Homework Advanced Calculus (2DBN10) Set 4

1. The ellipsoid E in \mathbb{R}^{3} with equation

$$
2 x^{2}+y^{2}+3 z^{2}=6
$$

and the hyperboloid H with equation

$$
2(x-2)^{2}-y^{2}+3(z-3)^{2}=13
$$

have a curve of intersection that contains the point ($1,1,1$). Find the tangent line to the curve in that point.
(Hint: This tangent line lies in both the tangent planes to E and to H in the point (1, 1, 1).)
2. (The Laplace operator and harmonic functions)

Let $D \subset \mathbb{R}^{d}$. The operator Δ acting on the twice continuously differentiable functions on D, given by

$$
\Delta u:=\sum_{i=1}^{d} \partial_{x_{i}}^{2} u
$$

is called Laplace operator or Laplacian. A twice continuously differentiable function $u: D \longrightarrow \mathbb{R}$ that satisfies $\Delta u=0$ is called harmonic (in D). The Laplacian and harmonic functions play an important role e.g. in continuum mechanics and electrodynamics.
a) Find all harmonic polynomials in two variables (on \mathbb{R}^{2}) of degree 2 . 1 pt
b) Verify that the function $u: \mathbb{R}^{3} \backslash\{0\} \longrightarrow \mathbb{R}$ given by

$$
u(\underline{x})=\frac{1}{|\underline{x}|}, \quad \underline{x} \neq 0
$$

is harmonic. (Give a clear account of your calculations.)
Are the following statements true? (If they are, explain clearly why. If they are not, show this by provinding a counterexample.)
c) "If u and v are harmonic functions on \mathbb{R}^{2} then the pointwise product 1 pt $u v$ is harmonic as well."
d) "If u is a harmonic function on $\mathbb{R}^{2}, \alpha>0$ fixed, and v is given by

$$
v(x, y)=u(x \cos \alpha+y \sin \alpha,-x \sin \alpha+y \cos \alpha)
$$

then v is harmonic as well."
e) "If u is a harmonic function on \mathbb{R}^{2}, and $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $f^{\prime \prime}(z) \geq 0 \quad 1 \mathrm{pt}$ for all $z \in \mathbb{R}$, and v is given by

$$
v(x, y)=f(u(x, y))
$$

then $\Delta v \geq 0$ on \mathbb{R}^{2}.
3. (The Laplacian in polar coordinates)

Let $u: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be twice continuously partially differentiable and let $\widetilde{u}:(0, \infty) \times(0,2 \pi) \longrightarrow \mathbb{R}$ be given by

$$
\widetilde{u}(r, \theta)=u(r \cos \theta, r \sin \theta)
$$

a) Show:

$$
\begin{aligned}
& \partial_{1} u(r \cos \theta, r \sin \theta)=\cos \theta \partial_{r} \widetilde{u}(r, \theta)-\frac{\sin \theta}{r} \partial_{\theta} \widetilde{u}(r, \theta), \\
& \partial_{2} u(r \cos \theta, r \sin \theta)=\sin \theta \partial_{r} \widetilde{u}(r, \theta)+\frac{\cos \theta}{r} \partial_{\theta} \widetilde{u}(r, \theta) .
\end{aligned}
$$

(Hint: First, use the chain rule to represent $\partial_{r} \widetilde{u}(r, \theta)$ and $\partial_{\theta} \widetilde{u}(r, \theta)$ in terms of $\partial_{1} u$ and $\partial_{2} u$. Then, solve the linear system you got for $\partial_{1} u$ and $\partial_{2} u$.)
b) Give $\Delta u(r \cos \theta, r \sin \theta)=\partial_{11} u(r \cos \theta, r \sin \theta)+\partial_{22} u(r \cos \theta, r \sin \theta)$ in 2 pt terms of partial derivatives of \widetilde{u} with respect to r and θ.
(Hint: Apply a) to $\partial_{1} u$ and $\partial_{2} u$ instead of u.)
(Note: Looking up the final result is easy and helpful as a check, but not the objective of this exercise. Make sure you understand why the result holds, and describe your calculations in sufficient detail to convince a reader of it.)

