Renée J., Laura M. Haas, and Mauricio A. Hernández. Schema Mapping as Query
Discovery. Proc. VLDB Conf., pp. 77-88, Cairo, Egypt, 2000.

[16] Özsoyoǧlu, G., Z.M. Özsoyoǧlu, and V. Matos. Extending Relational Algebra and Relational
Calculus with Set-Valued Attributes and Aggregate Function. ACM Transactions on Database
Systems, 12(4):566-592, 1987.

[17] Rahm, Erhard and Philip A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. VLDB Journal 10(4):334-350, 2001.

[18] Rood, C.M., D. Van Gucht, and F. I. Wyss. MD-SQL: A Language for Meta-Data Queries over
Relational Databases. Indiana Univ. CS Dept. TR528, July 1999.

[19] Sattler, Kai-Uwe, Stefan Conrad, and Gunter Saake. Interactive Example-Driven Integration
and Reconciliation for Accessing Database Federations. Information Systems 28(5):393-414,
July 2003.

[20] Wyss, Catharine M. and Edward Robertson. Optimal Tuple Merge is NP-Complete. Indiana
Univ. Computer Science Dept. TR599, July 2004.

[21] Wyss, Catharine M. and Edward Robertson. Relational Languages for Metadata Integration.
ACM Transactions on Database Systems, to appear June 2005.

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–54 53

[22] Wyss, Catharine M., George H. L. Fletcher, Fulya Erdinc, and Jeremy T. Engle. MIQIS:
Modular Integration of Queryable Information Systems. Proc. VLDB Workshop IIWeb,
pp. 136-140, Toronto, Canada, 2004.

G.H.L. Fletcher et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 37–5454

	Introduction
	Related Work
	Contributions and Outline of Paper

	Data Mapping: Data Model and Calculus
	Data Model
	Calculus Syntax
	Calculus Semantics
	Schema Safety
	Functionality
	Complexity Reduction

	Conclusions and Future Work
	References

