Solutions final test Advanced Calculus (2DBN10) November 2022

No rights can be derived from these solutions.

1. The characteristic polynomial of the coefficient matrix is $z \mapsto z^{2}-2 z+2$. Its eigenvalues are $\lambda_{1,2}=1 \pm i$, and corresponding eigenvectors are (any nonzero complex multiples of) $v_{1,2}=(1,2 \pm i)$. The real solution space is spanned by the real and imaginary part of the complex mode

$$
t \mapsto e^{\lambda_{1} t} v_{1}=e^{t}\binom{\cos t+i \sin t}{(2+i)(\cos t+i \sin t)}=e^{t}\binom{\cos t+i \sin t}{2 \cos t-\sin t+i(\cos t+2 \sin t)}
$$

So

$$
y_{1}=e^{t}\left(C_{1}\binom{\cos t}{2 \cos t-\sin t}+C_{2}\binom{\sin t}{\cos t+2 \sin t}\right), \quad C_{1,2} \in \mathbb{R}
$$

2. a) The characteristic polynomial is $z \mapsto z^{2}+3 z+2$ with roots $\lambda_{1}=-2, \lambda_{2}=-1$. The solution y_{h} to the homogenous equation is therefore given by

$$
y_{h}(t)=C_{1} e^{-2 t}+C_{2} e^{-t}, \quad C_{1,2} \in \mathbb{R}
$$

To find a particular solution to the inhomogenous problem we use the ansatz

$$
y_{p}(t)=A t e^{-t}
$$

and find $A=1$. So the general solution to the inhomogenous problem is

$$
y(t)=C_{1} e^{-2 t}+\left(t+C_{2}\right) e^{-t}, \quad C_{1,2} \in \mathbb{R}
$$

b) By analogous calculations as in part a), we find that there are $C_{1,2} \in \mathbb{R}$ such that for $t \geq 1$

$$
u(t)=C_{1} e^{-2 t}+\left(e t+C_{2}\right) e^{-t}
$$

As $e^{-t}, t e^{-t}, e^{-2 t} \rightarrow 0$ for $t \rightarrow+\infty$ we conclude $u(t) \rightarrow 0$ for $t \rightarrow+\infty$.
3. a)

b) The linearization p is given by

$$
p(x, y)=f(0,-1)+\partial_{x} f(0,-1) x+\partial_{y} f(0,-1)(y+1)=-1+x
$$

4. By the chain rule,

$$
\begin{aligned}
& \partial_{u} f(u, v)=2 u \partial_{1} g\left(u^{2}-v^{2}, 2 u v\right)+2 v \partial_{2} g\left(u^{2}-v^{2}, 2 u v\right) \\
& \partial_{v} f(u, v)=-2 v \partial_{1} g\left(u^{2}-v^{2}, 2 u v\right)+2 u \partial_{2} g\left(u^{2}-v^{2}, 2 u v\right) .
\end{aligned}
$$

In particular, for $u=v=\frac{1}{2}$,

$$
\begin{aligned}
& \partial_{u} f\left(\frac{1}{2}, \frac{1}{2}\right)=\partial_{1} g\left(0, \frac{1}{2}\right)+\partial_{2} g\left(0, \frac{1}{2}\right)=2 \\
& \partial_{v} f\left(\frac{1}{2}, \frac{1}{2}\right)=-\partial_{1} g\left(0, \frac{1}{2}\right)+\partial_{2} g\left(0, \frac{1}{2}\right)=3
\end{aligned}
$$

Solving this linear system yields $\nabla g\left(0, \frac{1}{2}\right)=\frac{1}{2}(-1,5)^{\top}$.
5. The critical points are found as solutions of the system of equations

$$
\nabla f(x, y)=\binom{2 x y}{x^{2}+3 y^{2}-1}=\binom{0}{0}
$$

From the first equation we have $x=0$ or $y=0$.

1. If $x=0$, we find from the second equation the critical points $(0, \pm \sqrt{1 / 3})$.
2. If $y=0$, we find from the second equation the critical points $(\pm 1,0)$.

The Hessian is

$$
H(f)(x, y)=\left(\begin{array}{ll}
2 y & 2 x \\
2 x & 6 y
\end{array}\right)
$$

The second derivative test yields that $(0, \sqrt{1 / 3})$ is a local minimum, $(0,-\sqrt{1 / 3})$ is a local maximum, and $(\pm 1,0)$ are saddle points.
6. The Lagrange equations are

$$
\left(\begin{array}{c}
x^{2} \\
2 y \\
1
\end{array}\right)=2 \lambda\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad x^{2}+y^{2}+z^{2}=2
$$

To find all solutions of these equations, we distinguish the following cases:

1. $y \neq 0$: Then $\lambda=1, z=1 / 2$, and $x(x-2)=0$, hence $x=0$ or $x=2$.
1.1. $x=2$: Then there are no solutions to the equation $x^{2}+y^{2}+z^{2}=2$.
1.2. $x=0$: Then $y= \pm \sqrt{7 / 4}$. The points $(0, \pm \sqrt{7 / 4}, 1 / 2)$ indeed satisfy the Lagrange equations (with $\lambda=1$), with function value $9 / 4$.
2. $y=0$:
2.1. $x=0$: Then $z= \pm \sqrt{2}$. The points $(0,0, \pm \sqrt{2})$ indeed satisfy the Lagrange equations (with $\lambda=\sqrt{2} / 4$), with function value $\pm \sqrt{2}$
2.2. $x \neq 0$: Then $\lambda=x / 2$ and $z=1 /(2 \lambda)=1 / x$. So $x^{2}+z^{2}=x^{2}+x^{-2}=2$, which implies $x=z= \pm 1$. The points $\pm(1,0,1)$ indeed satisfy the Lagrange equations (with $\lambda= \pm 1 / 2$) with function value $\pm 4 / 3$.
So the maximal and minimal value of f taken on the sphere S are $9 / 4$ and $-\sqrt{2}$, respectively.
3. We have $D=\Phi(E)$ with

$$
\Phi(x, y)=\binom{x+y}{x-y}
$$

The mapping Φ is one-to-one, differentiable, and

$$
D \Phi(x, y)=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Hence, by the Change-of-Variables theorem

$$
\operatorname{Area}(D)=\iint_{D} 1 d A=\iint_{\Phi(E)} 1 d A=\iint_{E} 1 \cdot \underbrace{|\operatorname{det} D \Phi|}_{|-2|=2} d A=2 \operatorname{Area}(E)=6
$$

8. The volume is

$$
\iiint_{K} d V=\int_{1}^{2} \int_{\frac{2}{x}}^{3-x} \int_{0}^{3-x-y} d z d y d x=\frac{25}{6}-6 \ln 2 .
$$

