Solutions final test Advanced Calculus (2DBN10) November 2021

No rights can be derived from these solutions.

1. The corresponding homogeneous equation has characteristic polynomial $\lambda \mapsto \lambda^{3}-1$ with roots $\lambda_{1}=1, \lambda_{2,3}=(-1 \pm \sqrt{3} i) / 2$. Therefore the general solution to the homogeneous equation is

$$
y_{h}(t)=C_{1} e^{t}+e^{-t / 2}\left(C_{2} \cos (\sqrt{3} t / 2)+C_{3} \sin (\sqrt{3} t / 2)\right)
$$

To find a particular solution we use the ansatz $y_{p}=A t e^{t}$ and find $y_{p}^{\prime \prime \prime}-y_{p}=3 A e^{t}$, hence $A=1 / 3$. So the general solution is

$$
y(t)=\left(C_{1}+t / 3\right) e^{t}+e^{-t / 2}\left(C_{2} \cos (\sqrt{3} t / 2)+C_{3} \sin (\sqrt{3} t / 2)\right)
$$

2. a) Let \underline{u} and \underline{v} be two solutions to the given system. Their difference $\underline{u}-\underline{v}$ solves the corresponding homogeneous system. The system matrix has eigenvalues $\lambda_{1,2}=-1 \pm 2 i$, so there are constants $C_{1,2}$ such that

$$
\underline{u}(t)-\underline{v}(t)=C_{1} \operatorname{Re}\left(e^{(-1+2 i) t} \underline{w}\right)+C_{2} \operatorname{Im}\left(e^{(-1+2 i) t} \underline{w}\right)
$$

where $\underline{w} \in \mathbb{R}^{2}$ is an eigenvector of the system matrix belonging to the eigenvalue $-1+2 i$. Thus,

$$
|\underline{u}(t)-\underline{v}(t)|_{\mathbb{R}^{2}} \leq C\left|e^{(-1+2 i) t}\right|=C e^{-t \xrightarrow{t \rightarrow \infty} 0} 0
$$

which implies the result.
b) Define the functions $h, m:[0, \infty) \longrightarrow \mathbb{R}$ by

$$
h(t)=\int_{0}^{t} f(\tau) d \tau, \quad m(t)=h(2 t)
$$

Let $H, M:(0, \infty) \longrightarrow \mathbb{R}$ denote their respective Laplace transforms. According to the calculation rules,

$$
H(s)=\frac{F(s)}{s}, \quad M(s)=\frac{1}{2} H\left(\frac{s}{2}\right)=\frac{1}{s} F\left(\frac{s}{2}\right)
$$

and from $g(t)=m(t)-h(t)$ we get

$$
G(s)=\frac{1}{s}\left(F\left(\frac{s}{2}\right)-F(s)\right), \quad s>0
$$

3. a)

b) $z=f(1,2)+\partial_{x} f(1,2)(x-1)+\partial_{y} f(1,2)(y-2)=2-4(x-1)+3(y-2)$
c) $-4(x-1)+3(y-2)=0$, or equivalently $y=\frac{4}{3} x+\frac{2}{3}$
4. Using standard expansions, we get

$$
\begin{gathered}
\frac{y}{2-x}=\frac{y}{1-(x-1)}=y+y(x-1)+y(x-1)^{2}+O\left(|(x-1, y)|^{4}\right), \\
\left(\frac{y}{2-x}\right)^{3}=y^{3}+O\left(|(x-1, y)|^{4}\right) .
\end{gathered}
$$

and further, using $\sin z=z-z^{3} / 6+O\left(z^{5}\right)$,

$$
\sin \left(\frac{y}{2-x}\right)=y+y(x-1)+y(x-1)^{2}-y^{3} / 6+O\left(|(x-1, y)|^{4}\right) .
$$

So the Taylor polynomial is given by

$$
T_{f,(1,0), 2}(x, y)=y+y(x-1)+y(x-1)^{2}-y^{3} / 6 .
$$

(This can alternatively obtained by using the standard formula.)
5. The function f has no critical points in D, as its only critical point is the origin.

The boundary of D consists of two components that can be parameterized by

$$
\begin{array}{rlrl}
(I): & y=3-x, & & 1 \leq x \leq 2, \\
(I I): & y & =2 / x, & \\
1 \leq x \leq 2 .
\end{array}
$$

(I): The extremal values on this component are found by calculating the extrema of the function g given by

$$
g(x)=f(x, 3-x)=3 x^{2}-12 x+18
$$

on the interval $[1,2]$. The minimal value is $f(2,1)=6$ and the maximal value is $f(1,2)=9$. (II): The extremal values on this component are found by calculating the extrema of the function h given by

$$
h(x)=f(x, 2 / x)=x^{2}+8 / x^{2}
$$

on the interval $[1,2]$. The minimal value is $f(\sqrt[4]{8}, \sqrt[4]{2})=4 \sqrt{2}$ and the maximal value is $f(1,2)=9$.
Summarizing, the global minimum of f on D is $f(\sqrt[4]{8}, \sqrt[4]{2})=4 \sqrt{2}$, and the global maximum is $f(1,2)=9$.
6. The Lagrange equations are

$$
a=\lambda y z, \quad b=\lambda x z, \quad c=\lambda x y,
$$

hence

$$
\lambda x y z=a x=b y=c z .
$$

This implies

$$
y=\frac{a x}{b}, \quad z=\frac{a x}{c}
$$

and because of $x y z=1$

$$
x=\sqrt[3]{\frac{b c}{a^{2}}}
$$

and similarly

$$
y=\sqrt[3]{\frac{a c}{b^{2}}}, \quad z=\sqrt[3]{\frac{a b}{c^{2}}}
$$

With these values, we find the minimum

$$
a x+b y+c z=3 \sqrt[3]{a b c}
$$

7. For the Jacobian of Φ we get

$$
\operatorname{det} D \Phi(u, v)=\operatorname{det}\left(\frac{1}{\left(u^{2}+v^{2}\right)^{2}}\left(\begin{array}{cc}
2\left(v^{2}-u^{2}\right) & -4 u v \\
2 u v & v^{2}-u^{2}
\end{array}\right)\right)=2 \frac{\left(v^{2}-u^{2}\right)^{2}+4 u^{2} v^{2}}{\left(u^{2}+v^{2}\right)^{4}}=\frac{2}{\left(u^{2}+v^{2}\right)^{2}} .
$$

For the area of $\Phi(D)$ we get by applying the change-of-variable theorem and then using polar coordinates

$$
\iint_{\Phi(D)} 1 d A=\iint_{D}|\operatorname{det} D \Phi| d A=\iint_{D} \frac{2}{\left(u^{2}+v^{2}\right)^{2}} d u d v=2 \int_{0}^{2 \pi} \int_{1}^{2} r^{-3} d r d \theta=\frac{3}{2} \pi .
$$

8. Cylindrical coordinates:

$$
\iiint_{K} z d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{2-r} z r d z d r d \theta=\frac{2}{3} \pi .
$$

