Solutions final test Advanced Calculus (2DBN10) january 2019

No rights can be derived from these solutions.

1. a) The equation is homogeneous and has charachteristic equation $\lambda^{3}-\lambda^{2}+2=0$ with the three solutions $\lambda_{1}=-1, \lambda_{2,3}=1 \pm i$, and therefore the general solution

$$
y(t)=C_{1} e^{-t}+e^{t}\left(C_{2} \cos (t)+C_{3} \sin (t)\right)
$$

If $C_{1} \neq 0$ then $|y(t)| \rightarrow \infty$ as $t \rightarrow-\infty$. On the other hand, all solutions of the form $y(t)=e^{t}\left(C_{2} \cos (t)+C_{3} \sin (t)\right)$ satisfy $y(t) \rightarrow 0$ as $t \rightarrow-\infty$.
b) Ansatz: $u(t)=A \cos (t)+B \sin (t)$. Filling this in yields $A+3 B=0,3 A-B=1$, so $A=3 / 10, B=-1 / 10, u(t)=\frac{3}{10} \cos (t)-\frac{1}{10} \sin (t)$.
2. a) According to the properties of the Laplace transform, Y_{1}, Y_{2} are solutions to the linear system

$$
\left(\begin{array}{cc}
s-1 & -1 \\
1 & s-3
\end{array}\right)\binom{Y_{1}(s)}{Y_{2}(s)}=\binom{\frac{1}{s-2}}{\frac{2}{s-2}}
$$

This system has the solution

$$
Y_{1}(s)=\frac{s-1}{(s-2)^{3}}, \quad Y_{2}(s)=\frac{2 s-3}{(s-2)^{3}}
$$

b) Rewrite

$$
Y_{1}(s)=\frac{1}{(s-2)^{2}}+\frac{1}{(s-2)^{3}}, \quad Y_{2}(s)=\frac{2}{(s-2)^{2}}+\frac{1}{(s-2)^{3}}
$$

So by inverse Laplace transform

$$
y_{1}(t)=\left(t+\frac{t^{2}}{2}\right) e^{2 t}, \quad y_{2}(t)=\left(2 t+\frac{t^{2}}{2}\right) e^{2 t}
$$

3. a) The level curves are given by $f(x, y)=c$, or equivalently $y=c e^{x} /\left(1+c e^{x}\right)$ for $c \in$ $\{-2,-1,0,1,2\}$.

b) We have $f_{x}(0,2)=2, f_{y}(0,2)=1$, so the tangent plane is given by

$$
z=-2+2 x+(y-2)
$$

c) The tangent line should run through $(0,2)$ and be orthogonal to $\nabla f(0,2)=(2,1)^{\top}$, so an equation is

$$
2 x+(y-2)=0
$$

d) We can use the 1D Taylor expansions

$$
\begin{aligned}
e^{-x} & =1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+O\left(x^{4}\right) \\
\frac{y}{1-y} & =y+y^{2}+y^{3}+O\left(y^{4}\right)
\end{aligned}
$$

to find the third order Taylor polynomial

$$
p_{3}(x, y)=y-x y+y^{2}+\frac{1}{2} x^{2} y-x y^{2}+y^{3}
$$

Alternatively, the Taylor polynomial can be obtained from the standard formula.
4. From the given equations we find by the chain rule

$$
\begin{aligned}
\partial_{1} f(1,1)+\partial_{2} f(1,1) & =1 \\
\partial_{1} f(1,1)+2 \partial_{2} f(1,1) & =1 / 2
\end{aligned}
$$

We solve this linear system to find $\partial_{1} f(1,1)=3 / 2, \partial_{2} f(1,1)=-1 / 2$ and consequently

$$
\left.\frac{d}{d t} f\left(t, t^{\alpha}\right)\right|_{t=1}=\partial_{1} f(1,1)+\alpha \partial_{2} f(1,1)=(3-\alpha) / 2
$$

5. The critical points are the zeroes of the gradient given by

$$
\nabla f(x, y)=2\binom{x\left(y^{2}-x^{2}+1\right)}{y\left(y^{2}-x^{2}-1\right)} e^{-\left(x^{2}+y^{2}\right)}
$$

