Systems of linear ODEs with constant coefficients

Let $\mathbb{K}=\mathbb{R}$ or $\mathbb{C}, n \in \mathbb{N}, A \in \mathbb{R}^{n \times n}$.
Seek differentiable functions $y: \mathbb{R} \longrightarrow \mathbb{K}^{n}$ such that

$$
\dot{y}(t)=A y(t), \quad t \in \mathbb{R} .
$$

Remark: The solutions form a linear space. (Check!) It has dimension n.
Therefore, the general solution can be written as

$$
y(t)=\sum_{k=1}^{n} c_{k} y_{k}(t), \quad c_{k} \in \mathbb{K}
$$

where $\left\{y_{1}, \ldots, y_{n}\right\}$ is a linearly independent set of solutions (i.e. a basis of the solution space.)

Systems of linear ODEs with constant coefficients

Assume now A diagonalizable, and let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of \mathbb{K}^{n} consisting of eigenvectors of A, i.e. $A v_{k}=\lambda_{k} v_{k}, k=1, \ldots, n$, or

i.e. $A=V D V^{-1}$, and with $z(t)=V^{-1} y(t)$

$$
\dot{z}=V^{-1} \dot{y}=V^{-1} V D V^{-1} y=D z
$$

i.e. $\dot{z}_{k}=\lambda_{k} z_{k}$, so $z_{k}=c_{k} e^{\lambda_{k} t}$, and

$$
y(t)=V z(t)=\sum_{k=1}^{n} c_{k} \underbrace{v_{k} e^{\lambda_{k} t}}_{\text {"modes" }}
$$

(general solution).

Systems of linear ODEs with constant coefficients

Complex eigenvalues: Let $\lambda_{k} \notin \mathbb{R}$ be a complex eigenvalue of A with eigenvector v_{k}. (Then $v_{k} \notin \mathbb{R}^{n}!$)

Then $\bar{\lambda}_{k} \neq \lambda_{k}$ is also an eigenvalue of A, and \bar{v}_{k} is a corresponding eigenvector. (Check!)
So $v_{k} e^{\lambda_{k} t}$ and $\bar{v}_{k} e^{\bar{\lambda}_{k} t}=\overline{v_{k} e^{\lambda_{k} t}}$ are two linearly independent elements of the solution space.
Instead of these, we can also choose the real solutions

$$
\begin{aligned}
\frac{1}{2}\left(v_{k} e^{\lambda_{k} t}+\overline{v_{k} e^{\lambda_{k} t}}\right) & =\operatorname{Re}\left(v_{k} e^{\lambda_{k} t}\right) \\
\frac{1}{2 i}\left(v_{k} e^{\lambda_{k} t}-\overline{v_{k} e^{\lambda_{k} t}}\right) & =\operatorname{Im}\left(v_{k} e^{\lambda_{k} t}\right)
\end{aligned}
$$

Systems of linear ODEs with constant coefficients

Initial value problems: Let further $y_{0} \in \mathbb{R}^{n}, t_{0} \in \mathbb{R}$ be given.
Find a function $y: \mathbb{R} \longrightarrow \mathbb{R}^{n}$ such that

$$
\dot{y}=A y, \quad y\left(t_{0}\right)=y^{0} .
$$

Solution: Determine the free constants c_{k} in the general solution such that

$$
\sum_{k=1}^{n} c_{k} y_{k}\left(t_{0}\right)=y^{0} .
$$

Systems of linear ODEs with constant coefficients

Inhomogeneous systems: Let $I \subset \mathbb{R}$ be an interval, $f: I \longrightarrow \mathbb{R}^{n}$ continuous.
Find functions $y: I \longrightarrow \mathbb{R}^{n}$ such that

$$
\begin{equation*}
\dot{y}(t)=A y(t)+f(t), \quad t \in I . \tag{i}
\end{equation*}
$$

Theorem: Let $y_{p}: I \longrightarrow \mathbb{R}^{n}$ a ("particular") solution for (i)
and y_{h} the general solution of the homogeneous system $\dot{y}_{h}=A y_{h}$.
Then the general solution of the inhomogeneous system (i) is given by

$$
y(t)=y_{p}(t)+y_{h}(t), \quad t \in I .
$$

(Check!)

