Solutions final test Advanced Calculus (2DBN10) October 2020

No rights can be derived from these solutions.

1. The characteristic polynomial is $\lambda^{3}+\lambda-2$ with roots $\lambda_{1}=1, \lambda_{2,3}=(-1 \pm \sqrt{7} i) / 2$. So the general solution to the homogeneous equation is

$$
y_{h}(t)=C_{1} e^{t}+e^{-t / 2}\left(C_{2} \cos (\sqrt{7} t / 2)+C_{3} \sin (\sqrt{7} t / 2)\right)
$$

We find a particular solution to the inhomogeneous problem from the ansatz

$$
y_{p}(t)=A t e^{t}
$$

and calculating $A=1 / 4$. So the general solution to the inhomogeneous equation is

$$
y(t)=\frac{1}{4} t e^{t}+C_{1} e^{t}+e^{-t / 2}\left(C_{2} \cos (\sqrt{7} t / 2)+C_{3} \sin (\sqrt{7} t / 2)\right) .
$$

(This can also be solved via Laplace transform.)
2.

3. a) By the chain rule,

$$
\begin{aligned}
& g^{\prime}(t)=\partial_{1} f(t, t)+\partial_{2} f(t, t) \\
& h^{\prime}(t)=-\sqrt{2} \sin t \partial_{1} f(\sqrt{2} \cos t, \sqrt{2} \sin t)+\sqrt{2} \cos t \partial_{2} f(\sqrt{2} \cos t, \sqrt{2} \sin t)
\end{aligned}
$$

Setting $t=1$ in the first equation and $t=\pi / 4$ in the second equation yields the linear system

$$
\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{\partial_{1} f}{\partial_{2} f}(1,1)=\binom{3}{1}
$$

so $\nabla f(1,1)=(1,2)^{\top}$.
b) By the chain rule,

$$
\begin{aligned}
g^{\prime \prime}(t)= & \partial_{11} f(t, t)+2 \partial_{12} f(t, t)+\partial_{22} f(t, t), \\
h^{\prime \prime}(t)= & -\sqrt{2} \cos t \partial_{1} f(\sqrt{2} \cos t, \sqrt{2} \sin t)-\sqrt{2} \sin t \partial_{2} f(\sqrt{2} \cos t, \sqrt{2} \sin t) \\
& +2 \sin ^{2} t \partial_{11} f(\sqrt{2} \cos t, \sqrt{2} \sin t)-4 \sin t \cos t \partial_{12} f(\sqrt{2} \cos t, \sqrt{2} \sin t) \\
& +2 \cos ^{2} t \partial_{22} f(\sqrt{2} \cos t, \sqrt{2} \sin t) .
\end{aligned}
$$

Setting $t=1$ in the first equation and $t=\pi / 4$ in the second equation and using the result from a) yields the linear system

$$
\left(\begin{array}{cc}
1 & 2 \\
1 & -2
\end{array}\right)\binom{\partial_{11} f+\partial_{22} f}{\partial_{12} f}(1,1)=\binom{0}{4}
$$

so $\partial_{12} f(1,1)=-1$.
4. Step 1: Critical points (x, y) of f satisfy

$$
\nabla f(x, y)=\frac{1}{1+4 x^{2}+y^{2}}\binom{2-\frac{8 x(2 x+y)}{1+4 x^{2}+y^{2}}}{1-\frac{2 y(2 x+y)}{1+4 x^{2}+y^{2}}}=0 .
$$

This implies $2 x+y \neq 0$ and then $y=2 x$, and from this $16 x^{2}=1+8 x^{2}$, hence $(x, y)=$ $\pm\left(\frac{1}{4} \sqrt{2}, \frac{1}{2} \sqrt{2}\right)$. These critical points are in D and have function values $\pm \frac{1}{2} \sqrt{2}$.
Step 2: The boundary of D is an ellipse that can be parameterized by $x=\cos t, y=2 \sin t$. Extrema on the boundary can now be found by finding the extrema of the function $g: \mathbb{R} \longrightarrow \mathbb{R}$ given by

$$
g(t)=f(\cos t, 2 \sin t)=\frac{2}{5}(\cos t+\sin t) .
$$

By 1D Calculus we find that the extreme values at the boundary are $\pm \frac{2}{5} \sqrt{2}$ (at the points $\left.\pm\left(\frac{1}{2} \sqrt{2}, \sqrt{2}\right)\right)$.
Therefore, the global maximum and minimum of f on D are $\pm \frac{1}{2} \sqrt{2}$.
5. The coefficient matrix has the eigenvalues -2 and 1 with corresponding eigenvectors $(-2,1)^{\top}$ and $(-3,2)^{\top}$. So the general solution is

$$
\binom{y_{1}(t)}{y_{2}(t)}=C_{1}\binom{-2}{1} e^{-2 t}+C_{2}\binom{-3}{2} e^{t},
$$

As $y_{1}(t), y_{2}(t) \rightarrow 0$ for $t \rightarrow \infty$ we find $C_{2}=0$, and then from $y_{1}(0)=1$ we find $C_{2}=-1 / 2$.
6. We have that

$$
f(u, v)=u-1+2 v-(u-1)^{2}+(u-1) v-2 v^{2}+O\left(|(u-1, v)|^{3}\right) .
$$

Using this together with the standard 1D expansions

$$
e^{x}=1+x+x^{2} / 2+O\left(x^{3}\right), \quad \frac{y}{1-y}=y+y^{2}+O\left(y^{3}\right)
$$

we find

$$
g(x, y)=x+2 y-\frac{x^{2}}{2}+x y+O\left(|(x, y)|^{3}\right)
$$

i.e. the Taylor polynomial of g around $(0,0)$ is given by

$$
p(x, y)=x+2 y-\frac{x^{2}}{2}+x y .
$$

(The problem can also be solved by first identifying the partial derivatives of f up to order 2, calculating the partial derivatives of g via the chain rule, and then applying the standard formula.)
7. The Lagrange equations are

$$
\nabla f(x, y, z)=\frac{1}{z+2}\left(\begin{array}{c}
1 \\
1 \\
-\frac{x+y}{z+2}
\end{array}\right)=2 \lambda\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

This implies $x=y \neq 0$ and $\lambda=\frac{1}{2 x(z+2)}$. Inserting this in the last equation yields

$$
-\frac{2 x}{(z+2)^{2}}=\frac{z}{x(z+2)}
$$

and together with the restriction $x^{2}+y^{2}+z^{2}=2 x^{2}+z^{2}=1$ we find from this

$$
-2 x^{2}=z(z+2)=z^{2}-1
$$

so $z=-1 / 2, x=y= \pm \frac{1}{4} \sqrt{6}$ with corresponding function values $\pm \frac{1}{3} \sqrt{6}$. As there are only two solutions to the Lagrange equations, these correspond to the global maximum and minimum of f on S.
8.

$$
\iiint_{K} z d V=\int_{0}^{1} \int_{0}^{2-z} \int_{0}^{2-y-z} z d x d y d z=\frac{11}{24}
$$

