
Standard series expansions

All series given here are Taylor series around x0 = 0.

Geometric and related series
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From this we find directly:
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The radius of convergence of these series is 1.

Exponential and related series
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From this we find directly:
Even / odd terms:
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Real / Imaginary part of eix:
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These series converge for all x ∈ R.



Binomial series
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The radius of convergence of this series is 1.
For α ∈ N+, this series is a finite sum, found also by the binomial theorem.

For α = −1 we get the geometric series.

Addition theorems for trigonometric functions

For α, β ∈ R we have
ei(α+β) = eiαeiβ ,

so
cos(α+ β) + i sin(α+ β) = (cosα+ i sinα)(cosβ + i sinβ).

Expanding and splitting in real and imaginary part yields

cos(α+ β) = cosα cosβ − sinα sinβ,

sin(α+ β) = cosα sinβ + sinα cosβ.