Systems of linear ODEs with constant coefficients

Finding a particular solution:
"Variation of parameters":
Let $\left\{y_{1}, \ldots, y_{n}\right\}$ be a basis for the solution space of the homogeneous system.
Ansatz:

$$
y_{p}(t)=\sum_{k=1}^{n} c_{k}(t) y_{k}(t)=\underbrace{\left(\begin{array}{ccc}
\mid & & \\
y_{1}(t) & \ldots & y_{n}(t) \\
\mid & & \mid
\end{array}\right)}_{Y(t)} \underbrace{\left(\begin{array}{c}
c_{1}(t) \\
\vdots \\
c_{n}(t)
\end{array}\right)}_{c(t)}
$$

where $c_{1}(t), \ldots c_{n}(t): I \longrightarrow \mathbb{R}$ are to be determined.

Systems of linear ODEs with constant coefficients

$$
\text { Ansatz: } \quad y_{p}(t)=\sum_{k=1}^{n} c_{k}(t) y_{k}(t) .
$$

Systems of linear ODEs with constant coefficients

$$
\text { Ansatz: } \quad y_{p}(t)=\sum_{k=1}^{n} c_{k}(t) y_{k}(t)
$$

Then:

$$
\dot{y}_{p}(t)=\sum_{k=1}^{n} \dot{c}_{k}(t) y_{k}(t)+\sum_{k=1}^{n} c_{k}(t) \dot{y}_{k}(t)
$$

Systems of linear ODEs with constant coefficients

$$
\text { Ansatz: } \quad y_{p}(t)=\sum_{k=1}^{n} c_{k}(t) y_{k}(t)
$$

Then:

$$
\begin{aligned}
\dot{y}_{p}(t) & =\sum_{k=1}^{n} \dot{c}_{k}(t) y_{k}(t)+\sum_{k=1}^{n} c_{k}(t) \dot{y}_{k}(t) \\
& =\sum_{k=1}^{n} \dot{c}_{k}(t) y_{k}(t)+A \underbrace{\sum_{k=1}^{n} c_{k}(t) y_{k}(t)}_{y_{p}(t)}
\end{aligned}
$$

Systems of linear ODEs with constant coefficients

$$
\text { Ansatz: } \quad y_{p}(t)=\sum_{k=1}^{n} c_{k}(t) y_{k}(t)
$$

Then:

$$
\begin{aligned}
\dot{y}_{p}(t) & =\sum_{k=1}^{n} \dot{c}_{k}(t) y_{k}(t)+\sum_{k=1}^{n} c_{k}(t) \dot{y}_{k}(t) \\
& =\sum_{k=1}^{n} \dot{c}_{k}(t) y_{k}(t)+A \underbrace{\sum_{k=1}^{n} c_{k}(t) y_{k}(t)}_{y_{p}(t)}
\end{aligned}
$$

$$
\Rightarrow \quad \sum_{k=1}^{n} \dot{c}_{k}(t) y_{k}(t)=Y(t) \dot{c}(t)=f(t)
$$

Systems of linear ODEs with constant coefficients

$$
\text { Ansatz: } \quad y_{p}(t)=\sum_{k=1}^{n} c_{k}(t) y_{k}(t) .
$$

Then:

$$
\begin{aligned}
\dot{y}_{p}(t) & =\sum_{k=1}^{n} \dot{c}_{k}(t) y_{k}(t)+\sum_{k=1}^{n} c_{k}(t) \dot{y}_{k}(t) \\
& =\sum_{k=1}^{n} \dot{c}_{k}(t) y_{k}(t)+A \underbrace{\sum_{k=1}^{n} c_{k}(t) y_{k}(t)}_{y_{p}(t)}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\Rightarrow & \sum_{k=1}^{n} \dot{c}_{k}(t) y_{k}(t)=Y(t) \dot{c}(t) & =f(t) \\
\Rightarrow & & \dot{c}(t) & =Y(t)^{-1} f(t)
\end{array}
$$

