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No rights can be derived from these solutions.

1. The characteristic polynomial of the coefficient matrix is z 7→ z2 − 2z + 2. Its eigenvalues
are λ1,2 = 1 ± i, and corresponding eigenvectors are (any nonzero complex multiples of)
v1,2 = (1, 2 ± i). The real solution space is spanned by the real and imaginary part of the
complex mode

t 7→ eλ1tv1 = et
(

cos t+ i sin t
(2 + i)(cos t+ i sin t)

)
= et

(
cos t+ i sin t

2 cos t− sin t+ i(cos t+ 2 sin t)

)
.

So

y1 = et
(
C1

(
cos t

2 cos t− sin t

)
+ C2

(
sin t

cos t+ 2 sin t

))
, C1,2 ∈ R.

2. a) The characteristic polynomial is z 7→ z2 + 3z + 2 with roots λ1 = −2, λ2 = −1. The
solution yh to the homogenous equation is therefore given by

yh(t) = C1e
−2t + C2e

−t, C1,2 ∈ R.

To find a particular solution to the inhomogenous problem we use the ansatz

yp(t) = Ate−t

and find A = 1. So the general solution to the inhomogenous problem is

y(t) = C1e
−2t + (t+ C2)e

−t, C1,2 ∈ R.

b) By analogous calculations as in part a), we find that there are C1,2 ∈ R such that for
t ≥ 1

u(t) = C1e
−2t + (et+ C2)e

−t.

As e−t, te−t, e−2t → 0 for t → +∞ we conclude u(t) → 0 for t → +∞.

3. a)
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b) The linearization p is given by

p(x, y) = f(0,−1) + ∂xf(0,−1)x+ ∂yf(0,−1)(y + 1) = −1 + x.

4. By the chain rule,

∂uf(u, v) = 2u∂1g(u
2 − v2, 2uv) + 2v∂2g(u

2 − v2, 2uv),

∂vf(u, v) = −2v∂1g(u
2 − v2, 2uv) + 2u∂2g(u

2 − v2, 2uv).

In particular, for u = v = 1
2 ,

∂uf(
1
2 ,

1
2 ) = ∂1g(0,

1
2 ) + ∂2g(0,

1
2 ) = 2,

∂vf(
1
2 ,

1
2 ) = −∂1g(0,

1
2 ) + ∂2g(0,

1
2 ) = 3.

Solving this linear system yields ∇g(0, 1
2 ) =

1
2 (−1, 5)⊤.

5. The critical points are found as solutions of the system of equations

∇f(x, y) =

(
2xy

x2 + 3y2 − 1

)
=

(
0
0

)
.

From the first equation we have x = 0 or y = 0.

1. If x = 0, we find from the second equation the critical points (0,±
√

1/3).

2. If y = 0, we find from the second equation the critical points (±1, 0).

The Hessian is

H(f)(x, y) =

(
2y 2x
2x 6y

)
.

The second derivative test yields that (0,
√

1/3) is a local minimum, (0,−
√
1/3) is a local

maximum, and (±1, 0) are saddle points.

6. The Lagrange equations are x2

2y
1

 = 2λ

 x
y
z

 , x2 + y2 + z2 = 2.

To find all solutions of these equations, we distinguish the following cases:

1. y ̸= 0: Then λ = 1, z = 1/2, and x(x− 2) = 0, hence x = 0 or x = 2.

1.1. x = 2: Then there are no solutions to the equation x2 + y2 + z2 = 2.

1.2. x = 0: Then y = ±
√
7/4. The points (0,±

√
7/4, 1/2) indeed satisfy the Lagrange

equations (with λ = 1), with function value 9/4.

2. y = 0:

2.1. x = 0: Then z = ±
√
2. The points (0, 0,±

√
2) indeed satisfy the Lagrange equations

(with λ =
√
2/4), with function value ±

√
2

2.2. x ̸= 0: Then λ = x/2 and z = 1/(2λ) = 1/x. So x2 + z2 = x2 + x−2 = 2, which implies
x = z = ±1. The points ±(1, 0, 1) indeed satisfy the Lagrange equations (with λ = ±1/2)
with function value ±4/3.

So the maximal and minimal value of f taken on the sphere S are 9/4 and −
√
2, respectively.
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7. We have D = Φ(E) with

Φ(x, y) =

(
x+ y
x− y

)
.

The mapping Φ is one-to-one, differentiable, and

DΦ(x, y) =

(
1 1
1 −1

)
.

Hence, by the Change-of-Variables theorem

Area(D) =

∫ ∫
D

1 dA =

∫ ∫
Φ(E)

1 dA =

∫ ∫
E

1 · | detDΦ|︸ ︷︷ ︸
|−2|=2

dA = 2Area(E) = 6.

8. The volume is ∫ ∫ ∫
K

dV =

∫ 2

1

∫ 3−x

2
x

∫ 3−x−y

0

dzdydx =
25

6
− 6 ln 2.
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