From the first component we get that $x=0$ or $y^{2}-x^{2}=-1$. In the first case, the second equation implies $y=0$ or $y= \pm 1$. In the second case, the second equation implies $y=0$ and therefore $x= \pm 1$. Summarizing, there are five critical points: $(0,0),(0, \pm 1)$, and $(\pm 1,0)$.
To determine their type, we calculate the Hessian:

$$
\nabla^{2} f(x, y)=2\left(\begin{array}{cc}
-2 x^{2}-\left(2 x^{2}-1\right)\left(y^{2}-x^{2}+1\right) & 2 x y\left(y^{2}-x^{2}\right) \\
2 x y\left(y^{2}-x^{2}\right) & 2 y^{2}-\left(2 y^{2}-1\right)\left(y^{2}-x^{2}-1\right)
\end{array}\right) e^{-\left(x^{2}+y^{2}\right)}
$$

At the critical points, this is

$$
\nabla^{2} f(0,0)=\left(\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right), \quad \nabla^{2} f(\pm 1,0)=\left(\begin{array}{cc}
-4 & 0 \\
0 & -4
\end{array}\right) e^{-1}, \quad \nabla^{2} f(0, \pm 1)=\left(\begin{array}{cc}
4 & 0 \\
0 & 4
\end{array}\right) e^{-1}
$$

So the second derivative test yields that $(0,0)$ is a saddle point, $(\pm 1,0)$ are local maxima, and $(0, \pm 1)$ are local minima.
6. a) The function f to be minimized is given by

$$
f(x, y, z)=\sum\left[\left(x-a_{i}\right)^{2}+\left(y-b_{i}\right)^{2}+\left(z-c_{i}\right)^{2}\right] .
$$

Here and in the remaining part of of a), \sum denotes summation over $i=1,2$. The Lagrange equations are

$$
2\left(\begin{array}{c}
2 x-\sum a_{i} \\
2 y-\sum b_{i} \\
2 z-\sum c_{i}
\end{array}\right)=2 \lambda\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

or

$$
(2-\lambda)\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\sum\left(\begin{array}{c}
a_{i} \\
b_{i} \\
c_{i}
\end{array}\right)
$$

As $a_{1}+a_{2}>0$ we have $\lambda \neq 2$ and therefore $(x, y, z) \| \sum\left(a_{i}, b_{i}, c_{i}\right)$. Consequently, the restriction implies

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)= \pm \frac{1}{\sqrt{\left(\sum a_{i}\right)^{2}+\left(\sum b_{i}\right)^{2}+\left(\sum c_{i}\right)^{2}}} \sum\left(\begin{array}{c}
a_{i} \\
b_{i} \\
c_{i}
\end{array}\right)
$$

(In the "+" case the minimum is taken, and in the "-"-case the maximum is taken. A proof of this is not demanded.)
b) The calculations for a) generalize immediately to $n \geq 2$, if all summations are taken from $i=1$ to n.
7. a) Define $F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ by

$$
F(x, y, z)=\binom{x+y^{2}+\sin (y z)-2}{-x^{2}+y+z}
$$

F is differentiable, $F(2,0,4)=0$, and

$$
D_{(y, z)} F(x, y, z)=\left(\begin{array}{cc}
2 y+z \cos (y z) & y \cos (y z) \\
1 & 1
\end{array}\right)
$$

in particular

$$
D_{(y, z)} F(2,0,4)=\left(\begin{array}{ll}
4 & 0 \\
1 & 1
\end{array}\right)
$$

so $D_{(y, z)} F(2,0,4)$ is regular.
Therefore the Implicit Function theorem can be applied and yields the statement.
b) Differentiating the given equations with respect to x and filling in $x=2$ yields the linear system

$$
\left(\begin{array}{ll}
4 & 0 \\
1 & 1
\end{array}\right)\binom{\phi^{\prime}(2)}{\psi^{\prime}(2)}=\binom{-1}{4}
$$

with solution $\phi^{\prime}(2)=-1 / 4, \psi^{\prime}(2)=17 / 4$. So the linearizations are

$$
\phi(x) \approx-\frac{1}{4}(x-2), \quad \psi(x) \approx 4+\frac{17}{4}(x-2)
$$

8. Cylindrical coordinates:

$$
\iiint_{K} z d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1+r \cos \theta} z r d z d r d \theta=\frac{5}{8} \pi
$$