Systems of linear ODEs with constant coefficients

$$
\text { Ansatz: } \quad y_{p}(t)=\sum_{k=1}^{n} c_{k}(t) y_{k}(t)
$$

Then:

$$
\begin{aligned}
& \dot{y}_{p}(t)= \\
&=\sum_{k=1}^{n} \dot{c}_{k}(t) y_{k}(t)+\sum_{k=1}^{n} \dot{c}_{k}(t) y_{k}(t) \dot{y}_{k}(t)+A \underbrace{\sum_{k=1}^{n} c_{k}(t) y_{k}(t)}_{y_{p}(t)} \\
& \Rightarrow \quad \sum_{k=1}^{n} \dot{c}_{k}(t) y_{k}(t)=Y(t) \dot{c}(t)=f(t) \\
& \Rightarrow \quad \dot{c}(t)=Y(t)^{-1} f(t) \\
& \Rightarrow \quad c(t)=\int Y(\tau)^{-1} f(\tau) d \tau+d, \quad d \in \mathbb{R}^{n} .
\end{aligned}
$$

(vector valued integral)

Higher order ODEs and systems

Single equation:

$$
u^{(n)}+a_{n-1} u^{(n-1)}+\ldots+a_{1} \dot{u}+a_{0} u=f
$$

Trick:

$$
y_{1}:=u, \quad y_{2}:=\dot{u}, \quad \ldots \quad y_{n}:=u^{(n-1)} .
$$

\Rightarrow first-order system:

$$
\dot{y}=\left(\begin{array}{c}
\dot{y}_{1} \\
\dot{y}_{2} \\
\vdots \\
\dot{y}_{n}
\end{array}\right)=\underbrace{\left(\begin{array}{ccccc}
0 & 1 & & & \\
& & \ddots & & \\
& & & 0 & 1 \\
-a_{0} & -a_{1} & \ldots & -a_{n-2} & -a_{n-1}
\end{array}\right)}_{A} y+\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
f
\end{array}\right)
$$

Higher order ODEs and systems

Single equation:

$$
u^{(n)}+a_{n-1} u^{(n-1)}+\ldots+a_{1} \dot{u}+a_{0} u=f
$$

Trick:

$$
y_{1}:=u, \quad y_{2}:=\dot{u}, \quad \ldots \quad y_{n}:=u^{(n-1)} .
$$

\Rightarrow first-order system:

$$
\dot{y}=\left(\begin{array}{c}
\dot{y}_{1} \\
\dot{y}_{2} \\
\vdots \\
\dot{y}_{n}
\end{array}\right)=\underbrace{\left(\begin{array}{ccccc}
0 & 1 & & & \\
& & \ddots & & \\
& & & 0 & 1 \\
-a_{0} & -a_{1} & \ldots & -a_{n-2} & -a_{n-1}
\end{array}\right)}_{A} y+\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
f
\end{array}\right)
$$

Observe: A has characteristic polynomial

$$
P(\lambda):=|\lambda I-A|=\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0} .
$$

Higher order ODEs and systems

General solution of the homogenous equation:
\Rightarrow If P has n different roots $\lambda_{k} \in \mathbb{C}$ then

$$
u_{h}(t)=\sum_{k=1}^{n} c_{k} e^{\lambda_{k} t} .
$$

(The eigenvalues of A do not need to be calculated for this. P can be directly read off from the equation!)

Higher order ODEs and systems

General solution of the homogenous equation:
\Rightarrow If P has n different roots $\lambda_{k} \in \mathbb{C}$ then

$$
u_{h}(t)=\sum_{k=1}^{n} c_{k} e^{\lambda_{k} t} .
$$

(The eigenvalues of A do not need to be calculated for this.
P can be directly read off from the equation!)
Particular solution for the inhomogenous equation:

- via variation of parameters or
- via ansatz methods as for equations of order 2

Higher order ODEs and systems

General solution of the homogenous equation:
\Rightarrow If P has n different roots $\lambda_{k} \in \mathbb{C}$ then

$$
u_{h}(t)=\sum_{k=1}^{n} c_{k} e^{\lambda_{k} t} .
$$

(The eigenvalues of A do not need to be calculated for this.
P can be directly read off from the equation!)
Particular solution for the inhomogenous equation:

- via variation of parameters or
- via ansatz methods as for equations of order 2

The method of rewriting as first-order system also works for systems of higher-order ODEs.

