Homework Advanced Calculus (2DBN10) Set 4

1. The ellipsoid E in \mathbb{R}^3 with equation

$$2x^2 + y^2 + 3z^2 = 6$$

and the hyperboloid H with equation

$$2(x-2)^2 - y^2 + 3(z-3)^2 = 13$$

have a curve of intersection that contains the point (1, 1, 1). Find the tangent line to the curve in that point.

(**Hint:** This tangent line lies in both the tangent planes to E and to H in the point (1, 1, 1).)

2. (The Laplace operator and harmonic functions)

Let $D \subset \mathbb{R}^d$. The operator Δ acting on the twice continuously differentiable functions on D, given by

$$\Delta u := \sum_{i=1}^d \partial_{x_i}^2 u$$

is called **Laplace operator** or **Laplacian**. A twice continuously differentiable function $u: D \longrightarrow \mathbb{R}$ that satisfies $\Delta u = 0$ is called **harmonic** (in D). The Laplacian and harmonic functions play an important role e.g. in continuum mechanics and electrodynamics.

- a) Find all harmonic polynomials in two variables (on \mathbb{R}^2) of degree 2. 1 pt
- **b)** Verify that the function $u : \mathbb{R}^3 \setminus \{0\} \longrightarrow \mathbb{R}$ given by

$$u(\underline{x}) = \frac{1}{|\underline{x}|}, \qquad \underline{x} \neq 0$$

is harmonic. (Give a clear account of your calculations.)

- Are the following statements true? (If they are, explain clearly why. If they are not, show this by provinding a counterexample.)
- c) "If u and v are harmonic functions on \mathbb{R}^2 then the pointwise product 1 pt uv is harmonic as well."
- d) "If u is a harmonic function on \mathbb{R}^2 , $\alpha > 0$ fixed, and v is given by 1 pt

$$v(x, y) = u(x \cos \alpha + y \sin \alpha, -x \sin \alpha + y \cos \alpha)$$

then v is harmonic as well."

e) "If u is a harmonic function on \mathbb{R}^2 , and $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that $f''(z) \ge 0$ 1 pt for all $z \in \mathbb{R}$, and v is given by

$$v(x,y) = f(u(x,y))$$

then $\Delta v \geq 0$ on \mathbb{R}^2 .

continued next page

1 pt

 $1 \, \mathrm{pt}$

3. (The Laplacian in polar coordinates)

Let $u : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be twice continuously partially differentiable and let $\tilde{u}: (0, \infty) \times (0, 2\pi) \longrightarrow \mathbb{R}$ be given by

$$\widetilde{u}(r,\theta) = u(r\cos\theta, r\sin\theta).$$

a) Show:

$$\partial_1 u(r\cos\theta, r\sin\theta) = \cos\theta \,\partial_r \widetilde{u}(r,\theta) - \frac{\sin\theta}{r} \,\partial_\theta \widetilde{u}(r,\theta),$$
$$\partial_2 u(r\cos\theta, r\sin\theta) = \sin\theta \,\partial_r \widetilde{u}(r,\theta) + \frac{\cos\theta}{r} \,\partial_\theta \widetilde{u}(r,\theta).$$

(**Hint:** First, use the chain rule to represent $\partial_r \widetilde{u}(r,\theta)$ and $\partial_{\theta} \widetilde{u}(r,\theta)$ in terms of $\partial_1 u$ and $\partial_2 u$. Then, solve the linear system you got for $\partial_1 u$ and $\partial_2 u$.)

b) Give Δu(r cos θ, r sin θ) = ∂₁₁u(r cos θ, r sin θ) + ∂₂₂u(r cos θ, r sin θ) in 2 pt terms of partial derivatives of ũ with respect to r and θ.
(Hint: Apply a) to ∂₁u and ∂₂u instead of u.)

(Note: Looking up the final result is easy and helpful as a check, but not the objective of this exercise. Make sure you understand why the result holds, and describe your calculations in sufficient detail to convince a reader of it.)

2 pt