Solutions final test Advanced Calculus (2DBN10) November 2023

No rights can be derived from these solutions.

1. a) The eigenvalues of the coefficient matrix are $\lambda_{1}=-1, \lambda_{2}=3$ with corresponding eigenvectors $(1,1)^{\top}$ and $(3,2)^{\top}$. So all (real) solution are given by

$$
y(t)=C_{1}\binom{1}{1} e^{-t}+C_{2}\binom{3}{2} e^{3 t}, \quad C_{1,2} \in \mathbb{R}
$$

These solutions go to 0 for $t \rightarrow \infty$ if and only if $C_{2}=0$. In this case we have

$$
y(0)=\binom{z_{1}}{z_{2}}=C_{1}\binom{1}{1}
$$

i.e. $z_{1}=z_{2}$.
b) Ansatz via variation of parameters:

$$
y_{p}(t)=C_{1}(t)\binom{1}{1} e^{-t}+C_{2}(t)\binom{3}{2} e^{3 t}
$$

This leads to the linear system

$$
\left(\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right)\binom{e^{-t} \dot{C}_{1}(t)}{e^{3 t} \dot{C}_{2}(t)}=\binom{e^{t}}{1}
$$

with solution

$$
\begin{aligned}
& \dot{C}_{1}(t)=-2 e^{2 t}+3 e^{t} \\
& \dot{C}_{2}(t)=e^{-2 t}-e^{-3 t}
\end{aligned}
$$

and after integration

$$
\begin{aligned}
& C_{1}(t)=-e^{2 t}+3 e^{t} \\
& C_{2}(t)=-\frac{1}{2} e^{-2 t}+\frac{1}{3} e^{-3 t}
\end{aligned}
$$

(with integration constants set to 0 as we seek a particular solution only). So

$$
y_{p}(t)=\binom{1}{1}\left(-e^{t}+3\right)+\binom{3}{2}\left(-\frac{1}{2} e^{t}+\frac{1}{3}\right)=\binom{-\frac{5}{2} e^{t}+4}{-2 e^{t}+\frac{11}{3} .}
$$

2. a) Rewrite

$$
F(s)=\underbrace{\frac{1}{(s+1)^{2}+2}}_{F_{1}(s)}-\underbrace{\frac{e^{-s / 2}}{(s+1)^{2}+2}}_{F_{2}(s)}
$$

The calculation rules yield

$$
\begin{aligned}
& f_{1}(t):=\mathcal{L}^{-1}\left[F_{1}\right](t)=\frac{e^{-t}}{\sqrt{2}} \sin (\sqrt{2} t) \\
& f_{2}(t):=\mathcal{L}^{-1}\left[F_{2}\right](t)=\left\{\begin{array}{cl}
0 & \text { if } t<1 / 2 \\
\frac{e^{-(t-1 / 2)}}{\sqrt{2}} \sin (\sqrt{2}(t-1 / 2)) & \text { if } t \geq 1 / 2
\end{array}\right.
\end{aligned}
$$

so

$$
\mathcal{L}^{-1}\left[F_{2}\right](t)=f_{1}(t)-f_{2}(t)=\left\{\begin{array}{cl}
\frac{e^{-t}}{\sqrt{2}} \sin (\sqrt{2} t) & \text { if } t<1 / 2 \\
\frac{e^{-t}}{\sqrt{2}}\left(\sin (\sqrt{2} t)-e^{1 / 2} \sin (\sqrt{2}(t-1 / 2))\right) & \text { if } t \geq 1 / 2
\end{array}\right.
$$

b) As f^{\prime} is a bounded continuous function, its Laplace transform converges to 0 as $s \rightarrow \infty$. Hence

$$
s F(s)=\mathcal{L}\left[f^{\prime}\right](s)+f(0) \xrightarrow{s \rightarrow \infty} f(0)
$$

3. a)

b) $z=\frac{2}{3}-\frac{5}{9}(x-2)+\frac{2}{9}(y-1)$
c) $-\frac{5}{9}(x-2)+\frac{2}{9}(y-1)=0$, or $5 x-2 y=8$.
4. Let $z=x \cos y-1$. Then, by standard expansions,

$$
\begin{aligned}
z= & (1+(x-1))\left(1-y^{2} / 2+O\left(y^{4}\right)\right)-1=(x-1)-y^{2} / 2+O\left(|(x-1, y)|^{3}\right) \\
z^{2}= & (x-1)^{2}+O\left(|(x-1, y)|^{3}\right) \\
z^{3}= & O\left(|(x-1, y)|^{3}\right) \\
f(x, y)= & 1 /(1-z)=1+z+z^{2}+O\left(z^{3}\right)=1+(x-1)-y^{2} / 2+(x-1)^{2} \\
& +O\left(|(x-1, y)|^{3}\right)
\end{aligned}
$$

