Solutions final test Advanced Calculus (2DBN10) January 2021

No rights can be derived from these solutions.

1. a) Let $Y_{1,2}$ denote the Laplace transforms of $y_{1,2}$. By calculation laws for the Laplace transform,

$$
\left(\begin{array}{cc}
s-1 & -2 \\
-2 & s-1
\end{array}\right)\binom{Y_{1}(s)}{Y_{2}(s)}=\binom{F_{1}(s)+a_{1}}{F_{2}(s)+a_{2}} .
$$

Solving the linear system yields

$$
\binom{Y_{1}(s)}{Y_{2}(s)}=\frac{1}{(s-1)^{2}-4}\binom{(s-1)\left(F_{1}(s)+a_{1}\right)+2\left(F_{2}(s)+a_{2}\right)}{2\left(F_{1}(s)+a_{1}\right)+(s-1)\left(F_{2}(s)+a_{2}\right)}
$$

b) We have $F_{1}(s)=-F_{2}(s)=\frac{1}{s+1}$ and therefore

$$
\binom{Y_{1}(s)}{Y_{2}(s)}=\frac{1}{(s-1)^{2}-4}\binom{(s-1)\left(\frac{1}{s+1}+1\right)-\frac{2}{s+1}}{2\left(\frac{1}{s+1}+1\right)-\frac{s-1}{s+1}}=\frac{1}{(s+1)^{2}(s-3)}\binom{s^{2}+s-4}{s+5}
$$

and after partial fraction decomposition

$$
\begin{aligned}
Y_{1}(s) & =\frac{1}{2} \frac{1}{s+1}+\frac{1}{(s+1)^{2}}+\frac{1}{2} \frac{1}{s-3} \\
Y_{2}(s) & =-\frac{1}{2} \frac{1}{s+1}-\frac{1}{(s+1)^{2}}+\frac{1}{2} \frac{1}{s-3}
\end{aligned}
$$

so by inverse Laplace transform

$$
\begin{aligned}
& y_{1}(t)=\frac{1}{2} e^{-t}+t e^{-t}+\frac{1}{2} e^{3 t} \\
& y_{2}(t)=-\frac{1}{2} e^{-t}-t e^{-t}+\frac{1}{2} e^{3 t}
\end{aligned}
$$

2. a)

(All level curves approach the points $(0,1)$ and $(0,-1)$. However, they do not intersect as these points are not part of the domain of definition.)
b) We have $\partial_{x} f(1,2)=-2 / 3, \partial_{y} f(1,2)=4 / 9$, so the equation is

$$
z=-\frac{1}{3}-\frac{2}{3}(x-1)+\frac{4}{9}(y-2)
$$

c)

$$
-\frac{2}{3}(x-1)+\frac{4}{9}(y-2)=0, \text { or }-3 x+2 y=1
$$

3. a) Let $F: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{2}$ be given by

$$
F(x, y, u, v)=\Phi(x, y)-(u, v)^{\top}=\binom{x^{3}-y^{3}-u}{x y-v}
$$

So $\Phi(x, y)=(u, v)^{\top}$ if and only if $F(x, y, u, v)=0$. We apply the Implicit Function theorem to this equation near the point $(1,1, \Phi(1,1))=(1,1,0,1)$. We have $F(1,1,0,1)=0$ and

$$
D_{(x, y)} F(1,1,0,1)=D \Phi(1,1)=\left.\left(\begin{array}{cc}
3 x^{2} & -3 y^{2} \\
y & x
\end{array}\right)\right|_{(x, y)=(1,1)}=\left(\begin{array}{cc}
3 & -3 \\
1 & 1
\end{array}\right)
$$

is regular. So Φ is locally invertible near $(1,1)$.
b) As

$$
\Phi^{-1}(\Phi(x, y))=(x, y)^{\top}
$$

for (x, y) near $(1,1)$, we have by the chain rule

$$
D\left(\Phi^{-1}\right)(\Phi(x, y)) D \Phi(x, y)=I
$$

and, in particular, for $(x, y)=(1,1)$,

$$
D\left(\Phi^{-1}\right)(0,1)=(D \Phi(1,1))^{-1}=\left(\begin{array}{cc}
3 & -3 \\
1 & 1
\end{array}\right)^{-1}=\frac{1}{6}\left(\begin{array}{cc}
1 & 3 \\
-1 & 3
\end{array}\right)
$$

