Solutions final test Advanced Calculus (2DBN10) January 2022

No rights can be derived from these solutions.

1. The eigenvalues of the system matrix are

$$
\lambda_{1,2}=\frac{a+1}{2} \pm \sqrt{\left(\frac{a+1}{2}\right)^{2}-a-5} .
$$

The system has nonzero periodic solutions if and only if these are purely imaginary, i.e. if $a=-1$. In this case, the eigenvalues are $\pm 2 i$, corresponding eigenvectors are ($5,-1 \pm 2 i$), the complex general solution is

$$
y(t)=C_{1}\binom{5}{-1+2 i} e^{2 i t}+C_{2}\binom{5}{-1-2 i} e^{-2 i t}, \quad C_{1,2} \in \mathbb{C}
$$

and the real general solution is

$$
y(t)=D_{1}\binom{5 \cos (2 t)}{-\cos (2 t)-2 \sin (2 t)}+D_{2}\binom{5 \sin (2 t)}{-\sin (2 t)+2 \cos (2 t)}, \quad D_{1,2} \in \mathbb{R}
$$

2. The corresponding homogeneous problem has the solution

$$
y_{h}(t)=C_{1} \cos t+C_{2} \sin (t)
$$

Accordingly, we use the "variation of coefficients" ansatz

$$
y_{p}(t)=C_{1}(t) \cos (t)+C_{2}(t) \sin (t)
$$

With the additional demand

$$
C_{1}^{\prime}(t) \cos (t)+C_{2}^{\prime}(t) \sin (t)=0
$$

we get the linear system

$$
\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)\binom{C_{1}^{\prime}(t)}{C_{2}^{\prime}(t)}=\binom{0}{\frac{1}{\cos t}}
$$

with solution

$$
C_{1}^{\prime}(t)=-\tan t, \quad C_{2}^{\prime}(t)=1
$$

so (with integration constants omitted)

$$
C_{1}(t)=\ln (\cos t), \quad C_{2}(t)=t
$$

and

$$
y_{p}(t)=\cos t \ln (\cos t)+t \sin t
$$

3. a) The level curves for function value $C \neq 0$ has the equation

$$
\frac{4 x^{2}}{y}+y=C
$$

which is equivalent to

$$
4 x^{2}+\left(y-\frac{C}{2}\right)^{2}=\frac{C^{2}}{4}
$$

These curves are ellipses with center $(0, C / 2)$ and half axes $|C| / 4$ and $|C| / 2$ in x - and y-direcction, respectively. (with the point $(0,0)$ removed, as it is not in the domain of definition of f).
b) $z=5+8(x-1)-3(y-1)$
c) $8(x-1)-3(y-1)=0$
4. For $\nabla v(0,0)$ to be determined by $\nabla u(0,0)$,it is necessary that $F(0,0)=(0,0)$. Then, by the chain rule,

$$
\binom{3}{1}=\left(\begin{array}{cc}
\partial_{1} F_{1} & \partial_{1} F_{2} \\
\partial_{2} F_{1} & \partial_{2} F_{2}
\end{array}\right)(0,0)\binom{1}{2}
$$

so for example $F(x, y)=(x-y, x+y)$.
5. The gradient of f is

$$
\nabla f(x, y)=\binom{-\frac{1}{x^{2}}+\frac{9}{(4-x+y)^{2}}}{\frac{4}{y^{2}}-\frac{9}{(4-x+y)^{2}}}
$$

so in critical points, we have $1 / x^{2}=4 / y^{2}$, or $y= \pm 2 x$.
If $y=2 x$ then $1 / x^{2}=9 /(4+x)^{2}$ and we obtain the critical points $\left(x_{1}, y_{1}\right)=(2,4)$ and $\left(x_{2}, y_{2}\right)=(-1,-2)$.
If $y=-2 x$ then $1 / x^{2}=9 /(4-3 x)^{2}$ and we obtain the critical point $\left(x_{3}, y_{3}\right)=(2 / 3,-4 / 3)$. The matrix of second derivatives of f is

$$
\left(\begin{array}{cc}
2 / x^{3} & 0 \\
0 & -8 / y^{3}
\end{array}\right)+\frac{18}{(4-x+y)^{3}}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) .
$$

