Solutions final test Advanced Calculus (2DBN10) november 2017

No rights can be derived from these solutions.

1. a) Characteristic polynomial has zeroes $\lambda_{1}=-1, \lambda_{2,3}=-2 \pm i$. Solution to corresponding homogeneous equation:

$$
y_{H}(t)=C_{1} e^{-t}+e^{-2 t}\left(C_{2} \cos (t)+C_{3} \sin (t)\right)
$$

Ansatz to find a particular solution to the inhomogeneous equation:

$$
y_{P}(t)=A t e^{-t}+B e^{t}
$$

Inserting this into the equation yields $A=1 / 2, B=1 / 20$. So the general solution to the inhomogeneous equation is

$$
y(t)=\frac{1}{2} t e^{-t}+\frac{1}{20} e^{t}+C_{1} e^{-t}+e^{-2 t}\left(C_{2} \cos (t)+C_{3} \sin (t)\right)
$$

b) On the interval $[2017, \infty)$, any solution u satsifies the homogeneous equation

$$
u^{\prime \prime \prime}(t)+5 u^{\prime \prime}(t)+9 u^{\prime}(t)+5 u(t)=0
$$

So there are constants $C_{1,2,3}$ such that

$$
u(t)=C_{1} e^{-t}+e^{-2 t}\left(C_{2} \cos (t)+C_{3} \sin (t)\right.
$$

and therefore $\lim _{t \rightarrow \infty} u(t)=0$.
2. a) According to the rules for calculating Laplace transforms, we get

$$
\left(s^{3}-3 s^{2}+3 s-1\right) Y(s)-s^{2}+3 s-3=0
$$

and thus

$$
Y(s)=\frac{s^{2}-3 s+3}{s^{3}-3 s^{2}+3 s-1}
$$

b) Using partial fraction decomposition,

$$
Y(s)=\frac{1}{s-1}-\frac{1}{(s-1)^{2}}+\frac{1}{(s-1)^{3}}
$$

By inverse Laplace transform we get

$$
y(t)=e^{t}\left(1-t+\frac{t^{2}}{2}\right)
$$

3. a) We have

$$
\begin{aligned}
& f(x, y)=1 \Leftrightarrow(x / \sqrt{2})^{2}-(y / \sqrt{2})^{2}=1 \text { (hyperbola) } \\
& f(x, y)=0 \Leftrightarrow x= \pm 1 \\
& f(x, y)=1 / 2 \Leftrightarrow(x /(1 / \sqrt{2}))^{2}+y^{2}=1 \text { (ellipse) }
\end{aligned}
$$

Sketch:

b) $\nabla f(2,1)=(2,-3 / 2)^{\top}$, so an equation is $4(x-2)-3(y-1)=0$.
c) $z=\frac{3}{2}+2(x-2)-\frac{3}{2}(y-1)$.
4. We have
$f(x, y, z)=\frac{-\cos (z-\pi)}{1+(x-1)+y}$
$=\left(-1+\frac{(z-\pi)^{2}}{2}+O\left((z-\pi)^{4}\right)\right)\left(1-((x-1)+y)+((x-1)+y)^{2}+O\left(\left((x-1)^{2}+y^{2}\right)^{3 / 2}\right)\right)$
and therefore, by expanding and gathering the terms up to order 2 , for the Taylor polynomial

$$
T_{2}(x, y, z)=-1+(x-1)+y-(x-1)^{2}-2(x-1) y-y^{2}+\frac{(z-\pi)^{2}}{2}
$$

This result can also be obtained using the standard formula and calculating all necessary partial derivatives in $(1,0, \pi)$.
5. We have

$$
\nabla f(x, y)=\binom{-\frac{1}{x^{2}}+\frac{9}{(4-x-y)^{2}}}{-\frac{4}{y^{2}}+\frac{9}{(4-x-y)^{2}}}
$$

