Homework Advanced Calculus (2DBN10)

 Set 5

 Set 5}1. (Verifying the second derivative test in a simple case)

Let $a, b, c \in \mathbb{R}$ and $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be given by

$$
f(x, y)=\frac{1}{2}\left(a x^{2}+2 b x y+c y^{2}\right)
$$

Verify that $(0,0)$ is a critical point for f and the Hessian there is

$$
\nabla^{2} f(0,0)=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

a) Suppose $a \neq 0$ and show:
(i) If $a c-b^{2}>0$ and $a>0$ then f has a strict local minimum at $(0,0)$.
(ii) If $a c-b^{2}>0$ and $a<0$ then f has a strict local maximum at $(0,0)$.
(iii) If $a c-b^{2}<0$ then $(0,0)$ is a saddle point for f.
(Hint: Obviously, you cannot use the second derivative test in this problem, as we want to verify it. Instead, substitute $x=r \cos \theta, y=r \sin \theta$ and check first that

$$
f(x, y)=\frac{r^{2}}{2 a}\left((a \cos \theta+b \sin \theta)^{2}+\left(a c-b^{2}\right) \sin ^{2} \theta\right)
$$

b) Now suppose $a=0$ and $a c-b^{2}\left(=-b^{2}\right)<0$. Show that then $(0,0)$ is a 2 pt saddle point.
2. (Distance minimizing)
a) (A preliminary result from vector geometry)

Let $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{2} \backslash\{0\}$ be nonzero vectors in the plane. Show that if

$$
\left|v_{1}\right|=\left|v_{2}\right|=\left|v_{3}\right| \quad \text { and } \quad v_{1}+v_{2}+v_{3}=0
$$

then any two of the vectors include an angle of 120°.
b) Let P_{1}, P_{2}, P_{3} be three points in the plane and let Q be a fourth point 3 pt (different from all P_{i}) such that the total distance

$$
\begin{equation*}
\left|\overline{P_{1} Q}\right|+\left|\overline{P_{2} Q}\right|+\left|\overline{P_{3} Q}\right| \tag{1}
\end{equation*}
$$

is minimal (over all possible choices of Q, with P_{i} fixed).
Sketch:

Show that the angles between the lines $\overline{P_{1} Q}, \overline{P_{2} Q}, \overline{P_{3} Q}$ are all 120°.
(Remark: Roughly speaking, this is the reason why area minimizing surfaces, as e.g. soap films, meet under angles of 120°.)
c) \star (not to be handed in): In b) we explicitly demanded that Q does not coincide with any of the P_{i}. (Where is this assumption used?)
However, for certain choices of P_{1}, P_{2}, P_{3} the total distance (1) is minimized if Q does coincide with one of the points P_{i}. Under what conditions on the points P_{i} does this happen?
3. (Exam type question, not to be handed in)

Find the global maxima and minima of the function f given by

$$
f(x, y)=2 x^{3}+y^{4}
$$

on the closed unit disk $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$.

