A general solution method for homogeneous linear ODE systems with constant coefficients

Let A be a (not necessarily diagonalizable, real or complex) (n, n)-matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ with corresponding algebraic multiplicities m_{1}, \ldots, m_{r}.

To determine the general solution of the ODE system

$$
\begin{equation*}
\dot{y}=A y \tag{1}
\end{equation*}
$$

we use the ansatz

$$
y(t)=\sum_{j=1}^{r} e^{\lambda_{j} t} \sum_{k=0}^{m_{j}-1} v_{j, k} \frac{t^{k}}{k!}, \quad v_{j, k} \in \mathbb{C}^{n},
$$

with the n vectors $v_{j, k}$ to be determined.
Inserting this ansatz into (1) yields homogeneous linear systems

$$
\left(A-\lambda_{j} I\right) v_{j, k}=\left\{\begin{array}{cl}
v_{j, k+1} & \text { if } k<m_{j}-1, \quad j=1, \ldots, r, ~ \\
0 & \text { if } k=m_{j}-1, \quad j
\end{array}\right.
$$

for the ansatz vectors $v_{j, 0}, \ldots, v_{j, m_{j}-1}$. (Check!)
It can be shown that these systems (of dimension $n m_{j} \times n m_{j}$) have solution spaces of dimension m_{j}. If bases and and free parameters are chosen accordingly, the ansatz yields a linear combination of $m_{1}+\ldots+m_{r}=n$ independent solutions to (1), i.e. the general solution.

