Homework Advanced Calculus (2DBN10) Set 5

1. (Verifying the second derivative test in a simple case)

Let $a, b, c \in \mathbb{R}$ and $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be given by

$$f(x,y) = \frac{1}{2}(ax^2 + 2bxy + cy^2).$$

Verify that (0,0) is a critical point for f and the Hessian there is

$$\nabla^2 f(0,0) = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right).$$

- **a)** Suppose $a \neq 0$ and show:
 - (i) If $ac b^2 > 0$ and a > 0 then f has a strict local minimum at (0, 0).
 - (ii) If $ac b^2 > 0$ and a < 0 then f has a strict local maximum at (0, 0).
 - (iii) If $ac b^2 < 0$ then (0, 0) is a saddle point for f.

(**Hint:** Obviously, you cannot use the second derivative test in this problem, as we want to verify it. Instead, substitute $x = r \cos \theta$, $y = r \sin \theta$ and check first that

$$f(x,y) = \frac{r^2}{2a} \left((a\cos\theta + b\sin\theta)^2 + (ac - b^2)\sin^2\theta \right).$$

- b) Now suppose a = 0 and $ac b^2(= -b^2) < 0$. Show that then (0, 0) is a 2 pt saddle point.
- **2.** (Distance minimizing)
 - a) (A preliminary result from vector geometry) 2 pt Let $v_1, v_2, v_3 \in \mathbb{R}^2 \setminus \{0\}$ be nonzero vectors in the plane. Show that if

 $|v_1| = |v_2| = |v_3|$ and $v_1 + v_2 + v_3 = 0$

then any two of the vectors include an angle of 120° .

b) Let P_1, P_2, P_3 be three points in the plane and let Q be a fourth point 3 pt (different from all P_i) such that the total distance

$$|\overline{P_1Q}| + |\overline{P_2Q}| + |\overline{P_3Q}| \tag{1}$$

is minimal (over all possible choices of Q, with P_i fixed). Sketch:

Show that the angles between the lines $\overline{P_1Q}$, $\overline{P_2Q}$, $\overline{P_3Q}$ are all 120°. (**Remark:** Roughly speaking, this is the reason why area minimizing surfaces, as e.g. soap films, meet under angles of 120°.)

3 pt

- c) \star (not to be handed in): In b) we explicitly demanded that Q does not coincide with any of the P_i . (Where is this assumption used?) However, for certain choices of P_1, P_2, P_3 the total distance (1) is minimized if Q does coincide with one of the points P_i . Under what conditions on the points P_i does this happen?
- **3.** (Exam type question, not to be handed in)

Find the global maxima and minima of the function f given by

$$f(x,y) = 2x^3 + y^4$$

on the closed unit disk $D = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}.$