Solutions final test Advanced Calculus (2DBN10) november 2018

No rights can be derived from these solutions.

1. a) The equation is homogeneous and has charachteristic equation $\lambda^{4}+1=0$ with the four solutions $\lambda_{1,2}=\frac{1}{\sqrt{2}}(1 \pm i), \lambda_{3,4}=\frac{1}{\sqrt{2}}(-1 \pm i)$, and therefore the general solution

$$
y(t)=e^{t / \sqrt{2}}\left(C_{1} \cos (t / \sqrt{2})+C_{2} \sin (t / \sqrt{2})\right)+e^{-t / \sqrt{2}}\left(C_{3} \cos (t / \sqrt{2})+C_{4} \sin (t / \sqrt{2})\right)
$$

If at least one of the constants C_{j} is not zero then y is unbounded, hence y is not periodic.
b) Ansatz: $u(t)=(A t+B) e^{t}$. Filling this in yields $2 A t+2 B+4 A \equiv t$, so $A=1 / 2$, $B=-1$, so

$$
u(t)=\left(\frac{t}{2}-1\right) e^{t}
$$

2. a) According to the properties of the Laplace transform, Y_{1}, Y_{2} are solutions to the linear system

$$
\left(\begin{array}{cc}
s-1 & -3 \\
-3 & s-1
\end{array}\right)\binom{Y_{1}(s)}{Y_{2}(s)}=\binom{\frac{1}{s-1}}{2}
$$

This system has the solution

$$
Y_{1}(s)=\frac{7}{(s-1)^{2}-9}, \quad Y_{2}(s)=\frac{2(s-1)^{2}+3}{(s-1)\left((s-1)^{2}-9\right)}
$$

b) Partial fraction decomposition:

$$
\begin{aligned}
Y_{1}(s) & =\frac{7}{6} \frac{1}{s-4}-\frac{7}{6} \frac{1}{s+2} \\
Y_{2}(s) & =\frac{7}{6} \frac{1}{s-4}-\frac{1}{3} \frac{1}{s-1}+\frac{7}{6} \frac{1}{s+2}
\end{aligned}
$$

So by inverse Laplace transform

$$
y_{1}(t)=\frac{7}{6}\left(e^{4 t}-e^{-2 t}\right), \quad y_{2}(t)=\frac{7}{6}\left(e^{4 t}+e^{-2 t}\right)-\frac{1}{3} e^{t}
$$

3. a) The level curves are given by $f(x, y)=c, c \neq 0$, or equivalently $x=c^{-1} \frac{1}{y^{2}+1}$.

b) We have $f_{x}(1,1)=f_{y}(1,1)=-\frac{1}{2}$, so the tangent plane is given by

$$
z=\frac{1}{2}(1-(x-1)-(y-1))
$$

c) The tangent line should run through $(1,1)$ and be orthogonal to $\nabla f(1,1)=-(1 / 2,1 / 2)$, so an equation is

$$
(x-1)+(y-1)=0
$$

d) We can use the 1D Taylor expansions

$$
\begin{aligned}
\frac{1}{x} & =\frac{1}{1+(x-1)}=1-(x-1)+(x-1)^{2}+\ldots \\
\frac{1}{y^{2}+1} & =\frac{1}{2} \frac{1}{1+\left((y-1)+\frac{(y-1)^{2}}{2}\right)}=\frac{1}{2}\left(1-(y-1)+\frac{1}{2}(y-1)^{2}+\ldots\right)
\end{aligned}
$$

to find the second order Taylor polynomial

$$
p(x, y)=\frac{1}{2}\left(1-(x-1)-(y-1)+(x-1)^{2}+\frac{1}{2}(y-1)^{2}+(x-1)(y-1)\right) .
$$

Alternatively, the Taylor polynomial can be obtained from the standard formula.
4. We have

$$
\begin{aligned}
g^{\prime}(1) & =f_{x}(1,1)-f_{y}(1,1)=3 \\
h^{\prime}(1) & =f_{x}(1,1)+\frac{1}{2} f_{y}(1,1)=0
\end{aligned}
$$

We can solve this system for the two unknowns $f_{x}(1,1)$ and $f_{y}(1,1)$ and get

$$
\nabla f(1,1)=\left(f_{x}(1,1), f_{y}(1,1)\right)^{\top}=(1,-2)^{\top}
$$

5. Critical points in D are found from solving the equation

$$
\nabla f(x, y)=\binom{12 x^{2}+4 y^{2}+2 x}{8 x y}=0
$$

From the second equation we get that $x=0$ or $y=0$.

