Multiindex notation

Multiindex:

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{d}, \quad \alpha_{i} \in \mathbb{N}, \quad|\alpha|=\alpha_{1}+\ldots+\alpha_{d}
$$

(Products of) powers:

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: \quad \mathbf{x}^{\alpha}:=x_{1}^{\alpha_{1}} \ldots x_{d}^{\alpha_{d}}
$$

Polynoms of degree $\leq n$:

$$
p(\mathbf{x})=\sum_{|\alpha| \leq n} c_{\alpha} \mathbf{x}^{\alpha}=\sum_{|\alpha| \leq n} \tilde{c}_{\alpha}\left(\mathbf{x}-\mathbf{x}_{0}\right)^{\alpha} .
$$

Derivatives:

$$
\partial^{\alpha} f=\partial_{x_{1}}^{\alpha_{1}} \ldots \partial_{x_{d}}^{\alpha_{d}} f
$$

for f sufficiently smooth.
(Theorem: Order of partial derivatives is interchangeable in that case.)

Calculation rules

Define for $\alpha, \beta \in \mathbb{N}^{d}$:

$$
\alpha!=\alpha_{1}!\ldots \alpha_{d}!\quad \beta \leq \alpha \Leftrightarrow \beta_{i} \leq \alpha_{i}, i=1, \ldots, d, \quad \alpha-\beta=\left(\alpha_{1}-\beta_{1}, \ldots, \alpha_{d}-\beta_{d}\right) \text { als } \beta \leq \alpha
$$

Then (check!):

- Binomial theorem:

$$
(\mathbf{x}+\mathbf{y})^{\alpha}=\sum_{\beta \leq \alpha} \underbrace{\frac{\alpha!}{\beta!(\alpha-\beta)!}}_{\binom{\alpha}{\beta}} \mathbf{x}^{\beta} \mathbf{y}^{\alpha-\beta}, \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}, \alpha \in \mathbb{N}^{d}
$$

- Derivatives of powers:

$$
\partial^{\beta} \mathbf{x}^{\alpha}=\frac{\alpha!}{(\alpha-\beta)!} \mathbf{x}^{\alpha-\beta}, \quad \beta \leq \alpha, \alpha, \beta \in \mathbb{N}^{d} .
$$

- Higher order directional derivatives:

$$
\partial_{\mathbf{v}}^{k} f=\sum_{|\alpha|=k} \frac{k!}{\alpha!} \mathbf{v}^{\alpha} \partial^{\alpha} f .
$$

Taylor polynomial

Let $f: D\left(\subset \mathbb{R}^{d}\right) \longrightarrow \mathbb{R}$ sufficiently often differentiable, $\mathbf{a} \in D, n \in \mathbb{N}$. Find polynomial $T: \mathbb{R}^{d} \longrightarrow \mathbb{R}$ such that

$$
\partial^{\beta} T(\mathbf{a})=\partial^{\beta} f(\mathbf{a}), \quad 0 \leq|\beta| \leq n .
$$

Taylor polynomial

Let $f: D\left(\subset \mathbb{R}^{d}\right) \longrightarrow \mathbb{R}$ sufficiently often differentiable, $\mathbf{a} \in D, n \in \mathbb{N}$. Find polynomial $T: \mathbb{R}^{d} \longrightarrow \mathbb{R}$ such that

$$
\partial^{\beta} T(\mathbf{a})=\partial^{\beta} f(\mathbf{a}), \quad 0 \leq|\beta| \leq n .
$$

Ansatz:

$$
T(\mathbf{x})=\sum_{|\alpha| \leq n} c_{\alpha}(\mathbf{x}-\mathbf{a})^{\alpha}
$$

Taylor polynomial

Let $f: D\left(\subset \mathbb{R}^{d}\right) \longrightarrow \mathbb{R}$ sufficiently often differentiable, $\mathbf{a} \in D, n \in \mathbb{N}$. Find polynomial $T: \mathbb{R}^{d} \longrightarrow \mathbb{R}$ such that

$$
\partial^{\beta} T(\mathbf{a})=\partial^{\beta} f(\mathbf{a}), \quad 0 \leq|\beta| \leq n .
$$