and the Taylor polynomial is given by

$$
T(x, y)=1+(x-1)-y^{2} / 2+(x-1)^{2} .
$$

This result can alternatively be obtained by calculating the partial derivatives at $(1,1)$ and using the standard formula.
5. a) Critical points of f satisfy

$$
\nabla f(x, y)=\binom{4 x^{3}-8 y}{4 y^{3}-8 x}=0
$$

hence $x^{3}=2 y$ and $y^{3}=2 x$. So $x^{9}=8 y^{3}=16 x$, and hence either $x=0$ or $x^{8}=16$, i.e. $x= \pm \sqrt{2}$.
If $x=0$ then $y=0$, and indeed $\nabla f(0,0)=0$. If $x= \pm \sqrt{2}$ then $y= \pm \sqrt{2}$, and indeed $\nabla f(\pm(\sqrt{2}, \sqrt{2}))=0$. For the Hessian we get
$D^{2} f(x, y)=\left(\begin{array}{cc}12 x^{2} & -8 \\ -8 & 12 y^{2}\end{array}\right), \quad D^{2} f(0,0)=\left(\begin{array}{cc}0 & -8 \\ -8 & 0\end{array}\right), \quad D^{2} f(\pm(\sqrt{2}, \sqrt{2}))=\left(\begin{array}{cc}24 & -8 \\ -8 & 24\end{array}\right)$,
and the second derivative test yields that $(0,0)$ is a saddle point and $\pm(\sqrt{2}, \sqrt{2})$ are places of (strict) local minima.
b) As e.g. $f(x, 0)=x^{4}$ gets arbitrarily large for x large, f has no upper bounds and therefore no global maximum.
Alternative: As \mathbb{R}^{2} has no boundary points, a global (hence also local) maximum would be taken at a critical point. However, we have already seen that there is no critical point at which the function takes a local maximum.
6. Let $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be given by

$$
g(x, y)=(x+2)^{2}+y^{2}-4
$$

The Lagrange equations are

$$
\nabla f(x, y)=e^{x}\binom{x^{2}-y^{2}+2 x}{-2 y}=\lambda \nabla g(x, y)=\lambda\binom{2(x+2)}{2 y}, \quad g(x, y)=0
$$

We distinguish the cases $y=0$ and $y \neq 0$.

1. If $y=0$ then $x=0$ or $x=-4$ because of $g(x, 0)=0$.
1.1. If $x=0$ then $\lambda=0$, and $(x, y, \lambda)=(0,0,0)$ indeed solves the Lagrange equations. The corresponding function value is $f(0,0)=0$.
1.2. If $x=-4$ then $\lambda=-2 e^{-4}$, and $(x, y, \lambda)=\left(-4,0,-2 e^{-4}\right)$ indeed solves the Lagrange equations. The corresponding function value is $f(-4,0)=16 e^{-4}$.
2. If $y \neq 0$ then $\lambda=-e^{x} \neq 0$, and hence $x^{2}-y^{2}+2 x=-2(x+2)$, i.e. $(x+2)^{2}=y^{2}$. Together with $g(x, y)=0$ this implies $(x+2)^{2}=y^{2}=2$. This yields the four solutions

$$
\begin{aligned}
& (x, y, \lambda)=\left(-2-\sqrt{2}, \pm \sqrt{2},-e^{-(2-\sqrt{2})}\right) \\
& (x, y, \lambda)=\left(-2+\sqrt{2}, \pm \sqrt{2},-e^{-(2+\sqrt{2})}\right)
\end{aligned}
$$

with corresponding function values

$$
\begin{aligned}
& f(-2-\sqrt{2}, \pm \sqrt{2})=4 e^{-2-\sqrt{2}}(1+\sqrt{2}) \\
& f(-2+\sqrt{2}, \pm \sqrt{2})=4 e^{-2+\sqrt{2}}(1-\sqrt{2})
\end{aligned}
$$

Comparison of the function values yields that the global maximum is $4 e^{-2-\sqrt{2}}(1+\sqrt{2})$ and the global minimum is $4 e^{-2+\sqrt{2}}(1-\sqrt{2})$.
7. Using the change of variables theorem, we get

$$
\operatorname{Area}(\Phi(D))=\iint_{\Phi(D)} 1 d A=\iint_{D}|\operatorname{det} D \Phi| d A=2 \iint_{D}\left(x^{2}+y^{2}\right) d A=2 \int_{0}^{1} \int_{0}^{1-x}\left(x^{2}+y^{2}\right) d A=1 / 3
$$

8. "adapted" cylindrical coordinates $((x, y, z)=(x, r \cos \theta, r \sin \theta))$:

$$
\iiint_{K} x d V=\int_{0}^{2 \pi} \int_{1}^{2} x \int_{0}^{\sqrt{4-x^{2}}} r d r d x d \theta \quad \text { or } \quad \iiint_{K} x d V=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} r \int_{1}^{\sqrt{4-r^{2}}} x d x d r d \theta=9 \pi / 4
$$

