Solutions final test Advanced Calculus (2DBN10) november 2018

No rights can be derived from these solutions.

a) The equation is homogeneous and has charachteristic equation λ⁴ + 1 = 0 with the four solutions λ_{1,2} = 1/√2(1 ± i), λ_{3,4} = 1/√2(-1 ± i), and therefore the general solution

$$y(t) = e^{t/\sqrt{2}} \left(C_1 \cos(t/\sqrt{2}) + C_2 \sin(t/\sqrt{2}) \right) + e^{-t/\sqrt{2}} \left(C_3 \cos(t/\sqrt{2}) + C_4 \sin(t/\sqrt{2}) \right).$$

If at least one of the constants C_j is not zero then y is unbounded, hence y is not periodic.

b) Ansatz: $u(t) = (At + B)e^t$. Filling this in yields $2At + 2B + 4A \equiv t$, so A = 1/2, B = -1, so

$$u(t) = \left(\frac{t}{2} - 1\right)e^t.$$

a) According to the properties of the Laplace transform, Y₁, Y₂ are solutions to the linear system

$$\begin{pmatrix} s-1 & -3 \\ -3 & s-1 \end{pmatrix} \begin{pmatrix} Y_1(s) \\ Y_2(s) \end{pmatrix} = \begin{pmatrix} \frac{1}{s-1} \\ 2 \end{pmatrix}.$$

This system has the solution

$$Y_1(s) = \frac{7}{(s-1)^2 - 9}, \quad Y_2(s) = \frac{2(s-1)^2 + 3}{(s-1)((s-1)^2 - 9)}.$$

b) Partial fraction decomposition:

$$Y_1(s) = \frac{7}{6} \frac{1}{s-4} - \frac{7}{6} \frac{1}{s+2},$$

$$Y_2(s) = \frac{7}{6} \frac{1}{s-4} - \frac{1}{3} \frac{1}{s-1} + \frac{7}{6} \frac{1}{s+2}$$

So by inverse Laplace transform

$$y_1(t) = \frac{7}{6}(e^{4t} - e^{-2t}), \qquad y_2(t) = \frac{7}{6}(e^{4t} + e^{-2t}) - \frac{1}{3}e^t.$$

3. a) The level curves are given by $f(x,y) = c, c \neq 0$, or equivalently $x = c^{-1} \frac{1}{y^2 + 1}$.

b) We have $f_x(1,1) = f_y(1,1) = -\frac{1}{2}$, so the tangent plane is given by

$$z = \frac{1}{2}(1 - (x - 1) - (y - 1))$$

c) The tangent line should run through (1,1) and be orthogonal to $\nabla f(1,1) = -(1/2,1/2)$, so an equation is

$$(x-1) + (y-1) = 0.$$

d) We can use the 1D Taylor expansions

$$\frac{1}{x} = \frac{1}{1+(x-1)} = 1 - (x-1) + (x-1)^2 + \dots,$$

$$\frac{1}{y^2+1} = \frac{1}{2} \frac{1}{1+\left((y-1)+\frac{(y-1)^2}{2}\right)} = \frac{1}{2} \left(1 - (y-1) + \frac{1}{2}(y-1)^2 + \dots\right)$$

to find the second order Taylor polynomial

$$p(x,y) = \frac{1}{2}(1 - (x - 1) - (y - 1) + (x - 1)^2 + \frac{1}{2}(y - 1)^2 + (x - 1)(y - 1)).$$

Alternatively, the Taylor polynomial can be obtained from the standard formula.

4. We have

$$g'(1) = f_x(1,1) - f_y(1,1) = 3,$$

$$h'(1) = f_x(1,1) + \frac{1}{2}f_y(1,1) = 0.$$

We can solve this system for the two unknowns $f_x(1,1)$ and $f_y(1,1)$ and get

$$\nabla f(1,1) = (f_x(1,1), f_y(1,1))^\top = (1,-2)^\top.$$

5. Critical points in D are found from solving the equation

$$\nabla f(x,y) = \left(\begin{array}{c} 12x^2 + 4y^2 + 2x\\ 8xy \end{array}\right) = 0.$$

From the second equation we get that x = 0 or y = 0.