Ansatz:

$$
T(\mathbf{x})=\sum_{|\alpha| \leq n} c_{\alpha}(\mathbf{x}-\mathbf{a})^{\alpha}
$$

Differentiate:

$$
\partial^{\beta} T(\mathbf{x})=\sum_{|\alpha| \leq n, \alpha \geq \beta} c_{\alpha} \frac{\alpha!}{(\alpha-\beta)!}(\mathbf{x}-\mathbf{a})^{\alpha-\beta} .
$$

Taylor polynomial

Let $f: D\left(\subset \mathbb{R}^{d}\right) \longrightarrow \mathbb{R}$ sufficiently often differentiable, $\mathbf{a} \in D, n \in \mathbb{N}$. Find polynomial $T: \mathbb{R}^{d} \longrightarrow \mathbb{R}$ such that

$$
\partial^{\beta} T(\mathbf{a})=\partial^{\beta} f(\mathbf{a}), \quad 0 \leq|\beta| \leq n .
$$

Ansatz:

$$
T(\mathbf{x})=\sum_{|\alpha| \leq n} c_{\alpha}(\mathbf{x}-\mathbf{a})^{\alpha}
$$

Differentiate:

$$
\partial^{\beta} T(\mathbf{x})=\sum_{|\alpha| \leq n, \alpha \geq \beta} c_{\alpha} \frac{\alpha!}{(\alpha-\beta)!}(\mathbf{x}-\mathbf{a})^{\alpha-\beta} .
$$

Choose $\mathrm{x}=\mathrm{a}$:

$$
\partial^{\beta} T(\mathbf{a})=c_{\beta} \beta!=\partial^{\beta} f(\mathbf{a}) \quad \Rightarrow \quad c_{\beta}=\frac{\partial^{\beta} f(\mathbf{a})}{\beta!} .
$$

Taylor polynomial

Let $f: D\left(\subset \mathbb{R}^{d}\right) \longrightarrow \mathbb{R}$ sufficiently often differentiable, $\mathbf{a} \in D, n \in \mathbb{N}$. Find polynomial $T: \mathbb{R}^{d} \longrightarrow \mathbb{R}$ such that

$$
\partial^{\beta} T(\mathbf{a})=\partial^{\beta} f(\mathbf{a}), \quad 0 \leq|\beta| \leq n .
$$

Ansatz:

$$
T(\mathbf{x})=\sum_{|\alpha| \leq n} c_{\alpha}(\mathbf{x}-\mathbf{a})^{\alpha}
$$

Differentiate:

$$
\partial^{\beta} T(\mathbf{x})=\sum_{|\alpha| \leq n, \alpha \geq \beta} c_{\alpha} \frac{\alpha!}{(\alpha-\beta)!}(\mathbf{x}-\mathbf{a})^{\alpha-\beta} .
$$

Choose $\mathrm{x}=\mathrm{a}$:

$$
\partial^{\beta} T(\mathbf{a})=c_{\beta} \beta!=\partial^{\beta} f(\mathbf{a}) \quad \Rightarrow \quad c_{\beta}=\frac{\partial^{\beta} f(\mathbf{a})}{\beta!} .
$$

So

$$
T(\mathbf{x})=\sum_{|\alpha| \leq n} \frac{\partial^{\alpha} f(\mathbf{a})}{\alpha!}(\mathbf{x}-\mathbf{a})^{\alpha}
$$

(compare to 1D case!)

Taylor's theorem

How large is the approximation error?

$$
f(\mathbf{x})=T_{n, a}(\mathbf{x})+\ldots ?
$$

Theorem (Taylor): Suppose $\mathbf{x} \in D$, and the line segment $[\mathbf{a}, \mathbf{x}]$ lies completely in D. Set $\mathbf{h}=\mathbf{x}-\mathbf{a}$. Then there is a $\theta \in(0,1)$ such that

$$
f(\mathbf{x})=T_{n, a}(\mathbf{x})+\frac{1}{(n+1)!} \partial_{\mathrm{h}}^{n+1} f(\mathbf{a}+\theta \mathbf{h}) .
$$

Proof: Apply Taylor's theorem in 1D and the chain rule to the function $\phi:[0,1] \longrightarrow \mathbb{R}$ given by

$$
\phi(t):=f(\mathbf{a}+t \mathbf{h}) .
$$

