Solutions final test Advanced Calculus (2DBN10) January 2020

No rights can be derived from these solutions.

1. a) The characteristic polynomial is $\lambda \mapsto \lambda^{3}+\lambda^{2} \lambda+2$ with roots $\lambda_{1}=-1, \lambda_{2,3}= \pm \sqrt{2}$. So the general solution Y_{H} of the homogeneous equation is given by

$$
y_{H}(t)=C_{1} e^{-t}+C_{2} \cos (\sqrt{2} t)+C_{3} \sin (\sqrt{2} t)
$$

To find a particular solution we use the ansatz $y_{P}(t)=A t e^{-t}$ and find $A=\frac{1}{3}$. So the general solution is

$$
y(t)=C_{1} e^{-t}+C_{2} \cos (\sqrt{2} t)+C_{3} \sin (\sqrt{2} t)+\frac{t}{3} e^{-t}
$$

b) On the interval $[1, \infty), u$ satisfies the homogeneous equation

$$
u^{\prime \prime \prime}+u^{\prime \prime}+2 u^{\prime}+2 u=0
$$

Therefore there are constants $C_{1,2,3}$ such that

$$
u(t)=C_{1} e^{-t}+C_{2} \cos (\sqrt{2} t)+C_{3} \sin (\sqrt{2} t)
$$

there, which is bounded on this interval.
2. a) Partial fraction decomposition:

$$
F(s)=\frac{1}{s-1}-\frac{2}{s^{2}+2 s+2}=\frac{1}{s-1}-\frac{2}{(s+1)^{2}+1}
$$

so from linearity and the table

$$
f(t)=e^{t}-2 e^{-t} \sin t
$$

b) Define $h, k:[0, \infty) \longrightarrow \mathbb{R}$ by

$$
h(\tau):=e^{-\tau} g(\tau), \quad k(t)=\int_{0}^{t} h(\tau) d \tau
$$

and denote their respective Laplace transforms by H and K. Then

$$
H(s)=G(s+1), \quad K(s)=\frac{1}{s} G(s+1)
$$

and in view of $f(t)=k(2 t)$ we get for the Laplace transform F of f

$$
F(s)=\frac{1}{2} K\left(\frac{s}{2}\right)=\frac{1}{s} G\left(\frac{s}{2}+1\right)
$$

3. a) TBD!
b) The line should be orthogonal to $\nabla f(1, \pi / 4)=(2, \sqrt{2} / 2)^{\top}$, so an equation is

$$
2(x-1)+\frac{\sqrt{2}}{2}(y-\pi / 4)=0
$$

4. The critical points satisfy

$$
\nabla f(x, y)=\frac{1}{\left(1+x^{2}+4 y^{2}\right)^{2}}\binom{1+x^{2}+4 y^{2}-2 x(x+2 y)}{2\left(1+x^{2}+4 y^{2}\right)-8 y(x+2 y)}=0
$$

This implies

$$
1+x^{2}+4 y^{2}=2 x(x+2 y)=4 y(x+2 y)
$$

As these terms are positive, we conclude $x+2 y \neq 0$ and therefore $x=2 y$. This implies further $1+8 y^{2}=16 y^{2}$, so $y= \pm \sqrt{2} / 4$, and $(x, y)= \pm(\sqrt{2} / 2, \sqrt{2} / 4)$. Both points lie in D, the corresponding function values are $\pm \sqrt{2} / 2$.
We parameterize the boundary by $t \mapsto(\xi, \eta)(t):=\sqrt{2} \cos t,(\sqrt{2} / 2) \sin t$ and find

$$
f(\xi(t), \eta(t))=\frac{\sqrt{2}}{3}(\cos t+\sin t)
$$

with maximal and minimal value $\pm 2 / 3$. So the global maximal and minimal value are $\pm \sqrt{2} / 2$.
5. The minimal and maximal value are taken at solutions of the Lagrange equations

$$
\frac{1}{z-2}\left(\begin{array}{c}
1 \\
1 \\
-\frac{x+y}{z-2}
\end{array}\right)=2 \lambda\left(\begin{array}{c}
2 x \\
y \\
z
\end{array}\right), \quad 2 x^{2}+y^{2}+z^{2}=1
$$

For solutions of these equations we have $\lambda \neq 0, x \neq 0, y \neq 0$, hence $y=2 x$ and $\frac{z}{2 x}=-\frac{3 x}{z-2}$. So

$$
z^{2}-2 z=-6 x^{2}=-2 x^{2}-y^{2}=z^{2}-1
$$

so $z=1 / 2,(x, y)= \pm(\sqrt{2} / 4, \sqrt{2} / 2)$, and the maximal and minimal values of f on S are $\pm \sqrt{2} / 2$.
6. a) $F: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{2}$ be given by

$$
F(x, y, u, v)=\binom{e^{x}+e^{y}-u}{\sin x+2 \sin y-v}
$$

Then $F\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0$, and

$$
D_{(x, y)} F\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=\binom{e^{x_{0}}+e^{y_{0}}}{\sin x_{0}+2 \sin y_{0}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

This matrix is regular, so the statement follows from the Implicit Function Theorem.
b) From $F(\xi(u, v), \eta(u, v), u, v)=0$ we get from the chain rule

$$
D_{(x, y)} F(0,0,2,0) \frac{\partial(\xi, \eta)}{\partial(u, v)}(2,0)-\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)=0
$$

so

$$
\frac{\partial(\xi, \eta)}{\partial(u, v)}(2,0)=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)^{-1}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right)
$$

(This can also be obtained from "implicit differentiation" of both equations separately and solving the resulting linear system for the partial derivatives of ξ and η.)
7. By definition and the change of variables theorem,

$$
\operatorname{Area}(\Phi(D))=\iint_{\Phi(D)} 1 d A=\iint_{D}|\operatorname{det} \Phi| d A
$$

Further

$$
\operatorname{det} D \Phi(x, y)=\operatorname{det}\left(\begin{array}{cc}
3\left(x^{2}-y^{2}\right) & -6 x y \\
6 x y & 3\left(x^{2}-y^{2}\right)
\end{array}\right)=9\left(x^{2}+y^{2}\right)^{2}
$$

So, using polar coordinates,

$$
\operatorname{Area}(\Phi(D))=9 \iint_{D}\left(x^{2}+y^{2}\right)^{2} d x d y=9 \int_{0}^{\pi / 2} \int_{0}^{1} r^{5} d r d \theta=3 \pi / 4
$$

8.

$$
\begin{aligned}
\operatorname{Vol}(K) & =\iiint_{K} d V=\int_{0}^{1} \int_{0}^{1} \int_{0}^{\min \left(x, y^{2}\right)} d z d y d x \\
& =\int_{0}^{1} \int_{0}^{\sqrt{x}} \int_{0}^{y^{2}} d z d y d x+\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{x} d z d y d x=7 / 30
\end{aligned}
$$

Alternative:

$$
\operatorname{Vol}(K)=\iiint_{K} d V=\int_{0}^{1} \int_{z}^{1} \int_{\sqrt{z}}^{1} d y d x d z=7 / 30
$$

