Homework Advanced Calculus (2DBN10) Set 6

1. Let $D = \mathbb{R}^2 \setminus \{0\}$ and let $f : D \longrightarrow \mathbb{R}^2$ be the coordinate transformation 5 pt given by

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \operatorname{Re}\left(\frac{1}{u+iv}\right) \\ \operatorname{Im}\left(\frac{1}{u+iv}\right) \end{pmatrix} = \frac{1}{u^2 + v^2} \begin{pmatrix} u \\ -v \end{pmatrix}.$$

Sketch some coordinate lines and describe them in geometric terms.

(Hints: To find the coordinate lines with u = const., calculate

$$\left(\frac{u}{u^2 + v^2} - \frac{1}{2u}\right)^2 + \left(\frac{v}{u^2 + v^2}\right)^2 \qquad (u \neq 0)$$

and simplify the result as far as possible.

For v = const., use a similar identity.

To get the correct idea, you may use graphing software.)

2. Let S be a closed curve in \mathbb{R}^2 , given by

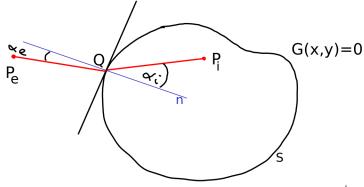
$$S = \{(x, y) \,|\, G(x, y) = 0\}$$

with some given differentiable function $G : \mathbb{R}^2 \longrightarrow \mathbb{R}$ that satisfies $\nabla G \neq 0$ on S. Let $P_i \in \mathbb{R}^2$ a given point inside S and $P_e \in \mathbb{R}^2$ a given point outside S. Let $a_i, a_e > 0$ be given. Let $Q \in S$ be such that the sum of distances

$$a_i |\overline{P_i Q}| + a_e |\overline{P_e Q}|$$

is minimal (among all possible choices of Q, P_i, P_e fixed.

Let n be the line normal to the tangent plane to S in Q. Let $\alpha_{i,e} := \measuredangle(n, \overline{P_{i,e}Q}).$ Sketch:



cont. next page

5 pt

We assume that P_e and P_i are not on n. Verify that

$$\frac{\sin \alpha_i}{\sin \alpha_e} = \frac{a_e}{a_i}.$$

(**Remark:** In a context of geometric optics, this is a derivation of Snell's law of refraction of light rays from Fermat's principle of minimal time.)

3. (Exam type question, not to be delivered)

Consider the system of equations

$$x^{3} + y^{4} + u^{3} + v^{2} = 4$$

$$x^{3} + y^{7} - y + 2u + v^{4} = 4.$$

Show: In a neighborhood of the point

$$(x_0, y_0, u_0, v_0) = (1, 1, 1, 1)$$

this system is solvable for $x = \phi(u, v)$, $y = \psi(u, v)$. Calculate the partial derivatives $\partial_u \phi$, $\partial_u \psi$, $\partial_v \phi$, $\partial_v \psi$ in the point (u, v) = (1, 1).