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Systems of linear ODEs with constant coefficients

Let K = R or C, n ∈ N, A ∈ Rn×n.

Seek differentiable functions y : R −→ Kn such that

ẏ(t) = Ay(t), t ∈ R.

Remark: The solutions form a linear space. (Check!) It has dimension n.

Therefore, the general solution can be written as

y(t) =

n∑
k=1

ckyk(t), ck ∈ K,

where {y1, . . . , yn} is a linearly independent set of solutions (i.e. a basis of the solution space.)
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Systems of linear ODEs with constant coefficients

Assume now A diagonalizable, and let {v1, . . . , vn} be a basis of Kn consisting of eigenvectors
of A, i.e. Avk = λkvk, k = 1, . . . , n, or

A

 v1 . . . vn


︸ ︷︷ ︸

V

=

 v1 . . . vn


︸ ︷︷ ︸

V


λ1

. . .

λn


︸ ︷︷ ︸

D

,

i.e. A = V DV −1, and with z(t) = V −1y(t)

ż = V −1ẏ = V −1V DV −1y = Dz,

i.e. żk = λkzk, so zk = cke
λkt, and

y(t) = V z(t) =

n∑
k=1

ck vke
λkt︸ ︷︷ ︸

“modes”

(general solution).
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Systems of linear ODEs with constant coefficients

Complex eigenvalues: Let λk /∈ R be a complex eigenvalue of A with eigenvector vk. (Then
vk /∈ Rn !)

Then λ̄k ̸= λk is also an eigenvalue of A, and v̄k is a corresponding eigenvector. (Check!)

So vke
λkt and v̄ke

λ̄kt = vkeλkt are two linearly independent elements of the solution space.

Instead of these, we can also choose the real solutions

1

2
(vke

λkt + vkeλkt) = Re(vkeλkt),

1

2i
(vke

λkt − vkeλkt) = Im(vke
λkt).
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Systems of linear ODEs with constant coefficients

Initial value problems: Let further y0 ∈ Rn, t0 ∈ R be given.

Find a function y : R −→ Rn such that

ẏ = Ay, y(t0) = y0.

Solution: Determine the free constants ck in the general solution such that

n∑
k=1

ckyk(t0) = y0.
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Systems of linear ODEs with constant coefficients

Inhomogeneous systems: Let I ⊂ R be an interval, f : I −→ Rn continuous.

Find functions y : I −→ Rn such that

ẏ(t) = Ay(t) + f(t), t ∈ I. (i)

Theorem: Let yp : I −→ Rn a (“particular”) solution for (i)
and yh the general solution of the homogeneous system ẏh = Ayh.
Then the general solution of the inhomogeneous system (i) is given by

y(t) = yp(t) + yh(t), t ∈ I.

(Check!)
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Systems of linear ODEs with constant coefficients

Finding a particular solution:

“Variation of parameters”:

Let {y1, . . . , yn} be a basis for the solution space of the homogeneous system.

Ansatz:

yp(t) =

n∑
k=1

ck(t)yk(t) =

 y1(t) . . . yn(t)


︸ ︷︷ ︸

Y (t)


c1(t)

...

cn(t)


︸ ︷︷ ︸

c(t)

,

where c1(t), . . . cn(t) : I −→ R are to be determined.
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Systems of linear ODEs with constant coefficients

Ansatz: yp(t) =

n∑
k=1

ck(t)yk(t).
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Systems of linear ODEs with constant coefficients

Ansatz: yp(t) =

n∑
k=1

ck(t)yk(t).

Then:

ẏp(t) =

n∑
k=1

ċk(t)yk(t) +

n∑
k=1

ck(t)ẏk(t)
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Systems of linear ODEs with constant coefficients

Ansatz: yp(t) =

n∑
k=1

ck(t)yk(t).

Then:

ẏp(t) =

n∑
k=1

ċk(t)yk(t) +

n∑
k=1

ck(t)ẏk(t)

=

n∑
k=1

ċk(t)yk(t) + A

n∑
k=1

ck(t)yk(t)︸ ︷︷ ︸
yp(t)
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Systems of linear ODEs with constant coefficients

Ansatz: yp(t) =

n∑
k=1

ck(t)yk(t).