The second derivative test yields that $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are saddle points while $\left(x_{3}, y_{3}\right)$ is a (strict local) minimum.
6. As $z>0$ on L, the point with minimal distance to the (x, y)-plane is the point with minimal z-coordinate. Hence we have to minimize the function f given by $f(x, y, z)=z$ under the conditions

$$
g_{1}(x, y, z):=z\left(x^{2}+y^{2}\right)-1=0, \quad g_{2}(x, y, z)=x y z^{2}=1, \quad x>0, y>0, z>0 .
$$

The corresponding Lagrange equations are

$$
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
2 x z \\
2 y z \\
x^{2}+y^{2}
\end{array}\right)+\mu\left(\begin{array}{c}
y z^{2} \\
x z^{2} \\
2 x y z
\end{array}\right)=0
$$

A point (x, y, z) yields a solution if and only if

$$
\operatorname{det}\left(\begin{array}{ccc}
0 & 2 x z & y z^{2} \\
0 & 2 y z & x z^{2} \\
1 & x^{2}+y^{2} & 2 x y z
\end{array}\right)=2 z^{3}\left(x^{2}-y^{2}\right)=0
$$

hence $x=y=1 / 2$ and $z=2$. (The Lagrange equations can also be solved in different ways.)
7. a) If such functions exist, then necessarily $\xi(0)=\eta(0)=1$. Let $F:=\mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be given by

$$
F(t, x, y):=\binom{t+e^{t y}-x}{t+e^{2 t x}-y} .
$$

A pair of functions $(\xi, \eta): I \longrightarrow \mathbb{R}^{2}$ solves the given equations if an only if $F(t, \xi(t), \eta(t))=$ 0 . The function F is differentiable, and we have $F(0,1,1)=(0,0)^{\top}$ and

$$
D F(t, x, y)=\left(\begin{array}{cc}
-1 & t e^{t y} \\
2 t e^{2 t x} & -1
\end{array}\right), \quad D F(0,1,1)=-I,
$$

so that $\operatorname{DF}(0,1,1)$ is regular. The existence of the interval I and the functions ξ and η with the demanded properties follows now from the Implicit Function theorem.
b) Differentiating the given equations yields

$$
\xi^{\prime}(t)=1+\left(\eta(t)+t \eta^{\prime}(t)\right) e^{t \eta(t)}
$$

hence $\xi^{\prime}(0)=2$, similarly $\eta^{\prime}(0)=3$, and

$$
\xi^{\prime \prime}(t)=\left(2 \eta^{\prime}(t)+t \eta^{\prime \prime}(t)\right) e^{t \eta(t)}+\left(\eta(t)+t \eta^{\prime}(t)\right)^{2} e^{t \eta(t)}
$$

hence $\xi^{\prime \prime}(0)=7$.
8.

$$
\begin{aligned}
\iiint_{K} x d V & =\int_{0}^{1} \int_{0}^{1} \int_{0}^{\min \left(x^{2}, y^{2}\right)} x d z d y d x \\
& =\int_{0}^{1} x \int_{0}^{x} \int_{0}^{y^{2}} d z d y d x+\int_{0}^{1} x \int_{x}^{1} \int_{0}^{x^{2}} d z d y d x=\frac{1}{15}+\frac{1}{20}=\frac{7}{60}
\end{aligned}
$$

Different integration orders with corresponding different integration limits are possible as well, e.g.

$$
\int_{0}^{1} \int_{\sqrt{z}}^{1} \int_{\sqrt{z}}^{1} x d x d y d z
$$

