Homework Advanced Calculus (2DBN10)

Set 3

1. $(\text { Conic sections })^{1}$

Let K be the double cone surface in \mathbb{R}^{3} given by

$$
z^{2}=(x-1)^{2}+y^{2}
$$

Let $m>0$ and let $V=V(m)$ be the plane with equation $z=m x$.
Let $L=L(m)=K \cap V(m)$ be the curve of intersection of K and $V(m)$.
a) For which values of m is L an ellipse / parabola / hyperbola? Give 3 pt reasons for your answer.
(Hint: First, find an equation for the projection of L to the x, y-plane.)
b) In the case where L is an ellipse, find the center and the half axes. 1 pt (Caution: This is about the ellipse itself, not its projection.)
c) In the case where L is a parabola, give the coordinates of its vertex. 1 pt
2. Find equations of the form $p(x, y, z)=0$ with p a polynomial in three variables for the following sets of points in \mathbb{R}^{3} :
a) the union of the line through the points $(0,1,0)$ and $(1,0,0)$ and the 1 pt (x, z)-plane,
b) the surface given by the parameterization

$$
x(u, v)=u, y(u, v)=u \cos v, z(u, v)=2 u \sin v, \quad u \in \mathbb{R}, v \in[0,2 \pi)
$$

c) the surface obtained by rotating the parabola given by $y=z^{2}+1, x=0 \quad 1 \mathrm{pt}$ around the z-axis.

In b), verify your result by calculating $p(x(u, v), y(u, v), z(u, v))$.
3. Find parameter representations for the following surfaces in \mathbb{R}^{3} :
a) the surface given by the equation

$$
x^{2}-2 y^{2}-z^{2}=2
$$

(Hint: Use trigonometric and hyperbolic functions.)
b) the surface obtained by rotating the parabola given by $y=z^{2}+1, x=0 \quad 1 \mathrm{pt}$ around the z-axis.

Verify your results using the equations for the surfaces (for b), see 2c)).
Exam type problem (not to be handed in): (possibly as part of some other problem)

Find a parameterization for the ellipsoid in \mathbb{R}^{3} with equation

$$
\left(\frac{x-x_{0}}{a}\right)^{2}+\left(\frac{y-y_{0}}{b}\right)^{2}+\left(\frac{z-z_{0}}{c}\right)^{2}=1, \quad a, b, c>0 .
$$

[^0]
[^0]: ${ }^{1}$ This problem is similar but not identic to the problem on conic section in last year's homework.

