Solutions final test Advanced Calculus (2DBN10)
january 2019

No rights can be derived from these solutions.

1. a) The equation is homogeneous and has charachteristic equation \*> — A2 + 2 = 0 with
the three solutions A\ = —1, Ay 3 = 1 4, and therefore the general solution

y(t) = Cre™" + €' (Cy cos(t) + Cssin(t)).
If Cy # 0 then |y(t)] — oo as t = —oo. On the other hand, all solutions of the form
y(t) = e'(Cy cos(t) + Cs sin(t)) satisfy y(t) — 0 as t — —oc.
b) Ansatz: u(t) = Acos(t) + Bsin(t). Filling this in yields A+ 3B =0,34 - B =1, so
A =3/10, B =—1/10, u(t) = 3 cos(t) — 15 sin(t).

2. a) According to the properties of the Laplace transform, Y7, Y5 are solutions to the linear

system
(7)) - (=)

This system has the solution

Yi(s) = Ya(s) =

(s — 2 (s — 2

b) Rewrite

1 1 2 1

N =T T e

So by inverse Laplace transform
2 2
yi(t) =+ 5)e*,  ya(t) = 2+ F)e™

3. a) The level curves are given by f(z,y) = ¢, or equivalently y = ce®/(1 + ce®) for ¢ €
{~2,-1,0,1,2}.
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b) We have f,(0,2) =2, £,(0,2) = 1, so the tangent plane is given by
z=-242z+ (y—2).

c) The tangent line should run through (0,2) and be orthogonal to Vf(0,2) = (2,1)7, so
an equation is
20+ (y—2)=0.

d) We can use the 1D Taylor expansions

£U2 ./L'3
N .
e x4+ 5 5 + O(z"),
Y
=y = y+y*+y>+0(y")

to find the third order Taylor polynomial
2 1 o 2 3
p3(z,y) =y —zy+y° + a7y —ayt +y”

Alternatively, the Taylor polynomial can be obtained from the standard formula.

4. From the given equations we find by the chain rule
alf(171)+ aZf(Ll) = 17
Af(1,1) +202f(1,1) = 1/2.
We solve this linear system to find 0, f(1,1) = 3/2, 92f(1,1) = —1/2 and consequently

SHE e = O F(L1) + 0B, f(1,1) = (3 - )2

5. The critical points are the zeroes of the gradient given by
z(y? — 22 +1) ) (@42
Vi(z,y) =2 e v
f( 7y) <y(y2_x2_1)
From the first component we get that = 0 or y?> — 22 = —1. In the first case, the second

equation implies y = 0 or y = £1. In the second case, the second equation implies y = 0 and
therefore x = +1. Summarizing, there are five critical points: (0,0), (0,+1), and (+1,0).

To determine their type, we calculate the Hessian:

> _ o 22— (22® = 1)(yP -2+ 1) 22y(y* — z?) —(@+y?)
Viiiey) =2 ( 2zy(y® — 2?) 22 — (2 (P —a* 1) ) ° '

At the critical points, this is

V2£(0,0) = ( (2) 32 ) V2f(£1,0) = ( *04 34 )e_l, V2£(0,£1) = ( é Z )e—l.

So the second derivative test yields that (0,0) is a saddle point, (£1,0) are local maxima,
and (0, +1) are local minima.

6. a) The function f to be minimized is given by

fla,y.2) =Y l(@—ai) + (y = b:)* + (= = ci)?).



Here and in the remaining part of of a), Y denotes summation over ¢ = 1,2. The
Lagrange equations are

2 — > a; x

2 2y—2b | =2x( vy |,
22— ¢ z

x a;
2=-M|vy |= Z b;
z C;

As ay + az > 0 we have X # 2 and therefore (z,y, 2) || (a4, bs, ¢;). Consequently, the
restriction implies

X 1 a;
y | ==+

: NSRS

(In the “+” case the minimum is taken, and in the “-”-case the maximum is taken. A
proof of this is not demanded.)

b) The calculations for a) generalize immediately to n > 2, if all summations are taken
from i =1 to n.

7. a) Define F : R? — R? by

x4+ y% +sin(yz) — 2

F is differentiable, F'(2,0,4) = 0, and

2y + z cos(yz cos(yz
D(y,z)F(fv,y,Z)< Y ) (yz) v 1(y)>’

in particular
4 0
Dy F(2,0,4) = 1 Nk

so Dy »)F(2,0,4) is regular.
Therefore the Implicit Function theorem can be applied and yields the statement.

b) Differentiating the given equations with respect to z and filling in @ = 2 yields the

linear system /
11 (2 )~ 4
(1)) -()

with solution ¢'(2) = —1/4, ¢/(2) = 17/4. So the linearizations are

Pla) ~ —3(x—2), Y()=4+(x-2)

8. Cylindrical coordinates:

2 1 1+7rcos@ 5
/// de:/ / / zrdzdrdd = —.
K 0 0 0 8



