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Aan deze oplossingen kunnen geen rechten worden ontleend.

1. a) According to the properties of the Laplace transform, Y1, Y2 are solutions to the linear
system (

s− 2 1
−1 s− 2

)(
Y1(s)
Y2(s)

)
=

(
1
1
s

)
.

This system has the solution

Y1(s) =
s2 − 2s− 1

s((s− 2)2 + 1)
, Y2(s) =

2s− 2

s((s− 2)2 + 1)
.

b) Partial fraction decomposition and rewriting conveniently:

Y1(s) =
1

5

(
−1

s
+

6s− 14

(s− 2)2 + 1

)
=

1

5

(
−1

s
+

6(s− 2)− 2

(s− 2)2 + 1

)
,

Y2(s) =
2

5

(
−1

s
+

s+ 1

(s− 2)2 + 1

)
=

2

5

(
−1

s
+

(s− 2) + 3

(s− 2)2 + 1

)
.

So by inverse Laplace transform

y1(t) =
1

5

(
−1 + 6e2t cos t− 2e2t sin t

)
, y2(t) =

2

5

(
−1 + e2t cos t+ 3e2t sin t

)
.

2. Because of
∂y∂xf(x, y) = x = ∂x∂yf(x, y) = 2ax+ by

we find a = 1
2 , b = 0.

3. a) The contour lines are given by x− e2y = C, or equivalently y = 1
2 ln(x− C).
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b) The contour line through (0, 0) has equation y = 1
2 ln(x+1), so the tangent has equation

y = x
2 .

c) Observe that

x− e2y = (x− 1)− (e2y − 1) = (x− 1)− 2y − 2y2 +O(y3),

so

f(x, y) = 1 + (x− 1)− 2y − 2y2 +
(
(x− 1)− 2y − 2y2

)2
+O(((x− 1)2 + y2)3/2)

= 1 + (x− 1)− 2y + (x− 1)2 − 4(x− 1)y + 2y2 +O((x− 1)2 + y2)3/2).

The second order Taylor polynomial is given by the last expression without the higher
order remainder term.

Alternatively, the Taylor polynomial can be found by using g(0) = 1, g′(0) = 1, g′′(0) =
2 and the chain rule to calculate all partial derivatives of f up to order 2 in (1, 0) and
applying the standard formula.
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4. Critical points (x, y) have to satisfy cosx = cos y = − cos(x + y), so if (x, y) ∈ D it follows
that x = y and further cosx+cos(2x) = cosx+2 cos2 x−1 = 0, so cosx = 1/2 or cosx = −1
where the second possibility is in contradiction with x ∈ [0, π/2]. So x = π/3, and the only
critical point of f in D is (π/3, π/3) with function value f(π/3, π/3) = 3

2

√
3.

Due to the symmetry in x and y, it is sufficient to discuss the boundary components
{(x, 0) |x ∈ [0, π/2]} and {(x, π/2) |x ∈ [0, π/2]}. We find

f(x, 0) = 2 sinx ≤ 2 <
3

2

√
3,

f(x, π/2) = sinx+ 1 + cosx ≤
√

2 + 1 <
3

2

√
3.

So the global maximum value on D is 3
2

√
3.

5. The Lagrange equations are  1
z
1
z

−x+yz2

 = λ

 2x
2y

2(z − 2)

 .

This implies x = y 6= 0 and λ = 1/(2xz). With this we get further −2x2 = z(z − 2) and
from the restriction

−z(z − 2) + (z − 2)2 = 1,

so z = 3/2, x = y = ±
√

3/8. The maximal value is taken in (
√

3/8,
√

3/8, 3/2) and is√
2/3.

6. Let F : R4 −→ R2 be defined by

F (x, y, u, v) =

(
x2 + y2 + u2 + v2 − 4
x+ y2 + u3 + v4 − 4

)
By the Implicit Function theorem, as F is continuously differentiable, F (1, 1, 1, 1) = 0, and

D(x,y)F (1, 1, 1, 1) =

(
2 2
1 2

)
is regular, the system F (x, y, u, v) = (0, 0)> is locally solvable in the form x = φ(u, v),
y = ψ(u, v) near (1, 1, 1, 1). Further(

∂uφ ∂vφ
∂uψ ∂vψ

)
(1, 1) = D(u,v)

(
φ
ψ

)
(1, 1) = −D(x,y)F (1, 1, 1, 1)−1D(u,v)F (1, 1, 1, 1)

= −
(

1 −1
− 1

2 1

)(
2 2
3 4

)
=

(
1 2
−2 −3

)
7. ∫ ∫ ∫

K

x dV =

∫ 1

0

∫ 1−z

0

∫ 1−z

0

x dxdydz =
1

8
.

8. Cylindrical coordinates:∫ ∫ ∫
K

ze−(x2 + y2 + z2) dV =

∫ 2π

0

∫ ∞
0

∫ 1

0

re−r
2
ze−z

2
dV =

π

2
(1− e−1).
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