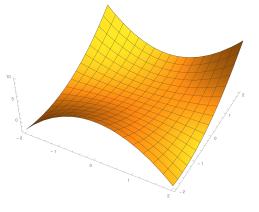
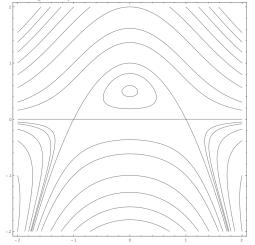

Extrema: Examples

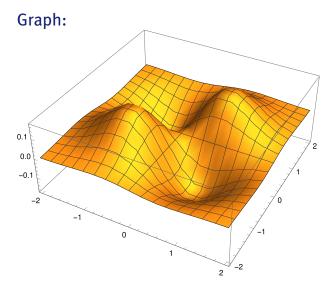
 $(D = \mathbb{R}^2)$


 $f(x,y) = (1 - x^2 - y^2)^2$

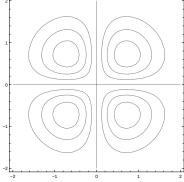

Extrema: Examples

 $f(x,y) = x^2y + y^2 - y$

Graph:



Hoogtelijnen:



Extrema: Examples

 $f(x,y) = xye^{-x^2 - y^2}$

Theorem: Continuous functions on bounded domains including the boundary take their maximal and minimal value in some point.

Procedure to find them for differentiable functions:

• find critical points in the interior,

Theorem: Continuous functions on bounded domains including the boundary take their maximal and minimal value in some point.

Procedure to find them for differentiable functions:

- find critical points in the interior,
- find global extrema on the boundary.

Theorem: Continuous functions on bounded domains including the boundary take their maximal and minimal value in some point.

Procedure to find them for differentiable functions:

- find critical points in the interior,
- find global extrema on the boundary.

"candidates" for global extrema

Theorem: Continuous functions on bounded domains including the boundary take their maximal and minimal value in some point.

Procedure to find them for differentiable functions:

- find critical points in the interior,
- find global extrema on the boundary.

+ "candidates" for global extrema

• Find the largest / smalles value among the candidates.