Homework Advanced Calculus (2DBN10)

Set 1

1. Let A be a real diagonalizable (n, n)-matrix. We consider the solutions $y: \mathbb{R} \longrightarrow \mathbb{R}^{n}$ of the linear homogeneous ODE system

$$
\begin{equation*}
\dot{y}(t)=A y(t) . \tag{1}
\end{equation*}
$$

Give (necessary and sufficient) conditions in terms of the eigenvalues of A for the following statements to be true:
a) The system (1) has periodic solutions that are not identically equal to zero.
b) The system (1) has constant solutions that are not identically equal to zero.
c) For all solutions y of (1) there holds $\lim _{t \rightarrow \infty} y(t)=0$.
d) For all solutions y of (1) there holds $\lim _{t \rightarrow-\infty} y(t)=0$.

Give reasons for your answers.
2. This problem is aimed at understanding the structure of the solution space of second-order constant coefficients ODEs in the case of a double root of the characteristic polynomial ("resonance").
(Warning to higher-year students:
The problem is not identic to the similar one given last year!)
Fix $a \in \mathbb{R}$, let $\varepsilon>0$ and consider the ODE

$$
\begin{equation*}
\ddot{y}-2 a \dot{y}+\left(a^{2}-\varepsilon^{2}\right) y=0 . \tag{2}
\end{equation*}
$$

a) Let $z_{0}, z_{1} \in \mathbb{R}$. Solve the equation with initial conditions

$$
\begin{equation*}
y(0)=z_{0}, \quad \dot{y}(0)=z_{1} \tag{3}
\end{equation*}
$$

b) Denote the solution by y_{ε}. Calculate (for $t \in \mathbb{R}$)

$$
y_{0}(t):=\lim _{\varepsilon \rightarrow 0} y_{\varepsilon}(t)
$$

c) Show that y_{0} satisfies

$$
\begin{equation*}
\ddot{y}_{0}-2 a \dot{y}_{0}+a^{2} y_{0}=0 \tag{4}
\end{equation*}
$$

with the initial conditions (3). Give the roots of the characteristic equation of (4). How are (2) and (4) related?

Exam type problem (not to be handed in): Consider the ODE system

$$
\left(\begin{array}{c}
\dot{y}_{1} \\
\dot{y}_{2} \\
\dot{y}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 1 & 2 \\
-7 & 4 & 4 \\
6 & -4 & -1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)
$$

a) Does this system have periodic solutions?
b) Find all solutions y that satisfy $|y(t)| \rightarrow 0$ as $t \rightarrow-\infty$.

Answers:

a) yes,
b) all solutions of the form

$$
y(t)=C(1,1,1)^{\top} e^{t}, \quad C \in \mathbb{R}
$$

