Exercises Advanced Calculus (2DBN10) Lecture 4

1. Which of the following functions of the variable $t \in (0, \infty)$ have a Laplace transform? Why? (You are not expected to calculate it.)

a)
$$t^t$$
, **b)** $2^{(t^2)}$, **c)** $-e^{-t^3}$.

2. Let $f : [0, \infty) \longrightarrow \mathbb{R}$ be a bounded, piecewise continuous function with Laplace transform F. Let a > 0 be a fixed real number, and let $g : [0, \infty) \longrightarrow \mathbb{R}$ given by

$$g(t) = f(at).$$

Verify that the Laplace transform G of g is given by

$$G(s) = \frac{1}{a}F\left(\frac{s}{a}\right).$$

 Use partial fraction decomposition, rules of calculation, and the table given on the course page to find the functions t → f(t) whose Laplace transforms s → L[f](s) are given by

a)
$$\frac{s-9}{s^2-9}$$
, b) $\frac{1}{s^2(s+1)}$, c) $\frac{s^3+6s^2+14s}{(s+2)^4}$, d) $\frac{8}{s^4+4s^2}$, e) $\frac{e^{-s}}{s^4}$, f) $\frac{1-e^{-\pi s}}{s^2+4}$.

4. Use Laplace transform to solve the following initial value problems:

a)

$$y'' - 5y' + 6y = r(t),$$
 $y(0) = 1, y'(0) = -2,$

with r given by

$$r(t) = \begin{cases} 4e^t & 0 \le t \le 2, \\ 0 & t > 2. \end{cases}$$

b)

$$y'' + 9y = r(t),$$
 $y(0) = 0, y'(0) = 4,$

with r given by

$$r(t) = \begin{cases} 8\sin t & 0 \le t \le \pi, \\ 0 & t > \pi. \end{cases}$$