Then:

ẏp(t) =

n∑
k=1

ċk(t)yk(t) +

n∑
k=1

ck(t)ẏk(t)

=

n∑
k=1

ċk(t)yk(t) + A

n∑
k=1

ck(t)yk(t)︸ ︷︷ ︸
yp(t)

⇒
n∑

k=1

ċk(t)yk(t) = Y (t)ċ(t) = f(t)
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Systems of linear ODEs with constant coefficients

Ansatz: yp(t) =

n∑
k=1

ck(t)yk(t).

Then:

ẏp(t) =

n∑
k=1

ċk(t)yk(t) +

n∑
k=1

ck(t)ẏk(t)

=

n∑
k=1

ċk(t)yk(t) + A

n∑
k=1

ck(t)yk(t)︸ ︷︷ ︸
yp(t)

⇒
n∑

k=1

ċk(t)yk(t) = Y (t)ċ(t) = f(t)

⇒ ċ(t) = Y (t)−1f(t)
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Systems of linear ODEs with constant coefficients

Ansatz: yp(t) =

n∑
k=1

ck(t)yk(t).

Then:

ẏp(t) =

n∑
k=1

ċk(t)yk(t) +

n∑
k=1

ck(t)ẏk(t)

=

n∑
k=1

ċk(t)yk(t) + A

n∑
k=1

ck(t)yk(t)︸ ︷︷ ︸
yp(t)

⇒
n∑

k=1

ċk(t)yk(t) = Y (t)ċ(t) = f(t)

⇒ ċ(t) = Y (t)−1f(t)

⇒ c(t) =

∫
Y (τ)−1f(τ) dτ + d, d ∈ Rn.

(vector valued integral)
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Higher order ODEs and systems

Single equation:
u(n) + an−1u

(n−1) + . . .+ a1u̇+ a0u = f

Trick:
y1 := u, y2 := u̇, . . . yn := u(n−1).

⇒ first-order system:

ẏ =


ẏ1
ẏ2
...
ẏn

 =


0 1

. . .
0 1

−a0 −a1 . . . −an−2 −an−1


︸ ︷︷ ︸

A

y +


0
...
0
f


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Higher order ODEs and systems

Single equation:
u(n) + an−1u

(n−1) + . . .+ a1u̇+ a0u = f

Trick:
y1 := u, y2 := u̇, . . . yn := u(n−1).

⇒ first-order system:

ẏ =


ẏ1
ẏ2
...
ẏn

 =


0 1

. . .
0 1

−a0 −a1 . . . −an−2 −an−1


︸ ︷︷ ︸

A

y +


0
...
0
f



Observe: A has characteristic polynomial

P (λ) := |λI − A| = λn + an−1λ
n−1 + . . .+ a1λ+ a0.
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Higher order ODEs and systems

General solution of the homogenous equation:

⇒ If P has n different roots λk ∈ C then

uh(t) =

n∑
k=1

cke
λkt.

(The eigenvalues of A do not need to be calculated for this.
P can be directly read off from the equation!)
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Higher order ODEs and systems

General solution of the homogenous equation:

⇒ If P has n different roots λk ∈ C then

uh(t) =

n∑
k=1

cke
λkt.

(The eigenvalues of A do not need to be calculated for this.
P can be directly read off from the equation!)

Particular solution for the inhomogenous equation:

� via variation of parameters or

� via ansatz methods as for equations of order 2
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Higher order ODEs and systems

General solution of the homogenous equation:

⇒ If P has n different roots λk ∈ C then

uh(t) =

n∑
k=1

cke
λkt.

(The eigenvalues of A do not need to be calculated for this.
P can be directly read off from the equation!)

Particular solution for the inhomogenous equation:

� via variation of parameters or

� via ansatz methods as for equations of order 2

The method of rewriting as first-order system also works for systems of higher-order ODEs.