4. Let $\Phi: T_{1} \longrightarrow T_{a}$ be given by $\Phi(x, y, z)=(a x, a y, a z)$. This obviously is an injective, differentiable map with $D \Phi(x)=a I$ and $\operatorname{det} D \Phi(x)=a^{3}$, so

$$
\int_{T_{a}} f d V=\int_{T_{1}}(f \circ \Phi)|\operatorname{det} D \Phi| d V=a^{3} \int_{T_{1}} f(a x) d x=a^{3} \int_{T_{1}} a^{2} f(x) d x=a^{5}
$$

5. Any solution y can be written as

$$
y(t)=\sum_{k=1}^{2021} C_{k} e^{\lambda_{k} t}
$$

with constants $C_{k} \in \mathbb{C}$ and λ_{k} the 2021 solutions to the characteristic equation $\lambda^{2021}-1=0$. All these satisfy $\left|\lambda_{k}^{2021}\right|=\left|\lambda_{k}\right|^{2021}=1$ and therefore $\left|\lambda_{k}\right|=1$. Consequently, for $t \geq 0$,

$$
\left|e^{\lambda_{k} t}\right|=e^{\operatorname{Re} \lambda_{k} t} \leq e^{t}
$$

and so

$$
|y(t)| \leq \sum_{k=1}^{2021}\left|C_{k}\right|\left|e^{\lambda_{k} t}\right| \leq C e^{t}, \quad C:=\sum_{k=1}^{2021}\left|C_{k}\right|
$$

6. By the chain rule,

$$
\begin{aligned}
& \partial_{x} \Phi(x, y)=2 x \partial_{1} f\left(x^{2}+y^{3}, x y\right)+y \partial_{2} f\left(x^{2}+y^{3}, x y\right)=1 \\
& \partial_{y} \Phi(x, y)=3 y^{2} \partial_{1} f\left(x^{2}+y^{3}, x y\right)+x \partial_{2} f\left(x^{2}+y^{3}, x y\right)=2
\end{aligned}
$$

and for $(x, y)=(1,1)$

$$
\begin{aligned}
& \partial_{x} \Phi(1,1)=2 \partial_{1} f(2,1)+\partial_{2} f(2,1)=1 \\
& \partial_{y} \Phi(1,1)=3 \partial_{1} f(2,1)+\partial_{2} f(2,1)=2
\end{aligned}
$$

Solving this linear system for $\partial_{1} f(2,1), \partial_{2} f(2,1)$ yields

$$
\nabla f(2,1)=(1,-1)^{\top}
$$

7. The Lagrange equations are

$$
\left(\begin{array}{l}
y z \\
x z \\
x y
\end{array}\right)=\lambda\left(\begin{array}{c}
\frac{a}{x^{2}} \\
\frac{b}{y^{2}} \\
\frac{c}{z^{2}}
\end{array}\right)
$$

so

$$
\lambda=\frac{x^{2} y z}{a}=\frac{x y^{2} z}{b}=\frac{x y z^{2}}{c}
$$

hence $x / a=y / b=z / c$, and using the restriction we get

$$
\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{1}{3}
$$

So the minimum is taken for $x=3 a, y=3 b, z=3 c$, and its value is $27 a b c$.
8. Cylindrical coordinates:

$$
\iiint_{K} z d V=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3} / 2} \int_{1-\sqrt{1-r^{2}}}^{\sqrt{1-r^{2}}} z r d z d r d \theta=\frac{5}{24} \pi
$$

