Homework Advanced Calculus (2DBN10)

Set 6

1. Let $D=\mathbb{R}^{2} \backslash\{0\}$ and let $f: D \longrightarrow \mathbb{R}^{2}$ be the coordinate transformation 5 pt given by

$$
\binom{x}{y}=\binom{\operatorname{Re}\left(\frac{1}{u+i v}\right)}{\operatorname{Im}\left(\frac{1}{u+i v}\right)}=\frac{1}{u^{2}+v^{2}}\binom{u}{-v}
$$

Sketch some coordinate lines and describe them in geometric terms.
(Hints: To find the coordinate lines with $u=$ const., calculate

$$
\left(\frac{u}{u^{2}+v^{2}}-\frac{1}{2 u}\right)^{2}+\left(\frac{v}{u^{2}+v^{2}}\right)^{2} \quad(u \neq 0)
$$

and simplify the result as far as possible.
For $v=$ const., use a similar identity.
To get the correct idea, you may use graphing software.)
2. Let S be a closed curve in \mathbb{R}^{2}, given by

$$
S=\{(x, y) \mid G(x, y)=0\}
$$

with some given differentiable function $G: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ that satisfies $\nabla G \neq 0$ on S. Let $P_{i} \in \mathbb{R}^{2}$ a given point inside S and $P_{e} \in \mathbb{R}^{2}$ a given point outside S. Let $a_{i}, a_{e}>0$ be given. Let $Q \in S$ be such that the sum of distances

$$
a_{i}\left|\overline{P_{i} Q}\right|+a_{e}\left|\overline{P_{e} Q}\right|
$$

is minimal (among all possible choices of Q, P_{i}, P_{e} fixed.
Let n be the line normal to the tangent plane to S in Q.
Let $\alpha_{i, e}:=\measuredangle\left(n, \overline{P_{i, e} Q}\right)$.
Sketch:

cont. next page

We assume that P_{e} and P_{i} are not on n. Verify that

$$
\frac{\sin \alpha_{i}}{\sin \alpha_{e}}=\frac{a_{e}}{a_{i}}
$$

(Remark: In a context of geometric optics, this is a derivation of Snell's law of refraction of light rays from Fermat's principle of minimal time.)
3. (Exam type question, not to be delivered)

Consider the system of equations

$$
\begin{aligned}
x^{3}+y^{4}+u^{3}+v^{2} & =4 \\
x^{3}+y^{7}-y+2 u+v^{4} & =4
\end{aligned}
$$

Show: In a neighborhood of the point

$$
\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=(1,1,1,1)
$$

this system is solvable for $x=\phi(u, v), y=\psi(u, v)$. Calculate the partial derivatives $\partial_{u} \phi, \partial_{u} \psi, \partial_{v} \phi, \partial_{v} \psi$ in the point $(u, v)=(1,1)$.