1. If $x=0$ then $y=0$ from the first equation, $(0,0)$ is a critical point in D with $f(0,0)=0$. 2. If $x \neq 0$ then $y=0$ and from the first equation we get $x=-1 / 6$. Indeed $(-1 / 6,0)$ is a critical point in D with $f(-1 / 6,0)=1 / 108$.
The boundary points satisfy $x^{2}+y^{2}=1, x \in[-1,1]$, and therefore $f(x, y)=g(x):=$ $4 x+x^{2}$. It is easy to see that the minimal and maximal value of g on $[-1,1]$ are taken in -1 and 1 , respectively, with function values $g(-1)=f(-1,0)=-3$ and $g(1)=f(1,0)=5$. Comparison with the values in the critical points in D shows that these are the global extrema of f on D.
2. The Lagrange equations are

$$
\left(\begin{array}{c}
z \\
y \\
x-1
\end{array}\right)=\lambda\left(\begin{array}{c}
2 x \\
y \\
2 z
\end{array}\right), \quad x^{2}+\frac{y^{2}}{2}+z^{2}=1
$$

From $y=\lambda y$ it follows that $y=0$ or $\lambda=1$.

1. If $y=0$ then $z^{2}=2 \lambda x z=x^{2}-x$ implies $2 x^{2}-x=1$, so $x_{1}=-1 / 2, x_{2}=1$. The corresponding points are $(-1 / 2,0, \pm \sqrt{3} / 2)$ and $(1,0,0)$ with function values

$$
f(-1 / 2,0, \pm \sqrt{3} / 2)=\mp \frac{3}{4} \sqrt{3}, \quad f(1,0,0)=0
$$

2. If $\lambda=1$ then $x-1=2 z=4 x$, so $x=-1 / 3, z=-2 / 3$. The corresponding points are $\left(-1 / 3, \pm \frac{2}{3} \sqrt{2},-2 / 3\right)$ with function values

$$
f\left(-1 / 3, \pm \frac{2}{3} \sqrt{2},-2 / 3\right)=4 / 3
$$

This is the global maximum, while the global minimum is $-\frac{3}{4} \sqrt{3}$.
7. a) Define $F: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ by

$$
F(x, y, z)=z+x e^{y z}
$$

F is differentiable, $F(0,0,0)=0$, and $\partial_{z} F(0,0,0)=1 \neq 0$. So the Implicit Function theorem can be applied and yields the statement.
b) The 1D Chain rule gives

$$
\begin{aligned}
\phi_{x}(x, y)+\left(1+x y \phi_{x}(x, y)\right) e^{y \phi(x, y)} & =0 \\
\phi_{y}(x, y)+x\left(\phi(x, y)+y \phi_{y}(x, y)\right) e^{y \phi(x, y)} & =0 \\
\phi_{x x}(x, y)+\left(2 y \phi_{x}(x, y)+x y \phi_{x x}(x, y)+x y^{2} \phi_{x}(x, y)^{2}\right) e^{y \phi(x, y)} & =0
\end{aligned}
$$

Filling in $(x, y)=(0,0)$ yields $\phi_{x}(0,0)=-1, \phi_{y}(0,0)=\phi_{x x}(0,0)=0$, and the linearization

$$
p(x, y)=-x
$$

8. Spherical coordinates:

$$
\begin{aligned}
& \iiint_{K} d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{1 / \cos \phi}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta=\frac{2 \pi}{3} \int_{0}^{\pi / 4} \sin \phi\left(8-\frac{1}{\cos ^{3} \phi}\right) d \phi \\
& \stackrel{u=\cos \phi}{=} \frac{2 \pi}{3} \int_{\sqrt{2} / 2}^{1}\left(8-u^{-3}\right) d u=\pi\left(5-\frac{8}{3} \sqrt{2}\right)
\end{aligned}
$$