1. If x = 0 then y = 0 from the first equation, (0, 0) is a critical point in D with f(0, 0) = 0. 2. If $x \neq 0$ then y = 0 and from the first equation we get x = -1/6. Indeed (-1/6, 0) is a critical point in D with f(-1/6, 0) = 1/108.

The boundary points satisfy $x^2 + y^2 = 1$, $x \in [-1, 1]$, and therefore $f(x, y) = g(x) := 4x + x^2$. It is easy to see that the minimal and maximal value of g on [-1, 1] are taken in -1 and 1, respectively, with function values g(-1) = f(-1, 0) = -3 and g(1) = f(1, 0) = 5. Comparison with the values in the critical points in D shows that these are the global extrema of f on D.

6. The Lagrange equations are

$$\begin{pmatrix} z \\ y \\ x-1 \end{pmatrix} = \lambda \begin{pmatrix} 2x \\ y \\ 2z \end{pmatrix}, \qquad x^2 + \frac{y^2}{2} + z^2 = 1$$

From $y = \lambda y$ it follows that y = 0 or $\lambda = 1$.

1. If y = 0 then $z^2 = 2\lambda xz = x^2 - x$ implies $2x^2 - x = 1$, so $x_1 = -1/2$, $x_2 = 1$. The corresponding points are $(-1/2, 0, \pm\sqrt{3}/2)$ and (1, 0, 0) with function values

$$f(-1/2, 0, \pm\sqrt{3}/2) = \mp \frac{3}{4}\sqrt{3}, \qquad f(1, 0, 0) = 0.$$

2. If $\lambda = 1$ then x - 1 = 2z = 4x, so x = -1/3, z = -2/3. The corresponding points are $(-1/3, \pm \frac{2}{3}\sqrt{2}, -2/3)$ with function values

$$f(-1/3, \pm \frac{2}{3}\sqrt{2}, -2/3) = 4/3.$$

This is the global maximum, while the global minimum is $-\frac{3}{4}\sqrt{3}$.

7. a) Define $F : \mathbb{R}^3 \longrightarrow \mathbb{R}$ by

$$F(x, y, z) = z + xe^{yz}.$$

F is differentiable, F(0,0,0) = 0, and $\partial_z F(0,0,0) = 1 \neq 0$. So the Implicit Function theorem can be applied and yields the statement.

b) The 1D Chain rule gives

$$\begin{aligned} \phi_x(x,y) + (1 + xy\phi_x(x,y))e^{y\phi(x,y)} &= 0, \\ \phi_y(x,y) + x(\phi(x,y) + y\phi_y(x,y))e^{y\phi(x,y)} &= 0, \\ \phi_{xx}(x,y) + (2y\phi_x(x,y) + xy\phi_{xx}(x,y) + xy^2\phi_x(x,y)^2)e^{y\phi(x,y)} &= 0. \end{aligned}$$

Filling in (x,y) = (0,0) yields $\phi_x(0,0) = -1$, $\phi_y(0,0) = \phi_{xx}(0,0) = 0$, and the linearization

$$p(x,y) = -x.$$

8. Spherical coordinates:

$$\iiint_{K} dV = \int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{1/\cos\phi}^{2} \rho^{2} \sin\phi \, d\rho d\phi d\theta = \frac{2\pi}{3} \int_{0}^{\pi/4} \sin\phi \left(8 - \frac{1}{\cos^{3}\phi}\right) \, d\phi$$
$$\stackrel{u=\cos\phi}{=} \frac{2\pi}{3} \int_{\sqrt{2}/2}^{1} (8 - u^{-3}) \, du = \pi \left(5 - \frac{8}{3}\sqrt{2}\right)$$