so $\nabla f(x, y)=0$ if and only if

$$
y^{2}=4 x^{2}=\frac{4}{9}(4-x-y)^{2} .
$$

We distingush the following cases:
I. $y=2 x$: Then $9 x^{2}=(4-3 x)^{2}=9 x^{2}-24 x+16$. So $x_{1}=2 / 3$ and $y_{1}=4 / 3$.
II. $y=-2 x$: then $9 x^{2}=(4+x)^{2}$. This quadratic equation has the solutions $x_{2}=-1$ en $x_{3}=2$. The corresponding critical points are $\left(x_{2}, y_{2}\right)=(-1,2)$ en $\left(x_{3}, y_{3}\right)=(2,-4)$.
The second derivative test shows that $\left(x_{1}, y_{1}\right)$ is a local minimum, and that the two other critical points are saddle points.
6. As f takes positive values for $x>0, y>0, z>0$, the maximum is positive. If it is taken in any point $\left(x_{0}, y_{0}, z_{0}\right)$ in the given ellipsoid, then it is taken in $\left(\left|x_{0}\right|,\left|y_{0}\right|,\left|z_{0}\right|\right)$ as well, as this point is also on the ellipsoid and f has the same value there. The maximum is positive, therefore $\left|x_{0}\right|>0,\left|y_{0}\right|>0,\left|z_{0}\right|>0$.
The Lagrange equations are

$$
\left(\begin{array}{c}
y^{2} z \\
2 x y z \\
x y^{2}
\end{array}\right)+\lambda\left(\begin{array}{l}
2 x \\
6 y \\
4 z
\end{array}\right)=0
$$

with only one solution satisfying $x>0, y>0, z>0$, namely, $(4, \sqrt{32 / 3}, \sqrt{8})$. This gives the maximal value $128 \sqrt{8} / 3$.
(This is a maximum, as $(4, \sqrt{32 / 3}, \sqrt{8})$ is the only candidate point for a global extremum on the set $x \geq 0, y \geq 0, z \geq 0, x^{2}+3 y^{2}+2 z^{2}=64$ that satisfies $f>0$, and f must take its maximum on this set. $)^{1}$
7. Let $F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be given by

$$
F(t, x, y)=\binom{\sin (x t)+x+y}{\cos (y t)+x+2 y+t}
$$

a) The point $\left(t_{0}, x_{0}, y_{0}\right)$ has to satisfy the equations: $F\left(t_{0}, x_{0}, y_{0}\right)=(02)^{\top}$, or

$$
\begin{aligned}
\sin \left(x_{0} t_{0}\right)+x_{0}+y_{0} & =0 \\
\cos \left(y_{0} t_{0}\right)+x_{0}+2 y_{0}+t_{0} & =2
\end{aligned}
$$

Furthermore, the Jacobi matrix

$$
\binom{\partial F}{\partial(x, y)}\left(t_{0}, x_{0}, y_{0}\right)=\left(\begin{array}{cc}
t_{0} \cos \left(x_{0} t_{0}\right)+1 & 1 \\
1 & -t_{0} \sin \left(y_{0} t_{0}\right)+2
\end{array}\right)
$$

has to be regular.
b) We have $F(1,0,0)=(02)^{\top}$,

$$
\left(\frac{\partial F}{\partial(x, y)}\right)(1,0,0)=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

and this matrix is regular. Therefore, the assumptions of the Implicit Function theorem are satisfied. Furthermore,

$$
\begin{aligned}
\binom{\phi^{\prime}(1)}{\psi^{\prime}(1)} & =-\left(\left(\frac{\partial F}{\partial(x, y)}\right)(1,0,0)\right)^{-1} \partial_{t} F(1,0,0) \\
& =-\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)^{-1}\binom{0}{1}=\binom{1 / 3}{-2 / 3}
\end{aligned}
$$

(This can also be calculated via "implicit differentiation".)
8.

$$
\operatorname{Vol}(K)=\iiint_{K} d V=\int_{-1}^{2} \int_{y^{2}}^{y+2} \int_{0}^{x} d z d x d y=36 / 5
$$

[^0]
[^0]: ${ }^{1}$ This argument is not part of the course contents, and therefore not expected as part of the solution.

